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in voice quality
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Abstract

The presence of physical task stress induces changes in the speech production system which in turn produces

changes in speaking behavior. This results in measurable acoustic correlates including changes to formant center

frequencies, breath pause placement, and fundamental frequency. Many of these changes are due to the subject’s

internal competition between speaking and breathing during the performance of the physical task, which has a

corresponding impact on muscle control and airflow within the glottal excitation structure as well as vocal tract

articulatory structure. This study considers the effect of physical task stress on voice quality. Three signal processing-

based values which include (i) the normalized amplitude quotient (NAQ), (ii) the harmonic richness factor (HRF),

and (iii) the fundamental frequency are used to measure voice quality. The effects of physical stress on voice quality

depend on the speaker as well as the specific task. While some speakers do not exhibit changes in voice quality, a

subset exhibits changes in NAQ and HRF measures of similar magnitude to those observed in studies of soft, loud,

and pressed speech. For those speakers demonstrating voice quality changes, the observed changes tend toward

breathy or soft voicing as observed in other studies. The effect of physical stress on the fundamental frequency is

correlated with the effect of physical stress on the HRF (r = −0.34) and the NAQ (r = −0.53). Also, the inter-speaker

variation in baseline NAQ is significantly higher than the variation in NAQ induced by physical task stress. The

results illustrate systematic changes in speech production under physical task stress, which in theory will impact

subsequent speech technology such as speech recognition, speaker recognition, and voice diarization systems.
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1 Introduction
Exercising or otherwise performing a strenuous physical

task, referred to here as physical task stress, influences

the behavior of the speech production system. The study

of physical task stress speech is the search for a link

between stress and the resulting behaviors and to the

acoustic and perceptual results of those behaviors.

Several studies have added to the catalog of behaviors

studied in terms of the changes caused by physical task

stress. In this study, we examine voice quality. The com-

bination of speech with exercise, or physical task stress,

results in physiological and behavioral responses that

depend on the fitness of the speaker, the age of the

speaker, the specific task, the speaker’s fatigue level, the

time in the task, and other factors.

An overview representation of speech production is

shown in Fig. 1. Here, typical speech production occurs

when an excitation source excites the resonant structure

of the vocal tract, resulting in an output speech wave-

form (Deller et al. [1]). If we consider a traditional vowel,

the figure shows the resulting glottal cycle (closed phase,

open phase) which excites the corresponding configured

vocal tract. Articulators in the vocal tract need to be

continuously positioned to produce fluent speech over

time. If the subject is performing some type of external

physical task stress, these factors will influence speech

production with respect to airflow from the lungs, glottal

excitation source structure, and vocal tract articulator

positioning. The notion of stress level can be described

using the Yerkes-Dodson human performance and stress

curve, as shown in Fig. 2 (motivated by [2]). Here, there
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is a continuum of stress, beginning from inactive or calm

conditions, to optimum stress, to fatigue, to exhaustion, to

excessive levels resulting in panic/breakdown. As such,

physical task stress is not simply a binary event which is

turned on/off but a continuum. The impact of physical

task stress on speech production and how that impacts

voice quality is the focus here.

1.1 Background on speaking and exercise

Speaking and exercising compete for some of the same re-

sources, and exercise affects the speech production system.

Conversely, speaking during exercise affects exercise per-

formance, influencing heart rate, ventilation, tidal volumes,

and perception of dyspnea or air hunger. During exercise,

speakers decrease their ventilation while speaking in order

to make controlled utterances [3–7], then compensate in

the period between utterances by significantly increasing

their ventilation past baseline [4, 8]. When speaking seg-

ments are so long that recovery periods of sufficient length

do not occur with enough frequency, the speaker is forced

to place breathing pauses at linguistically inappropriate

places [3]. The effect of exercise on speech breathing is

significant and consistent enough that it may be used as a

feature in the automatic detection of exercise from the

speech signal [9]. Studies are inconsistent and conflicting

regarding the question of whether speaking increases [3] or

does not increase [5] heart rate relative to the exercise-only

heart rate at the same VO2 task level. Finally, speech pro-

duction during exercise results in reduction of oxygen

intake and an increase in blood lactic acid [5], decreasing

physical performance and hastening fatigue.

