
Physical Synthesis Methodology for High Performance
Microprocessors

Yiu-Hing Chan Prabhakar Kudva Lisa Lacey Greg Northrop Thomas Rosser
IBM Server Group IBM TJ Watson Research Center IBM Server Group
Poughkeepsie, NY Yorktown Heights, NY Austin, TX

ABSTRACT
Integrated logic synthesis and physical design (physical syn-
thesis) continues to play a very important role in high perfor-
mance microprocessor design methodologies. In this paper,
we present the integrated physical synthesis timing closure
methodology used in the current generation microproces-
sors. Physical synthesis techniques were aggressively used as
part of logic and placement optimizations for performance,
power and area. The design turn around times were sig-
nificantly reduced and timing convergence was consistently
acheived.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Styles—Design Aids

General Terms
Algorithms, Performance, Design

Keywords
Microprocessors, High-Performance, Synthesis

1. INTRODUCTION
With technology scaling as well as the increasing complex-

ity of modern microprocessors, interconnect effects play an
increasingly important role in determining design method-
ologies. The design of the POWER4 [15] and of newer gener-
ations of other IBM high performance microprocessors [1] re-
quired considerable integration between synthesis and phys-
ical design to manage interconnect effects. The first gener-
ation of chips that used the physical synthesis methodology
described in this paper, were fabricated in a 0.18-µm CMOS
8S3 SOI (silicon-on-insulator) technology with seven levels
of copper wiring [11]. This version of the chip [15] had a
clock frequency of greater than 1.3 GHz with a transistor
count of 174 million. Physical synthesis continues to be
used in other IBM microprocessors as well [1]. Acheiving
timing closure on these chips continues to take significant
innovations in physical synthesis techniques.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

Microprocessor design entails very tight constraints on fre-
quency, power, noise and packing density. Design closure
and minimizing the effects of interconnect in the micropro-
cessors while meeting tight performance constraints were ac-
complished by two main approaches: hierarchical design and
physical synthesis with innovative techniques.

This paper describes a physical synthesis methodology
used in the design of microprocessors in a hierarchical design
environment. Section 2 discusses a hierarchical approach
for managing physical design, noise and timing issues while
acheiving chip level design closure. The benefits of semi-
custom library design and how physical synthesis benefits
from such libraries is described in Section 3. In Section 4, the
physical synthesis methodology to accomplish macro level
timing closure is described. Some post physical synthesis
optimizations performed are described in Section 5. Sec-
tion 6 presents some of the representative results that were
obtained as part of the timing closure of the microproces-
sors.

2. OVERVIEW OF METHODOLOGY
The physical synthesis tool [4] is capable of optimizing

designs in both a hierarchical and flat chip design environ-
ments. In this paper, we will primarily focus on the hierar-
chical methodology as applied to microprocessor design.

The processor physical design makes extensive use of hier-
archy, partitioning the chip into cores, cores into units and
units into macros. For example, in one of the micropro-
cessors, the 2 cores are identical. Each core is partitioned
into 8 units (Instruction Unit, Floating Point Unit, etc).
Each unit is partitioned into floorplannable macros which
are either custom and semi-custom dataflow macros or syn-
thesized control random logic macros (RLMs). There were
24 RLMs and 28 dataflow macros in the Instruction unit of
the processor. RLMs in the rest of this paper will specifically
mean control logic macros. A majority of the RLMs used
physical synthesis. One microprocessor had 523 Random
Logic macros (RLMs) which used physical synthesis.

2.1 Hierarchical Timing Optimization
A simplified timing and physical design flow is shown in

Figure 1 and a floorplan is shown in Figure 2. Three levels of
timing and physical resource optimizations are performed:
the chip level, the unit level and macro level.

