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PHYSICAL-REGJON DISCONTINUITY EQ,UATION 

Joseph Costert and Henry P. Stapp 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

October 10, 1968 

ABSTRACT 

A c;utkosky-type formula for the discontinuity 

around an arbitrary physical-region singularity is 

derived from precisely formulated S-matrix principles . 

This work was done under the auspices of the U.S. Atomic Energy 
Commission. 

Present address: Western Illinois University,. Macomb, Illinois. 
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I . INTRODUCTION 

We shall derive the following result: The discontinuity of S 

around any physical-region singularity surface is given by a Cutkosky-

type formula obtained by replacing each vertex of the corresponding 

diagram D by the associated (physical-region) S matrix, replacing the 

set of lines a joining each pair of vertices of D by a function 

S -1, and integrating over all the (topologically inequivalent) mass
a 

shell values of the, variables corresponding tQ the intermediate lines. 

The function 
-1 

Sa "is defined by 
-1 

S~ S = I , where 
'-'" a a' 

is the 

restriction of S to the space corresponding' to the set of lines a, 

and Ia is the corresponding restriction of unity. 

This rule gives the discontinuity for S itself. The result 

'for the connected part is obtained by retaining only connected graphs. 

Then the S occurring at each vertex is generally reduced to its 

connected part. However, there are some exceptions, so it is prudent 

to use the ,general formula. 

The discontinuity formula state above is similar to the one 

1 
obtained by Cutkosky. However, his formula ," was incomplete because 

important questions conce~ning the sheet structure 'were not answered.
2 

Also, his clerivationdepended on perturbation theory. The present 

results are derived within the mass-shell S-matrix framework and give 

the discontinuity in terms of the actual physical-region scattering 

functions. This confirms earlier indications3,4 that the physical-region 
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I. INTRODUCTION 

We shall derive the following result: The discontinuity of S 

around any physical-region singularity surface is given by a Cutkosky-

type formula obtained by replacing each vertex of the corresponding 

diagram D by the associated (physical-region) S matrix, replacing the 

set of lines ex .joining each pair of vertices of D by a function 

S -1, and integrating over all the (topologically inequivalent) mass
ex 

shell values of the, variables corresponding tQ the intermediate lines. 

The function 
-1 

Sex is defined by 
-1 ' 

S~ S = I , where 
\h ex ex 

is the 

restriction of S to the space corresponding' to the set of lines ex, 

and lex is the corresponding restriction of unity. 

This rule gives the discontinuity for S itself. The result 

'for the connected part is obtained by retaining only connected graphs. 

Then the S occurring at each vertex is generally reduced to its 

connected part. However, there are some exceptions, so it is prudent 

tb use the ,general formula. 

The discontinuity formula state above is similiir to the one 

1 
obtained by Cutkosky . However, his formula·· was incomplete because 

important questions concerning the sheet structure were not answered.
2 

Also, his derivation depended ort perturbation theory. The present 

results are derived within the mass-shell S-matrix framework and give 

the discontinuity in terms of the actual physical-region scattering 

functions. This confirms earlier indications3,4 that the physical-region 
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discontinuities are completely determined by general S-matrix principles:5 

'they do not depend on the special properties (such as locality) exhibited 

by the terms of perturbation theory. 

In Section II the results needed from earlier works are 

summarized. The discontinuity formula is derived in Section III by 

using an infinite series (mass-shell) expansion for S. Some properties 

-1 
of Sa are discussed in Section IV. 

A derivation not based on the infinite series for S is given 

in Section V, for the case of "leading singularities". A leading 

singularity is one such that the set of particles corresponding to the 

set of lines a joining any pair of vertices of D is a 

"leading set". A leading set of particles is a set that cannot make a 

transition to a set having a lower sum of rest masses. We hope to give 

··later a de~ivation for the case of nonleading singularities that is not 

based on the infinite series for S. 

In the final section our work is compared with other works in 

the field. 
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II. BASTC TOOLS 

A. Cluster Decomposition 

The S matrix is the transition matrix from "in" to "out" . 

Linearity that the transition matrix from "out" to "in" is 
-1 

ensures S . 

We do not use unitarity (S~l = st) . [All that is used in S-matrix 

derivations of disconti:puity equations are the cluster properties and 

iE rules of S and 
-1 . 

S : it is not important that 

The cluster decompositions of S and S-l are conveniently 

represented by a diagram notation: 3 A box with a plus [minusJ sign 

inside represents S [8-
1

J; a bubble (i.e., circle) with a plus [minusJ 

sign inside represents the connected part of 8 [8-
1 J. The left side of 

each box or bubble is the origin of a set of leftward-directed lines, 

and the right side is the terminus of such a set. Each line j is 

associated with a physical-particle variable, which is a set (Pj' ~j' tj) 

consisting of a particle-type index t ., 
J 

a spin (magnetic) quantum 

number 
~j' 

and a real positive-energy mass-shell four-vector p .. 
J 

The cluster decomposition of S [S-lJ is represented by writing 

each plus [minusJ box as a sum of columns of plus [minusJ bubbles, the 

sum being over all topologically distinct ways that the lines originating 

and terminating on the box can be partitioned among bubbles .of a column, 

with each bubble having at least one incoming and one outgoing line. 

The connected parts of S and 
-1 

S divided by the overall 
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B. Bubble Diagram Functions 

The cluster decompositions of S 

decompositions of quantities like SS-l, 

and 
-1 

S induce corresponding 

SS-lS, t e c. The rule for 

computing such a product is to first draw all topologically distinct 

bubble diagrams B composed of the appropriate number of columns of 

the appropriately signed bubbles; The lines originating on the bubbles 

of one column terminate on those of the column standing to its left, if 

there is· ~:me. For each such B one constructs a corresponding function 

FB by summing over .all physical values of the variables (p., !-t., t.) 
.~ ~ ~ 

for each internal line i, subject to the constraint that topologically 

equivalent contributions be counted only once. The function being 

calculated is precisely the sum of the functions FB defined in this 

way.3 [For fermions some signs must be considered.] 

Two contributions .to FB are topologically equivalent if and 

only if the corresponding diagrams, with each line. j identified by a 

corresponding variable (p., u., t.), can be continuously distorted 
J J J 

into each other with the external end points of the external lines held 

fixed. Each bubble is identified as to its column, and the distortions 

must leave each bubble in its own column. (Alternatively, one must keep 

all the "trivial" bubbles having only one incoming and one outgoing 

line. These bubbles are often omitted because they do not affect the 

value of the integral, except in this matter of counting.) 

.... 
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C. Macrocausali ty 

Macroscopic particle phenomena has a characteristic space-time 

structure. If effects ,bf long-range interactions and massless particles 

are ignored, then particles move along straight space-time trajectories 

'except when they come close to other particles., A quantitative 

description of the phenomena is provided by the Newton-Einstein laws of 

motion. These laws assign to each particle j a momentum-energy-

vector Pj that is directed along its space~time trajectory, and that 

satisfies the mass-shell constraint 
2 = m. 

J 
MomentUm-energy- is 

conserved, and is exchanged between particles only when they are close 

to each other; one imagines momentum-energy- to be transmitted by a 

short-range interaction. 

If one requires this space-time structure of macroscopic 

phenomena to emerge from S-matrix theory, in appropriate classical, 
, 

"macroscopic limits, and demands also that classical estimates based on 

short-range interactions should become valid in these limits, at least 

to order of magnitude, then certain physicai~region analyticity proper-

ties follow. These include the cluster decomposition property described 

above, and also the properties described in the following two sections. 

D. The Positive~ Rule 

The first important consequence of the macrocausality condition 

is that the physical-region singularities of the scattering functions 

S ± 
c 

are confined1io positive~ Landau surfaces
6 

associated with 

connected diagrams. 7 
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Landau surfaces ,are associated with Landau diagrams. ' A Landall 

diagram D is'a diagram that represents a classical multiple-scattering 

process with point interactions. It consists of a set cif,leftward 

directed line ~egments j that" meet at vertices v. Each line j is 

associated with a real momentum-energy vector p., that satisfies the 
" . ' "'. . J 

mass-shell constraint 

where 

2 
P j 

" , . 

2 
- m. = 0 , 

J 

o 
P . > 0 
'J 

, 

is the mass of the par~icle associated with line 

Momentum-energy is conserved at each vertex v: 

L ~ 
into v P j 

- ~v P j = 0 

(2.la) 

j. 

(2.lb) 

The vector 6. from the space-time origin of internal line i of D 
~ 

tci its space-time terminus must be directed along its momentum-energy: 

i.e., for some scalar a
i 

one has 

(2.lc) 

Finally, the sum of the space-time displacements 6
i 

around 'any closed 

loop ,of internal lines of D must add to zero: 

[ ± 6. - 2: t a i Pi = 0 \ (2.ld) 
~ ,;co 

.£ .£ 

Here the ± sign is plus if the loop P- is directed along 6. 
~ 

and minus otherwise. 
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These equations express the constraints on the multiple

scattering diagram D i~osed by classical relativistic particle 

mechanics. They are called the Landau equations. The Landau surface 

L(D) is the set of external P == (Pl'" 'Pn) that are compatible with 

the Landau equations associated with diagram D. The trivial solution 

with all a. := 0 is not accepted. 
1 

Physical particles carry positive energy forward in time. The 

. a. must therefore be posi ti ve : 
1 

a .. > 0 
1 

(2.2) 

The' subset of L(D) that allows a solution of the Landau equations 

(2.1) subject to the positive-a condition (2.2) is denoted by L+(D), 

and is' called a positive-a Landau surface. The positive-cx rule says 

that the scattering functions Sc±(P) are analytic at all physical 

points not lying on the union of positive-cx surfaces 

shell 

The scattering functions S ± are defined only by the mass 
c 

which is defined by the mass-shell constraints (2.1a) and 

the overall momentum-energy conservatlon law. Thus the ordinary 

definition of analyticity does not apply. The appropriate definition 

is given in Refs. 5, 7; and 8. 

Certain general properties of the set L+ are used in formu-

lating the i€ rule.· These are described now. 
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A ,given surface +' 
L(D) generally,coincides with the surfaces 

L+(D) of an infinite set of other diagrams D. These arise in a 

trivial way: If a set of internal lines of D all originate at the 

same vertex v', and all terminate at the same vertex v", then the 

Landau equation requires them all to be moving along together, relatively 

'at rest. Thus they can undergo trivial forward scatterings upon each 

other without affecting the kinematic relations. Any number, of these 

trivial forward scatterings can occur. This leads to an'infinite set 

of diagrams "D ,such that L + (D) = L + (D) . 

It is convenient to introduce diagranis that ~o not have these 

trj.vial forward scattering vertices. A "basic diagram, Dr:. is a Landau 

diagram that has no part that (i) is connected to the rest of the 

diagram at only two vertices, (ii) contains more than two vertices" 

and (iii) contains no external lines. Every L+(D)is confined to 

the L+(Dr:.) of some corresponding basic diagram Dr:.' Thus one can write 

Only a finite number of Dr:. have L+(Dr:.) that enter any bounded 

portion of the physical region. 9 

(2.3' ) 

The representation of L+ is further simplified by introducing 

"basic surfaces",' defined as follows: Let ~O represent the part 

of the mass shell where two or more initial momentum-energy vectors 

Pj are parallel, or two or more final Pj are parallel. Then for any 

,Landau diagram D the set LO+(D) is that part of L+(D) ~' 
o 

. such that the Landau equation for L+(D) have no solution with any 

0:. O. 
l 
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It is clear that any point, on L+(D) - ~o that is not on" 

must lie on the L +(D') o . of a contraction D' of D construc-

·ted by contracting to points and removing from D the lines corres

ponding to a
i 

= O. Thus L+ can be written as 

= (2·3") 

The importance of this representation lies in the fact that 

LO +(D/3) is a real codimension 1 analytic submanifold 6f the mass- .. 

shell "CfiJ.8 That is, each point p" of L
O

+(D/3)' has a mass-shell 

neighborhood N(P) such that inside N(P) the set L
O

+(D/3) coincides 

with the set f= 0, where f is a real analytic function of the 

local real analytic coordinates of the mass shell at P (see ego 

. Refs. 7 or 8), and grad f == \7f is nonzero in N(P). 

