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Abstract

We develop a new 3D hierarchical model of the human face. The model incorporates a
physically-based approximation to facial tissue and a set of anatomically-motivated facial
muscle actuators. Despite its sophistication, the model is efficient enough to produce facial
animation at interactive rates on a high-end graphics workstation. A second contribution of
this paper is a technique for estimating muscle contractions from video sequences of human
faces performing expressive articulations. These estimates may be input as dynamic control
parameters to the face model in order to produce realistic animation. Using an example, we
demonstrate that our technique yields sufficiently accurate muscle contraction estimates for
the model to reproduce expressions from dynamic images of faces.

Keywords: Facial Animation, Physically Based Modeling, Deformable Models, Image Anal-
ysis

CR Categories. 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism (An-
imation); 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling (Curve,
surface, solid, and object representations); 1.6.3 [Simulation and Modeling]: Applications;
1.2.10 [Artificial Intelligence] Vision and Scene Understanding.

1 Introduction

The expressive power of the face makes it an attractive but elusive target for computer graphics
modelers and animators. One of the hardest challenges has been to develop computational models
of the face capable of synthesizing the various nuances of facial motion quickly and convincingly.
There is a prevalent need for such models, not just for the animation of synthetic human char-
acters, but also for a variety of other applications ranging from low bandwidth teleconferencing,
to plastic surgery, to criminal investigation. This paper advances the state-of-the-art of realistic
facial modeling and investigates two converse problems—facial image synthesis and facial image
analysis.

0+ Fellow, Canadian Institute for Advanced Research.
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1.

We develop a 3D dynamic face model which can be simulated and rendered on a high-end
graphics workstation to synthesize real-time animated facial images. An important innova-
tion of our model is the combination of an anatomically-based facial muscle process with a
physically-based model of human facial tissue. This combination significantly enhances the
realism of the animation compared to what is achievable with reasonable effort using earlier
geometric models of the face.

From videos of human faces, we derive time-varying control parameters suitable for ani-
mating the face model. The anatomically-based control set corresponds to the contractions
of the major muscles underlying human facial expression. Estimating dynamic muscle con-
tractions from facial image sequences poses a problem inverse to that of generating synthetic
facial images. We develop a physically-based solution which employs deformable contour
models to track facial features as they move nonrigidly in the image plane.

It is difficult to devise a model of the face which is at once convenient for animators to use,
physically realistic, and efficient enough to run at interactive rates. We therefore tackle the com-
plexities of the facial modeling and animation task at different levels of abstraction. These levels
include representations motivated by what is known about the psychology of human facial expres-
sions, the anatomy of facial muscle structures, the histology of facial tissues, the mechanics of
deformable materials, and the geometry and kinematics of facial skeletons. Our model spans six
levels of abstraction; from most to least abstract, they are:

1.

Expression. It is often convenient for animators to think in terms of facial expressions.
The face model will execute commands to synthesize any of the six canonical expressions
(see Section 4) within a given time interval and with a specified degree of emphasis (The
expression level could also include phonetics).

Control. A muscle control process translates expression (or phoneme) instructions into a
coordinated activation of actuator groups in the facial model.

Muscles. As in real faces, muscles comprise the basic actuation mechanism of the model.
Each muscle model consists of a bundle of muscle fibers. When they contract, the fibers
displace their attachment points in the facial tissue (or in the jaw).

Physics. The face model incorporates a physical approximation to human facial tissue. The
synthetic tissue is a layered deformable lattice of point masses connected by elastic springs.
A numerical simulation computes large-scale tissue deformation by continuously propagat-
ing through the lattice the local stresses induced by activated muscle fibers.

. Geometry. The geometric representation of the facial model is a non-uniform mesh of poly-

hedral elements whose sizes depend on the curvature of the neutral face. Muscle-induced
tissue deformations distort the neutral geometry into an expressive geometry.

Images. After each time step of the numerical simulation procedure, standard rendering
techniques, accelerated by graphics hardware, project the deformed facial geometry in ac-
cordance with viewpoint, light source, and skin reflectance information to synthesize a con-
tinuous stream of facial images.
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The multilevel structure of the model hides from the animator as many of the complexities of
the underlying representations as possible. Internal procedures handle the details in the lower level
structures automatically. At the higher levels of abstraction, our face model offers the animator a
natural and semantically rich set of control parameters that reflect the constraints of real faces.

