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It is pointed out that, depending on the nature of the method of observation, full details 
of dynamics are not really needed in order to reproduce the canonical correlation spectra. 
In this spirit a physical representation of a spectrum is proposed on the basis of a few 
lower-order moments. It may be called the n-th order description, according to the extent 
to which a reliable knowledge on moments is at hand. As an example the third-order de
scription is analysed in general, assuming the highest stage residual correlation as Gaussian. 
It is applied to the neutron inelastic scattering spectra in magnetic materials. In the case of 
an antiferromagnetic Heisenberg chain the results practically coincides with that of computer 
simulation, and are in good agreement with observed data in TMMC. Calculation of the 
eighth moment indicates that there will be no qualitative change by including this additional 
information. 

§ 1. Introduction 

Connected with the anomalous behaviour of the fluctuation around the 
second-order phase transition, the scaling theory is now being extended even to 
the problem of dynamics; however, the whole of the scaling theory is concerned 
with the overall "spread" of the spectrum. Relatively few theoretical investiga
tions have been published on the detailed "shape" of the response spectrum, 
which characterizes the observed data on an actual situation in a unique way. 

In order to treat this kind of problem, the usual stochastic type approach 
has an admitted deficiency, for it applies only to the long-time, well-moderated 
behaviour of a system, namely to only the central part of the spectrum. It is 
obvious that the behaviour of a moderate wing is relevant in the discussion of 
line shape. In other words some reliable informations are needed when one is 
interested in relatively short-time behaviour of the correlation under considera
tion. The weakness of the stochastic approach lies in that it often violates 
conservation laws of moments, which is characteristic of the short-time behaviour. 

In our previous publications1l' 2l an alternative approach was proposed which 
does not violate the sum rule to certain orders. Using the continued fraction 
representation of the canonical correlation spectra of the magnetic moments, and 
using theoretical estimates of moments up to the fourth, we discussed the 
spectral shape of neutron inelastic scattering in RbMnF 8 8 )~ 5 ) in the paramagnetic 
neighbourhood of the Neel point. In looking into the behaviour of higher order 
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Physical Representation of Spectral Line Shape Based on Moments 1313 

correlations, an assumption was then1> introduced that the spectral shape of the 

residual torque on the magnetic moment is Gaussian. The computed results 

based on this assumption was in essential agreement with the observation in so 

far as the overall width is concerned; however, there remained a discrepancy 

in the detailed line shape. Namely, in contrast to the three peaks observed the 

theory predicted only two, and the origin of this discrepancy was traced back 

to the assumption of simple Gaussian torque. In trying to improve the theory 

one "step down" was made from the observed data with respect to the continued 

fraction representation of the canonical correlation. It was then found that there 

exists an wiggling in the torque correlation, namely the correlation is charac

terized by an oscillatory damping rather than a monotonic damping as in the 

case of Gaussian decay. 

It is attempted in this paper, therefore, to extend the formalism in such a 

way that an adequate description is provided, by including the knowledge of 

moments up to the sixth. The capacity of the formalism has been demonstrated 

in the case of one-dimensional antiferromagnetic chain and in other cases. As 

the described kind of wiggling is generally expected, the formalism developed 

here seems to be of wider use. 

In § 2 the general idea and several examples of stepping down the con

tinued fraction are described. On the basis of this experience a stepping-up 

process is introduced in §§ 3 and 4, assuming the third-order correlation as 

Gaussian. The resulting spectral line shape is presented as a function of the 

relative magnitude of three quantities J/, t/2
2, t/8

2, which are functions of moments 

up to sixth order. In § 5 the theory is applied to some typical examples in

cluding one-dimensional chain. In § 6 the plausibility of the assumption adopted 

in § 4 is discuss.ed on the basis of knowledge on still higher order moments. 

Several comments are also made on previous works along similar lines. 

