Physical time and physical space in general relativity
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This paper comments on the physical meaning of the line element in general relativity. We
emphasize that, generally speaking, physical spatial and temporal coordiaiss with direct
metrical significanceexist only in the immediate neighborhood of a given observer, and that the
physical coordinates in different reference frames are related by Lorentz transformaisoims
special relativity even though those frames are accelerating or exist in strong gravitational fields.
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“Now it came to me:...the independence of the this case, the distance between FOs changes with time even

gravitational acceleration from the nature of the though each FO is “at rest’r(, 8, = constant) in these co-

falling substance, may be expressed as follows: ordinates.

In a gravitational field (of small spatial exten-

sion) things behave as they do in space free of

gravitation,... This happened in 1908. Why were Il PHYSICAL SPACE

another seven years required for the construction What is the distancel¢ between neighboring FOs sepa-

of the general theory of relativity? The main rea- rated by coordinate displacemedit when the line element

son lies in the fact that it is not so easy to free has the general form

oneself from the idea that coordinates must have

an immediate metrical meaning*”Albert Ein- ds*=g,,dx* dxP? ()

stein Einstein’s answer is simpfeLet a light (or radaj pulse be

transmitted from the first FQobserverA) to the second FO

l. INTRODUCTION (observerB) where it is reflected and returns #o. If the

| often start my lecture on the meaning of the line element'™® between transm|s,3|on and recept!on of the reflected
in general relativity(GR) with the provocative statement, PUlS€(as measured bj's standard clockis d,, then the
“In general relativity the Galilean transformation of classical Einstein distance betweeh andB is defined by the radar
mechanics is just as valid as the Lorentz transformation oformulad¢=c d7,/2. Using the general metrid) for light
special relativity, becaussl space—time coordinate transfor- (ds?=0), we find in the Appendix that this distance is
mations are equally valid in general relativitythe democ- given by the spatial metric
racy of coordinate systemsThis statement invariably sparks d62= .. dxi dxi @
a heated discussion about what is physically significant in i ’
GR and serves to introduce the following comments on thevhere
meaning of the spacetime metric. | claim no new results in .
the following—only that this approach to understanding the . =g, — 90i9o; _ 3)
metric has been useful for the author and may be of some Y00

help to others who attempt the daunting task of teaching GRye call Eq.(2) the metric ofphysical spacdor the given

to undergraduates. reference frame. It measures proper distance at the point of
interest, that is, local radar distance is the same as proper
. REFERENCE FRAMES distance(the distance measured with a standard juler

. i Notice th h i h ial i
For our purpose, a reference frame will be defined as a otice that, whengo; #0, the spatial metric components

collection of fiducial observers distributed over space andii @€ not S|rr]nply the Ispat]lal -compo,nergﬁ .Of t2¢ kfull_ h
moving in some prescribed manner. Each fiducial observe"€!iC ap. The example of Einstein’s rotating disk wit
(FO) is assigned space coordinateég(i =1,2,3) that do not measuring rods along the diameter and circumference, as de-

change[The FOs are “at rest’ X = constant) in these coor- picted in Fig. 1, nicely illustrates the use of E¢®) and(3).

dinates] Each FO carries a standard measuring rod and a In inertial space With. polar coordinatgso( o) aqd origin
standard clock that measure proper length and proper time at the center of the disk, the space-time metric redsfs

his/her location. The basic data of GR are the resulteqdl = — ¢ dt*+drg+rgddg. A transformation to the frame ro-
measurementsiade by the FOgThese are the “10,000 lo- tating with the disk at angular velocitR2 (r=rq, =6,
cal witnesses” in the words of Taylor and Wheéler. +Qt) puts the metric into the form

In special relativity, the FOs usually sit on a rigid lattice of 2 )
Cartesian coordinates in inertial space; there is a different set  §g2— _ [ 1— (_) c2dt2+2 _) r2(c dtydg+dr2
of FOs in a different inertial reference frame. In Schwarzs- C
child space, the FOs reside at constant values of the 1 r2de? (4)

