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Abstract

We correct the solution of Poisson-Boltzmann equation regarding charge distribution in an elec-

trolytic solution bounded by walls. Considering charge conservation principle properly, we show

that the gradient of electrostatic potential at different walls are strictly related, and cannot be

assigned independent values, unlike old theory. It clarifies some cause and effect ideas: distribu-

tion turns out to be independent of the initial polarity of walls; the accumulated charges in liquid

usually induce opposite polarity on the wall surface, forms ‘Electric Double Layer’ (EDL), contrary

to the common belief that a charged wall attracts counter-ions to form EDL. Distribution depends

only on the potential difference between walls and the net charge present in the solution, apart

from Debye length.
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Let’s find the charge density distribution ρe within an electrolytic solution bounded by

walls. A rectangular geometry, with very small width ‘2a’ compared to its length and

height, makes it essentially a simple 1-D problem [1]; although keeps important physics we

are interested in. Here, ρe varies only along the direction of the shortest side of domain, say

in x-direction. Let’s define a few parameters,

κ ≡ a/λD; η ≡ x/a; ψ∗ ≡ ψ/ζ (1)

Where, λD is Debye length; ψ is electrostatic potential and ζ is a suitable scale for it (ζ > 0).

Now, ρe and ψ are related through Boltzmann distribution [1, 2]

ρe = −εκ
2

a2
ψ = −

[
εκ2ζ

a2

]
ψ∗ (2)

⇒ ρ∗e = −ψ∗ (3)

Where, ρ∗ ≡ ρe/ρ0, and ρ0 ≡
(
εκ2ζ/a2

)
(4)

ψ and ρe are also related by Poisson’s equation; for 1-D:

d2ψ

dx2
= −ρe

ε
(5)

(using Eq. 1 and Eq. 4)
d2ψ∗

dη2
= −κ2ρ∗e (6)

If Q0 is the net charge present in liquid, in a cross-section,∫ +1

−1

ρ∗edη =
1

ρ0

∫ +1

−1

ρedη =
Q0

ρ0
≡ q0 (7)

Integrating both sides of Eq. 6 w.r.t η and using Eq. 7,

dψ∗

dη

∣∣∣∣
η=+1

− dψ∗

dη

∣∣∣∣
η=−1

= −q0κ2 (8)

Hence, we cannot assign independent values to dψ∗/dη at two walls, which was done earlier

[3] and is not acceptable. Eq. 3 and Eq. 6 gives Poisson-Boltzmann equation,

d2ψ∗

dη2
= κ2ψ∗ (9)

It’s general solution is (with arbitrary constants A, B),

ψ∗ = A exp(κη) +B exp(−κη) (10)

⇒ dψ∗

dη
= κ[A exp(κη)−B exp(−κη)] (11)

dψ∗

dη

∣∣∣∣
η=+1

= κ[A exp(κ)−B exp(−κ)] (12)

dψ∗

dη

∣∣∣∣
η=−1

= κ[A exp(−κ)−B exp(κ)] (13)
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Subtracting Eq. 13 from Eq. 12, and using Eq. 8 we get,

A+B = −1

2

q0κ

sinh(κ)
(14)

Let, δ be the potential difference between walls at η = +1 and η = −1. From Eq. 10,

ψ∗|η=+1 = A exp(κ) +B exp(−κ) (15)

ψ∗|η=−1 = A exp(−κ) +B exp(κ) (16)

Subtracting Eq. 16 from Eq. 15 we get,

A−B =
δ

2 sinh(κ)
(17)

From Eq. 14 and Eq. 17 we solve for A and B,

A =
1

4 sinh(κ)
[δ − q0κ] (18)

B = − 1

4 sinh(κ)
[δ + q0κ] (19)

Using Eq. 18, Eq. 19, Eq. 10, and rearranging terms,

ψ∗ =
1

2 sinh(κ)
[δ sinh(κη)− q0κ cosh(κη)] (20)

From Eq. 3 we get,

ρ∗e =
1

2 sinh(κ)
[q0κ cosh(κη)− δ sinh(κη)] (21)

From Eq. 21 we can see many interesting things that are described below.

