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Modern functional materials consist of large molecular building blocks with significant chemical complexity

which limits spectroscopic property prediction with accurate first-principles methods. Consequently,

a targeted design of materials with tailored optoelectronic properties by high-throughput screening is

bound to fail without efficient methods to predict molecular excited-state properties across chemical

space. In this work, we present a deep neural network that predicts charged quasiparticle excitations for

large and complex organic molecules with a rich elemental diversity and a size well out of reach of

accurate many body perturbation theory calculations. The model exploits the fundamental underlying

physics of molecular resonances as eigenvalues of a latent Hamiltonian matrix and is thus able to

accurately describe multiple resonances simultaneously. The performance of this model is demonstrated

for a range of organic molecules across chemical composition space and configuration space. We

further showcase the model capabilities by predicting photoemission spectra at the level of the GW

approximation for previously unseen conjugated molecules.

1 Introduction

The photoelectric effect1 describes the response of molecules

and materials to electromagnetic radiation by emission of

electrons. This effect plays a fundamental role in daily life, but

also in cutting-edge technology, such as optoelectronic

devices,2,3 regenerative electron sources for free-electron lasers,4

or photovoltaics, for instance to design articial ion pumps that

mimic nature.5

Novel functional materials in modern optoelectronic devices

are oen characterized by their molecular charge transport

properties between acceptor and donor molecules. Such devices

include organic diodes and transistors, which crucially depend

on the subtle alignment of molecular acceptor and donor levels

of different compounds with respect to each other. These

fundamental molecular resonances associated with electron

addition and removal in matter can be studied with photo-

emission and inverse photoemission spectroscopy.6,7 However,

the search for optimal materials combinations is limited by the

speed at which organic materials combinations can be spec-

troscopically characterized. This is exacerbated by the challenge

of interpreting macroscopically averaged photoemission data

for complex molecules.8–11

First-principles simulation of photoemission signatures

have the potential to dramatically accelerate high throughput

screening of organic materials, but the high computational cost

associated with accurate many-body excited-state calculations

limits their applicability to small molecular systems.12,13

Machine learning (ML) methods have the ability to overcome

the gap between experiment and theory for spectroscopic

characterization by reducing the computational effort of spec-

troscopic simulations without sacricing prediction

accuracy.14,15

ML methods in the context of spectroscopy have previously

focused on predicting single energy levels,15–19 oscillator

strengths,20,21 dipole moments,22–24 highest occupied molecular

orbital (HOMO) and lowest unoccupied molecular orbital

(LUMO) energies25–28 or band gaps.29–31 They have also been

applied successfully to identify and characterize structures from

X-ray absorption spectra.32–34 Electronic excitations of molecules

across chemical compound space show crossings of states with

different character and discontinuous behaviour. For ML

models based on smooth features to capture this behaviour

while simultaneously predicting multiple electronic excitations

is a formidable challenge.15,35 By predicting spectral line-

shapes36,37 or continuous densities-of-states38 directly, some of

these problems can be circumvented as spectral signatures are

smooth. Furthermore spectra can be represented by basis

functions or discrete grids providing a consistent representa-

tion that is independent of the number of energy levels or the

size of the molecule.39–41 However, a consequence of this

simplication is that direct information on the number and

character of the molecular resonances is lost.

In this work, we develop a deep convolutional neural

network that accurately predicts molecular resonances across
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a wide range of organic molecular compounds. We encode the

fundamental physics of molecular resonances by representing

them via a Hamiltonian matrix associated with a closed set of

secular equations. In contrast to previous efforts,42–45 this matrix

representation is not based on local atomic orbital features and

the elements of this matrix have no direct physical correspon-

dence beyond the fact that the matrix eigenvalues correspond to

the learned molecular resonances. As we are only training on

rotationally invariant quantities, the model achieves this

without the need to explicitly encode vectorial46–49 or tensorial

equivariance properties23,25 beyond the rotationally invariant

representation of the input molecular coordinates.28 The simple

algebraic modication of describing vectorial targets by diago-

nalization of a matrix output leads to increased learning rates,

reduced prediction errors, and increased transferability in

predicting electron addition and removal energies across

molecular composition space. We showcase the capabilities of

this model by predicting photoemission spectra of previously

unseen organic electronics precursor molecules at the level of

Density Functional Theory (DFT). We further show that the

model can be augmented to account for solvation effects or

many-body electron correlation effects using only a small frac-

tion of the original training data. Correlation effects are

described at the level of GW many-body perturbation theory,

which provides spectroscopic predictions of large, complex

molecules in close agreement with experiment.