§ 2. The n-th order measurement 

The observed inelastic scattering of neutron in a spin system is directly 

related to the spin pair correlation function. In particular the diffuse part of 

the cross section6> is essentially proportional to the real part of the Laplace 

transform XaP (k, w) of the canonical correlation function7> ,paP (k, t) ; i.e., 

where 

xaP (k, w) = 100 dte-irot,paP (k, t) 

=X'aP(k, w) -iX"aP(k, w), 

,paP (k, t) =(Sa (k, 0); SP (- k, t)) 

(1) 

= r dJ..{(e.,..1CSa(k,O)e_.,.,gcSp(-k,t))-(Sa(k))(SP(-k))}. (2) 
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1314 K. Tomita and H. Mashiyama 

The canonical correlation spectrum, in its normalized form 'J(afi (k, w), may be 

written as 

X(k w) = X(k, w) 
' (f)(k, 0) 

1 
(3) 

where xl (k, w) is a normalized canonical correlation spectrum of the residual 

force of first order, i.e., 

and 

Ri (k, t) = Q)i (k, t) /@i (k, 0) . 

Here Q)I (k, t) is the correlation function <S .L (k, 0); S .L (- k, t) ), where S .L (- k, t) 

is the part of S( -k, t) which is orthogonal to S( -k).8l It is clear that this 

procedure can be repeated, and one finds 

- 1 
Xi-t(k, w) =~~~~~-

iw + fli 2Xi (k, w) 
(4) 

Separating the real and the imaginary parts, one finds a recurrence type 

relation 

(Sa) 

(5b) 

or conversely 

(6a) 

X" =-1- w- xi { 
-II } 

i+l J~+I (X/) 2 + (X/') 2 • 

(6b) 

It is well known that Ji2 may be expressed in terms of moments up to the 2i-th 

order,9 l i.e., 

fl12=m2, fl22= [m,- (m2) 2]/m2, 

fla2= [mam2- (m.) 2]/[m2(m,-m22)], (7) 

where mi stands for the i-th moment with respect to Re X(k, w). 

In the case of a response against an electromagnetic field, what IS directly 

observed is the complex susceptibility 

x (k, w) = x' (k, rJJ) -ix'' (k, w) , 
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Physical Representation of Spectral Line Shape Based on Moments 1315 

which is the Laplace transform of the response function 

xaf! (k, w) = 100 dte-irut¢af! (k, t) . 

Here ¢af! (k, t) is the response function defined by 

¢af! (k, t) =- d(J)a~~k, t) = Jn ([Sa(k, 0), Sf! ( -k, t) ]) . 

The last relation, when expressed in the frequency domain, takes the following 

form: 

x' (k, w) = 1-w'X." (k, w) , 

x" (k, w) = wX' (k, w) , 

where a normalized susceptibility 

x (k, w) =x (k, w) j(J) (k, O) = x (k, w) lx (k, O) 

has been introduced. 

(Sa) 

(8b) 

Using the complex susceptibility, Cole and Cole10> introduced a very con

venient plot for the discussion of line shape. They plotted x" (w) againt x' (w), 

so that each point on the curve corresponds to a particular value of w. In this 

plot the change in the overall scale of the spectrum leads to the change only 

in the rate at which the representative point moves on the locus as a function 

of w, and the shape of the locus itself is a scale independent representation of 

the line shape. This is the reason why the Cole-Cole plot is particularly suited 

for the discussion of line shape. 

' Combining (8) and (6), the relation between the two levels is written in 

terms of x' and x"' 

(9a) 

_, _ w X; 2 J _, } 

Xi+l- J~+l l c1- x/) 2 + Cx/') 2 • 
(9b) 

Giving a correlation spectrum of a quantity A (say polarization) with certain 

accuracy, and a reliable estimate of a relevant moment, i.e., the second moment 

with respect to the given spectrum itself, one can always proceed to step down 

the continued fraction to see the correlation spectrum of A_~_ (say the residual 

torque), more precisely the correlation of the residual part of A. 
Repeating this process, one may step down the ladder to any order, and reach 

an information corresponding to that order. Suppose for example the spectrum 

is known to be exactly Gaussian, then in principle all the moments are known 

as functions of the second moment. This means that in this case one can step 

down the ladder to infinite order, whi-ch brings us to a proto-Gaussian type simple 
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1316 K. Tomita and H. Mashiyama 

Fig. 1. The Cole·Cole plot of the Gaussian spectrum· X0 (w) and higher order spectrum X,(w) derived from X0 (w). 