Feeding Timing Assertions Down the Hierarchy
Timing assertions are fed forward to lower levels of the hier-
archy after the higher level is partitioned. Timing assertions
of macros and unit inputs consist of arrival times with phase
tags and slew. Macro and unit outputs have required arrival
times with phase tags and output capacitance loads. The

696

41.1

F
ee

db
ac

k
an

d
In

te
gr

at
io

n

Extraction

Floorplan

Chip Level Timing/Wiring
-Timing, Noise, Power

Floorplan

Unit Level Timing/Wiring

Partition
- Floorplan Information

- Timing Assertions
Partition

- Wiring Contracts, Pin Assignments, Area

RLM
Physical Synthesis

Unit Level Integration

Chip Level Integration

- Chip Image

Figure 1: Hierarchical PD and Timing

Figure 2: Floorplan of a Typical Processor

core/chip level timing run generates unit timing assertions.
The unit timing run generates macro timing assertions.

For dataflow macros, assertions are used for timing analy-
sis using a transistor level timing tool. Dataflow macros are
implemented with hand designed schematic. The schematic
design is followed by either manual transistor level and cell
level physical design or a mix of manual and place and route
physical designs to achieve high packing density and optimal
implementation for high frequency.

For RLMs, macro assertions are used for timing optimiza-
tion by physical synthesis. RLMs are optimized through
synthesis [12] and physical synthesis [4] tools.

Feeding Timing and Noise Abstracts Up the Hierarchy
As timing closure on each design progresses, information of
the design status are fed to upper levels of the hierarchy
from the lower levels of the hierarchy. Macro timing ab-
stracts are used for this purpose at the unit level. Macro tim-
ing abstracts contain timing equations for all input-to-latch,
input-to-output and latch-to-output paths in the macro and

are generated through transistor level timing analysis.
At each macro level, noise analysis is also performed [7].

This provides noise characteristics for the internal circuits
within the macro. It also provides a noise abstract with
noise rules that is used at the unit level and then at the chip
level.

At the early stage of the design cycle, macro timing and
noise abstracts are generated from schematic netlists, which
are generated by synthesis from VHDL. Early runs are based
on estimated statistical wire loads between books based on
fanout for very quick turn around time. As the design cycle
progresses, the abstracts are derived from physically syn-
thesized macros. Timing optimizations and noise avoidance
transformations and assertions updates are made on a reg-
ular basis as the design cycle progresses.

RLM Timing Closure and Noise Avoidance
As control logic becomes more stable, RLMs are taken through
physical synthesis [4, 6] for optimal placement and for tim-
ing, area, noise and power optimization. This is followed by
routing with automatic router, verifying RLM wirability, pin
placement optimization and post PD RC netlist extraction
to generate a more accurate macro timing abstract. Noise
avoidance is acheived through careful library cell selection,
wire planning and decoupling capacitors.

Top Level Timing Closure
While physical synthesis is used at the RLM level, tim-
ing optimization at higher levels of the hierarchy (unit and
chip) can use a variety of optimizations such as: buffer in-
sertion for nets with long wire length that exceeded slew
target or for isolation of non-critical loads; pin optimiza-
tion to minimize extra wire length due to pin misaligment
between driving and receiving macros; usage of low resis-
tance wires and or wider width wires to reduce wire RC
delay; re-synthesizing macros and re-running unit timing in
a particular order to force synthesis to work on current top
paths based on updated assertions; logic re-structuring in
macros for optimal synthesis results; logic re-partitioning
and latch point optimization to minimize RLM crossing,
wire RC delay and or removing unnecessary buffers; move-
ment of macros to minimize wire lengths between macros;
and usage of circuit tuner on RLM level for slack reduc-
tion. Timing optimizations throughout the hierarchy are
done concurrently to speed up the overall timing closure.
Noise analysis and optimization at the top level is acheived
through the use of macro level noise abstracts and extracted
data for the global wiring.

