PHYSICAL VAPOR DEPOSITION OF THIN FILMS

JOHN E. MAHAN Colorado State University

A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

CONTENTS

PREFACE xv			
I	Introduction to Physical Vapor Deposition		1
	I.1	Physical Vapor Deposition Technologies and Their Basic Physical Science, 1	
		Overview, 1 Kinetic Theory, 5 Adsorption and Condensation, 8 High Vacuum, 12 Sputtering Discharges, 14	
	1.2 1.3	Summary of Principal Equations, 16 Mathematical Symbols, Constants, and Their Units, 17 Reference, 18	
П	The	The Kinetic Theory of Gases	
	H.1	Statistics, 20	
		The Boltzmann Distribution, 20 Characteristic Particle Speeds, 22	
	II.2	Collisions, 23	
		Impingement Rate and Incident Flux Angular Distribution, 23The Ideal Gas Law, 26Mean Free Path, 27	

- II.3 Properties, 30
 - Heat Capacity; the Ideal Diatomic Gas, 30 Diffusivity, 31 Viscosity, 32 Thermal Conductivity, 34
- II.4 Gas Flow, 34

Flow Regimes, 34 Viscous Laminar Flow, 35 Molecular Flow, 36 Conductance, 37

II.5 Units of Pressure and Amounts of Gas, 38Units of Pressure, 38

Amounts of Gas, 39

- II.6 Summary of Principal Equations, 39
- II.7 Appendix, 40

Arrhenius Plots, 40 Some Definite Integrals, 41 Atomic Diameters of the Elements, 42

II.8 Mathematical Symbols, Constants, and Their Units, 43 References, 44

III Adsorption and Condensation

III.1 Adsorption of Gases, 47

Why Gases Adsorb, 47 Mean Residence Time, 49 Langmuir's Adsorption Isotherm, 49 Atomic Layer Epitaxy, 53

III.2 Vapor Pressure, 57

The Thermally Activated Vapor Pressure, 57 Vapor Pressure Data for the Elements, 58 Vapor Pressures of Alloys and Compounds, 60

III.3 Condensation of Vapors, 62

Condensation of Pure Elements, 62 Condensation of Compounds that Produce a Stoichiometric Vapor, 64 Flash Evaporation of Compounds that Dissociate, 65 Steady-State Techniques for Alloy Films, 65 Coevaporation with the Three-Temperature Method, 67

Reactive Evaporation and Sputtering, 70

- III.4 Summary of Principal Equations, 71
- III.5 Appendix: Thermodynamic Fundamentals, 72

The Thermodynamic Potentials and the First and Second Laws, 72
The Gibbs Free Energy: The Relevant Potential for Equilibria at Fixed Temperature and Pressure, 73
Standard Reaction and Formation Quantities, and the Equilibrium Constant, 74
Standard Thermochemical Data, 76

III.6 Mathematical Symbols, Constants, and Their Units, 79 References, 80

IV Principles of High Vacuum

IV.1	Basic Vacuum Concepts, 84	
	Pumping Speed, 84 Throughput, 87 A Throughput Law, 88 Conductance, 93	
IV.2	Behavior of Real Vacuum Systems, 94	
	A More Realistic Vacuum System Model, 94 Desorption, Outgassing, and Permeation, 96	
IV.3	Operation Principles of Vacuum Pumps and Gauges, 99	
	How Seven Important Pumps Work, 99 Two Vacuum Gauges in Widespread Use: The Thermocouple and Ionization Gauges, 105	
IV.4 IV.5	Summary of Principal Equations, 107 Appendix, 107	
	How to Draw and Analyze Vacuum Schematic Diagrams, 107 An Electrical Network Analogy, 108 A Survey of Past Definitions of Throughput, 111	
IV.6	Mathematical Symbols, Constants, and Their Units, 112 References, 112	
Evanation Sources		

V Evaporation Sources

V.1	The Effusion Cell and Nozzle-Jet Evaporation Sources,	117
	The Ideal Effusion Cell, 117	
	The Cosine Law of Emission, 118	

83

115

The Nonequilibrium Effusion Cell, 119 The Near-Ideal Effusion Cell, 121 The Open-Tube Effusion Cell, 123 The Conical Effusion Cell, 124 The Nozzle-Jet Source, 125 Free Evaporation Sources, 127 Free Evaporation, 127 The Ideal Point Source Model, 129

How E-Gun Evaporators Work, 129 Beam Intensity of the E-Gun Evaporator, 131

V.3 Pulsed Laser Deposition, 133

Laser-Induced Vaporization, 133 A Simple Heating Model, 135 Other Phenomena, 141

V.4 Materials Aspects of Evaporation Sources, 143

Evaporation Temperatures of the Elements, 143 The Problem of Composition Change in the Evaporation of Alloys, 144 Crucible Interactions, 146