The representation (2.3") shows that (L+ ~ '11?0) is the union 

of a set of codimension 1 real analytic submanifolds of ~, only a 

finite number of which enter any bounded portion of the physical region. 
~, 

,. Since 0'?0 has codimension 3 ~ the set 
+ L has codimension l~ [The 

codimension of ~ plus the dimension of ~ is the dimension of 

imbedding space,here 3n + 4. ] 

The positive-a rule says, therefore, that S (p) is analytic 
c 

a.t almost all physical points, and that 

apart from the small set ~O' a local 

a finite set of real analytic functions 

"gradient \7f i ; 

the remaining set L+ has, 

representation as the zeros 

f. 
1 

each having nonzero 

of 
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E. The iE Rules 

Macrocausality implies also that the scattering function Sc 

near any P of can be represented as the limit from any 

direction in the inter,section of the upper-half planes 1m f. > 0 of 
1. 

the (unique) analytic continuation into this intersection of the 

function S (p) 
c 

defined on 1
+ ~ 

- "10 , The functions f. 
1. 

are the 

functions that define . 1+ near P,' and their signs are fixed by the 

requirement that a formal increase of the masses associated witb the 

internal lines of 'D by a common scale factor shifts LO+(D) in the 

plus f direction. This sign is known to be independent of the 

particular diagram D that defines 10 +(D) : all locally coincident 

surfaces 10+(D) can be defined by the same function f. (Theorem 7 

of Ref. 8) 

This iE rule for S is known as the plus iE rule. The 
c 

funct,ion S c obeys the minus iE rule, which is the same 
. .,:t 

rule except that the upper-half planes 

lower-half planes 1m f. < O. 
1. 

1m f. > 0 are replaced by 
.1. 

These rules have content only at those points P of 1+ 

for which the appropriate half planes have a nonempty intersection that 

contains P on its boundary. This property is obviously satisfied for 

any P that lies on only one [or only on several 

that all locally coincide with one single oneJ. Such points comprise 

almost all of 1+ 1r;0' since the rest have codimension 2. Thus 

the iE rules have content at almost all points of 1+ 

It is important that the iE rules have content also at a 

cd'tain of the remaining points of 1 + ?lto' It is known (Theorem 13, 

., 
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Ref. 8) that the intersection of the upper-half planes corresponding 

to P (on L+ "l?-u) is nonernpty, and contain P on its boundary, 
o 

whenever all the D(3 with P E LO+(D(3) are contractions of some single 

D .. 

There are, however, some points P of L+ - ~O such that the 

intersections of the various upper-half planes associated with Pare 

empty near P. The scattering function S' 
c 

cannot be represented near 

such a P as the limit of a single analytic function. To cope with 

such points ~e shall introduce in the next section an independence 

property, which says, in effect, that singularities associated with 

unrelated diagrams are independent. This will allow the iE rule to be 

applied at all points of 
+ 

L ~. 
Full technical details concerning the iE rules are given in 

Refs. 7 and 8. The intersection of the upper-half planes at P is 

defined, in effect, as the set of mass shell variations 5 that satisfy 

1m 5 . v·f. (5) > 0, where G is a set of local real analytic coordinates 
l 

at P, and ~ = G(~Y. (See also Ref .. 10) 

The basic tool in the analysis of physical-region singularities 

is a theorem that extends the positive-a and iE rules to all bubble 

diagram functions. This theorem is described next. 

F. 
11 12 

Fundamental Theorem ' 

1. Assumptions of Theorem 

(a) Positive-a Rule, . The physica;L-rE;gion singularities of the 

scattering functions Sc and Sc 

positive-a Landau surfaces. 

are confined to the union L+ of 
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(b) Independence Property. Each point p, of L+ CJJzo has 

a real mass-shell neighborhood N(P) such that Sc±(P) in N(P) 

decomposes into a finite sum of terms, one for each basic diagram D(3 

for which contains P. The singularities of the term of 

associated with are confined to 

S ± 
c 

(2.4) 

where D' 
(3 

is any contraction of Each term obeys a corresponding 

iE rule, as is described next. [The justification of the independence 

property is given in Section G.J 

(c) The iE Rules. The individual terms of Sand S 
c c 

described in the ;independence property obey the plus and minus iE 

rules, respectively. The upper- apd lower-half planes for each term 

are specified by the singularity surfaces occurring in that term alone. 

(d) Technical Assumption. The singuliirities at ~o are 

not too pathological. [This assumption is discussed in Subsection 3.J 

2. Conclusions of Theorem 

Let B be any connected bubble diagram. Let 
B 

F be the 

corresponding bubble diagram function. Define 

Then the following properties hold: 

(a) Generalized Positive-a Rule. The physical-region singulari

ties of Fc B are confined to the union of the Landau surfaces L G(D
B

) . 

,",' , 



to. 

'. 

-13- UCRL-18S12 

A DB is a Landau diagram constructed by inserting a connected basic 

Landau diagram Db for each bubble b of B, with the incoming and 

outgoing lines o'f .. Db' identified in a one-to-one fashion with the 

incoming and outgoing lines of b, respectively. The surface La(D
B

) 

is the part of L(D
B

) that is compatible with the Landau equations of 

L(D
B
), subject to the constraint that each line i of DB that is an 

internal line of some Db must h.ave an (Xi that satisfies 

(2.6) 

where a
b 

is the sign of b. The (original) lines of B itself, 

which are external lines of various Db' have no sign constraint. 

(b) Generalized Independence Property. Each point P of 

U L a(D
B

) -. ~o has a real mass-shell neighborhood N(P) such that 

Fc B decomposes on N(P) - U La (DB) into a finite sum of terms one 

for each' DB for which La(D
B

) contains P. The singularities of 

the term associated with a given DB are confined to 

where the DB are contractions of lines of DB that are internal lines 

of some Db' 

(c) Generalized iE Rule. The functions F B(p) obey a 
c, 

rule that is completely analogous to the plus; iE rule, except that 

the upper-half planes at P are now defined by using, instead of 

f = f(P), the functions 
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\"' cx. (p) [po (p) - p. (p)] 
~ 1 1 1 

(2.8) 

There is one such function fori each solution a.t Ii of the Landau 

° cx. (Ii) p. (Ii) equations of L (DB). The and are the parameters of 
1 1 

the internal lines of DB corresponding to the solution at P. The 

Pi(P) is any set of internal Pi satisfying the conservation law 

constraints of DB a.t P. [The function GpCP) will not depend on 

the particular choice of the PiCP), because of the Landau loop 

equation.] 

The ordinary iE rules connect th~ physical-region scattering 

functions in different sectors of ~ - L+. Similarly, the generalized 

iE rules connect the "physical-region!! functions F B 
c 

in different 

The physical-region functions are 

defined as integrals over the physical-region scattering functions. 

These are the functions FB that occur in the decomposition of the 

functions 

It may, of course, be possible to continue F B 
c 

from some 

given sector of ~ - LJ LO(D
B

) by following different alternative 

paths around some LOCD
B

) - ~O .. The generalized iE rule asserts 

that it definitely is possible to continue through the intersection of 

the upper planes defined by (2.8), provided the intersection of these 

upper~half planes is nonempty arbitrarily close to P, and that moreover 

the function arrived at on the other side of L ° (DB) - '117 0 will then 

be precisely the physical-region function ~cB. Also, an integral over 

the physical-region function 

I 
I,." 

.', I 

F B 
c 

can be represented by an integral 

, 
I.', 

~' 
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over a contour distorted infinitesimally away from P E U LCJ'(D
B

) 

and into the intersection of the upper half planes at P. 

By FB 
c 

physical-region 

we shall, unless otherwise stated, always mean the 

F B, no't soDie analytic continuation of it; the only 
c 

contim,lations considered are the infinitesimal ones specified by the 

general iE rules, unless otherwise stated. 

The generalized iE rule has content at P of LCJ'(D
B

) - tj?zo 

only if the various upper-half planes at P have a nonempty intersection 

at P' [Le., only if there is a' (3n - 4) dimensional variation 5 

in ?rL satisfying Im 5 . 7 op(p) > 0 for all op(p) associated with 

LCJ'(D
B
).] If this intersection is empty at P, then no continuation 

past LCJ'(D
B

) is assured at P. 

- CJ'C) There are some important points Pof L DB for which the 

intersection of the upper half planes is obviously empty. In particular, 

every point of LCJ'(D(B») has this property. 

The diagram D(B) is the particular DB obtained by replacing 

each bubble b of B 'by a point vertex. Since no line of D(B) 

comes from inside any bubble, there are no constraints on the signs of 

the a.(P). Thus the reversal of all these signs will give another 
~ 

solution. This solution will have the signs of all the functions 

apCP) reversed. Thus the positions of all upper-half planes will be 

reversed. Thus the intersection of the upper half plances at P will 

be empty, and the iE rule will be without content there. 

This failure of the iE analyticity property at points of 

LCJ'~CB») plays a crucial role in what follows. It is related to the 
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breakdown of the definition of FB at" these points. The function 

FB is defined as an integral that contains, in effect, a conservation-

law delta function for each bubble b of B, and a mass-shell delta 

function for each internal line i of B. A product of delta functions 

under an integral sign is defined as follows: one transforms to a new 

i 

set of variables that contains the argument gj of each delta function 

as an independent variable, and then omits the integrations on these 

variables. This definition fails at P (i.e., the Jacobian becomes 

infinite) if the gradients 9 gj are linearly dependent at p. 

These linear dependence"relations turn out to be precisely the 

Landau loop equations corresponding to D(B). Since the mass-shell 

and conservation-law constraints are also satisfied, the equations that 

define the points where FB is ill-defined are just the Landau equations 

for D(B), and the corresponding set of points P is the Landau 

surface L(D(B)):: Lcr~(B). 

The function FB generally does not continue into itself 

around points of L~(B). That is, FB in different sectors of 

~ - L(?(B)) near P of L(D(B)) are generally not parts of a single 

analytic function. In fact, the function FB is obviously identically 

zero at points of ~ where it is not possible to satisfy simultaneously 

the various mass-shell and conservation-law constraints associated with 

B. The boundary of this region lies in L(?(B). Furthermore, every 

point of L+~CB)) lies on this boundary. Thus FB can never con

tinue into itself around L+(PCB)), unless it is identically zero. 

, 
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The portion of ~ where it is possible to satisfy all the 

mass-shell and conservation-law constraints of . B is called the 

... physical region of B. According"fio the above remarks, the physical-

. . FB 
regl.on is nonzero only in physical region of B. Moreover, 

t.+~(B)) lies on the boUndary of this region. The sign conventions on 

the functions f·, are such that the physical region of B near P 
l. 

of L
o
+0(B») is either confined·to Lo+~(B») or lies on the positive-f 

side of it.
IO 

That is, FB is identically zero on the negative-f 

side of LO +~(B»). 