2.2 Hierarchical Physical Resource Allocation
Concurrently with the timing data, physical information

also has to be fed foward and backward through various
levels of hierarchy. In the hierarchical flow, at each level,
global wires (between macros and units) are optimized for
timing with each iteration. Hierarchical design allows for
concurrent design at all levels of the hierarchy. Since wiring
resources are shared across the hierarchy, they are managed
through top down wiring contracts. At the early stage of
the design cycle, the wiring contract can be very simple.
For example at the unit level, no M1 tracks, every 4th M2
tracks and every other M3 tracks are assigned. The remain-
ing tracks belong to macro for macro level wiring. As the
wiring on the unit level becomes stable, the wiring contract

697

can represent the completely/partially unused tracks on the
unit level that are available to macro level wiring. Each
level’s floorplan and wiring are done with the lower level’s
floorplannable object’s image and top-down contracts from
levels above. Pins and floorplannable objects placement in
each level of the hierarchy (dataflow macros, unit and chip)
are done with iterations to minimize wire lengths and im-
prove wirability throughout the hierarchy.

The floorplans at each level are done carefully and with
iterations to minimize wire lengths between timing critical
units early on in the design cycle. Timing critical nets be-
tween units are analyzed with a circuit simulator to guide
the usage of metal level with wider width and with lower
wire resistance.

3. SEMI-CUSTOM PHYSICAL SYNTHESIS
The benefits of a semi-custom library can be best real-

ized during physical synthesis. There are several ways in
which physical synthesis helps to take full advantage of semi-
custom cell libraries. Matching capacitive loads (including
wire loads) with the driving cells selected from a large and
varied semi-custom library provide a significant advantage
in timing closure, since for a given gain value, wire loads can
be much better matched from a wide selection gate sizes.

3.1 Library Design
The combinational logic portion of the standard cell li-

brary was predominantly simple (inverting) static CMOS
gates. The complexity was limited to a maximum fan-in of
4, with series nfet stacks limited to 4 (nand4) and pfet to 3
(nor3). Though limited to a small number of types, a large
number of sizes were produced for each type. The cells were
generated by a tool that assumed a basic parameterization
of each type, with the nfet tree scaled by a parameter NW
and the pfet tree scaled by PW. The tool is capable of pro-
ducing physical design for a broad and continuous range in
this parameter space. Cells were generated for a matrix of
points based on gain and beta ratio, where increasing the
NW and PW together gives cells with fixed gain for vari-
ous loads, while changing the PW changes the beta ratio of
the gates. A set of PW/NW ratios (beta ratios) for each
type is determined. The number of beta ratios varies from
1 to 4, depending on the utilization of the cell. Beta ra-
tios were selected with both performance and noise margin
considerations.

In addition to the basic set of primitive cells, two ad-
ditional degrees of freedom were added. The first was ta-
pering, wherein the input pin delay is deliberately skewed,
improving one pin at the cost of additional load and delay
at other pins. This provides additional timing performance
on paths with significantly different arrival times. The sec-
ond set was a complete duplicate set with a low threshold
device (lowVt) substituted for all fets. The lowVt gates
offered about 10% improved performance at the cost of sig-
nificantly higher static leakage. Appropriate use of tapered
and lowVt cells has demonstrated up to 15-16% performance
improvement.

The use of special optimizations such as lowvt cells, ta-
pered cells and beta ratios are only meaningful during phys-
ical synthesis when timing, load and slew estimates are pre-
cise. For example, the limited use of lowvt cells to improve
performance on critical paths while controlling leakage can
only be determined after placement.

Table 1: Standard Cell Library
Gate Num Sizes beta Vt tap total

(input cap) ratios
inverter 25 4 2 0 200
nand2 16 4 2 64 192
nand3 13 3 2 52 130
nand4 10 2 2 0 40
nor2 11 3 2 44 110
nor3 9 2 2 18 54
aoi21 10 3 3 20 80
aoi22 10 3 2 0 60
oai21 10 3 2 20 80
oai22 10 3 2 0 60
xor2 5 5 2 0 50
xnor2 5 5 2 0 50

3.2 Gain Based Optimization
With the use of semi-custom libraries with large sets of

power levels, beta ratios and tapering, gain based synthe-
sis [14, 2, 10, 8, 13] is extensively used in the design process
for a significant portion of the control logic of the processor.
In gain based synthesis, library analysis is first performed on
the libraries to create gain models for each cell type such as
nand2s, nand3s etc. The libraries used in the design of these
microprocessors were tailored for gain based modelling.