1 3 w 4 

a* 

1.0 

PROTO-GAUSS IAN 

a*-oo 

Fig. 2. The canonical correlatiohs R,(t) and their corresponding spectra X,(w). 
(J1 (x) is the Bessel function of first order.) 
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Physical Representation of Spectral Line Shape Based on Moments 1317 

distribution as is shown in Figs. 1 and 2 ( cf. the Appendix). 

In an actual situation, however, the process cannot be repeated indefinitely 
because of the difficulties met in the estimation of moments. It is known that 
one can estimate only the first few moments theoretically, apart from exceptional 
cases. On an experimental side there is also a difficulty of the noise, which 
masks the information contained in the wing of the spectrum. As the higher 
moments are determined almost entirely by the wing, the existence of the noise 

refuses to provide us with information on the moments due to the system proper 
beyond a certain order. In practice, therefore, the essential accuracy of the 
measurement may be thought as limited to the first n moments, which one might 

call n-th order measurement. 

As a typical example of the stepping-down procedure the case of RbMnFs'> 
has been taken up. The observed data X' (k, (f)) was first converted into ({) (k, t), 

then into X" (k, (f)). The information on X' (k, (f)) and X" (k, (f)) enables us to 
step down to X1' (k, (f)) and X1" (k, (f)) by way of Eq. (6). Repeated use of this 
formula successively provides us with X 2 (k, (f)), X 3 (k, (f)) and so forth. At each 

x; 
x; 
/\, x· 

.:\ 0 

0.5 Xz . 

(a) 

(b) 

1.0 

0.5 

-0.5 

---

----

-·-
-------

1. 

\ 
\ I \ . . I 

v· 
(c) 

Ro 
R1 : Residual Torque 

R2 
F1 : Total Torque 

R,G = exp( -ll~t 2 /2) 

Fig. 3. Analytical fit of the experimental data 

for RbMnF 3 (Ref. 4)). (By a superposi

tion of three Gaussian distribution.) 

(a) Observed spectrum Xo' (a>), and its 

derived spectrum X/ (a>). (!J02= 
(2/3)zS(S+l) (4J2/h2), z: number 

of nearest neighbours.) 

(b) The Cole-Cole plot of X, (a>). (Pure

ly Gaussian distribution X a (a>) and 

secondly derived from Gaussian 

X 20 (a>) are shown for comparison.) 

( c) Time correlation R, (t). 
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1318 K. Tomita and H. Mashiyama 

step the canonical correlation functions Q)i (k, t) are calculated. The results of 
these "stepping down" are shown in Fig. 3. In Fig. 3 both the spectrum and 

the corresponding time correlation function are plotted for k = (n/2, n/2, n/2) at 
a fixed temperature T = l.25T N· The Cole-Cole plot is helpful in recognizing 

the reduced line-shape. 

It is clear that the total torque correlation 

F1 (t) =(S(k, o); S( -k, t) > 
has a large wiggling. Although the wiggling in the residual torque correlation 
R 1 (t) is much less, R 1 (t) has still an appreciable negative value range, so that 
the Gaussian approximation 

Rw(t) =exp( -LI/t2/2), 

which was adopted in previous papers has an obvious discrepancy, i.e., about 

30% overestimating the area under the correlation function (Fig. 3 (c)). 

In terms of frequency plot (Fig. 3 (a)) the number of peaks in the spectrum 

is decreased in the process of stepping down, and at the third stage the spectrum 
becomes one of the type which has single peak at the centre. From the third 
stage on the higher order correlation spectra have a tendency of convergence 
to a Gaussian, or perhaps to pre-Gaussian line shapes (cf. Fig. 3 (b)). The 

Gaussian decay which turned out too simple for the second-order correlation 
might be justified as an approximation of the third-order correlation. 

It should also be noted that the shape of aU even-order correlation X 2n (w) 
are close to each other in the relatively low frequency range. The same state

ment is true among correlation of odd-order X2n+l (w); however, there exists a 

definite difference in shape between X2n(W) and X2n+l(w). In fact X2n(W) is 
characterized by a marked central peak (cf. Figs. 3(a) and (b)). 