Significant inter-speaker variability was observed across

these physiological variables including oxygen uptake,

heart rate, and blood lactate [5]. Also, while perceived

speech production difficulty is strongly correlated with the

difficulty of the exercise task [10–12], significant inter-

speaker variability has been observed despite these corre-

lations. The strength of the correlation may be increased

when the subject pool is more uniformly fit and more gen-

erally homogeneous, such as the expert cyclists studied in

Rodriguez-Marroyo et al. [11, 13].

Fig. 2 Illustration of the Yerkes-Dodson human performance and

stress curve [2]

Fig. 1 Illustration of physical speech production: glottal source excitation driving vocal tract frequency response, resulting in output speech waveform;

physical task stress impacts excitation source muscles, vocal tract articulator muscles, and airflow structure, all impacting output speech signal

(note: the physiological vocal tract configuration shown here was adapted from a figure available at the following location: 1http://www.loria.

fr/~laprie/ACS/tubesOfa.png)

Godin and Hansen EURASIP Journal on Audio, Speech, and Music Processing  (2015) 2015:29 Page 2 of 13

http://www.loria.fr/~laprie/ACS/tubesOfa.png
http://www.loria.fr/~laprie/ACS/tubesOfa.png


Physical stress causes behavioral changes in the speech

production system, resulting in acoustical differences

compared to speech produced in neutral conditions. The

most commonly studied acoustic parameter is the funda-

mental frequency (F0), which typically increases in phys-

ical task stress. In Godin and Hansen [14], mean F0

increased by 60 % of speakers, similarly for 7 of 10 sub-

jects in Koblick [15], while Johannes et al. [16] observed

increases for all speakers, with a more uniformly fit sub-

ject pool. Furthermore, Johannes et al. [16] designed

their study to include a task of increasing difficulty and

measurements of F0 throughout and proposed a nonlin-

ear plateau model for the change in F0 due to stress.

They noted that the anchor frequencies and the height

of each plateau in their model were speaker-dependent.

In contrast, Mohler [10] observed a linear increase in F0

with increases in VO2. While most studies considering

speech during physical tasks use aerobic exercises as

stimuli, Orliko [17] measured speech production charac-

teristics before and during a weightlifting task. Mean F0

was not affected, nor was phonatory airflow nor pitch

perturbation coefficient, but the F0 coefficient of vari-

ation increased.

Studies have also considered vocal intensity, noise-to-

harmonics ratio, and jitter, which all may increase in

physical task stress [15]. One study suggests that these

increases are correlated with the underlying increase in

heart rate (Orlikoff and Baken, [18]). Godin and Hansen

[14] found that the standard deviation of F0 increased

by 2 % of speakers and decreased by 24 % of speakers,

suggesting a reduced prosodic range in physical task

stress. They found that utterance duration increased by

30 % of the speakers, as well as decreased by 43 % of the

remaining speakers. Changes in duration may be related

to the breathing strategies discussed above, and the

inter-speaker differences here suggest that different

speakers employ different strategies. The glottal open

quotient and the first two formants are also affected by

physical task stress [19]. A qualitative comparison of low

and high vowels to plosives and fricatives suggested that

the vowels were more affected by physical task stress

than the plosives and fricatives [20] and further that

nasal phones are more affected by physical task stress

than plosives and fricatives [20]. This may be caused by

the decline in nasal resistance during physical stress,

which might in turn affect the acoustic properties of the

upper vocal tract [21]. Variability across speakers in re-

sponse to physical task stress is a theme across these

studies, where, as cited above, Koblick [15], Godin and

Hansen [14], Baker et al. [3], and Godin et al. [22] ob-

served parameter shifts for a majority but not all

speakers. Godin and Hansen [19] observed changes for

all speakers but found statistically significant differences

in shift of these parameters across speakers, and

Johannes et al. [16] observed shifts in F0 for all speakers

but noted that the parameters of their model were

speaker-dependent. The significant inter-speaker vari-

ability in the physiological and behavioral effects of

stress as observed in, e.g., [3, 5], should result in signifi-

cant inter-speaker variability in the acoustic correlates of

stress. Significant speaker variability in acoustic corre-

lates has also been noted for other types of stress [23, 24].

