
Physically-Based Manipulation on the Responsive Workbench

Bernd Fröhlich

Henrik Tramberend

German National Research Center

for Information Technology

Andrew Beers

Maneesh Agrawala

Stanford University

David Baraff

Carnegie Mellon University

Abstract

This paper describes how a physical simulation can be

integrated with our Responsive Workbench system to sup-

port complex assembly tasks involving multiple hands and

users. Our system uses the CORIOLIS physical simulation

package extended to meet the real time requirements for our

highly interactive virtual environment. We develop a new set

of interface tools that exploit the natural properties of phys-

ical simulation (i.e. the superposition of forces). Our tools

are based on sets of springs connecting the user’s hand to

a virtual object. Visualizing these springs provides “visual

force feedback” of the applied forces and facilitates the pre-

diction of the objects’ behavior. Our force-based interac-

tion concept allows multiple hands and users to manipulate

a single object without the need for locking the object.

1 Introduction

In real life, many tasks require the coordinated interac-

tion between multiple hands and multiple people. For ex-

ample, mounting a light on a ceiling requires at least two

hands, and draping a table cloth over a table is best done

with two people holding the table cloth at the four corners.

Assembly tasks are prime examples of such multi-handed,

multi-person interactions. In virtual environments however,

assembly tasks have been difficult to perform. There are

two main reasons for this: First, while we are accustomed

to using multiple hands and multiple people for assembly

tasks in real life, the access of multiple hands or multiple

users to the same virtual object has been mostly forbidden.

A virtual object is typically locked by the first user’s access.

The underlying reason is that users in these systems change

the position and orientation of virtual objects directly, and

it is not clear how to merge the input from multiple users’

hands so that the object still moves sensibly. Second, the

alignment of real objects is often based on contact, friction,

as well as the forces applied to these objects. These physical

influences have not yet been simulated for arbitrary three-

Figure 1. Two hands are used to fit the

crankshaft into the bearing.

dimensional objects in real-time virtual environments. At

most, VR-systems support fast collision detection, which

gives users feedback when objects start to penetrate each

other [8] [7]. The problem with only providing collision

detection is that there is no further help from the system on

how to change the position and orientation of the virtual ob-

jects to align them properly. In real life, we just apply forces

to objects we are manipulating and the superposition of all

these forces, in conjunction with the physical properties of

the object and the environment, determine the object’s be-

havior. In this paper we describe a system and interaction

techniques that are based on this idea and we show how

multiple hands and multiple users can access and work in

coordination on the same virtual object (figure 1). In our

system, we compute the virtual objects’ behaviors using

a real-time physical simulation, which performs collision



detection between objects, manages constraints, and takes

physical properties of objects into consideration. The phys-

ical simulation in combination with our interaction tech-

niques lets multiple users perform assembly tasks in coor-

dination.

We use our system to drive the Responsive Workbench

[10] [9], a table top stereo display based on a workbench

metaphor. Workbench applications typically set virtual ob-

jects right on top of the horizontal display surface. This

setup is ideal for assembly tasks since most objects are

within an arm’s length reach to the user. Recently, the two-

user Responsive Workbench [1], the PIT [3], and Studier-

stube [13] have been presented, which support more than

one active tracked user. In such environments we have pos-

sibly four or more hands acting in coordination. In this pa-

per we show how this multi-handed input can be handled

elegantly.

The main contributions of our work are the extension and

tight integration of a real-time physical simulation with our

virtual environment and the development of a new user in-

terface paradigm exploiting the inherent properties of phys-

ical simulation. Our interface tools are based on sets of

springs connecting the user’s hand to a virtual object. We

visualize these springs to provide “visual force feedback”

of applied forces, which facilitates the prediction of the ob-

jects’ behavior. We demonstrate our system using an as-

sembly task and discuss our experiences.

2 Related Work

In the past few years, several VR-systems have been

built that support two-handed input, but only a few systems

use two-handed manipulations on a single object. Polyshop

[11] uses symmetric two-handed tools for rotating, scaling,

or stretching objects. Users can also align objects via an-

chors and constraints. The CHIMP system [12] uses two

hands for object scaling. Cutler et. al. [6] developed a

variety of two-handed tools for object positioning tasks.

They also presented two versions of a two-handed grab

tool, which allowed them to orient objects easily using two

hands, and to pass objects from one hand to the other.

There is a variety of constraint-based systems. One of

the most impressive systems is SKETCH [15], which allows

the user to quickly sketch a three-dimensional scenario in a

monitor-based environment. Constraints are either inferred,

for example by placing new objects in contact with existing

objects or explicitly sketched in addition to the geometry.