§ 3. The n-th order description 

The concept of n-th order measurement leads naturally to the corresponding 
concept of n-th order description. Suppose that the measurement itself is giving 

reliable information only on the first 2n moments of the system proper, in the 

sense that information on the moments of order higher than 2n is blurred by 
a noise of unknown nature. Then there seems to be little point of worrying 
about estimation of higher-order moments theoretically. Instead it seems more 
appropriate to construct an approximate description which may be reliable up 

to the corresponding order. In other words one may start from a provisional 
correlation function at the deepest level, and try to "step up" the ladder of 
continued fraction with reliable estimate of lower-order moments to reach the 

quantity observed. 

In order to step up one may resort to a relation similar to the case of 

stepping down, i.e., (5a) and (5b), or in terms of complex susceptibility, 
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Physical Representation of Spectral Line Shape Based on Moments 1319 

(lOa) 

-" w2 ~· 
Xi-1 = -------

J/ CoNJi 2 +x/-l) 2 + Cx/') 2 

(lOb) 

Suppose the moments are conserved up to the 2n-th in order, and the 

2 (n + 1) -th moment is the lowest moment that is not conserved, then the descrip

tion may be called "n-th order description". 

What order of description does one need in a concrete case? Without the 

foregoing consideration one might imagine that one should proceed to highest 

possible order. In fact it is not necessary. The answer is obviously dependent 

on the nature and accuracy of the measurement under consideration. The fact 

that ordinary measurements are bound to be macroscopic suggests that almost 

always a :finite-order description suffices to cope with the measurement. In this 

sense the theory of measurement duly entails a stochastic character. The only 

relevant question is, then, "What order description will be appropriate to be 

compared with a particular type of measurement?" 

In the measurement of neutron scattered inelastically by magnetic materials 

the spectrum exhibits three peaks or two modes. The peak at w = 0 corresponds 

to a diffusive mode which has practically no restoring force, but the peak at 

:finite frequency indicates the existence of a propagating mode with some kind 

of restoring force. In the second-order description which was adopted in pre

vious work one of the above two modes appeared at the expense of the other; 

namely the line shape had either one peak at the centre or two peaks off the 

centre. The fact that experimentally one can recognize three peaks at the same 

time means that the second-order description is not really adequate, and one 

has to proceed a step further. Therefore it is proposed here to adopt the 

third-order description in order to cope with the coexistence of two modes, or 

three peaks. Suppose one is content with locating just two modes, and does 

not care about any more details of the spectrum, then the third-order descrip

tion will be enough. 

§ 4. The spectrum in the third-order description 

As in the present situation one is not interested m any detailed structure 

which is higher than the third in order, it is proposed to assume the third-order 

residual correlation R 2 (t) as a simple Gaussian function 

or 

and with this to step up the continued fraction utilizing the knowledge of J2 
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1320 K. Tomita and H. Mashiyama 

and J 1• This means that the knowledge of moments up to the sixth in order is 
needed. 

Before proceeding to concrete examples it seems appropriate to discuss the 
general behaviour of third-order description as a function of the small number 
of parameters involved, provided they are already known. Supposing that one 
is interested in the shape only, one can scale the frequency by the quantity Ja, 
thus finding the following two essentially independent parameter: 

a 2=J12/ .da2 and b2=Jl/ J{ 

Every possible shape of the spectrum X' (k, w) may be uniquely represented 
by these two parameters. In Fig. 4 a spectral phase diagram is given in (a2, b2) 

plane. 

Figure 4 was written by tracing the extremum of the spectral function X' (w), 
namely for a fixed w or f;.=w/ J 8, 

__1_x, (w. a2 b2) = 0 aw ' ' 
was converted into a relation 

This curve corresponds either to the maximum or the m1mmum of the spectrum 
and is shown in Fig. 4 as parametrized by a reduced frequency f::. The spectral 
phase boundary corresponds to a situation in which 

a a 
--X'(w· a2 b2) =0 
8w2 ' ' 

az 
Fig. 4. Spectral phase diagram for third-order description (R2 (t) =Ro(t)). 

Domains I, II, III correspond to single, double and triple peaks, re
spectively. The loci of extremum are shown with the values of 
parameter (=(J)/d3• 
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Physical Representation of Spectral Line Shape Based on Moments 1321 

holds at the same time, namely the maximum turns into the minimum exactly 

at this point. In this way one can draw the phase boundary in Fig. 4. 