2 Results
2.1 Scalar, vectorial, and matrix-valued deep learning

representations of molecular resonances

The deep convolutional neural network we propose is based on

the SchNet framework28,50 and its architecture is illustrated in

Fig. 1.

In order to learn n molecular resonances with the conven-

tional scalar SchNet model, n ML models, one for every elec-

tronic state or resonance i need to be trained. In the following,

we refer to this as a one-state (1S) model (panel a). Similarly,

a vector of nmolecular resonances can be represented using one

ML model with a single vectorial output, which we refer to as

multi-state (MS) model (panel b).51 This is identical to a previ-

ously proposed model in the context of photochemistry.35 The

pseudo-Hamiltonian model (SchNet + H), which we propose

here is shown in panel c and internally builds an ML basis that

satises the properties of a quantum mechanical Hamiltonian,

i.e., it is symmetric and has eigenvalues that correspond to

electron addition/removal energies. The dimension of the

effective Hamiltonian output layer scales with the number of

eigenvalues dened by the user. This is in contrast to a full

quantum mechanical Hamiltonian, which scales with the size

of the molecular system. This advantage makes it feasible to

learn a large set of molecular resonances in a dened energy

range for molecules of arbitrary size. The eigenvalues are

Fig. 1 Comparison of the architecture of (a) a conventional single-state ML model (1S-SchNet), (b) a multi-state ML model (MS-SchNet), and (c)

the proposed pseudo-Hamiltonian model (SchNet + H) along with the prediction accuracy for fitting 15 eigenvalues of the H2O molecule. The

elements of the Hamiltonianmatrix,Hij, are obtained by pooling atomic features, xa, from the last layer of the network L. (d) Scatter plots show the

ML-fitted eigenvalues of a test set plotted against the reference eigenvalues. (e) Orbital energies around the HOMO–LUMOgap are plotted along

the bending mode of the molecule using the MS-SchNet and SchNet + H models.
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obtained aer diagonalization of the ML pseudo-Hamiltonian.

Further details on the model training are given in the

Methods Section 4.

The prediction accuracy of the three models is rst analyzed

by training on the 15 lowest Kohn–Sham DFT eigenvalues of

1000 congurations of the H2O molecule generated by ab initio

molecular dynamics (for details on the training data, see ESI†)

as shown in panels d and e of Fig. 1. As can be seen from the

scatter plots in Fig. 1d and the prediction errors reported in

Table S1,† the set of 15 1S models shows an accurate prediction

of eigenvalues compared to the reference values with mean

absolute errors (MAEs) ranging from 0.6 meV up to 5.5 meV for

a given orbital energy. This is known and expected as each

model only has to cover a small energy range.28 A single deep

neural network with multi-variate outputs to predict all 15

eigenvalues shows substantial deviation between reference and

prediction across all energies, i.e., for low-lying semi-core as

well as for valence and virtual eigenstates (panel e) withMAEs of

up to 300 meV. The MS model is about twenty times less

accurate in terms of MAEs of the HOMO energy than the 1S

models (52 meV vs. 2 meV). This nding is in line with similar

models reported in the literature.17,18,22,26,27,35,39,42

The lack of prediction accuracy of the MS model can be

understood as the model has to cover a large range of energies

while having to capture the dependence of each eigenvalue as

a function of input. In contrast, our proposed model, SchNet +

H, which learns eigenvalues indirectly via the pseudo Hamil-

tonian matrix, faithfully reproduces orbital energies across the

whole energy range. The maximum MAE is 67 meV and the

HOMO orbital energy can be predicted with 26 meV accuracy.