Schwarzschild space coordinates 4,¢), and, in an ex-
panding universe, the FOs sit at constant values of the covith nonzero metric componentgo,=—[1—(Qr/c)?],
moving Robertson—Walker space coordinatesd(¢). In  gos=040=—Qr?/c, g,=1, and gs=r? on coordinates
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Q IV. PHYSICAL TIME

/\ Physical timet in the immediate neighborhood of a par-
ticular fiducial observeP is that function of position coor-

dinatesx' and coordinate time®=ct that, when used to

measure speetif/dt, places the speed of lighthe one-way
speed at the invariant value in all directions.

Now the general line elemeifl) can be written in terms
of the physical space metriQ) as

ds?=—c2dt2+d¢?, (8)

wheredt is defined by

Joi dx’

Fig. 1. Einstein disk rotating about its cent®r with angular velocity() di= V—0odt— .
(viewed from inertial spage Standard measuring rods are laid end-to-end CvV—d00

along the diameter and circumference of the disk and move with the disk. . . . . .
The proof of Eq.(8) is by direct expansion of this equation

using Egs.(2), (3), and the definition(9) of dt. We have
used the notatiordt because for light {s?’=0), Eq. (8)

x#*=(ct,r,6). A glance at the metri¢4) might miss that the ~ . . . .
spatial geometry in this reference frame is non-EucIidean?hOWS thatit is the time differential that gives the speed of

But application of Eqs(2) and (3) gives the spatial metric  light d¢/dt the valuec in all directions, that isqlt is indeed
2 49° the differential of physical time.
.

5) At observerO [at dX'=0 in Eq. (9)], the physical time
1—(Qr/c)?’ increases at the same rate as the proper tignat that loca-

which clearly shows no change of radial distancgr ( 10N (dt=V—godt=d7,), and, at the coordinate displace-
=dr,) and an increase in measured circumferential distancB'€ntdx from O, the physical time is synchronized with the
[from rd 6 to rd6/(1—v?c?)Y? due to the Lorentz con- clock'at O' by the E|n_ste|'n synchronization proceddrBy
traction of measuring rods placed end-to-end on the circumthe Einstein synchronization procedureiwe mean the process
ference and hence moving in the direction of their lengthdn which, when the clock ab reads timet, and this time is
with speedv =Qr. transmitted over the coordinate displacemdrt of length
When three-space is flat, we can transform to Cartesiad¢ at the speed of light, the physical time at the end of this
space coordinates for which the spatial metric takes the Eljburney has the valué=1,+dl/c, that is, it contains the

i 2_ 5. dx dx i i - . . . .
clidean formd¢”=g; dx dx’, and the coordinate® mea-  oarqation correction¢/c required to account for the finite
sure distance directly. We shall refer to such coordinates ag,q invariant propagation speed of the time sigfEat the

“physical” space coordinates. But, when three-space is, . .. . . . o~ .
CIID.IY\)//ed globpal physical coordinates do not exist. \I,DVe candefinition(9) of the physical time differential t is consistent

however, always transform to local Cartesian coordinate¥ith the Ei~nstein synchronization procedure follows from the
d'")'(l, d'")'(z, a3 in the immediate neighborhood of any chosenfact thatdt is the time differential that gives the speed of
FO, in which case the local space metric takes the form  light the valuec in all directions] Another way of saying this
IR 22 32 is that, in the immediate neighborhood of the given fiducial
de7=(dx)™+ (dX) 7+ (X" ® observerO, the conditiondt=0 (or t=constant) defines a
(Here and in the following we use a tilde to denote differen-hypersurface of simultaneity.
tials that may not be exact and, therefore, may not be inte- The all important point of this discussion is that, as a
grable to global functions The proper distancesX', dX’,  temporal coordinate, the physical tirieis a very special
dx* are local physical coordinates measured from the givemne. It is the time actually used by the fiducial observer for
FO, and are written as differentials to suggest that they canmeasurements in his local reference frame. If it were not so,
not be large. They are finite but small enough that curvaturgnhis observer would not measure the local light speed
effects are negligible over the region they span. When thehys the notion that all fiducial observers measure the same
spatial metric is diagonal to begin withd¢?=1y1,(dx")®>  speedc for light (Einstein’s postulateis equivalent to the
+ 72(0x%)?+ y35(dx®)?], the local physical spatial coordi- tion that all fiducial observers use the physical titnia