The above-mentioned fact is important in the derivation of the 

discontinuity formula. It ensures that all the terms in the discontinuity 

" formula vanish on the negative-f side of the singularity surface 

· + . 
· LO (D/3) in question. The "principal term" of the discontinuity formula, 

which is the one s'llch that each vertex v of D/3. corresponds to the 

connected part of the corresponding S, will have its physical region 

,bounded by L
O

+(D/3)' Generally speaking, the physical regions of the 

nonprincipal terms will not extend to Lo+(De) because of the extra 

.. c~mstraints imposed by the extra conservation laws. Thus the nonprincipal 

+ terms will generally not contribute to the discontinuity around LO (De)' 

But if the physical region of some nonprincipal term does reach Lo+(De), 

+ then this term will contribute to the discontinuity around Lo (De)' 

· 3. The Technical Assumption 

The macrocausality condition.does not rule out singularities at 

1r; O· The proof of the theorem requires, however, that the singularities 

at crr;o be.not too pathological. It is known from the boundedness 

.< 

\ 
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property SC[¢l""¢n] ~ 11¢111"'11¢11, which follows from linearity 

and the probability interpretation,that the int~grals defining FB 

do not diverge at ?r!o. An additional requirement is that the integrals 

defining the derivative of FB also be well defined at t;!(o' 

G. Maximal Analyticity 

This principle is that S±l(p) has only those singularities 

that are -required by general principles. The :t\lll· content of this 

principle, as it applies to physical-r~gion 'points, is the independence 

property (b): singularities violating this property are not required 

to be present, hence they are required to be absent. 
" 

The point is this. The positive-a rule and the iE rules 

impose certain constraints on the allowed singularities. But they do 

not require any singularity actually to be present in Sc or. Sc 

On the other hand, the cluster properties of Sand S-1, by themselve.s, 

actually require the scattering functions to have singularities. 

These arise as follows. Suppose one expresses identities such 

as 
-1 

SS = I, or etc. in the form of 

bubble diagram equations, 

= 

, where c3 I and C8 " are classes of bubble diagrams. Then 'the 

assumption that the and S 
c 

are all singularity free gives, 

(2.8) 

contradictions: certain terms of (2.8) will have explicit singularities 

that cannot be cancelled by any other singularities .. Thus the cluster 
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properties of S, and 
-1 S '. definitely r~quire some of the scattering 

functions to have Singularities. 

The above argument does not. show precisely which singularities 

are required in Sc and Sc However, it 'can be extended to do just 

that. In particular, the various identities (2.8), which follow simply 

fr6m the cluster properties of S and 
-1 

S ,supplemented by the 

conclusions of the fundamental theorem, permit the derivation of a 
. . 

formula for the discontinuity around each physical-region singularity 

allowed by the positive-a rule. This formula shows that each allowed· 

singularity is also required: i.e., it has a nonzero discontinuity. 

These required singularities are apparently compatible with the 

independence property. Thus we have an apparently self-consfstent 

singularity structure that has no singularities that violate the 

independence property., Thus no s ingulari ty that violates this property 

is required. Then maximal analyticity says none is allowed. Hence 

the independence property must hold. 

We turn now to the derivation of the discontinuity formula. 

It ~ill be conveni~nt to assign to each internal line i of each 

Landau diagram D a sign cr. 
~ 

that determines the sign of a. inthe 
~. 

corresponding Landau equations: 

A diagram that has all 

denoted by 'l'hus 

cr. = +1 is called a positive-a diagram and is 
~ 
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III. ITERATIVE SOLUTION 

A. Expansion of S 

Introducing R±;' S±l - 1, we obtain 

The formal iterative solution for R+ gives 

R+ = ~ (_l)n (R-)n (3·2) 

n=l 

Each factor R- is represented by a sum of colnmnsof minus bubbles, 

the sum being over all topologically different ways of joining a column 

of bubbles to the exter,nal lines. However, at least one bubble of 

each column must be nontrivial. [Trivial bubbles are those with just 

one incoming line and just one outgoing line.] 

In the assessment of topological equivalence one considers the 

bubbles to be confined to particular columns) This means that the 

three terms shown in Fig. 1 must all be counted. 

Fig. 1. Three contributions to the expansion of a four-line 

S. The vertical lines show the separation into factors R • 

Trivial bubbles have been omitted,since they do not alter' the 

function. 

,.. 

!'! 
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The first two factors have coefficients (_1)2 = 1· in (3.2), 

whereas the last has coefficient (-1). Thus there is a cancellation 

and only one term survives. 

This result is general: In the expansion (3.2) one needs to 

count only one of any set of topologically equivalent contributions, 

where in the assessment of topological equivalence one now disregards 

both trivial bubbles and the separation of bubbles into columns. The 

sign of the single surviving term is (_l)n, where n is the number 

of (nontriv~al) minus bubbles of the term. 

The bubbles b of the original B are partially ordered by 

the ordering of the columns in which they lie. If the column identifi-

cation of the bubbles is removed then the bubbles are partially ordered 

only by the requirement that all lines be directed from right to left. 

For each such partially ordered B there remains, after the cancella-

tions, precisely one term Thus if the unit contribution is added 

back to give S = 1 + R+, one obtains13 
I 

s 

The sum is over all topologically different partially ordered bubble 

diagrams B having only nontrivial minus bubbles, and n is the 

number of bubbles of 
13 

B . 
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The e:h.rpansion (3.2') contains in an implicit form an expression 

for the discontinuities. As one moves across a positive-a: threshold, 

new terms appear in (3.2'). If mixed-a: singularities (i.e., singularities 

corresponding to solutions of Landau equations that require a:'s of 

both signs) ~an be ignored (see Section VI below)and if only one 

positive-a: surface is relevant, then the discontinuity is just the sum 

of these new terms. This is because any term in (3.2') that is present 

below the threshold will, by virtue of the Fundamental.Theorem, 

continue around any singularity at threshold via the minus iE rule. 

This leaves the new terms as. the discontinuity. The problem of cal

culating the discontinuity is then to identify the infinite number of 

terms that appear in (3.2') as one crosses the threshold, and to 

combine them into a useful form. The following sections are, in effect, 

devoted to that end. 
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B. A Fundamental Identity 

Let a be some set of incoming lines of S. A minus bubble 

in the expansion (3.2') of S will be called an a bubble if and 

only if all the incoming lines of that bubble belong to the set a. 

We define Sa to be the subset of the expansion (3.2') consisting of 

all terms having no a bubble. Thus for each term of Sa each line 

in the set a either ends at a minus bubble that has some incoming 

-line not belonging to a, or it touches no minus bubble at all, and 

. is therefore an "unscattered" line (i. e . it is both incoming and 

outgoing) . 

It is convenient to represent 
a " 

Sby ·the diagram shown in 

Fig. 2. 

a 

y y 

Fig. 2. Diagrammatic representation of Sa. The shaded 

strips represent arbitrary sets of external lines. 

The diagram on the right of Fig. 2 is to be regarded as a 

representation of a partial sum of terms of the expansion (3.2'). The 

missing section indicates the absence of all terms having an a 

bubble. 
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With t.his not.at.ion a fundament.al identity is this: 

Cl a 

+ 

This equation expresses the fact that if one attaches to 86 the set 

obtained from ~,he expansion of the small plus box, 'and sums over 6, 

then one obtains the full expansion (3.2') of 8. In particular, all 

the terms l-rith 0: bubbles are reinstated, and each one only once. 

To prove (3.3) the concept of a cut, is useful. The lines of 

the D(B-) corresponding to any B are drawn running from right to 

left. A'flow line is a continuous curve in D that runs from the 

extreme right to the extreme left. It consists of an ordered sequence 

of line segments L. 
J 

of D. A cut is a set of lines that contains at 

most one line L. of any flow line. The set of flow lines defined by 
J 

a cut is the set of all flow lines that contain a line contained in the 

cut. Equivalent cuts are cuts that define identical sets of flow lines. 

A line £1 lies left of £ 
2 

if and only if £1 lies left of £2 on 

some flow line. A cut C
l 

lies left of a cut C
2 

if and only if C
l 

is equivalent to C
2

, at least one line of C
l 

lies left of some line 

of C
2

, and no line of C
2

1ies left of any line of C
l

. A leftmost 

cut is a cut such ~hat no cut lies left of it.l3,14 

In (3.3) the cut '6 is the leftmost cut equivalent to 0:. 

'rhat no cut lies left of it follows from the definition of Ef3. For 

,iI 
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each fixed ~ the term~ of (3.2') give, independently, all terms.of 

S~ on the left of ~ and all terms of tbe small Plus box. Ssa on the right. 

Multiplication of (3.3) by a small minus box on the right gives 

a a 

+ 
(3.3' ) 

-_._----------_._-------------_._----,-

The fact that the combination on the right is equivalent to a sum of 

bubble diagram functions FB corresponding to B' s having no a 

bubbles was shown earlier in Ref. 15. There only finite operations 

were used and the sum was over a finite number of terms. [Both plus 

and minus bubbles occurred in the B's representing the terms of that 

fini te expression. ] 

.The validity of (3.3') can be seen directly from the expansion 

(3.2' ) . If this expansion is substituted into both terms of the right 

side of 

+ + + + 

.. -----.-----.----. (3. 4)' 

-' where the slashed box is R , one finds an exact cancellation of all terms 

having an a bubble: Each bubble diagram B that has precisely one 
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a 'bubble appears precisely twice on the right, and these two te~ms 

have opposite signs. Each term having precisely two a bubbles 

appears four times, twice with a plus sign and twice with minus sign. 

Each term having precisely n > 0 a bubbles appears 2
n 

times,· half 

wi th plus and half with minus signs. However, 'each term with no a 

bubbles appear only once, and in the first term. This confirms (3.3') 

and gives an independent confirmation of (3.3). 

C. Leading Normal Threshold Formula 

Using the identity just obtaine~ one easily derives the normal 

threshold formula obtained earlierl5 without using infinite series. 

In the expansion (3.2') of 

s 8 

f3 

some terms will have a cut C such that all the flow lines through 

this cut begin in 5 and end' in r, and such that the removal of the 

lines of this cut separates S into two disjoint parts, one containing 

~ and 5, the other containing r and ~. Let the sum of terms 

having no such (empty or nonempty) cut C -be called R. 
n 

A term having such a cut C may have several. All these must 

be equivalent, since each defines precisely the set of allflcw lines 

that begin at 5 and end at r. Let the leftmost- of these c:uts be 

.. 
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labelled 0;. Then the separation of the terms of the expansion of 

(3.5) into terms having, or not having" a cut C gives 

E~8 

Y~,B y 

8 
E 

+ y 

8 

f3 
~-~----'-------""---'--'-----"'-'''-' ----_ ... 

Each term in the expansion of the left side either has no cut C, 

and hence belongs to Rn' or has a leftmost cut 0;, and appears 

precisely once in the first term on the t~ght of. (3.6). 

Insertion of (3.3') into (3.6) give~ 

+ 
y 

This formula is essentially the same as that derived (laboriously) 

(3.6' ) 

in Ref. 15; by means of finite methods. There the plus boxes were the 

actual S matrices (rather than their infinite-series expansion) and 

R was a certain finite sum of bubble diagramfUnctionsF
B 

having 
n , 

j'ust the property that defines R : . n' i. e., no Bcorresponding to a 

term of the sum Rn has a DB having point vertices for all minus 

bubbles. that " supports a cut C of the kind described. 

The important property of R is that it contains no B 
n 

having a DB that contracts to any positive~ normal threshold 
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diagram Dn+ of the form indicated in Fig 3. [DB is defined in 

Section II H. ] 

0+ 
n 

Fig. 3. 
+ 

The positive-a normal threshold'diagram Dn The 

+ sign indicates ~hat the of all lines of the set of 

lines between the t:\10 vertices are plus one.. The arrow 

. . 
indicates that all lines have the direction indicated. Dn 

is defined by the same diagram with minus in place of plus. 

The boxes around the vertices indicate that it is not 

necessary that the vertices within them be single points; 

a point within a box can represent several disconnected 

point vertices. 

The first term.on the left of (3.6') vanishes below the leading 

+ 
normal threshold associated with diagrams of the form D . The second 

n 

term on the left has, by construction, no positive-a singularitycorre-

sponding to any diagram that contracts to any diagram of the form + 
D 

n 

If mixed-asingularities (i. e. , singularities associated with solutions 

of Landau equations that involves a
i 

of both signs) can be ignored 

(see Section VI) and if the only diagrams D+ giving surfaces L(D+) 

througp a point Pare those that contract to a diagram of the form 
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+ 
Dn ' then the only singularities of Rn at P are those associated 

with diagrams that contract to D 
n 

The function R must then, by 
n 

virtue of the Fundanien:tal Theorem, continue into itself via a minus 

iE rule around'the threshold. It is consequently the continuation of 

S from the region just below threshold to the region underneath the , 

cut starting at threshold. The first term on the right of '(3.6'0) is 

thus just the discontinuity around the normal threshold. 