1.1 Overview

Section 2 presents a perspective on our work before the background of prior investigations into
facial modeling and animation. After a brief review of the structure and mechanical properties of
facial tissue, Section 3 describes our tissue model and the real-time numerical simulation of its
mechanical behavior. Section 4 reviews the anatomical structure of facial muscles, and it describes
the muscle actuators of the model along with the process which controls muscle groups to generate
recognizable expressions. Section 5 describes the automatic construction and interactive animation
of the physically-based face model. Section 6 explains how we analyze video image sequences to
estimate dynamic facial muscle contractions, and it demonstrates this technique using an example.
Section 7 concludes the paper.

2 Background

The modeling and animation of faces has attracted much interest in computer graphics [16]. The
first attempts at facial animation involved keyframing, in which two or more complete facial poses
are captured and inbetween contortions are computed by interpolation [13]. The immense pose
space of the human face makes this approach extremely cumbersome for full 3D facial animation.
This prompted Parke and others to develop parameterized models for facial animation [14, 19, 15,
1].

Using parameterized models, animators can create facial expressions by specifying appropriate
sets of parameter value sequences; for instance, by interpolating the parameter values rather than
directly keyframing face shapes. The parameters of these models shape facial features, such as the
mouth, by specifying lip opening height, width, and protrusion. But unless the animator specifies
the shape parameters with care, the model will produce incorrect shapes, unrealistic motions, and
other spurious effects.

The limitations of ad hoc parameterized models prompted a movement towards models whose
parameters are based on the anatomy of the human face [18, 19, 26, 25, 12]. Such models can
produce more natural facial motions using a relatively small number of parameters based on facial
muscle structures. When anatomically-based models incorporate facial action coding schemes [4]
as control procedures, it becomes relatively straightforward to synthesize a wide range of recog-
nizable expressions.

A serious limitation of earlier face models is that they are purely geometric. Geometric mod-
eling limits realism because it ignores the fact that the human face is an elaborate biomechanical
system. In particular, earlier models approximate the skin as an infinitesimally thin surface with
no underlying structure, and they generate deformations by geometrically distorting the surface
[26, 9, 12]. The geometric approach makes it difficult to reproduce many of the subtleties of facial
tissue deformation, such as wrinkles and furrows.

We contend that facial modeling based on anatomy and physics is in many ways superior
to conventional geometric facial modeling. The present paper develops a realistic face model
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which incorporates an anatomically-based arrangement of muscle models with a physically-based
tissue model. In developing our tissue model, we have taken into account some of the biomedical
literature on tissue mechanics [8]. These studies have led to finite element models of facial tissue
for application to surgical simulation [10, 3]. As in the work of Pieper [17] (see also [27]), however,
the present paper describes a tissue model constructed from deformable lattices, a class of discrete
deformable models [23].

Significant effort has been devoted to facial modeling by the graphics community. By contrast,
the inverse problem of extracting parameters suitable for animation from images of real faces has
received little attention. Some relevant work has focussed on the subproblem of lip synchronization
during continuous speech animation, but existing parameter extraction techniques remain essen-
tially manual [2, 11, 12, 6]. As Hill et al. observe in reference to Water’s muscle-based model: “It
remains very difficult to extract the parameters from real faces...” The present paper contributes a
physically-based technique for estimating a useful subset of facial muscle parameters from video
sequences of faces in articulatory motion.

3 A Physically-Based Facial Tissue Model

This section proposes a physically-based model of facial tissue which transcends the approxima-
tion of skin as an infinitesimally thin geometric surface and provides a more realistic approach to
modeling faces. We briefly review the structure and mechanical properties of real facial tissue,
propose a deformable lattice model that approximates these properties, and describe the numerical
simulations of the equations of motion governing the lattice model.

3.1 Histology and Mechanics of Facial Tissue

Human skin has a layered structure. The epidermis, a superficial layer of dead cells, is about one
tenth the thickness of the dermal layer, which it protects. The layered, network-like structure of
skin makes it nonhomogeneous and nonisotropic (it has lower stiffness along Langer’s lines than
across them) [8, 10].

