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This paper comments on the physical meaning of the line element in general relativity. We
emphasize that, generally speaking, physical spatial and temporal coordinates~those with direct
metrical significance! exist only in the immediate neighborhood of a given observer, and that the
physical coordinates in different reference frames are related by Lorentz transformations~as in
special relativity! even though those frames are accelerating or exist in strong gravitational fields.
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‘‘Now it came to me:...the independence of the
gravitational acceleration from the nature of the
falling substance, may be expressed as follows:
In a gravitational field (of small spatial exten-
sion) things behave as they do in space free of
gravitation,... This happened in 1908. Why were
another seven years required for the construction
of the general theory of relativity? The main rea-
son lies in the fact that it is not so easy to free
oneself from the idea that coordinates must have
an immediate metrical meaning.’’1 Albert Ein-
stein

I. INTRODUCTION

I often start my lecture on the meaning of the line elem
in general relativity~GR! with the provocative statemen
‘‘In general relativity the Galilean transformation of classic
mechanics is just as valid as the Lorentz transformation
special relativity, becauseall space–time coordinate transfo
mations are equally valid in general relativity’’~the democ-
racy of coordinate systems!. This statement invariably spark
a heated discussion about what is physically significan
GR and serves to introduce the following comments on
meaning of the spacetime metric. I claim no new results
the following—only that this approach to understanding
metric has been useful for the author and may be of so
help to others who attempt the daunting task of teaching
to undergraduates.

II. REFERENCE FRAMES

For our purpose, a reference frame will be defined a
collection of fiducial observers distributed over space a
moving in some prescribed manner. Each fiducial obse
~FO! is assigned space coordinatesxi ( i 51,2,3) that do not
change.@The FOs are ‘‘at rest’’ (xi5constant) in these coor
dinates.# Each FO carries a standard measuring rod an
standard clock that measure proper length and proper tim
his/her location. The basic data of GR are the results oflocal
measurementsmade by the FOs.~These are the ‘‘10,000 lo
cal witnesses’’ in the words of Taylor and Wheeler.2!

In special relativity, the FOs usually sit on a rigid lattice
Cartesian coordinates in inertial space; there is a differen
of FOs in a different inertial reference frame. In Schwar
child space, the FOs reside at constant values of
Schwarzschild space coordinates (r ,u,f), and, in an ex-
panding universe, the FOs sit at constant values of the
moving Robertson–Walker space coordinates (r ,u,f). In
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this case, the distance between FOs changes with time
though each FO is ‘‘at rest’’ (r ,u,f5constant) in these co
ordinates.

III. PHYSICAL SPACE

What is the distanced, between neighboring FOs sep
rated by coordinate displacementdxi when the line elemen
has the general form

ds25gab dxa dxb? ~1!

Einstein’s answer is simple.3 Let a light ~or radar! pulse be
transmitted from the first FO~observerA) to the second FO
~observerB) where it is reflected and returns toA. If the
time between transmission and reception of the reflec
pulse~as measured byA’s standard clock! is dtA , then the
Einstein distance betweenA and B is defined by the rada
formula d,5c dtA/2. Using the general metric~1! for light
(ds250), we find in the Appendix that this distanced, is
given by the spatial metric

d,25g i j dxi dxj , ~2!

where

g i j 5gi j 2
g0ig0 j

g00
. ~3!

We call Eq.~2! the metric ofphysical spacefor the given
reference frame. It measures proper distance at the poin
interest, that is, local radar distance is the same as pr
distance~the distance measured with a standard ruler!.

Notice that, wheng0iÞ0, the spatial metric component
g i j are not simply the spatial componentsgi j of the full
metric gab . The example of Einstein’s rotating disk wit
measuring rods along the diameter and circumference, as
picted in Fig. 1, nicely illustrates the use of Eqs.~2! and~3!.