The entire region is divided into three domains according to the expected 

number of peaks; i.e., domains I, II, III correspond to the spectral phase with 

single, double and triple peaks, respectively. Line shapes and Cole-Cole plots 

at typical points on the phase diagram are shown in Figs. 5 and 6. 

In the Cole-Cole plot it is recognized that line shapes of spectra with three 

X' ((I)) 
A 

2 

c 

0 

A 
X' (w) 

2 B 

1 

a2 = 1.0 

B 2 
A. 0 = 0.2 

B,. = 0.5 

c. = 1.0 

D. = 2.0 

E. = 5.0 

1 2 w 3 

a 2= o.2 

2 
A.0=0.2 

B. 

c. 
D. 

2 

D 

0 

= 0.5 

= 1.0 

= 2.0 

w 3 

a2 = 2.0 

B 

A 

E 

1 

c 
a2= o.5 

A 

2 

B 

1 

2 
a = 3.o 

t c 

D 
2 

D 
B 

E 

1 

2 w 3 1 2 w 3 

Fig. 5. Line shape at typical points on the phase diagram (Fig. 4). 
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1322 K. Tomita and H. Mashiyama 

(1.0,05) 

/"' \ 
/~ 

/ 
/ 
I 

-1 

Fig. 6. The Cole-Cole plot corresponding to typical points (a2, b2) on the 
phase diagram (Fig. 4). 

peaks are similar to those with one peak at least in the low frequency range, 
and are in marked contrast with those with two peaks. 

There are three obvious extreme cases in which the value of L/3 does not 
explicitly appear in the shape of the spectrum: 

(i) X'((f))rvna({f)) for LI 1 <(LI2 , (asymptotic width LI/ILI2) 

X'((f))rv!!.[a({f)-L/ 1)+a({f)+L/1)] for LI1 )>L/2rv0, 
2 

(ii) 

(iii) 

It is instructive to analyse the behaviour of poles of the complex function 
X(k, {f)) in the complex {f) plane. In general there are three poles in this ap
proximation. One is purely imaginary and other two are complex with equal 
imaginary parts and with real parts which are opposite in sign. The analysis 
was made and the results are summarized in Fig. 7. The arrows attached to 
the locus of poles indicate the change induced by an increase in the parameter 
a2 or b2• The triangular shaded region in Fig. 4 corresponds to the situation 
in which all the real parts of the poles vanish, and there appear three purely 
imaginary poles. 

It should be noted that this region is definitely smaller than the region I 
in Fig. 4, because the existence of finite imaginary parts has an effect of merging 
the contributions from separated poles when they are situated closer to each 
other compared with the width induced by damping. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

1
/5

/1
3
1
2
/1

9
3
8
0
9
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Physical Representation of Spectral Line Shape Based on Moments 1323 

O<b<b2 

Imw 
t 

A) 

8} 

I a orb --6 

a orb-+ oo 

Fig. 7. The position and behavipur of poles for third-order description (schematic). 

((A): b=constant, (B): a=constant; (a12, b12): cusp point, (0, bl): upper bound 

on b2-axis of the shaded region in Fig. 4.) 

There are cases in which the half

value width of the single peak in region 

I is needed for physical discussion. In 

Fig. 8 the half-value width 71;2 is plotted 

as a function of a 2 and b2• One may re

cognize that 71; 2 decreases with decreasing 

a 2 and with increasing b2• 

1. o.----,---,-----,----,..,---, 

Fig. 8. Half-value width r 112 (third-order descrip

tion). 
0 

§ 5. Applications 

0.1 0.5 

In an actual application of third-order description the knowledge of moments 

up to sixth order is presupposed. It is not, however, an easy task to calculate 

these moments at general temperature T and for an arbitrary wave number k. 

The only case in which this was performed is the case of classical linear 

chain of vector spins, and the present method was successfully applied by our 

group2l to obtain the neutron, inelastic scattering in TMMC.11l As the details 

are already published, only the essential results are presented here. 