If the walls are at the same potential i.e. δ = 0, and also the solution is neutral as a

whole i.e. q0 = 0, then the solution is neutral everywhere.

Suppose δ = 0. If liquid contains a net charge, say, for definiteness q0 > 0, the excess

charges accumulate mostly near the walls (see Fig. 1(a)) and it does not depend on the

initial polarity of the walls i.e. before walls come into contact with liquid. The accumulated

charge in liquid must induce opposite charge of necessary amount on the wall surface, if

it was already not present. It is contrary to the common belief that a charged surface,

when exposed to a solution, induces counter-ions near it; actually this belief led this author

to attempt forming erroneous ‘Electric Triple Layer (ETL) theory’ [4], that says when a

neutral solution exposed to a charged wall, the counter-ions form layer near walls leaving

behind co-ion abundant layer away from wall. But, for electrostatics, ψ∗ can attain minima
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FIG. 1. Charge density distribution ρ∗e (normalized) along the domain cross-section, in an elec-

trolytic solution enclosed by walls; potential difference between right and left walls is δ; the net

charge in the cross-section is q0 (normalized). For each case, inverse of scaled Debye length κ = 25.

(a): q0 = 0.1 and δ = 0. (b): q0 = 0.1 and δ = 2. (c): q0 = 0 and δ = 1 (d): q0 = 0 and δ = −1

(e): q0 = 0.03 and δ = 2

or maxima only at boundaries, not inside domain [5], so formation of co-ion abundant layer

away from the wall is not possible according to Poisson-Boltzmann model. For δ > 0, the

charges re-distribute (Fig. 1(b)); higher potential at right wall pushes some +ve charges

towards left.

Suppose q0 = 0 and δ > 0. We see from Fig. 1(c) +ve (−ve) charges accumulate near

the wall of lower (higher) potential (eventually induces opposite polarity on the walls).

Reversing sign of δ reverses distribution (Fig. 1(d)). From Fig. 1(e),we see, even for q0 > 0,

some −ve charges accumulate at one wall, because δ 6= 0. Before their exposure to solution,

two surfaces can contain same type of charges but have potential difference due to difference

in charge density, but when brought in contact with the solution, they acquire different

polarities because δ 6= 0. We see that when δ 6= 0, charge separation occurs even if q0 = 0.

Where ρ∗ changes sign, dψ∗/dη = 0, but it is not an extrema, but a point of inflection;

d2ψ∗/dη2 = 0, too.

In some physical systems, the solution acquires a net charge by chemical interaction with

the wall, or as a result of adsorption of ions by walls [6–9]. In this case wall automatically

acquires a polarity opposite to that of q0.

If we add some neutral salt to solution, it changes concentration and hence changes κ,

but q0 should not change if there is no further adsorption by walls. It can be checked from

Eq. 21 that
∫ +1

−1
ρ∗edη produces q0 indeed i.e. it does not change with κ. But in old theories
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[1], the integral of ρe i.e the net charge in liquid turned out to be depend upon κ; it means

when we add neutral solution the net charge changes, it clearly violates the principle of

conservation of charge, which got corrected in this work.

Now, see from Eq. 20, ψ∗|η=0 = −q0κ/(2 sinh(κ)), which is not zero in general. It is

well known that adding a constant to ψ∗ should not change the physics [10–12]. But, from

Eq. 3 we see that, in the Poisson-Boltzmann model, ψ∗ is related to a definite quantity ρ∗e,

which cannot vary for a given problem. So, ψ∗ gets fixed at all the points in a way that is

consistent with Eq. 7; we cannot change ψ∗ further by adding constant, without changing

the physics.

Thanks to Anthony Leggett and Wolfgang Ketterle for their valuable comments, they

pointed out that my earlier attempt to generalize charge distribution through ‘Electric Triple

Layer’ theory was not satisfying Poisson’s equation, and then I reformulated the theory here.
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