D. A Generalized Identity 

The function Sa is the set of terms of (3.2') such that no cut 

lies left of the cut a. 

Let the mass Ma of a set of lines a be the sum of rest masses 

of the .lines a. Let at denpte a cut that lies left of a and also 

Let 
at 

S be the subset of (3.2') that has no a'. 

:Let p(a)" be the projection function that is zero or one accor-

ding to whether the set of linesB on which it acts satisfies M < M 
B a 

or Let That is, is S if both incoming 

and outgoing lines have mass ?~, but it is zero otherwise. Then near 

the a threshold one obtain$ the following generalization of (3.3): 

for any S with a (sub) set of incoming lines a 

s , 

where, in complete analogy to (3.3), Sa acts between the sets a and 

a'. [The proof is essentially the same as for (3.3); the nearness to 

t.hreshold ensures that the leftmost cut at is unique. 13 ] 
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From (3.7) one obtains, as the generalization of (3.3') 

. 0;' , 8 8,,8 -1 
.0; 

, 

is the inverse of 80;: 

[This definition of 80;-1 is slightly more general than the one given in 

the introduction; it covers also the special case when two different 

sets of .communicating particles have the same sum of rest masses.] 

E. General Normal Toreshold Formula 

Consider the expansion (3.2') of S o,f (3.5). Let 0; be a 

cut of the type described below (3.5) with the additional condition that 

Mo; be equal to or greater than SOl!le fixed sum of rest masses. , 

The arguments leading to (3.6) are now repeated; but now with 

Ro: ,containing the terms having no cut 0:. One then obtains for the 

discontinuity around the 0: normal threshold the formula 

+ 
+ 

This result is the same as that obtained by finite methods in 

Ref. 15, except that there Mo: was required to be less than the lowest 

communicating four-partiCle threshold. This limitation is here removed. 
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F. General Physical-Region Discontinuity Formula 

Essentially the same argument gives the general discontinuity 

formula described in the introduction. 

Consider some ba;sic positive-a diagram 
" + 
D " • Let label the 
"e 

sets of lines connecting the va'Tious pairs of vertices of D + 
e 

Let the 

mass of a set of lines be the sum of the rest masses of these '~lines, and 

let Ma be the mass of a. 

A'bubble diagram B "is said to contain D + 
e 

if and only if 

D(B) contains D + e . [D(B) is the diagram obtained by shrinking the 

bubbles of B to points.] A D contains D + 
e 

if and only if it has 

a set of mutually disjoint cuts C , one corresponding to each of the 
a 

sets a of + De . The cut Ca." corresponding to the set a. must be a 

cut that consists of positively signed lines having mass MaMoreover, 

the cutting of all the lines of all these sets C
a 

must divide D into 

a set of N mutually disjoint"parts, one corresponding to each of the 

N vertices of The part of D corresponding to the nth vertex 

of 
"+ D" 
e 

must contain the appropriate end points (leadines or trailing) 

of the appropriate lines of the appropriate sets, as 

[ Ec:xn is the sign of the of 
+ for common E. De ln 

connectedlless of the part n of D is irrelevant; 

be either connected or disconnected. 

A B excludes if and only if no 

prescribed by 

i in a. ] 

as in Fig. 

contains 

The 

3 

+ 
D e 

it 

is defined in Section II H. Notice that "contain" and "exclude" are 

opposites provided all the bubbles of B are minus bubbles.] 

Ecxn 

can 
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The important properties of'these two classes are these: First, 

any sum T over B's that contain DI3 
+ must vanish outside 

the physical region of 
+ 

De ' and ,hence on the negative-f side of 

[see Section II FJ. Second, any sum R of FB,s over B's that 

4-
exclude, DI3 must, by virtue of the Ftindatirental 'Theorem:, have a 

minus iE continuation into itself past p of 
+ 

L(D
13 

), provided P 

except those such that D+ + 
contains ,DI3 ' ,and 

provided R has no mixed-ex singularities at P. It follows that a 

separation of S in two terms T and R that contain and exclude 

respectively, exhibits '1' as the discontinuity around any such P 

of L(D
13 
+). 

Consider any B that contains Then D(B-), which is the 

< diagram obtained by replaCing eCJ,ch (minus) bubble of B- by a point 

vertex, must have some set of cuts Co; corresponding to the sets 0; of 

D + 
13 • A cut strongly equivalent to Co; is a cut that is equivalent to 

Co; and has the same mass. Any Co; may be replaced by any cut strongly 

equivalent to it without destroying its correspondence to 0; of 

The result just stated is proved in AppendixC. It is assumed 

there, and in <what follows, that the point P under consideration lies 

on L(D
13 

+), and lies on no 1(D +) 

The Landau equations for 

unless D+ contains 

D + 
13 

at P 

vectors of all the lines in a given set 0; of 

require the momentum-energy 

D + 
13 

to have a common 

direction d
a
:-, It also is assumed in' Appendix C, and in what follows, 

that these directions do; ar\?' aJ.l different, for the P under 

consideration. 

'i 
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".., 

Consider now the structure T obtained by replacing each vertex 

of 
+ 

De by the expansion (3.2') of the Scorresponding to that 

vertex. Delete from the ~xpansion of each S all terms corresponding 

to diagrams having some cut that is strongly e'quivalent to, and stands 

left of, the cut corresponding to any set 0: of incoming lines of that 

s. 

This structure T contains every term B in the expansion 

(3.2') of S that contains For any such term there must be a 

set of cuts Co: 

the leftmost cuts 

that correspond to the various 0: of 
+ 

De . Consider 

strongly equivalent to these. These 

separate B into parts'that correspond. to the vertices of 

C ' 
0: 

The 

part corresponding to the nth vertex. will be some term in the e1..'Pansion 

(3.2') of the S corresponding to 'tha tvertex. And it will be one of 

the terms that is retained in the construction of T . 

. Thl.ls any term in the expansion (3.2') of S that contains 

+ 
De will be some term in the structure T. And any term in the 

. structure T evidently contains D(3 +, and is a term of (3 . 2' ). 

It remains to show that each term of (3.2') that contains D + 
(3 

is contained precisely once in T. If this is true then the remainder 

R will exclude + 
De ' and the desired separation of S will be 

achieved. 

Each term in (3.2') that cop.tains will be contained 

precisely Once in T provided any B- that contains a set of leftmost 

cuts C ' 
0: 

corresponding to the 0: of D + 
(3 

contains precisely one such 
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in B this term is contained 

precisely' once in T.13 Thus we must show that each B that has a set' 

of leftmost C ' 
a 

corre~ponding to the a of D + 
~ 

has precisely one 

such set. ' 

Suppose for some B there are two sets of leftmost cuts C
a

' 

that correspond to'the a: of D~+. The function F
B

- will vanish in 

, an infinitesimal neighborhood of P unless the constraints of' Ballow 

, 
the Pi's corresponding to the lines of each of these sets of C

a 
s 

to assume the (unique) values 

of + 
D~ at P. 

Pi O?) that solve the Landau equations 

Co~sider a reduced diagram n+ ,that contains only those lines 

of D(B-) that lie on one or the other of the two sets ,C
a
'. Since the 

Landau equations at p' must be ,satisfied for the lines coming from each 

of the sets Caseparately,' they must be satisfied for the whole 

d • "-+D : ' ~agram P must lie on L(n+) if B is to contribute near P. 

The conditions on D + 
~ 

for there to be a n+ that ,contains 

D~+ in two essentially different ways, as above, are very stringent. 

For example, the leading vertex of D + 
~ 

that e;qlands into more than a 

single vertex of Ii'" must have a set of outgoing lines that represent 

particles that can decay into th,e particles represented by another set 

of outgoing lines of that vertex. '(See Fig. '7) This placesstrohg 

conditions on the momenta p j associateq. with these lines, and hence 

stringent conditions on P. We call "redundancy conditions" these 

~conditions on' Ii that must be satisfied if, D~ + is to be contained 

in several essentially different ways in some D+. 

;. 
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Our conclusion then is this: Suppose the following conditions 

are satisfied: 

'" + 
1) P lies on L(D~+) and on no L(D+) unless D+ contains D~ . 

2) The directions da: of the P j 
of the various sets of 

of D~, as defined by the Landau equations of D +. at 
~ 

all d.ifferent. 

The redundancy conditions on D + 
~ 

are not satisfied at 

lines 

P, are 

P. 

4)' The remainder R = S - T has no mixed-a: singularities at P 

(see Section VI). 

a: 

Then the discontinuity of S around L(D~+) at P is given by the 

rules described at the beginning of the paper, where the diagram D is 

just Notice that condition (1) ensures that P lies on the 

codimension 1 surface [see Section II D·].· 

The disconnected parts of S. have, of course, conservation 

law delta function factors. The discontinuities associated with these 

parts are calculated in the natural way, by taking the discontinuity 

. + 
corresponding to a path that encircles the singularity surface LO·(D~ ) 

while remaining in the manifold defined by the appropriate conservation 

law delta functions. 

We believe the discontinuity formula for $ itself, rather 

than its connected part, will be the more useful in practice, ·because 

in any applications based on unitarity (or on other physical conditions) 

it is the full 8, rather than its connected part, that is relevant. 

One lesson we have learned from our work is that general results for 
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multiparticle processes are ha.rd to derive from unitarity if one 

separates out the disconnected parts before the final stage. 

The derivation given in this section is based on the infinite 

series expansion for S. Howeverj all infinite series are eliminated 

from the final· result. This suggests that the results should be deriv

able directly from the equation SS-l = I' that generated the infinite 

. " 3)1 15 
series. This has been done in many special cf3,ses. ,., In Section V 

we derive the result for all "leading" singularities, without using 

infinit~ series. 

The expansion of (3.2') for S has an infinite number of terms, 

one for each diagram n+. An interesting finite expression is obtained 

by grouping together the contributions corresponding to different. 

structures s. A structure s corresponds to the class of basic 

diagrams n + 
~ 

that differ only by the masses associated with the 
.' 

!, 

various sets of lines a. That. is, the masses of the particles tliat , 

pass between the two vertices specified by a are not restricted; they 

are allowed to be anything. 

This grouping of terms gives 

S 

s 

S 
s 

The expression 'for Ss is obtained by'replacing each vertex of t.he 

structure diagram by a minus bUbble, and e.ach set of lines a by the 

entire S matrix acting between the two corresponding minus bubbles. 
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This expansion (3.11) for S is something like a Feynman 

expansion, but with the following important differences: 

1) It is strictly mass-shell and physical-region. 

2) Only a finite number of terms contribute at any finite energy. 

3) Each propagator is the entire physical IS-matrix. 

4) Each vertex is a minus bubble. 

This system of exact integral equations appears to be interesting, 

but their exploitation is not our present aim. 
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IV. PROPERTIES OF 

The function is the inverse of Sa = Pa SPa' where 

P
a 

is the projection on configurations of communicating particles 

having,a sum of rest masses greater than or equal to the mass Ma 

associated with the, lines a of some;Landau diagram. The equation 

for Sa-
l 

has a'formally Fredholm structure. In the case that Ma 

lies below the lowestfour:;-particle threshold '(for communicating 

-1 
particles) the equation for Sa has been converted to strict Fredholm 

form. 3 This has not yet been done in the general case. 