The mechanical properties of skin are due mostly to the dermis. Dermal tissue is composed
of collagen (72%) and elastin (4%) fibers forming a densely convoluted network in a gelatinous
ground substance (20%). Under low stress, dermal tissue offers low resistance to stretch as the col-
lagen fibers begin to uncoil in the direction of the strain, but under higher stress the fully uncoiled
collagen fibers become much more resistant to stretch. This yields an approximately biphasic
stress-strain curve (Fig. 1). The incompressible ground substance retards the motion of the fibers
and thereby gives rise to time-dependent, viscoelastic behavior: stress relaxation at constant strain,
strain creep at constant stress, and hysteresis under cyclic loading (see [24] for a discussion of
graphics models inspired by the behavior of viscoelastic materials). Finally, the elastin fibers act
like elastic springs which return the collagen fibers to their coiled condition under zero load.

The skin rests on a layer of subcutaneous fatty tissue that allows it to slide rather easily over
fibrous fascia that cover the underlying muscle layer (see Section 4).
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Figure 1: Stress-strain curve of facial tissue and its biphasic approximation.

Figure 2: Deformable hexahedral lattice with corners constrained, at equilibrium under influence
of gravity.

3.2 Deformable Lattices

A deformable lattice is a type of discrete deformable model constructed from point masses con-
nected by springs [5]. Fig. 2 shows an example of a 3D deformable lattice constructed from
hexahedral elements.

Let node ¢, where i = 1,..., N, be a point mass m,; whose 3-space position is x;(t) =
[z(t),y(t), 2(t)]'. The velocity of the node is v; = dx;/dt and its acceleration is a; = d*x;/dt>.

Let spring k£ have natural length [, and stiffness c,. Suppose the spring connects node 7 to node
j, where rj, = x; — x; is the vector separation of the nodes. The actual length of the spring is ||r||.
The deformation of the spring is e, = ||rx|| — k. Then, we define the force the spring exerts on
node ; as

Sk = kO k- )
A
The spring force is a nonlinear function of node positions because ||r || involves roots of sums of
squares.
The total force on node 7 due to springs which connect it to other nodes j; € N; in the de-
formable lattice is
gi(t) = Y sk )
JEN;

To create a more accurate model, we define a biphasic spring which, like real dermal tissue,

5
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Figure 3: Trilayer facial tissue model. (a) Top view. (b) Side view.

is readily extensible at low strains, but exerts rapidly increasing restoring stresses after reaching a
strain e°. The biphasic spring exerts a force (1) with stiffness

_J ar whene, <ef;

= { B, whene; > ef; )

where the small-strain stiffness « is smaller than than the large-strain stiffness 3, (Fig. 1).

3.3 A Trilayer Model of Facial Tissue

The deformable lattice in Fig. 2 will collapse if the supports at the corners are removed because
although each hexahedral element resists extension and compression forces, it does not resist twist
and shear forces. However, if the faces of the elements are cross-strutted with springs, the lattice
will resist twisting and shearing, yielding a structurally stable model. An advantage of tetrahedral
and pentahedral elements over hexahedra is that they achieve structural stability with fewer springs.
We use combinations of structurally stable elements to construct deformable lattice models of
facial tissues.

Fig. 3 illustrates the geometry of a facial tissue model consisting of three layers of elements
representing the cutaneous tissue, subcutaneous tissue, and muscle layer. The springs (line seg-
ments) in each layer have different stiffness parameters in accordance with the nonhomogeneity of
real facial tissue. The topmost surface represents the epidermis (a rather stiff layer of keratin and
collagen) and we set the spring stiffnesses so as to make it moderately resistant to deformation.
The biphasic springs underneath the epidermis represent the dermis. The springs in the second
layer are highly deformable, reflecting the nature of subcutaneous fatty tissue. Nodes on the bot-
tommost surface of the second layer represent the fascia to which the muscle fibers in the third
layer are attached. The bottom surface of the third layer is fixed in bone.