A recent study, Godin et al. [22], studied the effects of

physical task stress on voice quality. That study mea-

sured six parameters, the harmonic richness factor

(HRF), normalized amplitude quotient (NAQ), H1–H2

ratio (H1H2), F1F3syn [25], harmonics-to-noise ratio

(HNR), and spectral slope (SS). Each of these six param-

eters is sensitive primarily to changes in the vocal fold

behavior or related acoustical properties, rather than to

the upper vocal tract. In plotting the distribution of each

parameter in neutral and stress across all speakers, they

found very little change in the overall distribution of the

parameter sample values. However, when focusing on

measurements from individual speakers, they observed

effects of physical stress on these parameters for a subset

of speakers. As with any examination of the effects of an

outside influence on the behavior of the speech produc-

tion system, we must approach our analysis from a

speaker-dependent perspective. This study expands on

Godin et al. [22] to look more closely at a subset of these

voice quality measurements.

2 Acoustic measures of stress and voice quality
Voice quality is the acoustic result of phonatory behavior

[26]. Voice qualities include modal (neutral), creaky,

breathy, whispery, tense, and lax [26] and depend on the

tension and compression of the vocal folds, among other

factors. Voice quality varies naturally throughout speech,

carries paralinguistic information, and may depend on

social context, mood, and intent [27, 28]. Variations in

vocal fold health, tension, temperature, configuration,

and other aspects result in significant acoustic differences

as well as different voice qualities. These changes may be

made consciously, as in the case of loud or soft vocal ef-

fort [29, 30], may be the result of emotions or stressors

[29, 31, 32], or may be the result of unconscious commu-

nication habits [28]. Thus, acoustic measures over the

speech signal may be strongly associated with particular

classes of vocal fold behavior and physiology.

Estimation of the glottal flow waveshape through inverse

filtering of the speech waveform, and parameterization of

the waveshape estimate, is the primary method by which

to derive acoustic parameters that measure voice quality.

Care is needed to ensure an effective vocal tact model

from traditional linear prediction (LP), since the error re-

sidual from LP analysis is not guaranteed to represent the

true glottal flow waveform, since it also encodes any error
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residual from poor vocal tract spectral modeling. The

study by Gavidia-Ceballos and Hansen [33] explored this

issue for subjects with various forms of vocal fold cancer

and successfully employed estimates of vocal tract struc-

ture from parallel speakers to more accurately suppress

vocal tract structure for glottal flow waveform analysis.

The study by Cummings and Clements [34] considered

inverse filtering with a parametric model of the resulting

glottal waveform shape for speech under stress and emo-

tion. Earlier analysis of the glottal source structure sug-

gested this would be possible (Hansen and Clements [35]).

With respect to quality, glottal pulse width, glottal pulse

skewness, abruptness of glottal closure, and turbulent

noise component may be indicative of voice type variation

[36]. Lower open quotient and closing quotient are related

to breathy voice, and higher closing quotient is related to

pressed voice [37]. Higher AC flow and increased subglot-

tal pressure is associated with loud voice, while lower AC

flow and lower subglottal pressure is associated with soft

voice [38]. Harmonics-to-noise ratio has been extensively

studied and is strongly correlated with breathy and rough

voice quality [39]. Aspiration noise is also a significant fac-

tor in voice quality and may be estimated using the

F1F3syn parameter [25].

More recently, the normalized amplitude quotient

(NAQ) has been demonstrated to be strongly corre-

lated with voice quality variations and robust to noise

and estimation errors [28, 37, 40]. Drugman et al.

[40] showed that NAQ, H1H2 ratio, and harmonic

richness factor (HRF) measured for soft, modal, and

loud speech resulted in significantly different distribu-

tions in these parameters for a corpus of a single

speaker. On their corpus of a single speaker, NAQ

had a higher distribution mean for soft speech, mid-

dle distribution mean for the modal speech, and a

sharper, lower-mean distribution for the loud speech.

While there was less separation across speech types

for the H1–H2 ratio, the harmonic richness factor

was lower for soft speech.