The function can be expressed in terms of S 
-1 and S ' 

and their continuations. To obtain these expressions introduce first 

the definitions 

R~ 
-1 

= Sa - Ia (4.1) 

and 

Ra Sa - Ia (4.2) 

These satisfy 

R + R + R- R = O. 
a a a, a 

Both Ra and Ra are restricted to the space allowed by P
a

:= I a · 

The function Ra is the restriction to this space of, the Ra ,defined 

by 

--
R +R+R P R 
a a a 

o (4.4) 

[The projection' of {4.4) on a is jtist (4.3).J 
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Define the quantity ~ by 

It + R 
ex 

and 
- -1 

R =S·-1. 
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(4·5) 

The restriction of to the 

space allowed by ~ 
+ is called R . ex' 

It satisfies 

= 0 (4·5' ) 

Below the ex threshold, the Qa.' are irrelevant and R~ can 

be identified with Q R Q. We showed in Ref. 3 that R+ evaluated 
ex ex ex 

just above the ex threshold coincides with the continuation of 

Q
a 

R Qex from the physical region lying j'ust below the ex threshold, 

the continuation being via the minus iE rule. We also established a 

number of interesting relationships between ·It and R-, such as ex . ex 

and 

-R ex 
(4.8) 

This latter equation (C.l2 of Ref. 3) allows Sex-
l 

to be expressed in 

-1 
terms of S and the continuation of Q

a 
R Qex to underneath the ex cut. 

In Ref. 3 the results just described were derived only for ener-

gies lying below the lowestfouI'-particle threshold of the channel in 

question. However, they hold also in general, at least in our iterative 
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framework. To see this one can first consider 
+ 

Ra to be defined to 

be the sum of all terms of the expansion (3.2) that contain no 

direct channel a cut. That is, R~ is the sum of all terms of 

expansion (3.2) that exclude the direct channel normal threshold 

s'tructure diagram D +, where a specifies a certain sum of rest masses. 
a 

In this case our general expansion of S according to D~ gives 

[see (3.10)J 

s 

Multiplication on the left by S-l gives 

I 

Recalling that 

and noting that 

= 

we obtain by left multiplication of (4.11) by ~ the original 

definition of (4.5') of R+. 
,a 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Left and right multiplication of (4.11) by P gives the" , . a 

-1 
defining equation for Sa . Left multiplication of (4.11) by P

a 

and right multiplication bYS-l P
a 

gi ves . (4.9). Equation (4:8) can 

be derived in the same way as in Ref. 3. [See (5.18) and Appendix C 

of Ref. 3. J 

," 
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The above argument shows that the quantity defined by 

(4.5') is equal to the sum of all terms(but %) of the expansion (3.2') 

of S that exclude .. ' and that it is accordingly J the continua-

tion of to underneath the cut starting at the threshold. 

It is surprising that the R: defined by (4.5') is the continua

tion of ~ R ~ to underneath the a cut.· For many terms of iterative 

solution to (4.5') do contain However, a.detailed examination 

shows that each such term of is cancelled by an 

identical term with opposite sign. 

This cancellation allows the results of Ref. 15 to be extended 

without essential change to the regions above the lowest four-particle 

channel threshold, except that the justification of some steps by 

Fredholm theory is no longer supplied. We expect it could be 

supplied by the same sort of arguments that were given in Ref. 3 for 

the two- and three-particle intermediate states . 

. I 
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V. INDUCTIVE SOLUTION 

This s~ction contains an alternative derivation of the discon

tinuity around "leading" singularities. This derivation does not rely 

on the infinite series expansion for S, but is based_ instead on the 

results of Ref. 15. The point P is as above. 

The principal results of Ref. 15 are these: ( i) over any 

bounded domain S can be converted by a finite number of ~pplications 

of S8-
l = I to the form T [D~] + R[D~], 

. + 
term on the right of (3.6'), and E[D

n
] 

where - T[D+] is the first 
n 

is a certain finite Sum of 

bubble diagram functions F
B

, each corresponding to a B that excludes 

the normal thre shold diagram D + of Fig. 3. (ii ) The quanti ty L: 
n -_-

on the right of (3.3') can be similarly converted to a finite sum L:' 

of FB, s, - h d' t-eac correspon lng 0 a B that has no cut 0:' =I: 0: that is 

equivalent to 0:. 

The discontinuity around any leading singularity can be derived 

by repeateQ. application of these two results. To do this, first select 

+ 
a leading vertex V of D~ [i.e., all incoming lines of V are 

incoming lines of D;]. Let D~(V) be the D~ obtained by contracting 

+ 
all internal lines of D~ but those that are outgoing lines of V. 

Then any B that excludes D~(V) will exclude also 

second term on the right of 

$ = T[D:(V)) +R[D~(V)] 

+
consists of terms that exclude! b~. 

, 

Thus the 

(5.1) 
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The first term on the right of (5.1) has the form of the first 

term on the right of (3.6'). The part L: of this term that is the 

right-hand side of (3.3' ) can be converted by means of (ii) to a sum 

L:' of ~'sJeachcorresponding to a B that has no a' =t= a equiva-

lent to a. This gives the alternative form 

S = T' + R[D
n 
+(v)] (5. 2 ) 

Let 'D' be D'i" that contains + with LCD' ). any D(3 J P on 

Let Cv be the sum of the leftmost cuts C
a 

, 
of ' D' that 

correspond to the sets that begin at V of + Property (ii) , a , D(3 • 

together with the requirement that the sets a be leading sets, entails 

that any Cv in D' consist precisely of the set of lines r of T' 

that run out of the right-hand plus box and into L:' . That is, 

property (ii) requires any Cv to lie to the right of L:' , and the 

condition that the various sets a be'leading sets rules out the 

possibility that Cv lies inside the :plus box. (Le., the kinematic 

constraints at P do not allow the particles in different leading sets 

a to come together again after leaving V. 'See Appendix C.) 

-Thus any Cv in D' must consist of precisely tbe lines r. 

Let [p. (p) } be the {Pi} of the unique 
8 

solution of the Landau 
~ 

equations of 
+ 

D(3 at P. Then the only part of the integral over 

the lines of T that contributes to the singularity at P associated 

with D + 
B 

comes from the region near the poin~s where the Pi of r 

assume the values Pi (p) : the other parts of the integral do not 

allow the Landau equations of D' 
(3 

+ 
to ,be satisfied at P. 
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Let the lines of r be divided into sets fex' one for each 

of the sets C ' 
ex 

oi' C
V

' such that near the point 

set contains the lines contained in 
i-

be separated into three terms: 

T 

C '.Then 
ex 

Pi = Pi (p) 

T == T[D +] 
n 

the 

can 

a 
The term T consists of those terms of T such that some minus bubble 

of T connects lines from different sets rex' The remaining terms 

have no minus bubble connecting these sets; and the separation into 

sets rex of the set r induces a corresponding 'separation into sets 

r' of the set of lines r' that emerge from.the minus box and enter 
ex 

the left-hand plus box. Let this plus box be written as 

'" + where D~ is the diagram obtained by removing V from 

[
1.\ +] 

+ RD13 ' 

The two 

corresponding 'terms of T are called Tb and T
C

, respectively. Then 

is the desired 

We proceed by induction on the number of vertices of 
'. + 

DB . Thus 

T[~13+J is assumed to have the form described in the introduction, and 

R[~13+J is assumed to have no singularities corresponding to diagrams 

D+ that contain D13+' The analogous property must then be derived for 

D + 
13 . 

In this section we shail accept :,arC.extena.ed.'.' independence 

property that asserts that in any equation G;" 0 derived from unitarity 

(or SS-l == I) the net singularity corresponding to any basic diagram 

+ 
Dr:~ is zero. That is, the various singularities corresponding to any 

one cancel among themselves. This is what one would naturally 

.... 
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expect; the singularities corresponding to different basic diagrams 

,. should generally have different analytic characters and would not be 

:~ 
\ 

eXpected to cancel against each other, even if they could coincide. 

This assumption simplifies the present; proof, but is not 

actually necessary, as is discussed in Section VI. 

The work of Ref. 15 that gives property (ii) can be extended to 

show that can be converted to a form 

same property as T': any cut Cv must lie in r. 

Consider, then, the identity 

= 

. b' 
T that has the 

Multiplication on the right by the inverse of the right-hand plus box 

gives 

F' = F 

The equality of the two sides of this equation is a consequence of 

unitarity (or SS-l = I). 

The function F' has the property of I;': any cut CV,must 

{J lie in r. The function F has the opposite property: no cut Cv 
can lie in r. We conclude that F' has nO.net singularity correspon-

';ding to C 
V 

in r. But·then 

larity corresponding to 

b' b 
T' - T = T - T can have no singu-

This property holds true also for 

S -T [see (5.1) J. Thus it must hold for their sum 

This completes the induction proof. 



VI. DISCUSSION OF ASSUMPTIONS 
'Ii 

The assumptio~s used in our derivation of the discontinuity 

formula' are these: First, there are some general assumptions embodied 

in the cluster decomposition principle, the positive-a rule' (which says 

that the singularities of Sand S are confined to positive-a Landau 
c c 

surface) and the i€ rule. These general assumptions are consequences 

of the macrocausality requirement, as was discussed in Section II. Second, 

there are the independence property and the technical assumption, which 

are'needed for the Fundamental Theorem. The independence property is the 

full content in this work of maximal analyticity. " We plan to dis cus s the 

-technical assumption elsewhere. 

A third set of assumptions are special conditions on the point 

P. In the first place, P is required to lie onL(D~+), but on no 

unless contains D~+. 'Second, the directions of the 

momentum-energy vectors corresponding to different sets a of internal 

lines of Pare required to be all different. And third, 

is required to be such that at 
::-+ 

P no D contains D + in two 
~ 

-essentially different ways. Tb,ese conditions on P are to ensure that 

+ positive-a singularities associated with diagrams other thanD~ do 

not contribute at P, and that those associated with D~+ contribute 

precisely once. 

The discontinuities at :points P <,where these conditions on P 

fail can be calculated by making Use of the independence property. 

Suppose for example that Plies onL(D+) for some D+ that does 

not contain 
\ + 

The diagram D can be assumed to be basic. Then 

.... 
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P must lie also on L(D~+), where the basic diagram D~+ is a contrac

tion of D+. (One contracts out the lines of D+ that correspond to 

cx. 
l 

O. ) The independence property then ensures that the singularities 
\ 

at P associated with the D + and 
~ 

-1. + 
additive) unless there is some D 

~ 

-+ 
D~ are independent (i.e., 

that contains both D + 
~ 

and 

, ,with p on Since the Landau equations for L(D~+) and 

L(D~+) are both satisfied at P, this point must lie also on L(D~+). 

If P lies on L(D+) for no ather basic diagram D+, then one can 

classify all basic diagrams 
~ + 
DB such that P lies on L(D~+) 

according to whether 
~ + 
D~ contains just 

+ 
D~ , just 

- + 
D~ , or both (and 

" +) hence also D~ . The terms corresponding to the last case would be 

counted in both T[D~+J and T[D~+J. But they ~re also the terms 

included in T[B~+J. Thus ,the discontinuity is 

+ - + A + 
T[D~ ] + T[D~ ] - T[D~ J~ 

In this case P lieson~both:'L(D;~+) :1i:b.Q.jL(D~+rand the above 
~ ~). 

discontinuity is the difference between the function in the physical 

region of D + 
~ 

and its continuation around both and 

where the continuation moves first through the plus iE region associated 

with ~~+,and then through the corresponding minus iE region. 

More general cases are treated similarly, by using the general 

principle of inclusion and exclusion [see Appendix D of Ref. 15]. The 

same sort of considerations apply also to cases' where one or bo.th of 

the other two conditions on P fail: again_one uses the independence 

property together with the principle of inclusion and exclusion to 

isolate the relevant set of terms. 
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The final assumption is that R = 8 - T has nomixed~a 

singularities at p. 

We now argue that the sum on the right of 8 = R. + T should 

have no netmixed~ singularities. 8incethe quantity S on the left 

has singularities only onpositive~ Landau surfaces, the only possible 

net mixed-o: singularities on the right are those that happen to lie 

exactly on top of positive-a surfaces. 