To account for the incompressibility of the cutaneous ground substance and the subcutaneous
fatty tissues, we include a constraint into each element which minimizes the deviation of the vol-
ume of the deformed element from its natural volume at rest. The volumes are computed using
simple vector algebra. Differentiation of the constraints for all elements sharing node 7 yields a
net volume restoration force q; for that node (see, e.g., [20], Section 8.7 for details about imposing
volume constraints).
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3.4 Numerical Simulation of Facial Tissue

The discrete Lagrange equations of motion for the dynamic node/spring system is the system of
coupled, second order ordinary differential equations
2

mi%‘i‘%%ﬂLgiﬂL%:fi; i=1,...,N, 4)
where g; is the net spring force from (2), q; is the net volume restoration force, and f; is the net
driving force acting on node 7. The quantity -; is a velocity-dependent damping coefficient which
dissipates kinetic energy in the lattice through friction. We set the ~; such that the facial tissue
exhibits a slightly overdamped behavior.

To simulate the dynamics of the deformable lattice, we provide initial positions x? and ve-
locities v? for each node i for : = 1,..., N, and numerically integrate the equations of motion
forward though time. At each time step, At, 2A¢t, ..., t,t + At,..., we must evaluate the forces,
accelerations, velocities, and positions for each node.

A simple and quick time-integration procedure is the explicit Euler method [21]:

1
W= L g )
vitat = vt Atal; (5)
x?m = x§+Atvf+At.

The stability of this procedure is inherently limited, but its convergence is facilitated by the over-
damped dynamics of the tissue model and the high flexibility of the biphasic springs in the small-
strain region (see [23] for a discussion of the effect that deformable model flexibility has on the
numerical procedure). However, modest increases in the size of the time step or too large a value
for the large-strain stiffness 3, will cause divergence.

It is possible to maintain convergence by using a more stable numerical procedure such as the
Adams-Bashforth-Moulton method, but its computational complexity per time step erodes inter-
active performance. As a compromise solution to the stability/complexity tradeoff, we chose a
second-order Runge-Kutta method which requires two evaluations of the forces per time step [21].

We point out that since the springs of deformable lattice are perfectly elastic, they do not model
the viscoelasticity of real skin. There are several ways to include viscous behavior into the elastic
spring model (see [24]). Note, however, that the explicit time integration procedure introduces an
“artificial viscosity” which is analogous to placing a dashpot in parallel with each spring, so our
simulated facial tissue model exhibits a somewhat viscoelastic response.

4 A Facial Muscle Control Process

4.1 Facial Muscle Anatomy

268 voluntary muscles can exert traction on the facial tissue to create expressions. When the
muscles contract, they usually pull the facial soft tissue to which they attach towards the place
where they emerge from the underlying skeletal framework.

Muscles are bundles of fibers working in unison. Shorter fibers are more powerful but have a
smaller range of movement than longer fibers. The shape of the fiber bundle determines the muscle

7
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type and its functionality. There are three main types of facial muscles, linear, sphincter, and sheet.
Linear muscle, such as the zygomaticus major which raises the corner of the mouth, consists of a
bundle of fibers that share a common emergence point in bone. Sheet muscle, such as the occipito
frontalis which raises the eyebrow, is a broad, flat sheet of muscle fiber strands without a localized
emergence point. Sphincter muscle consists of fibers that loop around facial orifices and can draw
towards a virtual center; an example is the orbicularis oris which circles the mouth and can purse
the lips into a pout.

4.2 Expressionsand the Facial Action Coding System

A facial expression is the result of a confluence of muscle contractions which together deform the
neutral face into an expressive face. Facial expressions are a primary form of human visual com-
munication. Ekman has cataloged on the order of 55,000 distinguishable facial expressions, with
about 30 semantic distinctions, and he has identified six primary expressions that communicate
emotions—anger, disgust, fear, happiness, sadness, and surprise.

Ekman and Friesen have proposed the Facial Action Coding System (FACS), a quantified ab-
straction of the actions of facial muscles, as a means of recording facial expressions independent
of cultural or personal interpretation [4]. The FACS represents facial expressions in terms of 66
action units (AU), which involve one or more muscles and associated activation levels. The AUs
are grouped into those that affect the upper face and the lower face, and they include vertical ac-
tions, horizontal actions, oblique actions, orbital actions, and miscellaneous actions such as nostril
shape, jaw drop, and head and eye position.