(€)

de?=dr?+

nates are their local reference frames for the measurement of that
d%t =y dxt, (79 speed. Also notice that, when we use local Cartesian coordi-
natesdX at a particular FO, the local line elemei8) takes
%= \[y,,0%2, (7b)  the Minkowski form
053 = [y, (79 ds’=—cdt?+ (dx")*+ (d%) >+ (d%%)*. (10

But such differentials are not exact and cannot be integrateBquation(10) does not imply that the local framéX* is
to give global Cartesian coordinatékthey could, the space inertial. The observe® can be moving arbitrarily, and there
would not be curved can be a gravitational acceleration in this frarfiehe local
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metric g,5(0) = 7,4 is Minkowskian, but the derivatives of Q

the metricdg,z/JdX* are not necessarily zero at this pojnt.

We use phrases such as “the local reference frame” or /ﬁ\\
“immediate neighborhood,” because the differential of
physical time in Eq(9) may not be an exact differential. If A v B

dt is not exact, Eq(9) defines the physical time only in a
small neighborhood abo@. That is to say, unless they are
very close to one another, different FOs use different physi-
cal times for their interpretation of nature.

Only when the differential of physical time is exact does
there exist a single global physical temporal coordinate

T(x%,x" for all FOs. In this case, specific values of the physi-

cal time[t(x°x') = constant define global hypersurfaces of
simultaneity in the reference frame under consideration. NOFig. 2. On Einstein’s rotating disk, two firecrackers explode at poingsd

tice that, whend~t is exact, its integraT(xO'x‘) is a global B on the disk’s edge equidistant from observerandP. ObservelO sees

. . . the two flashes at the same instant and concludes the explosions occurred
temporal coordinate for which the line eleme8i, namely simultaneously. Observe?, moving with the disk, sees the flash fraBn

~ Coy before that fromA and concludes the explosions are not simultaneous. Thus
— _ A2 2 - i j '
ds?=—c?dt*+ Yij dx' dx/, (1D the question of simultaneity is ambiguous in this rigid rotating reference

- . . fi .
is in Gaussian normal form, that igg,=—1 andgg =0io rame

=0. This form of the metric implies that the FOs of such a
reference frame are freely fallijg' = constant are geodesics
of the metric(11)], and the clocks of all the FOs run at the are simultaneous has no unambiguous answer. In this case,
same rate and remain synchronizew gravitational time there does not exisiny temporal coordinaté(x°,x') with
dilation in this reference frameThese are the “comoving” the property that equal values of this coordinate for separated
(or “synchronous’) reference frame$Only in such frames events implies simultaneity of those events. We call such
does a global physical time exist. Examples include the&rames “asynchronous” frames. It is bad enougit “good
Robertson—-Walker metrics of cosmology, the comoving coenough” because it is trijethat judgments of simultaneity
ordinates used by Oppenheimer and Snyder in their earlgre different in different reference framéss in special rela-
studies of gravitational collapSeand the inertial frames of tivity), but for the concept of simultaneity of separated
special relativity. In all other reference framésther than events to become meaningless in a single reference frame
comoving onegthe differential of physical time is not exact, (even a rigid ongis even more difficult to swallowbut
and there does not exist a global physical time coordinateequally true. That our notion of simultaneity at a distance
Gravitational time dilation is a symptom of the lack of a loses meaning in an asynchronous reference frame is, in the
global physical timet (x°,x'). author’s view, one of the most counterintuitive ideas in all of
When the physical time differential is not exact, it often is Physics, and surprisingly little emphasis is given to it in

possible to make it exact by means of an integrating factomany textbooks on general relativity. .
[dt=dUR is exact for some functioR(x°,x)]. In this We can begin to understand how the concept of simulta-