It is conceivable that these particular mixed~a would not cancel 

qut, like all the others must, but it see~s unlikely. In the first 

place the physical arguments (macrocausality) that imply that the 

singularities of 8 are confined to positive-a surfaces correlate these 

singularities topositive~ diagrams. Thus it would be unnatural for 

them to arise mathematically from other diagrams, which just happen to 

16 . 
give the same Landau surfaces. In the second place, the mixed-a 

·singularities that happen to lie on positive-a surfaces are intimately 

related via hierarchy effects to the mixed-a singularities that do not 

lie on positive-d surfaces. It seems unlikely that the latter could all 

vanish identically without the former vanishing also. 

On the'basis of these arguments we shall accept the proposition 

that in any equation of the form 8 = X derived from 88-1 
= I the 

mixed~ singularities of the bubble diagram functions that comprise 

. the right-hand side exactly cancel out (in the physic~l region). This 

will be our basic assumption about mixed-a singularities. It may be 

possible to derive it by some inductive argument, but we do not attempt 

this here. 
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On the basis of this assumption we can confirm the absence of 

the mixed-a; singularities in R = S - T by confirming it rather for T. 

The only lines of T that can be minus lines are the lines of 

the cuts Ca;. By virtue of energy conservation the momenta of all these 

lines are fixed at precisely the value defined by the Landau equations 

of Df3 
+ at P. [The Landau equations define the unique way of achieving 

the boundary point of the physical region of Df3 +. See Section II F. ] 

Any mixed-a; DT such that P lies on L(D
T

) is a member of 

:" . 
a continuum of such D

T
. This continuum is generated by adding to the 

solution of the Landau equations corresponding toP on 1(D
T

) areal 

multiple of the solution corresponding to l' on L(D
f3

+). If the real 

multiple is sufficiently large and positive, then the mixed-a; DT is 

converted to a D
T

+, because all the lines corresponding to the Ca; are 

eventually made positive. Thus any point P on L(Df3+) that lies on 

the L(D
T

) of a mixed-a; DT must· lie also on L(D
T

+) for a continuum 

of + + 
DT · =t= Df3 ' where D + 

T 
contains 

This shows that T can have no mixed-a; singularities at simple 

points of L(D
f3 

+),. which are points that correspond to just one Df3' 

At the nonsimple points P of L(Df3+) that lie on L(D
T

+) for 

..... the continuum of D + .j.. D + 
T T f3 

the meaning of our assumption about mixed-a; 

singularities must be clarified.. For we have to consider diagrams that 
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I 

can be continuously shifted from mixed-a: to positive-a: status. The 

correspondence between (ingularities and diagrams then becomes ambiguous. 

At these points of L(~[3+)' where these flexible diagrams could give 

mixed-a: singularities to T, we interpret our assumption that all mixed-a: 

siri.gularities of T + R cancel to~,mean that the only net mixed-a: singu-

lari ties of F are those associate'd with the same flexible diagrams that 

give the possible mixed-a: singularities ofT. 

With this interpretation we can show that the mixed-a: singularities 

of R that might occur at these special points would not, in any case, 

upset our proof. The point iS,that contributions to R associated with 

these flexible diagrams must have minus iE continuations past the 

surface L(D[3+)' This is because the construction bf R ensures that 

these contributions can occur only if the minus lines of the (flexible) 

diagram co~e from inside minus bubbles .. But then the proof of the 

. Fundamental Theorem shows that the continuation past the surface 

L(D[3+) will follow the minus iE rule, due to the presence of these 

necessarily minus lines. But then the proof of the discontinuity 

formula would go through even at these very special points at which the 

flexible diagrams give singularities. 

In Section V an extra assumption '(extended independence) 

was used to simplify the argument. To avoid the assumption one need 

mOdifj the proof only slightly~ First the function R[D[3+] is considered 

to be decompos~d (using the ordinary independen~e property) according 

to basic positive-a: diagrams 
~ + 
D[3 [this decomposition is unambiguous]. 

Then the assumption of the induction argument is that all terms corre-

sponding to diagrams . '" + !) + 
that contain D[3 ,vanish from R[D[3 J. 

The analogous property must then be proved for R[Del. 

;, 
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The proof proceeds as before, but one now decomposes also the 

two sides of F' = F according to basic positive-a diagrams. Only 

the terms that can contribute to the final D[)+ need be consid~red 

(see below). But the singularity surfaces bounding the supports of these 

terms are not the same on the two sides of F' = F. Thus these terms 

must vanish. 
. b + 

But then T - T has no terms.corresponding to D~ Nor 

does S - T~ Thus neither does their sum S - Tb = Rb. 

[The condition that 
.. -l-

P lies on no L(D') for any D+ not 

containing 
+ 

D~ implies that one need consider only terms that 

contribute to the final + 
D~ . For if any other diagrams could exactly 

compensate for the missing term in F', then this term also would give 

an unallowed + 
D • ] 

The argument given above in effect justifies the extended . . 

independence property, in the context in which it was used. 

The present work generalized the results obtained earlier by 

. 3,13· ,4 ourselves and by the Cambrldge group. We now contrast our methods 

and results with theirs. 

Regarding final results our discontinuity formula covers all 

physical-region singularities whereas their general result covers only 

the case of simple diagrams. (In simPle diagrams each set a consists 

of just one line.) They have obtained results also for certain special 

nonsimple diagrams, and are working toward the general result. 

~ 

Some theorems in the 'early part of their work are somewhat 

similar to our Fundame:qtal Theorem. However , the treatment 

of technical details is considerably different iJ;l the two works. 
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Our basic procedure is quite different from that of the Cambridge 

group. Their approach is in a way more general, since they first derive 

general formulas for discontinuities of integrals in terms of the 

discontinuities of their integrands. Then they use these results to 

show that for singularities associated with simple diagrams the 

Cutkosky discontinuity formula is consistent with unitarity. Finally 

they show, by means of an inductive procedure, that no other solution 

is possible: if the Cutkosky formula is valid for all simple diagrams 

up to a certain order of complexity, then it must hol!d also for 

diagrams of the next order of complexity,provided singularities 

corresponding to nonsimple diagrams can be ignored. 

Their procedure, then, is first to make a detailed general 

analysis of discontinuity formulas and then to introduce these results 

into unitarity, which is used in only a limited way. 

Our procedure is the reverse. The manipulations involved in 

our approach are purely topological and involve multiple applications 

( -1) of unitarity or more accurately the cluster properties of Sand S . 

These topological manipulations give equations 
+ + 

S = R[D .] + T[D
A 

], 
~ f-' 

where the topological ,characteristics of the terms on the right guarantee 

that R[D~+] is the continuation of S around L(D~+) via the minus 

iE rule, and hence that T[D~+] is the discontinuity. Anal~ticity is 

u?ed only at the last stage, and thus complications connected with 

distortions of contours are avoided. 

This procedure is more special, in that it refers to the parti

cular problem at hand. But it yields a variety of strict identities15 

•. 

•• 



" 

'-53- UCRL-18512 

that can be used in other contexts. These identities are consequences 

of the Cluster properties alone and are purely topological in nature; 

analyticity is not involved. 

The assum:ptions needed in the two approaches are, with one 

important exception, essentially the same. In particular, the indepen

dence and boundedness properties are needed in both methods.
ll 

And the 

considerations involving the special conditions on P are essentially 

the same. 

The one important difference is that the Cambridge group does 

t th t th . ul ·t· f Sand S-l ar' e confl'nAd to no assume a . e slng arl le9 0 ~ 

positive-a surfaces: their aim is to derive this result. On the other 

hand, they do assume the i€ rules, for positive-a points, and also 

certain similar rules at mixed-a points. Our viewpoint is that these 

strong i€ requirements, should not be imposed ad hoc, but must be 

justified. We justify the i€ rules on the basis of macrocausality, 

and get the positive-a rule at the same time. Alternatively, one might 

justify the i€ rules on the basis of self consistency, but one should 

then also prove uniqueness. 
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Appendix A. The Independence Property and 

. the Fundamental Theore)1l 
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The Fundamental Theorem quoted in Section II Hhas slightly 

weaker assumptions and slightly stronger conclusions than the theorems 

proved in Ref. 12. In this Appendix we discuss these assumptions, and 

show how the proof of Ref. 12 can be extended to give the theorem quoted 

in Section II F. 

One technical detail shoUld be mentioned first. What is proved 

. in Ref. 7 is that S 
c 

(or considered as a distribution can be 

represented as the limit of the analytic f~ction. That is, this repre-

sentation is shown to be valid when one is calcUlating the average of 

S 
c 

(or over a Schwartz test function. But what is needed to 

prove the structure theorems is something slightly different. One needs 

to evaluate products of different S 's 
c 

and S 's 
c 

with one another. 

Sc and 

In the proof of the structure theorems each of these functions 

S 
c 

was considered tore. a; ,limit of the analytic functions 

described above, and their products were defined, for certain fixed real 

values of the external (unintegrated) momenta, by performing the 

, appropriate integration over internal momenta along a mUltidimensional 

contour that remains in the region of analyticity of all the relevant 

functions Sand S 
c c 

This contour is such that .it can be shifted 

(staying in the analyticity domain) to a pos,ition arbitrarily close to 

the real physical region. By virtue of the (mUltidimensional) Cauchy 

'theorem such a shift does not alter the value of the integral. 

For any fixed real value of the (external) variables' K of 

~(K) the integrations occurring in the definition of FB were assumed 

.... 
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to be given by the above rule, provided the relevant domains of analyti-

city of the various functions S and 
c 

s 
c 

overlap in such a way that 

the re<a.uired contour through the intersection of the analyticity domains 

infinitesimally removed from the real phYsical region exists. The 

function FB(K) was shown to be analytic at such values of K, and the 

rule for continuing the thus defined function ~(K) around any singu-

larity.at real K was derived. 

This rule defining the integrals in ~(K) was used to evaluate 

the terms of ss-1, 'SS-lS, etc. If one considers the S matrix to be 

defined basically in terms of limits of analytic functions, then this 

definition of the meaning of the 8S-
1
,' SS~lS, etc. is the reasonable 

.one. However, if one starts with Sand 
-1 

S considered to be operators 

in a Hilbert space, then this rule for defining their products must be 

justified. The re<a.uired justification is given at the end of this appendix. 

It was asserted in Section II F that the independence properties 

of Sand S lead to analogous properties of the bubble diagram 
c c 

functions FB. The point is that the proofs of the structure theorems 

show that the singularities of ~ corresponding to any basic diagram 

D~+ arise from singularities of the bubbles b of B that are 

associated with the parts 
. + 
D~b 

+ 
of D~ that lie in 

regarded a s a These parts 
+ . 

D~b must be basic 

is. Now by virtue of the independence property of 

of b associated with different basic daigrams 

If anyone specific 
+ 

D~b isinserted'into each b 

b, when D + 
~ 

diagrams, if 

is 

D + 
~ 

the singularities 

are independent. 

of B then one 

specific D+ 
B 

is formed. This contracts to some uni<a.ue basic 
+ 

D~ • 

It thus follows that the singularities of ~ corresponding to different 
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basic diagrams D~+ must arise from independent singularities of at 

least one b of B, and must therefore be independent. 

The independence property can, alternatively, be derived from 

macrocausality at almost all points of the surface of singularities L+. 

However, there is then the problem of extending the property to those 

rare (Type II) points a twhich this argument breaks down. 

The independence property is not included among the assumptions 

mentioned by the Cambridge group.4 This omission is connected to their 

somewhat relaxed way of specifying the precise conditions under which 

'their basic theorems are valid. If one wishes to formulate their theorems 

precisely, in forms strong enough to do the job, then the independence 

property or something similar seems re~uired. Following their philosophy 

one might try to justify the independence property by an inductive 

procedure: the independence property for complex basic diagrams might 

be shown to follow from tnat of the simpler ones. However, an inductive 

procedure for proVing irtdependence would involve an artificial assumption 

that the singularities can be "ordered", and that one can proceed by 

stages, completely ignoring !!higher order"singularities at each stage. 