In inertial space with polar coordinates (r 0 ,u0) and origin
at the center of the disk, the space–time metric readsds2

52c2 dt21dr0
21r 0

2 du0
2. A transformation to the frame ro

tating with the disk at angular velocityV (r 5r 0 , u5u0

1Vt) puts the metric into the form

ds252F12S Vr

c D 2Gc2 dt212S V

c D r 2~c dt!du1dr2

1r 2 du2, ~4!

with nonzero metric componentsg0052@12(Vr /c)2#,
g0u5gu052Vr 2/c, grr 51, and guu5r 2 on coordinates
214rg/ajp
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xm5(ct,r ,u). A glance at the metric~4! might miss that the
spatial geometry in this reference frame is non-Euclide
But application of Eqs.~2! and ~3! gives the spatial metric

d,25dr21
r 2 du2

12~Vr /c!2 , ~5!

which clearly shows no change of radial distance (dr
5dr0) and an increase in measured circumferential dista
@from r du to r du/(12v2/c2)1/2] due to the Lorentz con-
traction of measuring rods placed end-to-end on the circ
ference and hence moving in the direction of their leng
with speedv5Vr .

When three-space is flat, we can transform to Cartes
space coordinates for which the spatial metric takes the
clidean formd,25d i j dxi dxj , and the coordinatesxi mea-
sure distance directly. We shall refer to such coordinate
‘‘physical’’ space coordinates. But, when three-space
curved, global physical coordinates do not exist. We c
however, always transform to local Cartesian coordina
dx̃1, dx̃2, dx̃3 in the immediate neighborhood of any chos
FO, in which case the local space metric takes the form

d,25~dx̃1!21~dx̃2!21~dx̃3!2. ~6!

~Here and in the following we use a tilde to denote differe
tials that may not be exact and, therefore, may not be i
grable to global functions.! The proper distancesdx̃1, dx̃2,
dx̃3 are local physical coordinates measured from the gi
FO, and are written as differentials to suggest that they c
not be large. They are finite but small enough that curvat
effects are negligible over the region they span. When
spatial metric is diagonal to begin with@d,25g11(dx1)2

1g22(dx2)21g33(dx3)2#, the local physical spatial coordi
nates are

dx̃15Ag11dx1, ~7a!

dx̃25Ag22dx2, ~7b!

dx̃35Ag33dx3. ~7c!

But such differentials are not exact and cannot be integra
to give global Cartesian coordinates~if they could, the space
would not be curved!.

Fig. 1. Einstein disk rotating about its centerO with angular velocityV
~viewed from inertial space!. Standard measuring rods are laid end-to-e
along the diameter and circumference of the disk and move with the d
215 Am. J. Phys., Vol. 72, No. 2, February 2004
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IV. PHYSICAL TIME

Physical timet̃ in the immediate neighborhood of a pa
ticular fiducial observerO is that function of position coor-
dinatesxi and coordinate timex05ct that, when used to

measure speedd,/d t̃, places the speed of light~the one-way
speed! at the invariant valuec in all directions.

Now the general line element~1! can be written in terms
of the physical space metric~2! as

ds252c2 d t̃21d,2, ~8!

whered t̃ is defined by

d t̃[A2g00dt2
g0i dxi

cA2g00

. ~9!

The proof of Eq.~8! is by direct expansion of this equatio
using Eqs.~2!, ~3!, and the definition~9! of d t̃. We have

used the notationd t̃ because for light (ds250), Eq. ~8!

shows thatd t̃ is the time differential that gives the speed

light d,/d t̃ the valuec in all directions, that is,d t̃ is indeed
the differential of physical time.

At observerO @at dxi50 in Eq. ~9!#, the physical time
increases at the same rate as the proper timet0 at that loca-

tion (d t̃5A2g00dt5dt0), and, at the coordinate displace
mentdxi from O, the physical time is synchronized with th
clock at O by the Einstein synchronization procedure.3 By
the Einstein synchronization procedure, we mean the pro
in which, when the clock atO reads timet̃ 0 and this time is
transmitted over the coordinate displacementdxi of length
d, at the speed of light, the physical time at the end of t

journey has the valuet̃ 5 t̃ 01dl/c, that is, it contains the
retardation correctiond,/c required to account for the finite
and invariant propagation speed of the time signal.@That the
definition~9! of the physical time differentiald t̃ is consistent
with the Einstein synchronization procedure follows from t
fact thatd t̃ is the time differential that gives the speed
light the valuec in all directions.# Another way of saying this
is that, in the immediate neighborhood of the given fiduc
observerO, the conditiond t̃50 ~or t̃ 5constant) defines a
hypersurface of simultaneity.