. : . P neity becomes ambiguous by returning to Einstein’s rotating
case, |nt§grat|?£ g:)veis what we call a. sync.hron.ous t(_ampoaisk. Consider an observer at the centerwof the disk and
ral coordln_ate_ t(x,x), _and the metric(8) is written in another atP on the edge of the rotating disk. Let two fire-
terms of this time coordinate as crackers explode at points andB on the disk’s edge equi-
ds2= — R 2c2 deerijdXi dxi, (12) distant from observer® and P as in Fig. 2, and let the
explosions be timed so that obser@isees the flashes at the
WheredeTO/dTis the rate of a fiducial clock on the time Same instant and concludes, therefore, that the flashes occur
simultaneously. ObservelP, who is also “at rest” in the
rotating frame, sees the light frol before that fromA
becausdfrom the vantage point of inertial spadee is mov-
ing toward the light coming fronB and away from the light
coming fromA. ObserveP concludes that the firecracker at
reference frame. This result follows because the conditiorli3 exploded_ before the one Atbecause he observed it first
. . : ~ and the pointsA and B (where burn marks are left on the
for ne|ghbolng events to be simultaneoult£0) can kf disk) are at equal distance from him. In this way we see how
written asdt=0 anddt is integrable. Hence, the locus  two observers, both at rest in a rigid reference frame, can
=constant is a global hypersurface of simultaneity. Ex-disagree about the simultaneity of two events, and thus ren-
amples of this case include the Schwarzschild metric irder the concept of simultaneity ambiguous.
Schwarzschild coordinates and any other time-orthogonal The hallmark of an asynchronous reference frame is that
metric with metric coefficientgg =0. the metric componenty,; not be zero, that is, that the metric
The final and probably most interesting case occurs whetensor not be time-orthogonal. Examples of such metrics in-
the physical time differential9) is not exact and cannot be clude rotating reference frames, the Kerr métiic Boyer—
made exact by applying an integrating factor. In such referLindquist coordinateésrepresenting a rotating black hole,
ence frames, the question of whether widely separated evenasid the Gdel metrié representing a model rotating uni-

scalet. Clearly R describes gravitational time dilation. A
most important feature of the meti(it2) is that equal values
of the temporal coordinate, sayty=tg for widely sepa-
rated event#\ andB, implies that these events occur simul-
taneously(according to the Einstein definitiprin the given
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Xl
>

X,

Fig. 3. Inertial reference frame label&d(and 12) with coordinates, y, z
(or X, ¥, Z) moves out along th&-axis of inertial frameK with velocity
v=dxdt.

verse. There is, of course, a time coordinafa these met-
rics, but we must understand that the equality of this time
sayt,=tg for separated events andB, does not mean that
these events are simultaneoy®ne wonders why such a

thing is called a “time coordinate” at all, because it does not
have the most fundamental features one associates with the

word “time.”) No doubt it is the conceptual problems sur-

rounding the failure of simultaneity in such frames that mo-_,2/¢2) g, =g,,=v/c, andg,,

description of the motion of framk from the point of view

of the fiducial observers iK. What then is it that makes the
Lorentz transformation preferable to the Galilean transforma-
tion? The answer is that the Lorentz transformation is ex-
pressed in terms of the physical time and physical space
coordinates in fram& instead of the coordinatesf;x,y,z)
used in the Galilean transformation, which are actually

physical times and physical distances in frakheThis prop-
erty of the Lorentz transformation is conveniébtit not nec-
essary for the calculation of physical quantities in the new
frame.