But since the discontinuity associated with any D~+ is, in effect, a 

some of contributions corresponding to diagrams that are more com~lex 

than + 
D~ , a justification'of independence based on t!hierarchy" is 

subject to ca.uestion. In the procedure we adopt no ordering is invoked, 

and there is never any "temporary neglecting!1 of certain singularities. 

Also, the full content of rnB.ximal analyticity is explicitly stated. 

'. 
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The Second and Third Structure Theorems given in Ref. 12 are 

specifically restricted to simple points of the Landau surfaces L(D
B

). 

That is, it is assumed that the point P corresponds to a unique 

basic diagram. This assumption is needed because the arguments cover 

only the case where there is only one constraint (3.7) (of Ref. 12) ~ 

Now suppose there are many such constraints. The question is whether 

there is a set of variations 5h
f 

of the Feynman loop parameters that 

keeps all the 
2 

5p. = 0 and all the 
J 

50: > O. (Such a set of variations 

would shift the contour simultaneously into the domain of analyticity 

,of all the bubble functions, while maintaining all the 'mass shell and 

conservation law constraints.) 

To solve this problem consider the following lemma: 

Lemma A For any set of real numbers ~ the system of equations 

has a solution 5 if an only if the system of equations 
a 

(A.l) 
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'tlba == 0, 0b > 0 (A.2) 

has rio solution. 

Proof Suppose (A.l) has a solution. Insertion of this solution' into 

(A.2) gives a contradiction.' Thus (A.2) can haye no solution. 

Conversely, suppose (A.2) has no solution. Then the space X spanned 

by positive linear combinations of the vectors 

"ba 
is convex. Then there exists some vector 

"b with components 

6 that has positive 

inner product with every vector of X. This vector solves (A.l), and 

the lemma is proved. 

A slight generalization is 

Lemma A' For any sets of real numbers and ;"ca the system of 

equations 

L 
a T}ba °a , , 

o , 

has a solution ° if and only if the system of equations 
a 

L . b a" +2:A f.... 
. b 'Iba c 1-'c ca o , . 0b > 0 

has no solution. 

Proof If (A.3)· has' a solution then (A.)~) can clearly have none. 

Conversely, if (A.4) has rio solution then the space X of positive 

.,--
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linear combinations of the T)b must be convex and must contain no 

vector in the linear space Y spanned by the A. • 
c 

Thus the orthogonal 

complement X.L of X must have dimensicm at least that of Y. 

Moreover, X.l cannot be .contained in yJ.. , for then X would contain 

vectors in Y. Thus if Y is non null then:. there must be a nonzero 

vector that lies in X.L but not in y.L. The sum of a multiple of 

this vector with the vector in X . satisfying (A.3a) (found in Lemma A) 

solves (A.3), and the lemma is proved. 

Lemma A' is precisely what is needed to extend the Second and 

Third Structure Theorems to nonsimple points. 

It was mentioned at the beginning of this appendix that the 

integrations occurring in the definitions of the bubble diagram functions 

FB(K) were defined to b~ along contours ,displaced infinitesimally from 

the physical region into the simultaneous analyticity domain of all the 

occurring functions Sc and Sc' provided the real K was such that 

such a contour exists. The proofs of the structure theorems show that 

such contours do exist for most real K, that the FB(K) is analytic 

. at such points, and that FB(K) continues analytically around the 

remaining real points K via paths defined by certain rules. 

It is reasonable to define the integrations in the way 

indicated. But if one begins with the idea that S and 
-1 

S are 

operators in a Hilbert space then this rule must be justified. The 

problem is that macrocausality gives the analytic representation for 

S a.nd S 
c c 

considered as distributions, rather than as operators. 
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It is not known whether this representation is valid for operators. 

However, we now sho·w that the functions FB considered as products 

of operators restricted to the space of Schwartz test functions can be 

defined by performing the integrations along the distorted contours 

described above. 

Let HI" Hq , and Uk be three Hilbert spaces of square integrable 

functions of the multidimensional variables p, q, and k respectively. 

Let A:H ~ Hand B:H ~ Hk' be two bounded operators. Let cp(q), 
q I' I' . 

X(p), and !Jr(k) be Schwartz test functions of compact support. Suppose 

for sufficiently small supports we know that 

(X, A cp) 

and 

(B !Jr, X) 

where 

lim J dp dq x*(p) A€(P, q)cp(q) 
€-') 0 

lim 
€-) 0 

,. and € = (e, €) 
P q 

is a 

vector Of fixed direction];ying in a certain open convex cone (which can 

depend on the small supports of X and cp)J and s~rly for B€(k, p). 

The function A(p + i€ , q + i€ )is supposed to be analytic when p 
P. q 

.and q ·are in the supports of X and cp, respectively, and. € is in 

the cone, and similarly for B. 

[The functions A and B have certain energy-momentum delta 

functions as factors. The analyticity discussed above is for t):1e 
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the factor that multiplies these delta functions., as described in 

detail in Refs. 7 and 8. We shall not explici tly write down the delta 

function factors, but we will use the fact that the conservation laws 

entail that A~ and ~ have compact supports if ~ and ~ do. 

That is, the region of integration is a compact "cycle"--it has no 

boundaries. (See Ref. 12) 

Consider fixed ~ and ~ of small compact supports. Let 

X. be a finite set of Schwartz test functions such that 2:X. = I 
l l 

on the compact p space. Suppose the X. can be chosen so that the 
l 

corresponding domains oJ analyticity of A and; B overlap, in the 

sense that there is a contour e defined by E(p) such that 

A(P + iE(p), q) .is in the domain of analyticity corresponding to X. 
l 

and ~ whenever p and q are in the supports of X. and ~, 
l 

respectively, and similarly for B. We wish to show that 

That is, we wish to show that the operator product BtA, acting between 

the Schwartz test functions ~ and ~ can be represented by an inte

gral over the fixed contour·e- The contour e is displaced by a 

finite amount from the real axis, but the assumption is that it can be 

shifted to arbitrarily close to the real region, staying always in the 

cones of analyticity. 

It is sufficient for our purposes to consider only a special 

class of functions X.. These will be functions formed by ta:king 
l 
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products of functions in the individual variables of p. Furthermore 

the functions in each individual variable will be unity except at dis-

tance less than A> 0, from the ends of its supports. The function in 

the support and at distance less than A from the left end of the 

support will be given by the function 

== 

-1/5 C -1/5 -x I -x' 
e e 

, ( ') -1/5 )-1 
- A-X ' 

+ e 

1 
_(A_xy-1/5 ( _x":1/5 

- e "e + 

-1/5 )-1 
e -(A-x) , ' 

The right end will be given by the analogoiJs function. The virtue 

of these functions is first that they are easily combined to give 

functions that add to unity, and second that they are analytic except 

at zero and "A., and approach their values at these points exponentially 

from any direction in ,the cut (along their support) plane. 

Consider now the integral on the 'right of 

(x., Acp) 
l 

lim 
E~ 0 

J dp Xi (p) A(p + 

Because of the analyticity properties of 

i€ , 
P 

X. 
l 

q) cp(q) 

one can perform the 

lim E ~O by, instead of shifting the entire contour down to the real 

axis, merely extending the contour in the surfaces Re z == x == 0 and 

x =="A. along the direction of E into E == O. This follows from a 

distortion of the multidimensioncontour. 

,.' 
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Macrocausality guarantees that the functions corresponding to 

A and B grow no faster than some inverse power of I E I as E --40 

inside the cone of analyticity. The exponential falloff of x. 
l 

at 

x = 0 then guarantees that the lind t E --4 0 can actually be taken; 

one can extend the contour right down to the physical region. At 

x = 'A the contour also ,can be' extended to E = 0, for the same 

reason, provided one combines the parts coming from the two sides of 

x = 'A. [On one side one has the X. 
l 

of the form of fA. (x), while on 

the other side one has X. == 1. The difference falls of exponentially 
l 

as E ~ 0 on the surfa,ce Re z = A.. ] 

One observes now that the contributions from these strips at 

Re z = x = 0 and A. are exactly cancelled by the contributions from 

the neighboring X .. 
l 

Thus if one adds contributions from many 

different neighboring X. 
l 

the contour of integration is free to move 

about in the domain of analyticity except for the parts corresponding 

to the outer boundary strips assoCiated with X =0 and X = A.. 

That is, in our original form the E were required to be 

constant over each domain Xi (and generally a different constant for 

different X.) but we have now converted this to a single continuous 
l 

contour e that varies smoothly over the union of the supports. 

In our case where the union of the X. 
l 

cover the entire compact cycle 

in p space the contour e.. never descends to the real a.xis, but 

remains always in the domain of ana.lyticity. 

The above results apply equally if all the 

by X. e
ipu

. ,l Thus the Fourier transform 

X. 
l 

are replaced 
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F(u) = (eiPu, Acp) 

is given by 

F(U) = .{ dp dq e
iup 

A(p, q) <p(q) 

Similarly, one has 

-ipU) G(-u) = (B t, e 

= Jb~dk dp t(k) B(k, p) 
-ipu 

e 

UCRL-18512 

Because A and B are bounded operators these F0urier 

transforms are well defined, and one can write (up to factors of 2n) 

(BIjr, Acp) = J du G( -u) F(u) 

The integrand in the expressions for F and G are analytic 

is p. That is, the integration region inp space can be divided 

into small regions in which local coordinates can be introduced. And, 

in each region the variables corresponding to conserved energy-momentum 

are introduced as coordinates and then eliminated by the delta funct.ions, 

leaving A and B analytic in the remaining (local) coordinates on 

the contour. 

The function G(-U) FeU) is infinitely differentiable (because 

of the compact supports in p space) and it falls off rapidly (faster 

than any polynomial) in all dii:'ections. The rapid falloff is due in 

• 
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part to the infinite differentiability of the cp( q) and I\J(k) [which 

are brought in by the elimination of delta functions] and in part to 

the analyticity properties of 'A and B in the remaining (local) 

coordinates. The A and B are analytic ih some common cone C in 

the local coordinates, and they grow no f<:l.ster than some inverse power 

of lEI on approach to the real physical region. Thus the argument of 

Chapter IV C.a of Ref. 7 shows that F(u) and G(u) fall off rapidly 

uniformly in the complement of the polar cone C+. The boundedness of 

F(u) and G(-u) follows from the boundedness of A and B Because 

of the different sign of the arguments of F(u) and G(-u) the inter-

section of the complements of the two effective polar cones C+ is 

empty. Thus G( -u) F( u) falls off rapidly in all directions. 

This rapid fall off implies that 

- i:lu. I TJ· 

(B'I\J, Acp) lim 
TJ.~ 0 

l 

l l 
e G(-u) F(u) 

where the right -hand side i.sanalytic in TJ.. Because of the compact-
. ~ l 

ness of thep-space region of integration the order of the integrations 

can be inverted, for sufficiently large TJ .. 
l 

gives a sum of products of poles of the form 

The u integration then 

-1 
±iTJ.) • 

l 

Taking the limit TJ
i 
~ 0 then gives, after some algebra, the desired 

form. The main point is that as one lets the TJ. -? 0 certain poles 
l 

/? /J' 
cross the fixed contours'~ and/or t..,;... and effectively reduce them 

to a single contour. 
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The methods used above can be extended to show the various other 

.properties entailed by the assertion that the analytic representation 

extends in the natural ':Jay from distributions to products of bounded 

operators considered as distributions. In particular, the result 

described above carries over to products of many operators, and to the 

case where the q and k must also be shifted. In this latter case 

one wants to show that if (for sufficiently small supports of cp and 

1jJ) there is a cone C of analyticity in (q, k) .. such that for each 

point in this cone one can find a contour over the internal variables 

that remains. always in the domain of analyticity [and hence that the 

product of the functions B+A = H is analytic in (q, k) = zJ. Then 

(1jJ)H cp) can be represented as 

lim J H(,Z + iT)) n(z) dz , 
T)~ 0 

\'Ihere n = 1jJ cp, and iT) is in the cone C. The proof goes precisely 

as before with Hand n replacing B+1jJ and Acp. The falloff of 

Q(u) is now due·to the infinite differentiability of nC z). 