These models created by library analysis are consistently
used in all steps of synthesis such as technology indepen-
dent synthesis, technology mapping and timing correction.
Each cell in the netlist has an associated gain based model,
i.e, each cell is size independent. After synthesis within the
gain based domain, the netlist is discretized [8] back to the
standard cells in the library whose timing is based on load
based polynomial timing models. Further timing optimiza-
tions to remove effects of model inaccuracies are performed
after discretization.

4. PHYSICAL SYNTHESIS
Once the physical image and the timing asertions for the

macros are obtained, placement and synthesis are performed
concurrently on the RLMs using the physical synthesis tool.

4.1 Physical Synthesis Flow

Timing Closed RLM with Placement

Physical Synthesis

Gain Based Early

Synthesis

Fi
ne

 G
ra

in
ed

 S
O

I
Se

m
i-

C
us

to
m

 L
ib

ra
ry

C
om

m
on

 D
at

a
M

od
el

El
ec

tr
ic

al
, P

hy
si

ca
l,

B
oo

le
an

A
na

ly
si

s:

T
im

in
g

N
oi

se
 A

re
a

Po
w

er
 L

ea
ka

geR
ul

es
 f

or
 T

im
in

g/
A

re
a

N
oi

se
/P

ow
er

/L
ea

ka
ge

RTL Description of RLM

Figure 3: Physical Synthesis Flow

698

Physical synthesis can be performed on a technology mapped
netlist where placement and synthesis proceed concurrently
to perform timing, area and power optimizations. Addition-
ally, a placed and optimized netlist may need further incre-
mental optimization. This flow is supported as well. The
physical synthesis flow for RLMs are shown in Figure 3.

All transformations use a common database where the
boolean (functional representations), electrical (timing, noise)
and physical (physical locations, congestion) characteristics
can be evaluated and modified concurrently. Noise, timing,
area and power analysis tools work on the same database
and provide input to the physical synthesis algorithms which
manipulate the netlist in an incremental fashion.

4.2 Wire Length Calculation
A key requirement for physical synthesis is the prediction

of wire lengths based on physical locations. A Steiner tree
model is used to measure wiring distances and capacitive
loads are computed using these lengths. A steiner tree model
is reasonable for physical synthesis in a hierarchical design
methodology where dimensions of each RLM are small.

Figure 4 shows that the tracking between the net-length
of a Steiner tree and the final routing of the net. It shows the
number of nets that have a certain percentage prediction er-
ror. The three data sets shown (left to right) were obtained
by successively removing the shortest 10% and 20% of nets
from the statistics. One can see that all larger error per-
centages dissappear if the shortest nets are removed. The
error due to short nets do not have a significant effect on
delay. For the longer nets the precision of a Steiner length
approximation is sufficient for the transformations that are
done in the physical synthesis phase. This is especially true,
if this Steiner tree is also being used to initialize the global
router. In highly congested designs, the inaccuracies in-
crease because of scenic routes. Such inaccuracies are first
avoided by attempting to perform congestion control opti-
mizations within physical synthesis. If congested areas and
scenic routes persist, a variety of optimizations such as in-
footprint post routing gate sizing, adding additional wiring
contracts have proved helpful.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0

100

200

300

400

ne
ts

Figure 4: Wire load histogram

For short wires, an Elmore delay model is used. The wire
load capacitances are estimated as lumped capacitances pro-
portional to the Steiner estimates of the lengths of the wires.
For longer wires where the RC component is significant, an
appropriate delay model is chosen.