4.3 Muscle Actuatorsin the Model

The model incorporates the FACS representation implemented as part of Water’s earlier geometric
model [26]. Through the FACS abstraction, it is possible to suppress the low-level details of
coordinated muscle actuation, and provide a more convenient interface to the model in terms of the
higher-level language of expressions.

Although it is difficult to simulate the actions of all the muscles in the human face, Waters
[26] and others have achieved a broad range of facial expression using on the order of 20 muscle
actuators. These actuators run through the bottom layer of the trilayer tissue model. Muscles fibers
emerge from nodes fixed in bone at the bottom of the layer and attach to mobile nodes on the upper
surface of the layer.

Let m{ denote the point where muscle : emerges from the bone, while m¢ is its point of
attachment in the tissue. These two points specify a muscle vector

m; = m; —m;.
The displacement of node j from x; to x’; due to muscle contraction is a weighted sum of mm muscle
activities acting on node j:

x. = X; + Z Cibijmi; (6)

J
=1
where 0 < ¢; < 1isacontraction factor and b;; is a muscle blend function. Defining r;; = m{ —x;,

[ (HZ—]”%) ; for || vy [[< 0
Y 0; otherwise ’
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Figure 4: Tissue lattice with embedded muscle. (a) Initial geometry with muscle relaxed. (b) Equi-
librium position with muscle contracted and lower layers suppressed for clarity. (1,802 springs)

where a; is the radius of influence of the cosine blend profile.

Once all the muscle interactions have been computed, the lattice nodes x; are displaced to their
new positions x’; as in (6). As a result, those nodes not influenced by the muscle contraction are in
an unstable state and unbalanced forces propagate through the lattice to establish a new equilibrium
position. Fig. 4 illustrates the stable states of the lattice before and after the contraction of a muscle.

5 Construction and Animation of the Face M odel

5.1 Assembling the Face M odel

An automatic procedure assembles the facial model starting from a nonuniformly triangulated
mesh of a face. The nodes and springs of the initial mesh represent the epidermis. Normal vectors
from the center of gravity of each triangle are projected below the surface of the face to establish
nodes at the subcutaneous tissue interface. Tetrahedral units are then constructed by attaching
springs from the epidermis triangle nodes to these new nodes. The new springs represent the
dermal layer. Short springs are then attached from the second layer to another set of nodes to form
the subcutaneous layer. A final set of springs are attached from these nodes and anchored at the
other end to the bone, thus establishing the muscle layer. The muscle fibers are then automatically
inserted through the muscle layer from their emergence in bone to their nodes of attachment.

We have constructed a physically-based face model starting with the geometry of Water’s ear-
lier model [26]. Fig. 5 shows the skin topology after lattice construction. A total of 960 polygons
are used in the tissue model, which results in approximately 6,500 spring units. The figure il-
lustrates the tissue distortion after the influence of the zygomaticus major muscle (AU12), which
raises the corner of the lip, and the inner frontalis muscle (AU1) which raises the inner portion of
the brow.

5.2 A Real-Time Animation Example

The physically-based facial model is efficient enough to simulate and render at screen refresh rates
greater than 8Hz on a single cpu of a Silicon Graphics Iris 4D-240GTX workstation. Fig. 6 illus-
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Figure 5: 3D face model. (a) Undeformed geometry of the skin layer. (b) Deformed geometry
under the influence of AU1 and AU12 (only epidermis is displayed for clarity).

trates a variety of stills from an interactive session. The parameters of this facial model simulation
using equations (4) and (6) were At = 0.02, m; = 0.02, v; = 0.5, and ¢, = 0.49. The user inter-
acts with the model through a menu driven interface which allows the specification of jaw rotation
and individual muscle contractions. The simulation runs continuously and rendering occurs every
5 time steps, which turns out to be suffient time for the tissue model to reach dynamic equilibrium
in response to muscle activation. The epidermis of the face is Gouraud shaded and the eyes and
teeth are positioned and rendered as in [26].