... 
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Appendix B. Supplementary Notes 

~age 21, line 16 

A proof of (3.2') by induction is easy. Suppose each term of 

(3.2') corresponding to a diagram B' having n nontrivial bubbles 

gives correctly the sum of the corresponding terms of (3.2). Let B 

be a diagram with n + 1 nontrivial bub,bles. Select from among these 

a bubble b all incoming lines of which ate also incoming lines 'of 

'B. Let the removal of b from B give B'. Let a be the incoming' 

lines of B' identified with the outgoing lines of b. Consider the 

various terms t' in (3.2) that sum to give the term of (3.2') corre-

sponding to B' . From each such t' we construct 2m + 1 terms t 

of (3.2) that coaespond to B, where m is the number of columns of 

't' lying to the right of the first nont ri yial bubble b I of B I 

reached by the incoming lines a of B'. These 2m + 1 terms are 

constructed by placing b either in one of m columns that lie to the 

right of b ' , or in a new column (containing only b) that stands just 

to the left of any of these columns,' or in a new column (containing 

only b) that stands just to the right of the, first column of t ' , The 

m + 1 terms t involving a new column will all have one new ,minus 

sign, whereas the m terms not involving a new column will not have an 

extra minus sign Aside from these signs ,all the terms are equal, and 

equal to the operator product of Fb with the 
B' 

F corresponding to 

the particular term t' of (3.2). Thus the sum of the 2m + 1 terms 

t is just minus one times the operator product of Fb with this 
B' 

F 

Summing over all terms t' of (3.2) corresponding to this B', one 
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obtains all the terms t of (3.2) corresponding to B.Since the 

same operator _F
b 

is applied to each term orie obtains by induction 

the term of (3.2') corresponding to B. 

An alternative proof of (3.2' ) that makes use of (3.1) is as 

follows: Suppose (3.2') has been shown to hold for terms corresponding 

to bubble diagrams having up to n - 1 nontrivial'minus bubbles. 

Substitute (3.2') irito the second term of the right-hand side of the 

equation + - + -
R = -R - R R , and consider the contributions to the· 

right-hand side corresponding to a·bubble diagram Bn ,where the 

subscript n indicates the number of nontrivial minus· bubbles. The 

contributions to ~R+R- correspond to some Bn of the product form 

Bj+~- (so that the outgoing lines of ~ are identical with the 

ingoing lines of where consists of a column of k non-

trivial minus bubbles and of unscattered lines and where j + k = n I 

with j and k· no less than 1. Let i be the number of initial 

bubbles of Bn where an initial bubble is a nontrivial bubble whose 

incoming lines are all external. All bubbles of Bk 

bubbles. 

are initial 

Suppose at first that Bn does not consists of a single 

column of nontrivial minus bubbles and unscattered lines. Then all 

contributions to - +-
-R - R R having n nontrivial minus bubbles 

come from -R+R- only and must correspond to bubble diagrams 

Bn = Bj+B
k

- where k = 1,2,···,i with i.< n. There are 2i - 1 

different ways of constructing Bn all of which give contributions 
B 

to -R+R- having the value ±F n These add up to 



• 

1(.;> 

B 
-F n 

'-/59- UCRL-18512 

' .. ' , n-~ .(i)~ + .• ~ + (-1) i = 

Suppose next that Bn does consist of a bubble diagram 

topologically equivalent to a column of n nontrivial minus bubbles 

and of unscattered lines so that i = n. Then the reasoning just given 

still applies but now the last term in the above sum is missing because 

- - - R+R- now gives a contribution k < n = i, and also -R in -R 

B 
-F n Since 

B 
-F n is eaual .. to . C) B _(~l)n-~ i F n when i n, we 

get the same answer as before. Thus, expansion (3.2') is verified. 

Page 21, last line 

As an example of the meaning of topological equivalence consider 

the bubble diagram of Fig. 4. 

Fig. 4. A bubble diagram B 

Certain contributions to ~ will correspond to 'the case where all 

the internal lines correspond to the same type of particle. If one 

simply integrated without respecting the requirement of topological 

independence then one would get a contribution that would be too large 
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by a factor of 2~ 2~ 2~ 3~ 3~.The ~wo, 3~'scome from the triples 

of lines on the left of the two intermediate "bubbles . Two of the 2~ 's 

come from the ,pairs of lines on the righ{ of these bubbles. The other 

2! comes from the t?pologicalequivalence of the upper and lower 

intermediate bubbles. 
.' ~.'" 

Page 24, last line minus 2 

The definitions of equivalen~ cuts and of leftmost cuts are 
,,~ ., I ~. 

,illustrated in Fig. 5. 

Fig. 5· 'The cuts 

are equivalent. C2 i' 

not equivalent to 

, , ' 

Page 29, last line 

C2 

CI .;" (Ll' L2) 

is a leftmost 

C
I 

or C
2

, 

and, 

cut. 

C
2 

,= (L3' L4, L
5
)' 

C
3 

= (L
6

, L
7

) is 

The uniqueness, near the 0; threshold, of the leftmost cut ' " ' 

,equivalent to a cut Co; plays an important role in the arguments. At 

,;. some finite distance above threshold this uniqueness may fail) as the· 

following diagram shows. 

,t.-

" 

, 

.. ' 
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a 

b 

--------------------- -----,----,--_.,--_._- --~---------
-- ------- ~-~ 

Fig. 6 A diagram with two leftmost cuts equivalent to Ca. 

We take Ma < ~ Throughout this work it is assumed that 

the mass values of the stable particles have no accumulation 

points. It is then easy to see that the leftmost cut is 

unique in some finite neighborhood of the a threshold. 

Page 34, line 2 

For any set of leftmost cuts C
a 

in B corresponding to 

the sets a of D + 
~ 

there 

Each such r defines a set 

B-] corresponding to the V 

precisely one way that B 

An example of a B 

is shown in Fig. 7. 

is a 'mapping r of D(B-) onto D + 
~ . 

of parts r..,l V of D(B-) [and hence of 

of 
+ 

Each such defines, D~ . r in fact, 

is realized as a term of T. 

that contains a D + 
(3 

in two distinct ways 
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Fig. 7. A bubble diagram B that contains a certain D + 
13 

in two essentially different ways. 

Fig. 8. 

/ 

This D + is shown in 
13. 

• 
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II 

------------------- - ---------

Fig. 8. + 
A .D[3 that is contained in two essentially 

different ,-Jays in the B· of Fig. 7. 

. .. 
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Appendix C.· Strongly Equivalent Cuts 

In this appendix we show that any cut Co corresponding to 

o of D~+ can be replaced by the leftmost cut C' 
o 

strongl;y equiva-

lent to it without destroying its correspondence to 0 of + 
D(3 • 

The condition that B contain D + 
~ 

i$ equivalent to the 

condition that there isa continuous mapping r : D(B-) -?D~+ that 

maps D(B-) onto D~ +. The external lines of D(B-) must map onto 

the external lines of D + identified with them. The lines of the 
~ 

cuts 
-1 

in one to correspondence with the lines of C= r 0 are one o . 

o. The inverse ima,ge r-l V of vertex V of D + 
~ 

is the part of 

D(B-) that corresponds to V. 

The· point P is assumed to satisfy. the following conditions: 

(1) P lies on 
. + 

L(D~ ). 

(2) P lies on L(D+) only if + t· D - con al.ns D + 
~ 

(3) The solution of the Landau equation of D~+ at P defines 

momentum-energy vectors Pj such that no line of any set 0 

of D~+ has its Pj paralleJ,. to that of an;yline of any other 

contains 

set + 
o of D~ . As before, ·.0 runs over pairs of vertices 

of D~+, and specifies the set of lines L
j 

running-between 

that pair o~ vertices. 

We make use of one important kinematic result: If D(B-) 

+ 
D~, then the equations of energy-momentum and lIE$ cor..sUaint a.kre 

require that if the external lines of D(B-) have the P
j

' s defined 

by P, then the unique values of thep 's of the lines of C = r-l 
0, 

j a 

• 
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subject to the conservation law and mass-shell constraints on these 

lines, are thos,e defined by the Landau equations of 
+ 

DI3 at P. 

result is closely connected to the fact that ~(DI3+) lies on the 

boundary of the physical region of 

10 3 
way. ' 

+ 
DI3 ' and is proved in the same 

The arguments in the text are purely topological. In this 

This 

appendix we make use also of the kinematic requirement just described. 

That is, we shall require that the contribution to the integral corre-

sponding to B actually satisfy the energy-momentum conservation laws 

required at P. By considering a sufficiently small neighborhood of 

p the internal can be confined to an arbitrarily small neighborhood 

of the values required at P. Thus we can consider the Pj of the lines 

of the various sets C
a 

to be in a small neighborhood of the values 

defined by the Landau equations. 

At P the momentum-energy vectors of the various lines corre-

sponding to any single C
a 

are all parallel, by' virtue of the Landau 

equations. In some particular Lorentz frame they are all at rest. 

Consider any C I 

a 
strongly equivalent to Since 

define the same set of flow lines their total energy momentum is the 

same. Since the total rest masses are also equal, the lines of C ' 
a 

must also all correspond to particles at rest, in this particular frame. 

, 
We now prove the following result: If C

a 
is strongly equiva-

lent to C
a

' and lies left of it, then C I 

a 

is the vertex of D + 
i3 

upon which the set 

lies in 
-1 r V, where V 

terminates. 
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Let ~ label the various outgoing sets of lines of V and' 

let C~ = r~. The momentum-energy vectors of the lines of C~ are, 

I 

by assumption, not parallel to those of Co;, Thus no line of Co; 

can coincide with any line of any C~ . Thus C I 

0; 
must either lie 

completely within 
-1 -

r V, or there is a part of D(B) that consists 

of a set of paths that begin with certain lines of the sets and 

,end vJi th certain lines of Co; Let this part of D(B-) be called Q. 

We wish to show that Q, is necessarily empty; i. e., that Co; lies 

in r- l 
V. 

Consider rQ" the image of Q, in 
+ 

D~ . The energy-momentum 

conservation requirements at P can be satisfied only if the lines of 

rQ, carry the momentum-energyprescribE)d by the Landau equations, as 

already noted. But if the energy-momentum vectors are as prescribed by 

the Landau equations then the vectors o;.p. = 6 x . 
. ~ ~ ,~ 

can be interpreted 

as spacetime displacements: these displacements must fit together to 

give a classical-multiple scattering process. But then the arguments 

of Ref. 9 immediately rule out the possibility that Q is nonempty. 

For the initial particles of rQ, all start at the common vertex V, 

and they diverge from that point. It is then not possible that they 

transform by multiple scattering into a set of particles all relatively 

at rest, without allowing extra particles that come in from outside 

(i. e., that do not start at V). But interactions with extra incoming 

particles that do not start at V is incompatible with the condition 

that Cbe strongly equivalent to Cry, 
0; u, 
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, 
Thus rQ must be empty and C

a 
must therefore lie completely 

in 
-1 r V. 

But if C
a

' lies completely in r- l 
V then it can be used in 

place of C
a 

in making the correspondence of D(B-) to + 
Df3 : the 

topological structur'e is not altered by replacing C
a 

by the leftmost 

cut 
, 

Cao that is strongly equivalent to it. This is the result that 

we need'. A slight alternation of the argument shows that C
a 

can be 

'. 
replaced by any cut strongly equivalent to it without disrupting the 

correspondence to a of 
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