Speech, even in the absence of stressors or significant

emotions, has variations in voice quality that carry para-

linguistic cues such as affirm, deny, or backchannel [28,

41], and many other external influences can affect voice

quality, such as depression [42], circadian rhythm and

fatigue [43, 44], cognitive load [29, 45, 46], emotions [29,

31, 45, 47, 48], and aging [49]. Also, baseline (modal)

values of voice quality measurements such as NAQ vary

significantly across speakers [28]. Spontaneous, continu-

ous speech, typical of conversations, has voice quality

characteristics that differ significantly enough across

speakers that they may be used as features for automatic

speaker identification systems [50, 51]. For these reasons,

in order to measure voice quality of a given speech seg-

ment, the measure must be normalized for the underlying

speaker variation regarding age, mood, conversational

context, fatigue, and other factors.

Like depression, emotions, circadian rhythm, and con-

versational context, physical task stress can be expected

to induce changes in voice quality, driven by the physical

demands of exercise and the competition between the

speaking and breathing tasks. As physical task stress is

an external factor that drives behavior and physiology

rather than a specific phonatory behavior itself, we may

not expect a direct link between the parameters of the

physical task or the fitness of the speaker and the result-

ing acoustic measures.

3 Speech parameters for physical task stress
analysis
In the analysis of speech under stress, a range of speech

parameters are possible. In the area of speech under

stress analysis, Hansen [29, 52] considered 200 speech

parameters spanning the domains of glottal spectrum,

pitch/fundamental frequency, duration, intensity, vocal

tract spectral structure. Further analysis was considered

for military communication applications of speech under

stress by NATO RSG.10 [53], USAF [54]. These feature

analysis studies lead to advancements in robust speech

recognition under stress [29, 55–57] and a tutorial over-

view of a number of stress compensation techniques

based on voiced-transition-unvoiced speech tagging as

well as neural network and source generator compensa-

tion of stress [58]. An additional application domain in-

cluded advancements in automatic detection of speech

under stress using signal processing advancements de-

rived from the Teager energy operator (TEO) [59], TEO-

CB-AutoEnv ([60]). More recently, nonlinear TEO-based

advancements have been considered for stress detection

using sub-band filterbank weighting for various actual

speech under stress scenarios [61, 62]. While these have

explored a range of stress conditions, specific speech

under physical task stress was not addressed. As such, it

is believed that alternative features could also be ex-

plored for the present study. As such, it is believed that

alternative features could also be explored for the

present study. “In this study, the UTSCOPE-Physical

Task Stress corpus (see Table 1) is employed for analysis.

The Corpus consists of 78 subjects collected in both

neutral and physical task stress conditions, as well as be-

ing balanced across gender (male/female), native/non-

native, read/spontaneous speech conditions.”

We have selected three parameters to study the voice

quality effects of physical task stress. Fundamental fre-

quency is widely studied and serves as a comparison

with prior work. Harmonic richness factor (HRF) and

normalized amplitude quotient (NAQ) have been se-

lected because past studies have quantified the relation-

ship of these parameters to specific speaking behaviors
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including pressed speech and soft speech. This facilitates

our investigation into whether the effects of physical

stress can be described in terms of these speaking types.

NAQ and HRF can be reliably estimated if an inverse

filtered glottal waveform is available. Past studies have

shown that care should be exercised in applying vocal

tract inverse filtering for glottal source waveform estima-

tion when voice characteristics are under pathology [33],

since determining the exact glottal closure instant (GCI)

is not always possible. In general, glottal inverse filtering

is a significant area of research interest. Here, the

GLOAT toolkit is used for GCI detection [63], funda-

mental frequency estimation [64], and glottal inverse

filtering [40]. Kane and Gobl [65] demonstrated that

voice quality variation has a significant effect on the ac-

curacy of GCI detection, which is critical for correct

glottal inverse filtering, but their data suggested that the

SEDREAMS method used here is reliable enough for

speech analysis, despite voice quality variation.

3.1 Fundamental frequency

The fundamental frequency (F0) has been the primary

object of study of speech under physical task stress.

Most studies have concluded that stress results in an in-

crease in F0. However, there is significant speaker vari-

ability in the effects of physical stress on F0, as Godin

and Hansen [14] noted an increase in the F0 by just

61 % of speakers and a decrease by 14 % of speakers. To

reduce F0 estimation errors such as doubling or halving,

we have set the allowable range to 120–400 Hz.