The all important point of this discussion is that, as
temporal coordinate, the physical timet̃ is a very special
one. It is the time actually used by the fiducial observer
measurements in his local reference frame. If it were not
this observer would not measure the local light speedc.
Thus the notion that all fiducial observers measure the s
speedc for light ~Einstein’s postulate! is equivalent to the

notion that all fiducial observers use the physical timet̃ in
their local reference frames for the measurement of t
speed. Also notice that, when we use local Cartesian coo
natesdx̃i at a particular FO, the local line element~8! takes
the Minkowski form

ds252c2 d t̃21~dx̃1!21~dx̃2!21~dx̃3!2. ~10!

Equation ~10! does not imply that the local framedx̃m is
inertial. The observerO can be moving arbitrarily, and ther
can be a gravitational acceleration in this frame.@The local

.

215Richard J. Cook
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metric gab(O)5hab is Minkowskian, but the derivatives o
the metric]gab /] x̃m are not necessarily zero at this point#

We use phrases such as ‘‘the local reference frame’
‘‘immediate neighborhood,’’ because the differential
physical time in Eq.~9! may not be an exact differential. I
d t̃ is not exact, Eq.~9! defines the physical time only in
small neighborhood aboutO. That is to say, unless they ar
very close to one another, different FOs use different ph
cal times for their interpretation of nature.

Only when the differential of physical time is exact do
there exist a single global physical temporal coordin
t̃ (x0,xi) for all FOs. In this case, specific values of the phy

cal time@ t̃ (x0,xi)5constant# define global hypersurfaces o
simultaneity in the reference frame under consideration.
tice that, whend t̃ is exact, its integralt̃ (x0,xi) is a global
temporal coordinate for which the line element~8!, namely

ds252c2 d t̃21g i j dxi dxj , ~11!

is in Gaussian normal form, that is,g00521 andg0i5gi0

50. This form of the metric implies that the FOs of such
reference frame are freely falling@xi5constant are geodesic
of the metric~11!#, and the clocks of all the FOs run at th
same rate and remain synchronized~no gravitational time
dilation in this reference frame!. These are the ‘‘comoving’
~or ‘‘synchronous’’! reference frames.4 Only in such frames
does a global physical time exist. Examples include
Robertson–Walker metrics of cosmology, the comoving
ordinates used by Oppenheimer and Snyder in their e
studies of gravitational collapse,5 and the inertial frames o
special relativity. In all other reference frames~other than
comoving ones! the differential of physical time is not exac
and there does not exist a global physical time coordin
Gravitational time dilation is a symptom of the lack of
global physical timet̃ (x0,xi).

When the physical time differential is not exact, it often
possible to make it exact by means of an integrating fac

@d t̄5d t̃/R is exact for some functionR(x0,xi)]. In this
case, integration gives what we call a ‘‘synchronous tem
ral coordinate’’ t̄ (x0,xi), and the metric~8! is written in
terms of this time coordinate as

ds252R 2c2 d t̄21g i j dxi dxj , ~12!

whereR5dt0 /d t̄ is the rate of a fiducial clock on the tim

scale t̄ . Clearly R describes gravitational time dilation. A
most important feature of the metric~12! is that equal values
of the temporal coordinatet̄ , say t̄ A5 t̄ B for widely sepa-
rated eventsA andB, implies that these events occur simu
taneously~according to the Einstein definition! in the given
reference frame. This result follows because the condi
for neighboring events to be simultaneous (d t̃50) can be

written asd t̄50 and d t̄ is integrable. Hence, the locust̄
5constant is a global hypersurface of simultaneity. E
amples of this case include the Schwarzschild metric
Schwarzschild coordinates and any other time-orthogo
metric with metric coefficientsg0i50.