Analysis of the learning behaviour shows that the prediction

error decreases faster with the number of data points for the

SchNet + H model compared to the MS model (see ESI Fig. S1†).

In Fig. 1e, the predicted and reference eigenvalue energies of

frontier orbitals around the HOMO energy are plotted as

a function of the bending angle in H2O. While all models

provide a qualitatively correct description of the smooth

dependence, the MSmodel shows larger deviations with respect

to the reference values compared to the SchNet + H model.

2.2 Predicting molecular resonances across chemical space

One might be able to attribute the improved performance of the

SchNet + H model compared to MS-SchNet simply to the

increased size of the output layer which provides more exi-

bility. We note that bothMS-SchNet and SchNet + H have almost

the same number of parameters and even a further increase of

the number of nodes and layers in the MS-SchNet model does

not yield a better prediction (see ESI† for more details). Instead,

we attribute the improved accuracy of SchNet + H to the fact that

the matrix elements of the pseudo-Hamiltonian are much

smoother functions in chemical space than the molecular

resonances on which the model is trained. By decoupling the

algebraic diagonalization that gives rise to avoided crossings

and non-differential behaviour of molecular resonances from

the ML model, we train an effective representation with

smoother coordinate dependence. This can be seen in Fig. 2

where the orbital energies and diagonal matrix elements pre-

dicted by the SchNet + H model are shown along a reaction

coordinate of 2-methylpentane. The structures are part of the

rst subset of the QM7-X data set52 on which the SchNet + H

model has been trained. The QM7-X data set is an extension of

QM7 (ref. 53) that contains 4.2 M equilibrium and non-

equilibrium structures of a large number of molecules across

chemical compound space. The quantum machine data sets54

are oen used as a benchmark in ML studies,28,39,55–60 which we

have also done here (plots reporting model accuracy are given in

ESI Fig. S3c†). The diagonal elements of the internally formed

ML basis shown in panel b vary more continuously with

molecular composition than the orbital energies shown in

panel a. The diagonal elements show numerous crossings along

the coordinate, which is reminiscent of the behaviour of quasi-

diabatic representations oen used to represent multiple elec-

tronic states in computational photochemistry.61,62 The smooth

functional form is found for different elements of the pseudo-

Hamiltonian matrix and is not only true for the diagonal

elements. This nding also holds for variation across chemical

composition space. In ESI Fig. S3,† we show the behaviour of

eigenvalues and Hamiltonian matrix elements predicted by the

ML model along a coordinate of molecules with increasing

number of atoms. The smooth functional behaviour of Hamil-

tonian matrix elements is also discernible in this case. It can be

seen that thematrix elements are randomly distributed in terms

Fig. 2 (a) Eigenvalues and (b) diagonal matrix elements of the pseudo-

Hamiltonian of the SchNet + H model trained on molecules of the

QM7-X data set52 along a trajectory of conformational change in 2-

methylpentane.

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 10755–10764 | 10757
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of value and position in the matrix with slightly more weight on

diagonal elements for larger molecules. It is noticeable that the

model makes effective use of all matrix elements.

To further validate the accuracy of the model, we train it to

represent 12 Kohn–Sham eigenvalues of ethanol42,54 along

a molecular dynamics trajectory. Scatter plots are shown in ESI

Fig. S2† and errors on a hold-out test set are reported in the ESI

Table S2† along with other models reported in the literature for

comparison. By comparing broadly across literature, we nd

that SchNet + H provides the same or better accuracy for the

prediction of multiple resonances (between 12 and 53 across

different training sets) compared to what most other models

achieve for a single molecular resonance (e.g. the

HOMO).17,18,26,35,39,63 The exception to this is the atomic-orbital-

based SchNOrb Hamiltonian model,42 which predicts an

average MAE for the same 12 eigenvalues of about 0.02 eV.

However, we note that SchNOrb is a much larger and more

exible model, which is trained on eigenvalues and Hamilto-

nian matrices to predict all molecular eigenvalues (with a total

averaged MAE of 0.48 eV). SchNOrb in its current form can only

predict eigenvalues as a function of atomic positions for a xed

molecular composition.