Let us show this explicitly. The metri€14), written in
terms of the Galilean coordinate$=(ct,x,y,z) reads

ds?=—(1—v?/c?)c?dt?+2| —|dx(c dt)+dx*+dy?

U
c
+dZ, (15

that is, the nonzero metric components ayg=—(1
=0yy=0,,~1. Therefore

tivates many authors to eliminate the metric terms containinghe spatial metric, Eq¢2) and (3), is

Ooi by transforming to a different reference frame in which

these terms are zero. But, if one wishes to work in a rotating

frame (such as the frame rigidly attached to earthr if one
wishes to study certain “frame dragging” effects, these term
are necessarily present and give rise to such interesting

Sagnac effect!?In fact, the experimental demonstration of
the Sagnac effedthe different light travel times for propa-

gation in opposite directions around a closed path in a rotat-

ing frame using a ring-laser gyr'd or the global positioning
systen? may be interpreted as a verification of the failure of

2

dx
d€2=m+dyz+dzz. (16)

:le_quation (16) can be expressed in terms of the physical

fects as Coriolis forces, the gravitomagnetic field, and thePace differentialsdx=dx=dx/

V1-0v2/c?, dy=dy=dy,
and dz=dZz=dz which, in this case, are exact differentials
that integrate to global physical space coordinates

simultaneity in rotating reference frames, because such an

effect would be inconsistent with the invariant light speed
if a global physical timgor even a global synchronous tem-
poral coordinatgexisted.

V. THE LORENTZ TRANSFORMATION

Let us return now to the statement made in Sec. | that “In

_ X
= Ji—v?c?’ (173
y=Y, (17b
7=z (179

for frame K(=K). We can also express the metf5) in

frame K in terms of the physical time differential in this
frame, Eq.(9), which also is an exact differential that inte-

general relativity the Galilean transformation is just as validd"ates to the global physical time

as the Lorentz transformation.” Specifically, consider the

Galilean transformation

x=X—ut, (133

y=Y, (13b)

z=z, (130

t=t, (13d
from an inertial frameK with metric,

ds?= —c2d t?+ dx2+ dy? + d 2, (14)

to another inertial fram& as depicted in Fig. 3. The time

is the time on synchronized clocks at rest in fraie and
frame K moves in the positive direction along theaxis at

speedv =dx/dt as measure by the FOs &

We sometimes hear that Galileo’s transformati{ds) is
“wrong” and Einstein’s transformatiofthe Lorentz transfor-
mation is “right.” But surely this statement cannot be cor-
rect when general relativity allows arbitrary space—time co
ordinate transformations, and E(L3) is a perfectly valid
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=~ — 7, vX
t=t=y1l-v/ct —sz. (18

If we substitute the transformations to physical varialtied
and(18) into the Galilean transformatiofi3), we obtain the
Lorentz transformation

_ X—ovt
= 1—v2/c?’ (193
y=Y, (190
=z, (199
_  t—oux/c?
t= (190

Observe that the Galilean transformation, far from being
wrong, is a fully correct kinematic description of the motion

of frame IZ(= K) in terms of the space and time variables of
frameK, and as soon as we express the Galilean transforma-
tion in terms of the physical time and physical space coor-
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dinatesx, y, Z of frameK, it becomes the Lorentz transfor-
mation.

VI. THE UNIVERSAL LORENTZ
TRANSFORMATION

The local physical coordinates in different reference

frames are related by a Lorentz transformation regardless
the motion of those frames. To see that this is so, consid
two arbitrary reference framésvo sets of fiducial observers
in relative motion with space—time coordinates* and y*
connected by the coordinate transformatigh=y*(x”) or
its inversex*=x*(y"). At a particular fiducial observex in
the x-frame, we construct physical coordinategx”

= (c dt,dx*,d%?,dx%) for which the metric(8) at this point
takes the Minkowski fornds®= 7, dX* dXx?. We think of
dx* as finite but small coordinate values covering a limited
neighborhood about observet. At the same event in the
y-frame we similarly construct local physical coordinates
dy* measured from the fiducial observ¥r of that frame

who, at the instant under consideration, is at the same place

as observeK. The metric at observef is also Minkowskian
in the local physical coordinates of this observels®
=745 dY” dy#, and there may be a gravitational field in
either or both of these frames.