3.2 Normalized amplitude quotient

The normalized amplitude quotient (NAQ) is the ratio of

the maximum amplitude of the glottal flow to the

Table 1 UT-SCOPE-physical speech corpus: details of corpus including speakers, audio, sessions, and transcription effort. The corpus

is used for speaker ID and stress classification for two stress conditions: cognitive stress and physical stress. The cognitive load is

simulated by having subjects play a driving game on an interactive game console. The physical stress is induced by requiring subjects to

maintain a 10-mph pace based on visual speed display on an elliptical stair-stepping machine
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minimum of the glottal flow derivative, normalized by the

fundamental period and the sampling frequency [66].

NAQ is sensitive to variations caused by breathy and

pressed phonation [66] and to soft and loud speech [64]. It

is known that NAQ increases for breathy phonation, and

decreases for pressed phonation, relative to neutral speech.

3.3 Harmonic richness factor

The harmonic richness factor (HRF) is the ratio of the

sum of the amplitudes at the harmonics in the glottal

waveform to the amplitude of the component at the fun-

damental frequency [36]. In Childers and Lee [36], the

HRF of modal voicing was higher than that for breathy

voicing by 6.8 db. In Drugman and Alwan [64], there were

clear shifts in the distribution of HRF between loud,

modal, and soft voicing. In our implementation of HRF,

we have used only the fundamental and the first nine har-

monics. This ensures that, unless the F0 exceeds 800 Hz,

all measurements of HRF sum over the same number of

harmonics, eliminating the dependence of HRF on F0.

4 UT-SCOPE-Phy-II corpus: speech under physical
task stress corpus
This study uses physical task stress data from the UT-

SCOPE corpus [67] and the UT-SCOPE-Phy-II corpus

[19]. The protocol for the corpus development is based

on the following steps: (i) the subject was first asked to

produce neutral examples of speech based on prompts

provided through Sennheiser HD 650 open air head-

phones from an audio stream originating from a com-

puter; (ii) the sentences were presented sequentially

with a pause inserted between each to allow for an

effective but relaxed speech pace; (iv) once neutral

speech was captured/completed, the subject was posi-

tioned on a Conversion II Elliptical/Stair Stepper ma-

chine (see Fig. 3) and continued voice data collection

again with prompts presented through headphones.

Each subject was allowed to take breaks, as per IRB

approved protocol. Pure tone testing was done with the

650 open air headphones to ensure no attenuation

existed between inside and outside the ear units (from

Fig. 3)—this ensured that each subject experienced no

occlusion effect with the headphones and could hear

themselves. Sound level testing was also performed on the

Elliptical/Stair Stepper machine, with no appreciable de-

vice noise levels measured at 1-ft distance from the floor

foot pedal area (i.e., no machine noise from the stair step-

per was captured in any of the audio recordings).

The UT-SCOPE and UT-SCOPE-Phy-II corpora were

collected under the same protocols and are used together.

Expanding on the protocol from above, both corpora in-

clude a segment of 35 prompted TIMIT sentences spoken

in both neutral and physical task stress (presented through

headphones). A spontaneous speech portion is also avail-

able but was not used in this study. These sentences com-

prise the analysis data set used in this study. Having the

same sentence spoken in both tasks reduces the phonetic

variability for analysis of the effects of physical task

stress. Sessions from 66 female native speakers of

American English are used in this study. We choose to

consider the female speakers because we had a larger

sample size and did not want to introduce gender as

Fig. 3 Equipment used for physical task stress speech data collection: (i) Conversion II Elliptical/Stepper, (ii) digital screen display for Stepper, (iii)

Shure Beta 53 close-talking microphone, (iv) Sennheiser HD 650 open air headphones, (v) Tascam US-1641 multi-channel digital recorder
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another variable in the study. All participants were at

least 18 years of age at the time of the study. A Conver-

sion II Elliptical/Stair Stepper machine (Fig. 3, along

with other equipment) was used to induce the physical

task stress. Each speaker was asked to maintain an ap-

proximately 10-mph pace on the machine (there is a

digital readout which indicates speed and allows the

subject to maintain the requested pace). Having the

same task for each subject resulted in different levels of

exertion for each speaker, and therefore, there is a di-

versity of exertion levels in the corpus. The data was

collected inside 13-by-13 ft ASHA-certified single-

walled sound booth, with the subject wearing a Shure

Beta 53 close-talking microphone.