These models are registered as net-delay calculators in
an incremental timing analysis engine [5]. Both changes
to positions of cells and changes to the netlist may trigger
incremental recalculations of the timing and Steiner trees.

4.3 Typical Physical Synthesis Optimizations
The physical synthesis approach opens up a wide range of

optimizations where changing logic, electrical and physical
characteristcs of the design lead to significant benefits. A
few examples of the kinds of transforms that were used are
presented in this section.

Clock Optimization for Low Power
An algorithm that works with the last few stages of clock
logic within macros has been develped. The logic is driven
by a global mesh that distributes a synchronous clock to
the processor in a tightly controlled manner. Within the
macros, that mesh clock must be split into multiple clocks
and delivered to the latches with very tight constraints. In
addition to the mesh clock, there are a vast array of con-
trol signals to assist in power savings, set up LSSD scan
mode, select between single and multiple cycle clocks, and
to interface synchronous and asynchronous clocks.

Clock power can be as significant as 70% of the power in
a processor. A large amount of this power is consumed in
the last stages of clock driver (splitters) circuits which drive
the latchs. Typical placement algorithms tend to spread
the latches far away from the splitters. Even taking lo-
cality into account, the introduction of the splitters results
in large wire lengths, contributing to increased capacitance
driven by the splitters and therefore power consumption.
This is shown in Figure 5. Power optimization is possible by
moving the latches closer to the splitters. Aribitrarily mov-
ing latches during placement can result in timing as well as
wiring penalties. Efficient physical synthesis algorithms al-
low concurrent clock block optimization along with timing
optimizations (to compensate for lengthening of the data
wires) as well as congestion control.

When this clock optimization process is combined with
physical synthesis, it is possible to balance the needs of
the data flow into and out of latches with the tight con-
straints on the clocks themselves. The clocks are ignored
during the early global placement until the locations of the
latches starts to become obvious. At that point, an initial
clock network is created and optimized based on the current
latch placement. For the next placement step, the latches
are intentionally drawn closer to the clock driver logic and
then the optimization is performed again. For all remaining
placement steps, the clock nets are constrained to not grow
much. The fact that this all happens within the physical
synthesis flow means that the logic can be optimized to re-
flect the significant placement changes that occur with the
insertion of a lot of very large clock buffers or splitters.

(b) Clock Power Optimized Placement(a) Without Clock Optimization

Figure 5: Before (a) and after (b) Clock Optimiza-
tion

699

The algorithm is based on an annealing process that al-
lows moves that are not legal in the early stages. In the later
stages, only legal moves are accepted. Annealing was chosen
as the base technique since the algorithm has various param-
eters that can be set for its use by very different processor
teams for very different clocking structures. The rules that
need to be honored are: maximum distance between clock
logic and latches, maximum fanout of any particular form of
clock logic, maximum capacitance for each clock logic pin,
average distance between clock logic and latches, maximum
slews for clock nets and control nets, maximum RC seen by
a sink pin of a clock net, support of multiple power levels
and net termination to reach capacitance target. In order
to satisfy some or all of the constraints as required, an an-
nealing approach was the best fit. Clock logic with a high
ratio of latches to clock blocks are produced.

Circuit Relocation
Placement algorithms optimize the physical location of cir-
cuits to optimize total wire lengths. The use of netweights
improves the timing characteristics of the placed design but
does not always produce placements that are optimal for
timing. During physical synthesis, locations of select tim-
ing critical circuits should be changed for timing purposes.
Such relocations need to be performed carefully since mov-
ing a particular circuit in one direction may increase the
wirelengths of its fanins, thus creating other critical paths.
Examples of circuits locations for timing are shown in Fig-
ures 6 and 7. In the first case gates on a meandering path
are moved to reduce the net capacitances driven by the gates
and therefore improving timing. In the second case, buffer
insertion on the gate driving the long wire is avoided by
redistributing the distances between the logic gates.