The overall transformatiorifrom local physical coordi-
natesdx* to coordinatesx®, then to coordinatey”, and
finally to local coordinatesly?) takes the Minkowski tensor
7, iNto the same Minkowski tensor and, therefore, can onl
be a Lorentz transformation

dX/“zAgd?ﬁ,
with

(20

7]0(,8: nuvAgAg . (21)
Hence, thedifferential Lorentz transformation20) is not

limited to inertial frames, but applies to arbitrary spacetime,

coordinate transformationdt applies to accelerating frames
and frames in arbitrarily strong gravitational field. fol-
lows that all of the tensors of special relativity in Minkowski
coordinates, such as the electromagnetic field telsStt
(FOl: El, FOZZEZ, F03:E3, F12:B3, F23:Bl, F3l: BZ,
Fef=—FFP%) the four-momentumP*=m dx‘/dr, the
stress-energy tensar*”, transform as in special relativity
between local physical reference frames.

A. Example: Transformation to a falling reference
frame in Schwarzschild space

Start with the static Schwarzschild metric,
2

1-r/r
+r2(d6?+sir? 6d¢?),

ds?=—(1-rg/r)c?dt?+

(22

(o] -
gi¢-direction. We think ofc dt, dX, dy, dz as finite but

b

dx=rd@, (23b)
dy=rsin6dd, (230
dz=dr/\1—r/r, (230

where we have taken tfieaxis in the outward radial direc-
tpn, theX-axis in thed#@-direction, and théy-axis in the

small Minkowski coordinates measured from the given fidu-
cial observer. Clearly the Schwarzschild met@@) takes the
form ds?= —c? dt?+ d¥x?+ dy?+d# in these local coordi-
nates.

Now consider freely falling fiducial observefa different
reference framewho fall radially inward from rest at
=00, For this initial condition, the time equation of motion
derived from the metri¢22) reads

|

wheredt is the differential of proper time at the falling ob-
server. The radial equation of motigance integratedis

dr [rc? [2GM
dt r ro

Fortuitously, this relativistic equation is the same as the cor-
esponding Newtonian equatioflf readers are unfamiliar
ith the derivation of Eqs(24) and (25), they may consult
Ref. 2 where these results are simply derived as Etf).
and(32) on pp. 3-22 If we use Eqs(233, (23d), and(24)

in Eq. (25), we find that the physical velocity of the fall is

(24)

(25

- (26)

dt
Equation(26) is the velocity that enters the differential Lor-
entz transformation

- dt—vdzc?
di= o (273
dx=dx, (27b)
dy=dy, (279
43 dz—v dt 279
Z: T
J1—vZic?

to the local physical coordinatest, d%, dy, d2) of the
falling fiducial observer. Notice that the physical fall velocity
(26) approaches asr approaches the Schwarzschild radius
rs, and, forr<rg, the Lorentz transformatio(27) fails be-

describing a nonrotating black hole of Schwarzschild radiugause there can be no fiducial observers at rest in Schwarzs-

r<=2GM/c? in the Schwarzschild reference frame with co-
ordinates €t,r, 0, ¢), and transform to a frame that falls ra-
dially inward from rest at infinity. For a fiducial observer at
rest in Schwarzschild coordinates, ¢, = constants), the
local physical coordinate differentials are

dt=1-r/rdt,
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218

child coordinates (= constant) at these values of

As an example we note that, exactly as in special relativ-
ity, the differential Lorentz transformation leads to the veloc-
ity transformation