In Fig. 9 contours of constant k and constant T are drawn both for fer

romagnets and antiferromagnets. One may then trace the map to find the line 
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1324 K. Tomita and H. Mashiyama 

shape at an arbitrary temperature and for an arbitrary wave number on this map. 
It should be noted that in the high temperature limit the line shape of a 

ferromagnet for an arbitrary k is identical with that of an antiferromagnet for 
k* = 1- k. In the low temperature limit, however, there exists a marked con
trast in shape between ferro- and anti-ferromagnets except for k = k* = 1/2. 

t5 
0.6 

t5 
0.6 

k= fixed 

k= 0--+1.0 
T=fixed 

Ferro 

Fig. 9. Contours of constants k and T in unit 2JS2/kB (classical chain). 

--R<o 

k=0.75 
---R1Ctl 

--------- F(t) 

0.5 

-0.5 

Fig. 10. Time correlations R, (t) (classical 

antiferromagnetic chain). 

, 
Xlwl x'iwl 

2 

k =0.75 

- T=.0.1814 

3 Wfno 

Fig. 11. Canonical correlation spectra X(IJ)) 

=X1 ((J)) -X"((J)) (classical antiferromag

netic chain). 
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Physical Representation of Spectral Line Shape Based on Moments 1325 

The canonical correlation function, 

their Laplace transforms and the Cole

Cole plot are shown in Figs. 10, 11 and 

12, respectively, for a fixed k (k = 0.75) 

and for several temperatures. 

The situation T ~ oo is to be com

pared with the published theoretical 

works of Morita/2l McLean and Blume18l 

and with the computer simulation by 

Windsor.14l The canonical correlation 

function obtained in the present work 

forT ~oo is shown in Fig. 13, together 

with the results obtained by the above 

authors. It is clear that our results 

practically coincide with the computer 

simlation due to Windsor, and the results 

3 

x: 

2 

-1 0 

Fig. 12. The Cole-Cole plot (corresponding 

to Fig. 11). 

of McLean and Blume are not far from ours. 

R -==---=--=-
-- our theory 

0.5 ---Windsor 14) 

------ McLean-Blume13 l 

-----------

Fig. 13. Canonical correlations R(k, t) of linear chain at T-'>oo. 

For lower temperature situations there is a paper by McLean and Blume.IaJ 

They calculated the canonical correlation under a provisional assumption on the 

coherence range in a low temperature paramagnet and found results compatible 

with TMMC data. Our results are also in good agreement with experiments 

and fairly close to their results. In the present treatment, however, no such 

assumption as theirs has been introduced, except that the spin system has been 

treated classically. Although the classical treatment might not be adequate m 

the lowest temperature limit, our approach seems more basic and may serve to 

check the validity of their assumption. 

The actual comparison2l with experimental data was made only in the case 
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1326 K. Tomita and H. Mashiyama 

of TMMC,11l i.e., an antiferromagnetic chain, 

the results of which are shown in Fig. 4 of 

Ref. 2). The agreement with the observation 

is satisfactory, considering that it covers the 

entire temperature range and the entire k 
value range. The discrepancy in the lowest 

temperature range is probably due to the 

quantum fluctuation, which has been neglected 

in the theory. 

In the case of RbMnF 3 , 3 )~ 6 ) a three-di

mensional antiferromagnet by which the pre

sent work was motivated, one has only 

approximate estimates of the second and 

fourth moments.1l Suppose the estimation is 

reliable, the only thing one can do is to guess 

the value of the sixth moment in such a way 

that the result fits the observed data. The 

results of the trial are shown in Fig. 14, 

2 

0 

------ observed data 

--- resolved data 

-- our theory 

-A;=tO ~=1.510 

-2.0 ~=2.712 

2 

where L/1
2 and L/2

2 are taken from the results Fig. 14. Theoretical trial for RbMnF3. 

of our calculation in the previous paper, and (Predictions are closer to the data 
Ll/ is treated as a parameter. The quantita- without resolution correction.) 

tive fit one could actually attain is not quite satisfactory, concerning in particular 
the position of side peaks near the critical temperature. 

The origin of the difficulty may be traced in two ways. 
i) There is a possibility of overestimation of the fourth moment due to the 
decoupling approximation.15l The fit could have been better, provided the over
estimation is of the order of 25%. The best fit is obtained for the situation 
in which L1/-:::::.L12

2<L1/, which happens to be the most delicate case in so far as 
the line shape is concerned. 

ii) The Gaussian approximation in third-order description might not be enough 
in the neighbourhood of the transition, because in this particular situation the 
higher-order correlation functions are not really well behaving. 