E

Fixed

A B D E

Fixed

C F G

C D

Figure 6: Relocation for Timing 1

Figure 7: Relocation for Timing 2

Circuit Remapping
Technology mapping is performed early in synthesis when
actual wire loads are not available. In the design there are
often many instances of suboptimal configurations of tech-
nology mapped gates. For example in Figure 8 an XNOR
followed by an inverter is used to drive a long wire. The
inverter is placed close to the XNOR output so as to drive
most of the wire load. Alternately a NAND decomposition
can also be considered. Depending on the locations of the
fanin gates, the length of the wire, the choice of the config-
uration may vary.

Figure 8: Remapping of Circuits

Buffer insertion
Buffer insertion prior to placement can result in poor topo-
logical trees causing both wiring congestion as well as degra-
dation in peformance. Due to the total wire length objective
of placement algorithms, buffer tree placement configura-
tions such as those shown in Figure 9(a) occur frequently.
Rebuilding buffer trees during physical synthesis can sig-
nificantly improve the overall quality of the results. These
techniques are based on the method presented in [10].

Figure 9: Buffer Reinsertion

Placement driven buffer insertion was extensively used to
improve performance as well as reduce wiring congestion.

Early mode padding
Peforming early mode padding prior to physical synthesis
can result in excessive padding. Often the wire loads add
to the delays along certain paths, making them less critical
in the early mode. Therefore early mode padding is per-
formed only during physical synthesis in our methodology.
A timer which performs both early mode and late mode tim-
ing analysis concurrently is used to prevent some paths from
becoming critical due to the early mode padding.

5. POST PHYSICAL SYNTHESIS
After the macros have gone through physical synthesis for

optimized books placement with late and early mode timing
optimization, the macros go through routing. For very large
macros with over 60K transistors, routing is done with a net
priority list that priorizes the order of the route according
to the slack of the nets in the RLM. By doing that, the
topology of timing critical nets and capacitance loads are
guaranteed to be as close as possible to Steiner estimates
that have been used during placement/timing optimization
phase within physical synthesis.

A few of the macros are not wirable with the initial wiring
contracts. These contracts have to be updated with more
wiring resources from unit level to make the RLM wirable.
In some cases that the RLM pin placement affected the
wirability. The RLM pins had to be re-arranged and spread
farther apart to enable the RLM to be wired.

After routing is completed, RC netlist extraction is done
for post PD timing analysis. There are cases because of mul-
tiple constraints used during placement/timing optimization
phases within physical synthesis that some of the stages driv-
ing primary outputs (POs) with heavy external loads are

700

placed farther away from the PO pins than expected. This
resulted in high wire RC delay and longer path delay on
these PO paths. These output stages are manually moved
and placed closer to the PO pins to reduce wire RC delay
due to heavy external capacitance load.

There are cases where the slew of some of the nets exceed
the target. Either manual repowering or circuit tuner [3], is
used to tune the design to meet the slew target and improve
the slack. For macros with network changes due to late logic
updates or timing optimization after routing is completed,
ECO (engineering change option) that preserves the initial
placement and retains most of the routes is used to do a
delta place and route on any of the updated and affected
instances and nets. This way the original RLM timing and
slack on other paths are preserved.

6. PHYSICAL SYNTHESIS EVALUATION
The methods described earlier have been used extensively

in high end microprocessor designs. Figure 10 shows the
slack and area improvements of some of the processor macros
run using the physical synthesis method compared to the
previous methodology which alternated between placement
and synthesis. All positive numbers indicate an improve-
ment in our methodology. Points in upper half with positive
slack delta show slack improvements. Points with negative
area delta show area improvements. A majority of the points
fall in the region that shows both area and slack improve-
ments. The methodology emphasized slack improvement,
although in most cases both slack and area improvements
were obtained. In a few cases very small area penalties were
incurred for significant slack improvements.