The final and probably most interesting case occurs w
the physical time differential~9! is not exact and cannot b
made exact by applying an integrating factor. In such re
ence frames, the question of whether widely separated ev
216 Am. J. Phys., Vol. 72, No. 2, February 2004
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are simultaneous has no unambiguous answer. In this c
there does not existany temporal coordinatet(x0,xi) with
the property that equal values of this coordinate for separa
events implies simultaneity of those events. We call su
frames ‘‘asynchronous’’ frames. It is bad enough~or ‘‘good
enough’’ because it is true! that judgments of simultaneity
are different in different reference frames~as in special rela-
tivity !, but for the concept of simultaneity of separat
events to become meaningless in a single reference fr
~even a rigid one! is even more difficult to swallow~but
equally true!. That our notion of simultaneity at a distanc
loses meaning in an asynchronous reference frame is, in
author’s view, one of the most counterintuitive ideas in all
physics, and surprisingly little emphasis is given to it
many textbooks on general relativity.

We can begin to understand how the concept of simu
neity becomes ambiguous by returning to Einstein’s rotat
disk. Consider an observer at the centerO of the disk and
another atP on the edge of the rotating disk. Let two fire
crackers explode at pointsA andB on the disk’s edge equi
distant from observersO and P as in Fig. 2, and let the
explosions be timed so that observerO sees the flashes at th
same instant and concludes, therefore, that the flashes o
simultaneously. ObserverP, who is also ‘‘at rest’’ in the
rotating frame, sees the light fromB before that fromA
because~from the vantage point of inertial space! he is mov-
ing toward the light coming fromB and away from the light
coming fromA. ObserverP concludes that the firecracker a
B exploded before the one atA because he observed it firs
and the pointsA and B ~where burn marks are left on th
disk! are at equal distance from him. In this way we see h
two observers, both at rest in a rigid reference frame,
disagree about the simultaneity of two events, and thus
der the concept of simultaneity ambiguous.

The hallmark of an asynchronous reference frame is
the metric componentsg0i not be zero, that is, that the metr
tensor not be time-orthogonal. Examples of such metrics
clude rotating reference frames, the Kerr metric6 in Boyer–
Lindquist coordinates7 representing a rotating black hole
and the Go¨del metric8 representing a model rotating un

Fig. 2. On Einstein’s rotating disk, two firecrackers explode at pointsA and
B on the disk’s edge equidistant from observersO andP. ObserverO sees
the two flashes at the same instant and concludes the explosions occ
simultaneously. ObserverP, moving with the disk, sees the flash fromB
before that fromA and concludes the explosions are not simultaneous. Th
the question of simultaneity is ambiguous in this rigid rotating referen
frame.
216Richard J. Cook
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verse. There is, of course, a time coordinatet in these met-
rics, but we must understand that the equality of this tim
saytA5tB for separated eventsA andB, does not mean tha
these events are simultaneous.~One wonders why such
thing is called a ‘‘time coordinate’’ at all, because it does n
have the most fundamental features one associates with
word ‘‘time.’’ ! No doubt it is the conceptual problems su
rounding the failure of simultaneity in such frames that m
tivates many authors to eliminate the metric terms contain
goi by transforming to a different reference frame in whi
these terms are zero. But, if one wishes to work in a rota
frame~such as the frame rigidly attached to earth!, or if one
wishes to study certain ‘‘frame dragging’’ effects, these ter
are necessarily present and give rise to such interesting
fects as Coriolis forces, the gravitomagnetic field, and
Sagnac effect.9,10 In fact, the experimental demonstration
the Sagnac effect~the different light travel times for propa
gation in opposite directions around a closed path in a ro
ing frame! using a ring-laser gyro11 or the global positioning
system12 may be interpreted as a verification of the failure
simultaneity in rotating reference frames, because such
effect would be inconsistent with the invariant light speedc
if a global physical time~or even a global synchronous tem
poral coordinate! existed.