In distributed VR-systems, the issue of multiple users

trying to grasp the same object is rarely addressed. As an

example of a system that addresses this issue, DIVE [5] uses

some form of distributed locking to lock an object by the

first user’s access. However, this prevents tasks like handing

over an object between two users.

Today, sophisticated animation packages like Alias [2]

use physical simulations to produce natural looking anima-

tions. In these systems , there is no strict real-time require-

ments for the physical simulation like there is in a VR sys-

tem. Also, the user interface is designed for one user in

front of a standard two-dimensional screen

Baraff[4] describes a 2D rigid-body simulator.

CORIOLIS
TM is the 3D extension of this system and

handles arbitrarily shaped polyhedral rigid bodies, with an

emphasis on persistent contact, collision and friction. We

use CORIOLIS as the physical simulator in our system.

3 Interaction

Within physical simulations, objects are controlled by

forces. The simulation uses these forces to update the cur-

rent position and orientation of each object depending on

environmental and user defined constraints as well as the

current state and physical properties of the object and the

whole environment. By using forces as the method of in-

teraction in a physically-based simulation environment, we

gain two benefits. First, having more than one hand or user

acting on an object does not have to be special-cased – it is

naturally handled by the superposition of forces acting on an

object. Second, objects move naturally during interaction,

since they can obey other forces or constraints imposed on

them by the environment and other objects.

To interact with an object, we have developed spring-

based virtual tools. One end of a virtual spring is attached

to the user’s hand and the other end is attached to the ob-

ject. Clearly, one spring doesn’t give the user much control

over an object, since the three positional degrees of freedom

are only “softly” constrained (assuming a spring with rest

length zero). The attached object follows the user’s hand,

but it can still freely rotate around the attachment point. To

get more control over the object we experimented with mul-

tiple springs attached in various ways to objects. Besides

the number of springs, the position at which the springs are

connected to the object play an important role. We tried

different spring attachments relative to

the center of the object’s bounding box: With this ap-

proach it appears as if the user is holding the object by

its center. The main problem with this approach is that

it can be difficult to control an object when its center

of mass is not close to the bounding box’s center.

the object’s center of mass (figure 2 a,e,h,j): This con-

figuration works very well for one-handed positioning

tasks when four or more springs are used. The object

follows very directly the user’s hand movements.

With only three springs the object tends to swing

perpendicular to the plane defined by the three points,

even though all six degrees of freedom are controlled.



We found, however, that this method does not work

well for situations where two or more hands try to

manipulate an object, since each hand controls the

object very directly.

the user’s hand (figure 2 b,c,d,f,g,i): This method lets the

user choose where to hold on to an object. The ver-

sion with two springs is similar to holding an object

with two fingers and allows the object to freely rotate

around the axis connecting the two points on the in-

ner frame. This works well for two-handed situations

where the second hand controls the unconstrained de-

gree of freedom. With four or more springs, the user

has good control over all six degrees of freedom of the

object, but objects tend to swing when picked up with

one hand far off the center of mass - as in real life.

Here the user typically reaches in and uses the second

hand or another user helps out (figure 1). This method

is our default, because it gives the user explicit control

about the grip onto an object. It is also shown in the

accompanying video.

� ✁ ✂ ✄ ✁ ☎ ✆ ✝ ✞ ✟ ✄ ✠ ✡ ✡ ✠ ✝ ✟ ☛ � ☞ ✂ ✄ ✌ ✄ ✆ ✍ ✂
✎ ✏ ✑ ✒ ✓ ✔

✕ ✖ ✖ ✗ ✘ ✙ ✘ ✚ ✛ ✗
✜ ✢ ✣ ✤ ✥ ✦ ✤ ✧ ★ ✩ ✦ ✪ ✫

✬ ✭

✮ ✯
✰ ✱

✲ ✳

✴ ✵

✶ ✷ ✸ ✹
✺ ✻

✼ ✽ ✾ ✿

Figure 2. To explain how hand movements

control objects, the concept of two rigid

frames connected by a set of springs is in­

troduced. The outer frame is directly con­

trolled by the users hand. The inner frame is

rigidly attached to the object. Different spring

configurations exhibit different control prop­

erties. The springs between these frames de­

termine which forces are applied to an ob­

ject based on Hooke’s law and an additional

damping term to avoid uncontrolled oscilla­

tions.