Fig. 6(a) and Fig. 6(b) show the undeformed facial tissue model, while Fig. 6(c) shows the
jaw rotated. Figs. 6(d) and 6(e) demonstrate asymmetric contractions on the zygomaticus major,
frontalis and the labii superioris muscles. Fig. 6(f) illustrates an expression of happiness. Figs. 6(g)
and 6(h) show the contraction of the lateral corrugator and the anguli depressors, and Fig. 6(i)
illustrates an expression of anger.

Note the wrinkles in the skin that appear around the frowning mouth, the nasolabial furrows,
and the bulging of the inner portion of the brow at the root of the nose. It is nontrivial to produce
such effects with a purely geometric model, but in our physically-based model they emerge au-
tomatically through the simulation of the facial tissue, primarily due to the volume preservation
constraints.

6 Analysisof Dynamic Facial Images

In this section we consider the analysis of images of real faces in motion; i.e., the inverse problem
to facial image synthesis. Our goal is to extract directly from video images a set of dynamic muscle
parameters that may be used to animate our physically-based model. This is a difficult problem be-
cause it requires the reliable estimation of quantitative information about extended facial features,
such as the eyebrows and mouth, which typically undergo nonrigid motion in the image plane.

10



Published in the Journal of Visualization and Computer Animation, 1(2):73-80, 1990.

12

(@) (b) (©)
(d) (€) (f)
(9) (h) (i)

Figure 6: Rendered frames from interactive physically-based facial animation. (a) Relaxed face;
oblique view. (b) Relaxed face; frontal view. (c) Jaw rotated. (d) Asymmetric contraction of
the zygomaticus major, frontalis, and labii superioris; oblique view. (e) Frontal view of (d). (f)
Symmetric contraction yielding an expression of happiness. (g) Symmetric contraction of the
anguli depressors, lateral corrugators, and labii superioris; oblique view. (h) frontal view of (g).
(i) Symmetric contraction of the anguli depressors, lateral corrugators, labii superioris, and jaw
rotation yielding an expression of anger.

11
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6.1 Approach

We develop a method for capturing the essential characteristics of dynamic facial expressions by
making use of some recently developed physically-based vision techniques. Briefly, our approach
is as follows: Through straightforward image processing, we convert digitized image frames into
2D potential functions. The ravines (extended local minima) of these potentials correspond to
salient facial features such as the eyebrows, mouth, and chin. We employ a discrete variant of
deformable contours (a.k.a. snakes) first proposed in [7, 22]. The deformable contours lock onto
the ravines, thereby tracking the facial features from frame to frame. Our method estimates dy-
namic muscle parameters for the physically-based face model by automatically interpreting the
state variables of the deformable contours in successive image frames.

6.2 Deformable Contours

A deformable contour can be thought of as an energy minimizing spline in the z-y image plane.
The present application calls for deformable contours that have some rigidity, can stretch arbi-
trarily, but will resist shrinking beyond a prespecified amount. We define a discrete deformable
contour as a set of nodes indexed by 7 = 1,...,n. We associate with these nodes time varying
positions x;(t) = [x;(¢),y;(t)], along with “tension” forces «;(t), “rigidity” forces 3,(¢), and
external forces f;(¢). Note that all the forces have two components and act in the image plane.

We connect the nodes in series using nonlinear springs. Following the formulation of (1), let /;
be the given rest length of the spring connecting node 7 to node i + 1 and let r;(¢) = x;1 — x; be
the separation of the nodes. We want the spring to resist compression only when its actual length
||r;|| is less than /;. Hence, given the deformation e;(¢) = ||r;|| — [; we define the tension force

a;€; a;—1€;—
Q; = i e i—1s (8)
3] [pemsy]
where the tension variable a;(¢) is
_Joa ife; <0
i = { 0 otherwise, )

The rigidity of the continuous contour in [7, 22] stems from second order variational splines.
The associated rigidity force may be expressed in terms of the fourth-order parametric derivative
of the position function of the contour. Introducing rigidity variables b;, a discrete version of the
rigidity force is given by

,Bi = bi—H (Xi+2 — 2Xi+1 + Xi) — 2bi(Xi+1 — 2Xi + Xi—l) + bi—l(Xi — 2Xi_1 + Xi_z). (10)
To create an interactive deformable contour, we simulate the first-order dynamic system
dXi
Tt
where ~ is a velocity-dependent damping coefficient, and «; and 3, control the local tension and
rigidity of the contour. Tension and rigidity are locally adjustable though the a; and b; variables. In
particular, we want to be able to break a long deformable contour to create several shorter contours

on an image. Setting a; = b; = 0 permits a position discontinuity to occur at between nodes 7 and
i + 1 (note that setting only b; = 0 permits a tangent discontinuity to occur between these nodes).