V. THE LORENTZ TRANSFORMATION

Let us return now to the statement made in Sec. I that
general relativity the Galilean transformation is just as va
as the Lorentz transformation.’’ Specifically, consider t
Galilean transformation

x5 x̄2v t̄ , ~13a!

y5 ȳ, ~13b!

z5 z̄, ~13c!

t5 t̄ , ~13d!

from an inertial frameK̄ with metric,

ds252c2d t̄21dx̄21dȳ21dz̄2, ~14!

to another inertial frameK as depicted in Fig. 3. The timet̄

is the time on synchronized clocks at rest in frameK̄, and
frameK moves in the positive direction along thex̄ axis at

speedv5dx̄/d t̄ as measure by the FOs inK̄.
We sometimes hear that Galileo’s transformation~13! is

‘‘wrong’’ and Einstein’s transformation~the Lorentz transfor-
mation! is ‘‘right.’’ But surely this statement cannot be co
rect when general relativity allows arbitrary space–time
ordinate transformations, and Eq.~13! is a perfectly valid

Fig. 3. Inertial reference frame labeledK ~andK% ) with coordinatesx, y, z

~or x% , y% , z% ) moves out along thex̄-axis of inertial frameK̄ with velocity

v5dx̄/d t̄.
217 Am. J. Phys., Vol. 72, No. 2, February 2004
,

t
the

-
g

g

s
ef-
e

t-

f
an

n

-

description of the motion of frameK from the point of view

of the fiducial observers inK̄. What then is it that makes th
Lorentz transformation preferable to the Galilean transform
tion? The answer is that the Lorentz transformation is
pressed in terms of the physical time and physical sp
coordinates in frameK instead of the coordinates (ct,x,y,z)
used in the Galilean transformation, which are actua
physical times and physical distances in frameK̄. This prop-
erty of the Lorentz transformation is convenient~but not nec-
essary! for the calculation of physical quantities in the ne
frame.

Let us show this explicitly. The metric~14!, written in
terms of the Galilean coordinatesxm5(ct,x,y,z) reads

ds252~12v2/c2!c2 dt212S v
cDdx~c dt!1dx21dy2

1dz2, ~15!

that is, the nonzero metric components areg0052(1
2v2/c2), g0x5gx05v/c, and gxx5gyy5gzz51. Therefore
the spatial metric, Eqs.~2! and ~3!, is

d,25
dx2

12v2/c2 1dy21dz2. ~16!

Equation ~16! can be expressed in terms of the physic
space differentialsdx% 5dx̃5dx/A12v2/c2, dy% 5dỹ5dy,
and dz%5dz̃5dz which, in this case, are exact differentia
that integrate to global physical space coordinates

x% 5
x

A12v2/c2
, ~17a!

y% 5y, ~17b!

z%5z ~17c!

for frame K% (5K). We can also express the metric~15! in

frame K% in terms of the physical time differential in thi
frame, Eq.~9!, which also is an exact differential that inte
grates to the global physical time

t%5 t̃ 5A12v2/c2t2
vx

c2A12v2/c2
. ~18!

If we substitute the transformations to physical variables~17!
and~18! into the Galilean transformation~13!, we obtain the
Lorentz transformation

x% 5
x̄2v t̄

A12v2/c2
, ~19a!

y% 5 ȳ, ~19b!

z%5 z̄, ~19c!

t%5
t̄ 2v x̄/c2

A12v2/c2
. ~19d!

Observe that the Galilean transformation, far from be
wrong, is a fully correct kinematic description of the motio
of frameK% (5K) in terms of the space and time variables

frameK̄, and as soon as we express the Galilean transfor

tion in terms of the physical timet% and physical space coor
217Richard J. Cook
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dinatesx% , y% , z% of frameK% , it becomes the Lorentz transfo
mation.

VI. THE UNIVERSAL LORENTZ
TRANSFORMATION

The local physical coordinates in different referen
frames are related by a Lorentz transformation regardles
the motion of those frames. To see that this is so, cons
two arbitrary reference frames~two sets of fiducial observer
in relative motion! with space–time coordinatesxm and ym

connected by the coordinate transformationym5ym(xn) or
its inversexm5xm(yn). At a particular fiducial observerX in
the x-frame, we construct physical coordinatesdx̃m

5(c d t̃,dx̃1,dx̃2,dx̃3) for which the metric~8! at this point
takes the Minkowski formds25hab dx̃a dx̃b. We think of
dx̃m as finite but small coordinate values covering a limit
neighborhood about observerX. At the same event in the
y-frame we similarly construct local physical coordinat
dỹm measured from the fiducial observerY of that frame
who, at the instant under consideration, is at the same p
as observerX. The metric at observerY is also Minkowskian
in the local physical coordinates of this observer,ds2

5hab dỹa dỹb, and there may be a gravitational field
either or both of these frames.