Ground truth exertion level was determined by the sub-

ject’s percentage of maximum oxygen uptake (VO2 max).

Heart rate data was also measured and recorded and in-

cluded with the UT-SCOPE corpora, which is correlated

with exertion level. Both UT-SCOPE collection protocols

include the use of a chest worn heart rate monitor that

samples the speaker heart rate every 15 s. Figure 4 shows

heart rate (HR) (in beats per minute (BPM)) from the start

of data collection until completion for (i) neutral speech

entry only, (ii) cognitive task stress with speech entry

using race car simulator, and (iii) physical task stress with

speech entry using stair stepper. Each reading is taken

every 15 s, so the 65 readings for the physical stress task

plot represent 16 min 15 s elapsed time. A comparable

plot is obtained for each subject in the corpus. The

physical task stress HR is significantly higher than the

neutral HR. A cognitive task was also performed

during the collection which involved using an inter-

active video race-car system. The results here show

that the cognitive task did not affect the HR signifi-

cantly. The HR increase in physical stress demon-

strates that the speakers are under significant stress

in performing the task. It should be noted that during

the collection process, no speaker actually had diffi-

culty speaking, suggesting they did not exceed the

ventilatory threshold [68]. The HR may be used with

the Karvonen method to estimate the exertion level

(i.e., l below) for a speaker [69] as follows:

l ¼
HR−RHR

MHR−RHR
; ð1Þ

where HR is the current heart rate, RHR is the resting

heart rate, and MHR is the maximum heart rate. As

considered in Godin and Hansen [20], the maximum

heart rate is estimated as [70], where A is the age of the

subject in years:

MHR ¼ 208:9−0:7A ð2Þ

To highlight the subject’s response characteristics dur-

ing speech production, Fig. 5 shows a scatter plot of the

67 female UT-SCOPE-Physical Stress speakers in two di-

mensional space representing age versus exertion level.

The plot shows that most subjects are clustered in the

18–28 years age range, with some ranging between 30

and 60 years. Exertion levels generally fall in the range

of 0.2–0.65. A correlation coefficient between age and

Fig. 4 Heart rate during tasks from a sample speaker from UT-SCOPE-physical corpus. Shown are heart rate (in beats per minute) from the start of

data collection until completion for (i) neutral speech entry only, (ii) cognitive task stress with speech entry using race car simulator, and (iii) physical task

stress with speech entry using stair stepper. Each reading is taken every 15 s, so 65 readings for the physical stress task plot represents 16-min–15-s

elapsed time
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exertion level of −0.046 suggests that speaker age was

not an explanatory factor for exertion level. It also ap-

pears that other factors such as overall speaker fitness,

or potentially general fatigue level at the time of the re-

cording, played a greater role in determining the exer-

tion level than the subject’s age.

The average heart rate across all speakers for both

tasks (neutral and physical task stress) is shown in Fig. 6.

The dashed lines mark one standard deviation in the

data. The wide distributions suggest a greater level of

subject variability in heart rate. The change in mean

from neutral to physical task stress shows the average

increase in heart rate ranges from 38.8 to 54.9 beats/min

for the subjects in the corpus.

5 Effects of physical stress on voice quality
The NAQ and HRF are measured for every detected

glottal cycle in the speech data for all speakers. Figure 7

shows the distribution of the NAQ measurements across

the entire corpus. The blue, neutral condition has a

mean of 0.096, and the green which represents the phys-

ical task stress condition has a mean of 0.10. Likewise,

Fig. 8 shows the distribution of the HRF measurements

across the entire corpus. The blue, neutral condition has

a mean of 10.9, while the green representing the physical

task stress condition has a mean of 10.6. In both cases,

the shifts in these parameters from neutral are in the

direction of the “soft” voicing style, as discussed in

Drugman et al. [40], or in the direction of “breathy” voi-

cing as discussed by Alku et al. [66]. However, the shifts

observed here are much smaller than those observed for

those discrete phonation types (i.e., breathy or soft), sug-

gesting that physical task stress does not affect voice

quality. However, these plots do in fact mask the under-

lying speaker differences. In a speaker-dependent ana-

lysis, we compare the shifts in the mean NAQ and HRF

for one speaker. Some speakers have large shifts in these

parameters. Speaker FJF3 is an example, with a shift in

Fig. 7 The normalized amplitude quotient (NAQ) across entire corpus

Fig. 8 The harmonic richness factor (HRF) across entire corpus

Fig. 6 Mean HR across speakers during (i) neutral with speech only

entry and (ii) physical task stress combined with speech data entry.