12
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The deformable contour is responsive to a force field, derived from the image, which influences
its shape and motion (see below). It is convenient to express the force field though a time-varying
potential function P(x,y,t). A user may also interact with the deformable contour by applying
forces £*(¢) using a mouse (see [7] for details about user forces). Combining the two types of
forces, we have

fi =pVP(x;) + £, (12)

where p is the strength of the image forces and V = [0/0x, 0/0y]’ is the gradient operator in the
image plane.

To simulate the deformable contour we integrate the system of ordinary differential equations
(11) forward through time using a semi-implicit Euler procedure [21]. We obtain the procedure
by replacing the time derivative in (11) with the forward finite difference approximation dx;/dt ~
(x!T2F — x!)/At. Observing that the rigidity forces 3, are linear in the x; variables, and moving
the nonlinear tension force a; and external forces f; to the right hand side yields the pentadiagonal
system of algebraic equations

LA B = Ll — ol 1], (13)
which gives the node positions at the next time instant x4 in terms of the positions at the current
time x!. This pentadiagonal system is solved efficiently using a direct LDU factorization method.
Since the system has a constant matrix of coefficients, we factorize it only once at the beginning
of the deformable contour simulation and then efficiently resolve with different right hand sides at
each time step (see [22] for details).

6.3 Facial Image Processing

To apply deformable contours to facial image analysis, we first transform the image intensity func-
tion I(x,y,t) at time ¢ into a planar force field using simple image processing techniques. In the
present application, we are concerned with extended image features such as the eyebrow and lip
boundaries. Usually there is a prominent transition or edge in image intensity along these bound-
aries.

We want intensity edges to attract the deformable contours. To do this, we create a 2D po-
tential function P(z, y, t) whose ravines correspond with intensity edges by simply computing the
magnitude of the gradient of the image intensity

P(l‘, Y, t) == ||VGU * I(Z’, yvt)” )
where GG, * denotes convolution with a 2D Gaussian smoothing filter of width o. The smoothing

filter broadens the ravines so that they attract the contours from a distance.

6.4 Facial Feature Tracking

In a few simulation time steps the deformable contours slide downhill in P(x,y,t) (for fixed ¢)
and come to equilibrium at the bottoms of the nearest ravines. As they do so, the contours deform
freely and they eventually conform to the shapes of the intensity edges, thereby tracing the facial
features of interest.

13
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As soon as the contours have settled into ravines associated with a particular image frame,
we replace it with the next frame in the video sequence. Starting from their previous equilibrium
positions, the contours slide downhill into the perturbed ravines, so long as the motion of the facial
features of interest is small enough to retain the contours on the slopes of the perturbed ravines
along most of their lengths. If part of a contour escapes the attractive zone of a ravine, the rest of
the contour can pull it back into place.

We repeat the procedure on subsequent frames. The evolving ravines capture and convey the
contours, and the contours conform freely to them. Thus the contours track the nonrigid motions of
extended image features. As the deformable contours evolve in successive frames, their dynamic
state variables x! provide quantitative information about the nonrigid shapes and motions of the
facial features. Using an example, we will explain our procedure for automatically estimating from
these variables a set of facial muscle contractions through time.

6.5 A Facial Image Analysis Example

We have applied our approach to facial image analysis to a sample image sequence. One of the
authors (DT) subjected himself to a humiliating makeup job in order to enhance the contrast of his
facial features (lips, eyebrows, and nasolabial furrows). He then performed several facial expres-
sions in frontal view before a video camera. A surprise expression was digitized as a sequence of
256x256x8-bit images and submitted to analysis using deformable contours.