§ 6. Discussion 

In this section some discussions will be given on the plausibility of third
order description adopted in this paper. Obviously the most direct check will 
come from the knowledge of moments higher than the sixth. 

Kwon and Gersch16) proposed a direct estimation of spin correlation function 
at a finite temperature on the basis of the cluster model. Although moments 
of any order may be easily calculated from their results, its dependence on wave 
number and temperature is not close to ours. In view of the nature of approxi-
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Physical Representation of Spectral Line Shape Based on Moments 1327 

mation they adopted, its applicability seems confined to a region corresponding 

to large k values and to temperatures not very close to the critical point. 

An analysis of more realistic model is obviously needed. In this context a 

computation of the eighth moment was made in the case of linear Heisenberg 

magnet,17> and the results were found not to be inconsistent with Gaussian ap

proximation at the third stage. This can be seen from Fig. 15. 

Although it is. not easy to obtain higher-order moments in general, the 

following observations of the behaviour of moments can be made in the tem

perature range which is essentially paramagnetic (T> T M= {2zJS (S + 1)} /3kB) 

as a function of its order n, temperature and the wave number of the mode 

under consideration. 

i) The characteristic behaviour on the macroscopic level, e.g., slowing-down 

phenomena either of kinematic or of thermodynamic origin, appears mainly m 

the lower moments and the higher order moments are relatively insensitive to 

such macroscopic character. 

ii) The higher the order is, the less sensitive is the quantity L1n2 both to tem

perature and to the wave number. 

As the absolute magnitude of the moment should be monotonically increasing 

with increasing order n, the above statement may asymptotically be visualized 

in the following way : 

A) The asymptotic increase in the quantity L1n is expected to be normal, i.e., 

L1n 2 ~n. (n~oo) 

B) The quantity 

which is chosen as a measure of deviation from the normality, is large and 

sensitive to the quantity observed only in the case of lower order moments. In 

other words 4rn converges to zero for all values of wave number and temperature, 

provided n becomes large. These characteristics are born out in Fig. 15. 

In the high-temperature limit, higher order L1,2 is definitely less sensitive to 

ll~ 
I (A) (B) (C) 

6 T= oo T= oo S= classical 

5= 1/2 1 d. 1 d. 

4 

2 

2 3 n 4 1 2 3 n 4 5 2 3 n 4 

Fig. 15. The behaviour of .tln2• 
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1328 K. Tomita and H. Mashiyama 

the wave number as IS recognized in S = 1/2 
spin system of which moments up to the tenth 
in order have been calculated by Morita/8> 

as is shown in Fig. 16. It appears from Fig. 
16 that L1~+ 1 / Ll12 depends little on k for i>3 
in two and three dimensions (i>4 in one 
dimension). This fact suggests strongly that 
one may replace the higher order correla
tion by a simple decreasing function, e.g., by 
Gaussian function. In this particular case an 
approximate asymptotic behaviour 

5 

4 

3 

2 

/j4 

k//(1,1,1) 

Ll,.2'"'-'n (n~oo) Fig. 16. Wave vector dependence of 
.dn2 (S=i, T~oo, cf. Ref. 18)). seems to exist. 

Suppose the asymptotic behaviour Ll,.8 '"'"'n for n~oo is true, then the proper 
function one should take for X2 (w) is not a purely Gaussian function 

- 1 I L1 2 / 2LI 2 / 3LI 2 j Xa(w) =;--:- +;~ +1-.-8 +1-.-8 + ... , zw zw zw zw 

but a function 

This is one theoretical possibility of improving the third-order description, and 
seems actually a better approximation if one looks into the result of stepping 
down in Fig. 3 (b). That is, the Cole-Cole plot of Xaa(w) appears much better 
than X 0 (w) as an approximation to X 2 (w). 