Dashed lines mark one standard deviation range over time

Fig. 5 Age versus exertion level for all speakers in the combined corpus
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HRF among the largest at −1.33. Figure 9 shows the

change in the distribution of NAQ from neutral to phys-

ical task stress, showing a trend in the same direction from

neutral as for “breathy” or “soft” voice qualities [40, 66].

Figure 10 shows that the HRF is also affected by physical

task stress for the same example subject FJF3 (similar

trends were seen in other subjects as well).

Continuing with this specific speaker-dependent ana-

lysis, we consider the variation across speakers in the shift

of mean NAQ and HRF and investigate the correlation of

this shift with speaker exertion level. Figure 11 shows a

scatter plot of exertion level versus mean shift in NAQ,

where each point is one speaker. These results show there

is a wide speaker variation in mean NAQ shift, ranging

from −0.00627 to 0.0187. It was observed in Alku et al.

[66] and Drugman et al. [40] that known behavioral

changes such as soft voicing or pressed voicing resulted in

changes for NAQ which were greater than about 0.01.

Here, 10 speakers had changes in NAQ greater than 0.01.

The results from this figure suggests that changes in exer-

tion level explains little of the shift in mean NAQ, where

the correlation coefficient is r = 0.108. While the exertion

level change is positive for almost all of the speakers, the

voice quality changes are significantly different across

speakers, with some trends toward pressed voicing, with

others toward soft voicing.

Figure 12 shows the shift in the exertion level and the

shift in the HRF, where each point is one speaker. As

with NAQ, we see significant speaker variability in the

shift in mean HRF, with shifts ranging from −1.911 to

0.682. In Alku et al. [66] and Drugman et al. [40], shifts

greater than about 1 were associated with known

changes in voice quality, such as soft or pressed voicing.

Here, seven speakers had an HRF shift greater than 1.

The shift in mean HRF is not related to shifts in the ex-

ertion level, with a correlation coefficient of r = 0.012.

Fig. 11 The normalized amplitude quotient (NAQ) shift versus exertion

level: each point represents one speaker; there is significant variability

in mean NAQ shift across speakers; however, this is not correlated with

exertion level, with a correlation value of r = 0.108

Fig. 12 The harmonic richness factor (HRF) shift versus exertion level:

each point represents one speaker; there is significant variability in

mean HRF shift across speakers; however, this is not correlated with

exertion level, with a correlation value of r = −0.012

Fig. 10 The harmonic richness factor (HRF) for the single female

speaker (FJF3)

Fig. 9 The normalized amplitude quotient (NAQ) for the single female

speaker (FJF3)
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On a subset of this data set, Godin and Hansen [14]

found that F0 increased for the physical task stress con-

dition by 60 % of speakers. Figure 13 shows the relation-

ship between the shift in mean F0 and the shift in mean

NAQ for each speaker. There is a strong correlation

between (r = 0.53) shift in mean F0 and shift in mean

NAQ, despite the fact that specific F0 dependence is

normalized out of the NAQ. Next, Fig. 14 shows the

relationship between the shift for each speaker in F0 and

the shift for each speaker in HRF. The correlation be-

tween shift in F0 and shift in HRF is r = −0.34. The fig-

ures provide a more specific individualized view of the

speaker variation in response to physical task stress

compared with the much earlier study results from

Godin and Hansen [14]. Here, we see that the shift in F0

is actually along a continuum and does not display a

discrete break between speakers who shifted their F0

versus those who did not.

Next, a direct comparison of the effects of physical

task stress on the HRF and NAQ reveal they are strongly

correlated, with a correlation value of r = −0.89, as is

demonstrated by the scatter plot in Fig. 15.