Other tools like sliders, buttons, switches, menus and

such, which influence some non-geometric or abstract

property in the environment are also modeled as three-

dimensional objects and become part of the physical sim-

ulation. The position, orientation, velocity, and/or accelera-

tion of the tool’s geometric representation is then observed

by the tool and used to control its internal state. A sim-

ple example is the slider in figure 3. This integration of

the user interface elements into our simulation extends the

multi-handed and multi-user capabilities seamlessly to the

user interface.

Figure 3. The slider is also part of the simu­

lation and is operated by the 8­spring tool. It

controls the transparency of the cylinder.

Constraints describe geometric relationships between

virtual objects, which CORIOLIS is responsible for en-

forcing. Contact constraints, which keep different objects

from interpenetrating, are enforced automatically by CORI-

OLIS . Typical linkage constraints such as keeping a point

on a line and user-defined constraint types can be easily

added. We make effective use of our computational re-

sources by switching back and forth between contact con-

straints, which are typically computationally very expen-

sive, and linkage and other user-defined constraints. Our

current implementation allows us to predefine constraints

at startup time, and also the conditions under which these

constraints are added or removed from the system. A typ-

ical example used in our engine assembly scenario, shown

in figure 5, is the insertion of the crankshaft into the bear-

ing block. Once the crankshaft is approximately in place,

we turn off collision detection between crankshaft and bear-

ing block and replace these contact constraints by an axial

constraint and an inequality constraint. The axial constraint

aligns the crankshaft with the bearing’s axis and the in-

equality constraint prevents the crankshaft from penetrating

the bearing block. To prevent the crankshaft from slipping



out of the bearing we add a spring between the crankshaft

and the bearing that keeps the crankshaft in place, but still

provides some flexibility. Alternatively, we could use a

point constraint, which would keep the crankshaft always

in the ideal place, or two inequality constraints keeping the

crankshaft within a certain tolerance around the ideal posi-

tion. The solution using the spring has the advantage that re-

moving the crankshaft from the bearing can be easily done

by pulling hard enough on the crankshaft. At some point

the spring virtually breaks and we remove the linkage con-

straints from the system and restore collision detection be-

tween crankshaft and bearing. This approach also shows

that physical behavior can reduce the number of explicit

state changes in an elegant manner.

4 Implementation

For the interaction with virtual objects on the Responsive

Workbench we use two tracked pointing devices: a six de-

gree of freedom Polhemus stylus with a button and a custom

three-button pointer containing a Polhemus sensor. These

input devices can be used by two different users or by the

same user for two-handed manipulations.

For the physical simulation, we adapted the CORIOLIS
TM

rigid-body simulation system. CORIOLIS comes as a library

of C++ classes. It does not provide any support for graphics

output or file I/O. Classes representing objects, influences,

and constraints can be instantiated and added to the simu-

lation at runtime. CORIOLIS is able to simulate moderately

complex environments at interactive rates.

We augmented the basic CORIOLIS kernel with addi-

tional infrastructure to make it usable in a head tracked

highly interactive virtual environment like the Responsive

Workbench. Head tracked systems are inherently vulner-

able to low or varying rendering frame rates and latency.

CORIOLIS uses an adaptive solver so simulation rates can

vary by orders of magnitude depending on the actual ob-

ject configuration. Therefore, interleaving the rendering

and simulation tasks can lead to severe problems. A com-

plex physical interaction can lead to long simulation cycles

which would slow the rendering rate to unacceptable lev-

els. Similarly, a visually complex scene could slow down

the simulation. To overcome this problem we decoupled

the simulation from the rendering task by executing it in a

separate process.

For each object in the rendering scene graph, there is a

proxy object that corresponds to an object in the CORIO-

LIS process. The communication between the CORIOLIS

object and its proxy across the process barrier is handled

through asynchronous message passing. A typical commu-

nication pattern for a CORIOLIS object and its proxy is the

following: The user adds a new force (e.g. a spring) to the

system and applies it to an object. The parameters of the

Figure 4. To save on computational resources

in the simulation process while maintaining

visual detail, different geometric representa­

tions are used for rendering and simulation.

This figure shows the crankshaft. The re­

duced representation in the back contains

about 15% of the polygons of the original ver­

sion in the front.

force are encapsulated in a message and sent to the CORI-

OLIS process where the force is instantiated and added to

the simulation. On the other side, each simulation-induced

update to an object’s position or orientation is sent back to

the corresponding proxy object. The scene graph is updated

so the change will be visible after the next rendering step.

This implementation scheme nicely reflects the decoupling

between user action and system response in contrast to stan-

dard interaction models like the one described in [14]. In

CORIOLIS , a scene consists of a set of world space objects

for which the physical simulation is performed. Each object

can be described hierarchically, but there are no transforma-

tions contained in this object tree. Our proxy interface fully

supports hierarchical scene graphs as they are common in

standard graphics libraries like OpenInventor or Performer,

and it takes care of their mapping into the simpler CORIO-

LIS object hierarchy.