In the low-temperature range, i.e., for T<T M• the above statements have 
not been confirmed in genera~; however, the main difference in spectral line shape 
is expected to be induced again by the lower order moments in particular. 
Although there exists no reliable calculation of moments in the ferromagnetic 
phase in three dimension, the calculated results for one dimensional Heisenberg 
chain appear to support this conjecture. In Fig. 15 (c) the existence of quasi
spin wave is essentially indicated by a conspicuous dip at order n =.2 as com
pared with normal increase. Similar dips at higher orders, provided they exist, 
may lead to an additional wiggling in the spectrum. On the whole, however, 
the spectral characteristics are essentially determined by lower order moments. 
Namely, it has turned out that the inclusion of the knowledge of the eighth 
moment does not affect the position and width of the quasi-spin waves in any 
essential way as compared with those computed on the basis of moments up to 
the sixth. Moreover, the spectral phase diagram in Ref. 2) (Fig. 2) is qualita
tively invariant under this modification. 
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Physical Representation of Spectral Line Shape Based on Moments 1329 

Let us finally make several comments on the work hitherto published. 

Lovesey et al. 19l adopted an approach very similar, to ours; however, they based 

their step-up process on the knowledge of the second and fourth moments only. 

Then they approximated R 2 (t) by a simple exponential function e-t;r with a pro

visional estimate of the rate constant .--1 (or L/8 in our terminology) based on 

the, quantity L/2• First, the exponential decay corresponds to a situation Lls<f::L/4, 

which does not seem to be the case with this particular example. Secondly, 

the temperature dependences of L/2 and Lis at low temperature are different from 

each other in the case of one-dimensional spin system, as was seen m our pre

vious paper,2l which fact cast doubt on their procedure. In fact the width of 

the spin wave peak is proportional to T 812 in their case, in contrast to T in 

our case. This point is to be checked by more detailed experiments. 
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Appendix 

-Higher order correlations leading to the Gaussian spectrum

It IS known that a continued fraction 

1 I a2 I 2a2 I 3a2 I 
X((J)) =1--:- +1--:- +1~.~ +I-· + ... 

z(J) z(J) z(J) z(J) 
(A1) 

corresponds to a complex Laplace transform of a Gaussian correlation function 

R(t) =exp( -a2t 2l2). Suppose X((J)) corresponds to the polarization correlation, 

then one may step down to the residual torque correlation 

11 2a2 1 3a2 1 X1((J)) =I--:- +I. + 1 ~.~ + .... 
z(J) z(J) z(J) 

(A2) 

One may repeat the above process and successively step down to Xn ((J)). 

This has been done numerically and the shapes of successive Xn ((J)) 's are plotted 

m Fig. 1. 

The correlation spectrum of order n is defined by 

X ((J)) = _!__I+ (n+1)a2 1 + (n+2)a2 1 + .... 
n I i(J) I i(J) I i(J) 

(A3) 

It is clear that Lin 2 '""'"'n (n }> 1), and the ratio of the first two parameters IS given 

by rn+ 1 =(n+2)l(n+1). In the limit n-HXJ, we get rn~1, which means that 

1 I a*2 I a*21 
Xoo((J)) =1--;- +~~.~ +~~.~ + "' 

z(J) z(J) z(J) 

1 
(A4) 
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1330 K. Tomita and H. Mashiyama 

Although the "scale" a* of the distribution is ever increasing, it IS possible to 
discuss the "shape" of the asymptotic distribution. Equation (A4) may be 

solved directly, i.e., 

Using the relation (8) in the text, it is found that 

x:(w) =1-w2/2a*2
' 

x:(w) =wv4a*2 -w2/2a* 2 • 

From (A6) and (A7), one can easily verify the relation 

(A6) 

(A7) 

(AS) 

This is a semi-circle C shown in Fig. 1 with a centre at the origin and with 
radius unity, and the shape of the real and and imaginary parts is shown in 

Fig. 2 in a reduced scale with its time domain function Roo (t) =J1 (2a*t) / a*t, 
where J 1 (x) is the Bessel function of first order. This is, so to speak, a "proto

Gaussian" asymptotic distribution in so far as the line shape is concerned. 

When there exists no appreciable kinematic difference between successive 

scaling parameters .dn2 appearing in the continued fraction, the magnitude of .dn2 

will be determined solely by a single coupling parameter and the combinational 

statistics. This means that progression will be proportional with that of natural 
numbers. Although in a real physical system there often appears specific be
haviour due to either kinematic or thermodynamic origin in the lower order 
moments, the nature of the higher order moments are expected to be normal in 
many cases. 
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