— W1-v2/c? (284
UV=——,
1—vT?/c?
Richard J. Cook 218



wW1—v%c2 ds?=goo(dx%)2+2gp; dX dx, +g;; dx' dx! (A1)

ljy: Z[ A2 (28b) . . . . L.
1-vTc as follows. (This derivation is an abbreviation of a proof
W—v found in Ref. 4, pp. 233-236Light propagating fromA to
Gzzm, (280 B does so in coordinate timeéx, determined by the null
v conditionds?*=0:
. . ~i i1 47 . . .
from the .Schwarzsjchnd physical fompiomiu'tgd?/dt to gOO(ngut)2+2g0i dyi dxgut+gij dx dxi =0. (A2)
the physical velocity component®=dx'/dt in the freely ) ] i o
falling frame. The solution of this quadratic equation is
Similarly, the physical components of the electric and i — BY ™
magnetic fields, charge, and current densities, and the com- g0 — 9o A% ~ V(QoiJoj — Joodiy)dX' dx _ (A3)
ponents of the stress-energy tensor all transform under the o Yoo

Lorentz transformatiorf27) as they do in special relativity,
so long as we use local physical coordinates in the twi
frames of interest.

On the return path light travels the displacemerdx and
Yakes coordinate time

o 9oi dX = \(goi9o;— Gooij)dX dX

VIl. CONCLUSION dXpaci= Yoo

The above arguments attempt to make it clear that an es- . . 0 40
sential difference between the special and general theoriesfylhe Ototal coordinate tlme out and back Bx"=dxsy
relativity is that, in the former, there exigiobal physical T d%back: @nd the proper time evolved on the clockAain
coordinates(the Minkowski coordinatesbut, in the latter this time is

(A4)

physical coordinategcoordinates with direct metrical sig- 0 —
nificance and a Minkowski metricexist only in the imme- dTAzg—mdxz 2 \/< - 90|901)dxi dx. (A5)
diate neighborhood of each fiducial observer. But aside from c C ! Yoo

this essential difference, the Lorentz transformation still ap-rj\o, ofore. the local radar distandé=c dr,/2 is the radical
plies in general relativity for transformations between local.

physical coordinate frames in arbitrary relative motion and in" Eq. (A5), and the spatial metric reads

arbitrary gravitational fields. The differential Lorentz trans- de?= Yii dx dx, (AB)
formation is not limited to local inertial reference frames, ) )

and by using local physical coordinates, students transfer e¥ith spatial metric tensor

sentially all they have learned in special relativity of the JoiGoi

transformation properties of particles and fields to the  y,=g;— %0} (A7)
broader context of general relativitgnd they are not fooled oo

into thinking that the more general coordinate markers al-

lowed in general relativity in any way change the relations The quote is taken from C. W. Misner, K. S. Thorn, and J. A. Wheeler,

between physical quantities expressed in the Lorentz trans-Gravitation (W. H. Freeman and Company, San Francisco, CA, 1993
formatior) 5. It was pieced together from “Einstein’s Autobiography,”Atbert Ein-

. . . . stein Philosopher-Scientisedited by P. A. SchilppLibrary of Livin
Recently the physics community has witnessed the publi- Ph”osopherspEvanston l”_ 19)4%)_/ 65-67. PR Y 9

cation of a trgly outstanding undergraduate level textl_Jook OM2E. F. Taylor and J. A. WheeleBpacetime PhysicdV. H. Freeman and
general relativity by James B. Hartle. The local physical co- Company, New York, 1992 Chap. 2, pp. 39—40.
ordinates discussed in this paper are components on a locdh. Einstein, The Meaning of Relativify5th ed. (Princeton University
“orthonormal bases” in Hartle’s more elegant notatin. AEFGDSSL Prc'jncemf:j SJMlﬁﬁﬁpt' %_%:el’ el Th f Fieldaddi

HH H H H H . D. Landau an . M. Litshitz) he Classical eory or rie Ison-
Thg:-. ”tt'““; torI working with Iﬁca! pk&yslca:| cct)lor,dmateéa;heb Wesley, Reading, MA, 1971 Chap. 11, pp. 290-295.
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