Fig. 7(b) shows the (negative) potential function computed from the frame in Fig. 7(a) which
occurs near the start of the surprise sequence. To compute the potential, we apply a discrete
smoothing filter G(7, j) which consists of two applications of 4-neighbor local averaging of the
pixel intensities, followed by the application of the discrete approximation to the gradient operator:
Vou(i,j) = [(v(i+1,7) —v(i, 7)), (v(i,5 +1) —v(i, 7))]". The outputs of the filters on the discrete
array (7, j) are interpolated bilinearly between pixels to obtain the continuous potential P(zx,y,t).

Using the mouse, the user draws initial deformable contours along the hairline, the left and
right eyebrows, the left and right nasolabial furrows, the tip of the nose, the upper and lower lips,
and the chin boss. The initialization procedure places the deformable contour nodes roughly 1
pixel apart and sets the rest lengths /; in (9) to the initial node separations. The parameter values
of the deformable contour simulation are v/At = 0.5, a; = 1.0 and b; = 0.5 (except at the jump
discontinuities between the contours, where a; = b; = 0.0), and p = 0.001. The figures show the
(red) deformable contours at equilibrium locked onto the facial features.

From the position information stored in the state variable arrays of the deformable contours, an
automatic procedure estimates:

1. Contractions of the left and right zygomaticus major from the positions of the endpoints of
the upper lip contour;

2. Contraction of the left and right levator labii superioris alaeque nasi from the positions of the
uppermost points of the associated nasolabial furrow contours;

3. Contractions of the left and right inner, major, and outer occipitofrontalis, respectively, from
the positions of the innermost, center, and outermost points of the associated eyebrow con-
tours;

4. Jaw rotation from the average position of the chin boss contour;
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(9) (h) (i)

Figure 7: Analysis of facial images using deformable contours. (a) Image frame near start of
surprise sequence with (red) deformable contours tracking facial features. (b) Potential function
(magnitude of intensity gradient of smoothed image (a)) with deformable contours. (c) Rendered
facial model with muscle contractions as estimated from deformable contours in (a). (d)—(f) Same
as above for frame near middle of surprise sequence. (g)—(i) Same as above for a later frame.
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5. Head reference frame from the average position of the hairline contour.

The positions of all facial feature points are computed relative to the head reference frame
which, assuming a relatively stable hairline, will move with the head in the image. The first
frame in the sequence shows DT’s face in a relaxed state. From this frame, the analysis procedure
estimates the rest lengths of his facial muscles in the head reference frame and calibrates them
against the rest lengths of the muscles in the face model. Fig. 7(c) shows the rendered equilibrium
position of the face model with the calibrated muscle rest lengths as inputs.

The estimated muscle lengths from successive frames are scaled by the calibration factors and
input to the physically-based model in sequence, the model quickly attains dynamic equilibrium
on each frame, and the state variables are rendered in real-time to produce an animated sequence.
Fig. 7(d)—(f) illustrates the deformable contours and the rendered face model for a frame near the
middle of the surprise sequence, and Fig. 7(g)—(i) show a later frame. The results demonstrate that
our technique can robustly estimate muscle contractions from images of a real face and use them
to animate the expression convincingly in a 3D face model with a different facial geometry.

7 Conclusion

This paper has presented a new 3D model of the human face which incorporates a physically-based
deformable model of facial tissue and a set of anatomically-motivated facial muscle actuators. The
tissue model, a lattice of nonlinear springs connecting point masses, is simulated by numerically
integrating a coupled system of Lagrangian equations of motion. Coordinated facial muscle con-
tractions induce local stresses which propagate through the facial tissue lattice deforming it to
produce meaningful expressions. Realistic effects such as wrinkling around an articulating mouth
result from the action of volume preservation constraints in the tissue lattice. Despite its sophisti-
cation, the face model runs efficiently and can produce animation at interactive rates on a high-end
graphics workstation.

A second contribution of the paper is a physically-based technique for estimating dynamic
muscle contractions for the face model from video sequences of articulating human faces. We
demonstrated that the estimated contractions are robust enough to allow the model to reconstruct a
transient surprise expression convincingly. Our work to date suggests that it may be possible to run
our hierarchical face model backwards from the image level all the way up to the expression level,
thereby solving a longstanding vision problem—the analysis and recognition of human expressions
from dynamic images. This possibility remains open for future investigation.
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