- V.5 Summary of Principal Equations, 147
- V.6 Mathematical Symbols, Constants, and Their Units, 148 References, 149

VI Principles of Sputtering Discharges

VI.1 Sputtering Arrangements, 155

DC Sputtering, 155 RF Sputtering, 156 The Magnetron, 157 Other Sputtering Arrangements, 158

VI.2 A Practical Sputtering Plasma and its Current Densities and Potentials, 159

A Practical Sputtering Plasma, 159 The Ideal Langmuir Probe, 161 An Experimental Langmuir Probe Characteristic, 165 The Enhanced Ion Current Density, 165 The Probe Sheath, 168

VI.3 Gaseous Discharges for Sputtering, 170

A DC Discharge Model, 170

V.2

The Cathode and Anode Sheaths, 174 The Sputtering Projectiles that Bombard the Cathode, 176 An RF Discharge Model, 178 The RF Sheaths, 182

- VI.4 Summary of Principal Equations, 183
- VI.5 Appendix, 184

The Voltage – Current Characteristic of a DC Discharge, 184
The Voltage – Current Characteristic of an RF Discharge, 189
The DC Glow, 190
The RF Glow, 193
Exceptions to the Above, 193

VI.6 Mathematical Symbols, Constants, and Their Units, 195 References, 196

VII Sputtering

VII.1 General Characteristics and Background, 199

Definition of Sputtering, 199The Mechanisms of Sputtering, 201A Brief History of Sputtering Theory and Simulation, 203Sources of Sputter Yield Data, 205

VII.2 Trends in Sputter Yield Data, 206

Projectile Energy Dependence, 207 Dependence on Surface Binding Energy, 212 Dependence on Choice of Projectile, 214 Effect of Angle of Incidence, 214 Energy Distribution of Sputtered Particles, 219 Angular Distribution of Sputtered Particles, 220 Single-Crystal Targets, 222 Target Conditioning and Dose Effects, 222

VII.3 Basic Concepts for Modeling, 223

The Surface Binding Energy, 223 Energy Transfer in Binary Elastic Collisions of Hard Spheres, 225 Threshold Energy for Sputtering at Normal Incidence, 227 Nuclear Energy Loss Theory, 229 Linear Cascade Theory, 232

VII.4	A Simplified Collisional Model for Sputter Yield, 238	
	A Yield Expression, 238 Predictions, 241 Summary, 244	
VII.5	An Ideal Sputter Deposition Source, 245	
	 The Cosine Law of Emission, 245 The Beam Intensity of a Sputtering Source, 247 Combined Internal Flux Spectra for the Simplified Collisional Model, 248 Combined External Spectra Assuming the Spherical Surface Binding Model, 248 Combined External Spectra Assuming the Planar Surface Binding Model, 249 	
VII.6 VII.7	Summary of Principal Equations Not Found in the Sample Calculation of Yield, 250 Appendixes, 251	
	 Appendix A: The Empirical Yield Formula of Matsunami et al. [1984], 251 Appendix B: A Summary of Target Parameters, 252 Appendix C: Some Collisional Sputtering Theories, 256 Appendix D: A Sample Calculation of Yield with the Simplified Collisional Model, 258 	
VII.8	Mathematical Symbols, Constants, and Their Units, 259 References, 260	
Film Deposition 26		

VIII.1	Incident Flux and Film Deposition Rate, 267
	The Incident Flux at the Substrate, 267 Film Deposition Rate, 269 Associated Substrate Heating Mechanisms, 272
VIII.2	Film Thickness Profiles of the Ideal Small Source, 277
	Three Fundamental Receiving Surfaces, 277 The Moving-Shutter Technique, 278
VIII.3	Thermalization and Ionization of the Sputtered Beam, 281
	The Thermalization Distance, 283

VIII

	Reduction of the Incident Flux, 283 Ionized Physical Vapor Deposition, 286
VIII.4	Deposition with Substrate Rotation and with Ideal Large Sources, 289
	Off-Axis Substrate Rotation, 290 A Large Disk Source with a Planar Substrate, 291 A Large Ring Source, 293
VIII.5	Deposition Monitors, 295
	The Quartz Crystal Microbalance, 295 True Flux Sensors, 298
VIII.6 VIII.7 VIII.8	Summary of Principal Equations, 300 Appendix: Some Definite Integrals, 300 Mathematical Symbols, Constants, and Their Units, 301 References, 302

Index

305