When rendering complex scenes, objects are often dis-

played at different levels of detail to keep the frame rate

constant. In our system, we use different levels of detail

for the objects rendering and simulation geometries. Typi-

cally, the polygon count for our CORIOLIS objects is much

lower than for the rendering objects since the simulation can

only handle one to three orders of magnitude fewer poly-

gons than high end graphics rendering hardware at interac-

tive update rates. The simulation rate depends highly on

the spatial arrangement of the objects. Depending on the



task we found that the CORIOLIS representation can often

be extremely simplified (figure 4) without users noticing the

difference while maintaining high visual fidelity for the ren-

dered object.

5 Results and Discussion

Our Responsive Workbench system is hooked up to a Sil-

icon Graphics Onyx system with four 196 MHz R10000

processors and InfiniteReality graphics. The most com-

plex example we have used to test our system is an as-

sembly sequence for a one-cylinder engine consisting of a

crankshaft, crankshaft bearing, connecting rod, piston, and

cylinder (figure 5). The rendering representation consists of

nearly 6000 polygons whereas the simulation representation

contains only around 400 polygons. The rendering update

rate is about 24 frames per second with multi-pass shadows.

The simulation update rate is between 5 and 50 updates per

second depending on the spatial object configuration.

Overall the system feels very responsive as long as the

number of simultaneously interacting polygons is in the

range of a few hundred. If the simulation rate drops be-

low approximately 5 Hz objects start to stick to each other.

Tight peg and hole configurations cause oscillations and nu-

merical instabilities, which sometimes break the system.

We had to add at least 5 percent tolerance to avoid these

problems. Since it is crucial to keep the simulation running

above 5 Hz or even better 10 Hz, we have to carefully spend

the available simulation time. The number of simultaneous

contact constraints needs to be kept as small as possible.

Techniques such as using simplified simulation geometries,

switching back and forth between contact constraints and

simpler linkage constraints, and not checking collisions be-

tween motionless objects are essential. Often it is unneces-

sary to include objects, for example the user interface ele-

ments, fully into the physical simulation, since they might

not collide with other objects.

With our spring-based interaction concept, each hand

tries to align the object with its orientation and position.

When holding on to an object with two or more hands this

can be a little confusing at first. For example when one

hand is rotated by 90 degrees, the object turns only 45 de-

grees since the other hand tries to rotate the object back into

the zero degree position. When one hand is released in this

situation, the object snaps back to the position and orienta-

tion of the other hand. Sometimes this requires changing the

grip on an object more often than in real life to get an object

into the desired orientation. In other situations it would be

desirable to be able to relax the springs during the interac-

tion or before releasing the object.

In some ways the flexibility of our spring tools simulate

the flexibility of our fingers when aligning an object with

another object. Visualizing the springs gives the user an

easy way to interpret the visual “force feedback” that helps

show why an object behaves in a certain way. It also fa-

cilitates the prediction of the object’s behavior in response

to the forces applied. While these multi-spring tools could

also be implemented using a single spring with torque, this

approach would not be as intuitive and easy to understand.

6 Conclusions and Future Work

We have described the integration of a physical simu-

lation with the Responsive Workbench system. Our new

interaction concept is based on sets of springs connecting

the users’ hands to the virtual objects. This force-based ap-

proach made our system inherently multi-handed and multi-

user capable enabling collaborative assembly tasks. Simple

linkage constraints are used to replace computationally ex-

pensive contact constraints whenever possible.

Currently, we generate the different representations for

the rendering and the simulation process manually, but we

would clearly like to automate this process as much as pos-

sible. The questions are: which are the features of an ob-

ject that need to be preserved for a physical simulation and

how can we detect them? Is it possible to adapt mesh sim-

plification algorithms developed for rendering to work for

physical simulations?

The most important and challenging task is the improve-

ment of the physical simulation itself. The numerical sta-

bility needs to be significantly improved to deal with real

world examples. Another promising improvement is the

parallelization of the collision detection method and the dif-

ferential equation solution method employed by the physi-

cal simulation.

We have opened the door into a new world of inter-

action paradigms and user interface techniques, which we

have only begun to explore. As long as unobtrusive force-

feedback and haptic feedback are unavailable, a real-time

physical simulation delivers the most convincing interactive

feedback we have experienced to date.