In some cases there was a degradation in wirability and
therefore slack due to a variety of factors such as inherent
complexity of the RTL specification and early synthesis op-
timizations. The relationship between graph structure and
wirability [9] needs further investigation. It is important to
have techniques where wiring effects are analyzed early in
the design flow.

100

5 10-15-20-25

150

50

-50

0

-5-10

Sl
ac

k
D

el
ta

Area Delta

Figure 10: Slack and Area Results

7. SUMMARY
The paper presents a comprehensive physical synthesis

methodology and techniques that have been used in the de-
sign of high speed microprocessors. The extensive use of
physical synthesis has demonstrated the importance of in-
tegrating placement and synthesis tightly. Our experience
has shown the need for further research in predicting and

optimizing for interconnect and physical design effects much
earlier in the design flow.

8. ACKNOWLEDGEMENTS
The authors would like thank all members of the PDS

team as well as the the Microprocessor PDS team including:
Bob Hatch, David Kung, Andrew Sullivan, Lakshmi Reddy,
Michael Kazda, Michael Bowen, Rainer Clemen, Marianne
Knirsch, Allan Dansky.

9. REFERENCES
[1] Averill, R. M. et al.. Chip integration methodology for

the ibm S/390 G5 and G6 custom microprocessors. IBM
Journal of Research and Development 43, 5 (1999),
681–707.

[2] Beeftink, F. et al. Combinational cell design for CMOS
libraries. Integration 29, 1 (2000), 67–93.

[3] Conn, A. R. et al.. Gradient-based optimization of
custom circuits using a static-timing formulation. In Proc.
ACM/IEEE Design Automation Conference (June 1999),
IEEE Computer Society Press.

[4] Donath, W., Kudva, P., Stok, L., Villarrubia, P.,
Reddy, L., Sullivan, A., and Chakraborty, K.
Transformational placement and synthesis. In Design
Automation and Test in Europe (DATE) (Mar. 2000).

[5] Hathaway, D., Abato, R., Drumm, A., and van
Ginneken, L. Incremental timing analysis. Tech. rep.,
1996. IBM, U.S. patent 5,508,937.

[6] Hojat, S., and Villarubia, P. An integrated placement
and synthesis approach for timing closure of PowerPC
microprocessors. Proc. International Conf. Computer
Design (ICCD) (1997), 206–210.

[7] K.L.Shepard, V.Narayanan, and R.Rose. Harmony:
Static noise analysis of deep submicron digital integrated
circuits. IEEE Transactions on Computer-Aided Design 18,
8 (1999), 1132–1150.

[8] Kudva, P. Continuous optimizations in synthesis: The
discretization problem. In International Workshop in Logic
Synthesis (1998), pp. 188–191.

[9] Kudva, P., Dougherty, W., and Sullivan, A. Metrics for
structural logic synthesis. In International Conference on
Computer Aided Design (ICCAD) (Nov. 2002), IEEE
Computer Society Press.

[10] Kung, D. A fast fanout optimization algorithm. In Proc.
ACM/IEEE Design Automation Conference (June 1998),
pp. 352–355.

[11] Leobandung, E. et al.. High performance 0.18 mm SOI
CMOS technology. In IEEE IEDM Technical Digest
(1999), IEEE Computer Society Press, pp. 679–682.

[12] Stok, L. et al. Booledozer: Logic synthesis for ASICs.
IBM Journal of Research and Development 40, 4 (2001),
407–430.

[13] Stok, L., Sullivan, A., and Iyer, M. Wavefront
technology mapping. In Design Automation and Test in
Europe (DATE) (Mar. 1999).

[14] Sutherland, I. E., and R.F.Sproull. Theory of logical
effort: Designing for speed on the back of an envelope. In
Advanced Research in VLSI: Proceedings of the 1991
University of California Santa Cruz Conference, C. Sequin
Ed. The MIT Press (1991).

[15] Warnock, J. D. et al. The circuit and physical design for
the power4 microprocessor. IBM Journal of Research and
Development 46, 1 (2002), 27–53.

701