Finally, we consider speaker variation with respect to

the mean NAQ and HRF measurements for both neutral

and physical task stress. The motivation for this is that

in Figs. 7 and 8 which represent NAQ and HRF across

the entire corpus, they in fact hide significant individual

speaker differences in the baseline NAQ and HRF mea-

surements, which are now shown in Fig. 16. Here, Fig. 16

shows a scatter plot of the per speaker mean NAQ for

neutral versus speaker mean NAQ for physical task

stress. As was noted in Campbell and Mohktari [28], this

figure confirms the wide variation in neutral voice qual-

ity across speakers. The strong correlation between neu-

tral mean NAQ and stress mean NAQ suggests that

inter-speaker variation in baseline voice quality is signifi-

cantly greater than the voice quality changes induced by

the physical task stress itself.

Fig. 15 Harmonic richness factor (HRF) shift versus normalized

amplitude quotient (NAQ) shift for each speaker across the entire

corpus. These two have a very strong degree of correlation, with a

correlation value of r = −0.89

Fig. 16 Individual speaker differences in mean NAQ for both neutral

and physical task stress

Fig. 14 Harmonic richness factor (HRF) versus fundamental Frequency

(F0) for each speaker across the entire corpus. These two have some

degree of correlation, with a correlation value of r = −0.34

Fig. 13 The normalized amplitude quotient (NAQ) shift versus

fundamental frequency (F0) shift for each speaker across the

entire corpus. These two are correlated, with a correlation value

of r = −0.53
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6 Conclusions
Physical task stress is an external factor imposed on the

speech production system that competes for limited

physical resources when subjects are performing simul-

taneous tasks (i.e., speaking and physical task). Speaking

while exercising increases the actual and perceived diffi-

culty of the task [3], and exercising while speaking results

in significant changes to the fundamental frequency (F0),

formant structure (location, etc.), pause placement, open

quotient, and other measureable speech parameters. Based

on this evidence, this study undertook an investigation of

the voice quality changes induced by physical task stress,

with particular attention paid to the speaker differences in

the measured response. Compared with previous studies

in the area of physical task stress [19, 20, 22] and voice

quality [28, 36, 39], this study uses a larger corpus of

speech, with speakers of varying fitness levels, with signifi-

cantly more inter-subject variability, while retaining low

phonetic variability.

We expected that physical stress would induce a

greater variety of phonation behaviors. This might

have resulted in a flattening of the NAQ and HRF

histograms (i.e., becoming more uniform in distribu-

tion). Instead, in the global distributions of voice

quality parameters for HRF and NAQ, rather small

overall changes were observed, suggesting a corre-

sponding small overall change in phonation behavior.

However, for a subset of speakers, shifts in the mean

values of NAQ and HRF were consistent with signifi-

cant changes in voice quality, with trends toward ei-

ther breathy or soft voice dimensions. These changes

were not correlated with an elevated exertion level

but were instead correlated with an increased funda-

mental frequency (F0). Research on speech and exer-

cise has suggested that exercise results in both an

increased vocal fold tension and increased subglottal

pressure, relative to neutral speech production. This

would suggest that, for those whom the voice quality

is affected, the voice quality should move toward the

pressed or tense voice, rather than the breathy or soft

voice observed here in the current study. Further in-

vestigation of the relationship between physical

changes caused by physical task stress and the voice

quality changes is required in order to explain these

results. It is in fact a major challenge to exactly

measure physical airflow and actual excitation struc-

ture during speech production while subjects are per-

forming physical tasks (i.e., without the measurement

devices/instruments themselves introducing new vari-

ables into the problem).

It has been shown that listeners can perceive physical

stress in speech [14], and therefore, there must be per-

ceptual artifacts that consistently identify stressed

speech across speakers. If voice quality is an

inconsistent indicator of physical tasks stress, it is likely

that inappropriate pause placement, formant shifts, and

increased F0 play a more significant role in the percep-

tion of physical task stress than voice quality.

Finally, significant variation was observed in the

baseline neutral measurements for NAQ and HRF

across speakers. The inter-speaker variation in base-

line was significantly greater than the variation in-

duced by physical task stress. As observed in Godin

et al. [22], this inter-speaker variation makes it diffi-

cult to consistently employ voice quality parameters

individually for stress detection, and therefore, prob-

abilistic classifiers may rely more on the correlation

between these parameters than on the raw values of

individual parameters themselves for detection of

voice quality changes.
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