7 Acknowledgements

We thank Pat Hanrahan for contributing many ideas and

for many fruitful discussions. The second author is grateful

to Pat Hanrahan for hosting him at the Stanford graphics lab

in spring 1997. This work started out while the first author

was working at the Stanford graphics lab and the second

author was visiting. The project was supported by Interval

Research Corporation.



(a) (b)

(c) (d)

Figure 5. Four snapshots of an assembly sequence for a one­cylinder engine. (a) The user picks up

the crankshaft with two hands and tries to slide it into the crankshaft bearing guided by the bearing

block’s surface. After the crankshaft is in place, we turn off collision detection between crankshaft

and bearing and replace these geometrical constraints by an axial constraint. This greatly reduces

the number of constraints in our system and results in a perfect axle/bearing attachment. (b) The

connecting rod is mounted on the crankshaft. (c) For the attachment of the piston, the connecting

rod is frozen to simplify the insertion of the piston’s bolt into the rod. (d) After the user manages to

slide the cylinder onto the piston, the engine is complete. The images were taken from sequences

of the video. We recorded these sequences in monoscopic view from one display while showing a

stereoscopic view to the user at the workbench on a second display.



References

[1] M. Agrawala, A. C. Beers, B. Frohlich, P. Hanrahan, I. Mc-

Dowall, and M. Bolas. The two-user responsive workbench:

Support for collaboration through independent views of a

shared space. Computer Graphics, 31(3A):327–332, Aug.

1997.

[2] Alias/Wavefront. Learning Alias V8. Alias/Wavefront,

1996.

[3] K. Arthur, T. Preston, R. M. T. II, J. Frederick P. Brooks,

M. C. Whitton, and W. V. Wright. Designing and building

the pit: a head-tracked stereo workspace for two users. In

2nd International Immersive Projection Technology Work-

shop, Ames, Iowa, May 1998.

[4] D. Baraff. Interactive simulation of solid rigid bodies. IEEE

Computer Graphics and Applications, 15:63–75, 1995.

[5] C. Carlsson and O. Hagsand. DIVE — A platform for

multi-user virtual environments. Computers and Graphics,

17(6):663–669, Nov.–Dec. 1993.

[6] L. D. Cutler, B. Fröhlich, and P. Hanrahan. Two-handed di-

rect manipulation on the responsive workbench. 1997 Sym-

posium on Interactive 3D Graphics, 1997.

[7] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A

hierarchical structure for rapid interference detection. In

H. Rushmeier, editor, SIGGRAPH 96 Conference Proceed-

ings, Annual Conference Series, pages 171–180. ACM SIG-

GRAPH, Addison Wesley, Aug. 1996. held in New Orleans,

Louisiana, 04-09 August 1996.

[8] T. C. Hudson, M. C. Lin, J. Cohen, S. Gottschalk, and

D. Manocha. V-COLLIDE: Accelerated collision detection

for VRML. In R. Carey and P. Strauss, editors, VRML 97:

Second Symposium on the Virtual Reality Modeling Lan-

guage, New York City, NY, Feb. 1997. ACM SIGGRAPH

/ ACM SIGCOMM, ACM Press. ISBN 0-89791-886-x.

[9] W. Krüger, C.-A. Bohn, B. Fröhlich, H. Schüth, W. Strauss,

and G. Wesche. The responsive workbench: A virtual work

environment. IEEE Computer, pages 42–48, July 1995.

[10] W. Krüger and B. Fröhlich. The responsive workbench.

IEEE Computer Graphics and Applications, pages 12–15,

May 1994.

[11] D. P. Mapes and J. M. Moshell. A two-handed interface

for object manipulation in virtual environments. Presence,

4(4):403–416, 1995.

[12] M. R. Mine. Working in a virtual world: Interaction tech-

niques used in the chapel hill immersive modeling program.

Technical Report 1996-029, 1996.

[13] D. Schmalstieg, M. Gervautz, Z. Szalavari, K. Karner,

F. Madritsch, and A. Pinz. Studierstube - a multi-user

augmented reality environment for visualization and educa-

tion. Technical report TR-186-2-96-10, Vienna University of

Technology, Austria, 1996.

[14] P. S. Strauss and R. Carey. An object-oriented 3D graphics

toolkit. In E. E. Catmull, editor, Computer Graphics (SIG-

GRAPH ’92 Proceedings), volume 26, pages 341–349, July

1992.

[15] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes. Sketch:

An interface for sketching 3d scenes. Proceedings of SIG-

GRAPH 96, pages 163–170, August 1996. ISBN 0-201-

94800-1. Held in New Orleans, Louisiana.