The overall transformation~from local physical coordi-
natesdx̃m to coordinatesxa, then to coordinatesyn, and
finally to local coordinatesdỹb) takes the Minkowski tenso
hmn into the same Minkowski tensor and, therefore, can o
be a Lorentz transformationLb

a :

dỹa5Lb
a dx̃b, ~20!

with

hab5hmnLa
mLb

n . ~21!

Hence, thedifferential Lorentz transformation~20! is not
limited to inertial frames, but applies to arbitrary spacetim
coordinate transformations.~It applies to accelerating frame
and frames in arbitrarily strong gravitational fields.! It fol-
lows that all of the tensors of special relativity in Minkows
coordinates, such as the electromagnetic field tensorFmn

(F015E1, F025E2, F035E3, F125B3, F235B1, F315B2,
Fab52Fba), the four-momentum Pm5m dx̃m/dt, the
stress-energy tensorTmn, transform as in special relativity
between local physical reference frames.

A. Example: Transformation to a falling reference
frame in Schwarzschild space

Start with the static Schwarzschild metric,

ds252~12r s /r !c2 dt21
dr2

12r s /r

1r 2~du21sin2 u df2!, ~22!

describing a nonrotating black hole of Schwarzschild rad
r s52GM/c2 in the Schwarzschild reference frame with c
ordinates (ct,r ,u,f), and transform to a frame that falls ra
dially inward from rest at infinity. For a fiducial observer
rest in Schwarzschild coordinates (r ,u,f5constants), the
local physical coordinate differentials are

d t̃5A12r s /r dt, ~23a!
218 Am. J. Phys., Vol. 72, No. 2, February 2004
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dx̃5r du, ~23b!

dỹ5r sinu df, ~23c!

dz̃5dr/A12r s /r , ~23d!

where we have taken thez̃-axis in the outward radial direc
tion, the x̃-axis in thedu-direction, and theỹ-axis in the

df-direction. We think ofc d t̃, dx̃, dỹ, dz̃ as finite but
small Minkowski coordinates measured from the given fid
cial observer. Clearly the Schwarzschild metric~22! takes the
form ds252c2 d t̃21dx̃21dỹ21dz̃2 in these local coordi-
nates.

Now consider freely falling fiducial observers~a different
reference frame! who fall radially inward from rest atr
5`. For this initial condition, the time equation of motio
derived from the metric~22! reads

S 12
r s

r
D dt

d t̄
51, ~24!

whered t̄ is the differential of proper time at the falling ob
server. The radial equation of motion~once integrated! is

dr

d t̄
52Ar sc

2

r
52A2GM

r
. ~25!

Fortuitously, this relativistic equation is the same as the c
responding Newtonian equation.@If readers are unfamiliar
with the derivation of Eqs.~24! and ~25!, they may consult
Ref. 2 where these results are simply derived as Eqs.~19!
and~32! on pp. 3–22.# If we use Eqs.~23a!, ~23d!, and~24!
in Eq. ~25!, we find that the physical velocity of the fall is

v5
dz̃

d t̃
52Ar sc

2

r
. ~26!

Equation~26! is the velocity that enters the differential Lo
entz transformation

dt!5
d t̃2v dz̃/c2

A12v2/c2
, ~27a!

dx! 5dx̃, ~27b!

dy! 5dỹ, ~27c!

dz!5
dz̃2v d t̃

A12v2/c2
, ~27d!

to the local physical coordinates (ct!, dx! , dy! , dz! ) of the
falling fiducial observer. Notice that the physical fall veloci
~26! approachesc as r approaches the Schwarzschild radi
r s , and, forr ,r s , the Lorentz transformation~27! fails be-
cause there can be no fiducial observers at rest in Schwa
child coordinates (r 5constant) at these values ofr .

As an example we note that, exactly as in special rela
ity, the differential Lorentz transformation leads to the velo
ity transformation

u! x5
ũxA12v2/c2

12vũz/c2 , ~28a!
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u! y5
ũyA12v2/c2

12vũz/c2 , ~28b!

u! z5
ũz2v

12vũz/c2 , ~28c!

from the Schwarzschild physical componentsũi[dx̃i /d t̃ to

the physical velocity componentsu! i[dx! i /dt! in the freely
falling frame.

Similarly, the physical components of the electric a
magnetic fields, charge, and current densities, and the c
ponents of the stress-energy tensor all transform under
Lorentz transformation~27! as they do in special relativity
so long as we use local physical coordinates in the
frames of interest.

VII. CONCLUSION

The above arguments attempt to make it clear that an
sential difference between the special and general theorie
relativity is that, in the former, there existglobal physical
coordinates~the Minkowski coordinates! but, in the latter
physical coordinates~coordinates with direct metrical sig
nificance and a Minkowski metric! exist only in the imme-
diate neighborhood of each fiducial observer. But aside fr
this essential difference, the Lorentz transformation still
plies in general relativity for transformations between lo
physical coordinate frames in arbitrary relative motion and
arbitrary gravitational fields. The differential Lorentz tran
formation is not limited to local inertial reference frame
and by using local physical coordinates, students transfe
sentially all they have learned in special relativity of t
transformation properties of particles and fields to
broader context of general relativity~and they are not fooled
into thinking that the more general coordinate markers
lowed in general relativity in any way change the relatio
between physical quantities expressed in the Lorentz tr
formation!.

Recently the physics community has witnessed the pu
cation of a truly outstanding undergraduate level textbook
general relativity by James B. Hartle. The local physical
ordinates discussed in this paper are components on a
‘‘orthonormal bases’’ in Hartle’s more elegant notation13

The utility of working with local physical coordinates~the
subject of this paper! is emphasized, in Hartle’s words, b
the recommendation that we should ‘‘calculatein coordinate
bases andinterpret the result in orthonormal bases,’’ andour
observation that transformations between local physical
ordinate frames are Lorentz transformations is equivalen
Hartle’s statement that transformations between orthonor
bases are Lorentz transformations. Finally, it is worth not
that components on an orthonormal basis have tradition
been called ‘‘physical components.’’

APPENDIX: DERIVATION OF THE SPATIAL
METRIC

A formula for the Einstein lengthd, of the coordinate
displacementdxi between fiducial observersA andB is eas-
ily derived from the general line element,
219 Am. J. Phys., Vol. 72, No. 2, February 2004
m-
he

o

s-
of

m
-
l
n

,
s-

e

l-
s
s-

li-
n
-
cal

o-
to
al
g
ly

ds25g00~dx0!212g0i dxi dx0,1gi j dxi dxj ~A1!

as follows. ~This derivation is an abbreviation of a proo
found in Ref. 4, pp. 233–236.! Light propagating fromA to
B does so in coordinate timedxout

0 determined by the null
conditionds250:

g00~dxout
0 !212g0i dxi dxout

0 1gi j dxi dxj50. ~A2!

The solution of this quadratic equation is

dxout
0 5

2g0i dxi2A~g0ig0 j2g00gi j !dxi dxj

g00
. ~A3!

On the return path light travels the displacement2dxi and
takes coordinate time

dxback
0 5

g0i dxi2A~g0ig0 j2g00gi j !dxi dxj

g00
. ~A4!

The total coordinate time out and back isdx05dxout
0

1dxback
0 , and the proper time evolved on the clock atA in

this time is

dtA5
A2g00dx0

c
5

2

c
AS gi j 2

g0igo j

g00
Ddxi dxj . ~A5!

Therefore, the local radar distanced,5c dtA/2 is the radical
in Eq. ~A5!, and the spatial metric reads

d,25g i j dxi dxj , ~A6!

with spatial metric tensor

g i j 5gi j 2
g0igo j

g00
. ~A7!
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