Encouraged by the promising performance of SchNet + H, we

have trained a transferable model of molecular electronic states

based on the OE62 data base.66 This data set is especially

challenging as it features greater elemental diversity and more

heteroatoms and functional groups than there are in the QM9

or QM7-X data bases.26,66 The 62k molecules in OE62 are

selected from known molecular crystal structures in the Cam-

bridge Structural Database.67 For each equilibrium structure,

the data set reports Kohn–Sham orbital eigenvalues calculated

at the PBE + vdW and hybrid PBE (PBE0) functional level of DFT.

The SchNet + H model trained on the PBE0 orbital energies is

termed ML(PBE0). The predicted orbital energies against

reference values of a test set are shown in Fig. 3a in light blue.

The SchNet + H model is trained to capture up to 53 electronic

states between �10 eV up to and including the LUMO+1 state.

The model error for each data point in the whole training set

shows a very large deviation for some systems with particularly

high structural complexity. One such outlier is shown in panel

a, which contains an 8-membered nitrogen cage in the center

(see also Fig. S4 in the ESI†). We note that these data points do

not inuence the model accuracy and its ability to generalize

across chemical compound space, which we have tested by

removing outliers and retraining the model. Training errors are

further reported along with the number of training data in ESI

Table S2.† The model error (MAE of 0.13 eV) is quite convincing

with few prominent deviations at low orbital energies that are

associated with a small number of outlier molecules of partic-

ularly high structural complexity.

For a subset of 30 876 molecules, the OE62 set further

reports PBE0 (ref. 68) eigenvalues calculated with the Multipole

Fig. 3 Validation of the SchNet + Hmodel to predict PBE0 eigenvalues of the OE62 data base and the D-MLmodel that corrects the PBE0 fitted

eigenvalues to G0W0@PBE0 accuracy or to PBE0 + implicit water solvation. (a) Scatter plots of a test set show the accuracy of each model. (b)

Histograms of orbital eigenvalue (quasiparticle) energies for PBE0 in implicit water solvation and G0W0@PBE0 are shown for the GW5000 data

set. A Gaussian envelope with 0.5 eV width is placed over each peak to depict the energy shifts between data sets and ML models. The

eigenvalues of (c) the molecule with most eigenvalues within the modelled energy range and with (d) the worst predicted eigenvalues in the test

set are shown using a Pseudo-Voigt lineshape64,65 based on a 30% Lorentzian and 70% Gaussian ratio with 0.5 eV width.

10758 | Chem. Sci., 2021, 12, 10755–10764 © 2021 The Author(s). Published by the Royal Society of Chemistry
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Expansion (MPE) implicit solvation method.69 For a further

subset of 5239 molecules in vacuum (termed GW5000), the data

set reports quasiparticle energies calculated at the many-body

perturbation theory in the G0W0@PBE0 approximation.70–72

With the exception of the HOMO, Kohn–Sham orbital energies

lack a physical meaning73 and important properties of opto-

electronic materials, such as donor and acceptor levels20,39 or

band gaps are oen incorrectly described.70 In order to obtain

charged excitations in molecules and materials, the GW

method13,71 can be used to correct artifacts that arise from

approximations in the exchange–correlation functional in DFT.

The computation of quasiparticle energies is computationally

unfeasible for the full OE62 data set and for much larger

molecular systems with potential relevance in organic elec-

tronics. The electronic resonances that include solvation effects

and correlation effects captured in the two data subsets should

principally deviate from the PBE0 energies of the full data set in

relatively systematic ways. We therefore apply a D-ML

approach20,74 to train ML models to capture the difference in

orbital energy and quasiparticle energy between PBE0 in

vacuum and in water and PBE0 and G0W0@PBE0, respectively.

Our D-ML approach is explained in more detail in the Methods

section. Briey, the SchNet + H model of the PBE0 eigenvalues

learns a baseline for the full 62k data set (50k training data

points), whereas the D-ML models learn the difference with

respect to this ML(PBE0) baseline from a much smaller training

data set (4k).

Test errors of orbital (quasiparticle) energies predicted by the

two D-ML models are also reported in Fig. 3a. We note that the

error distribution is narrower for the D-ML-corrected models

than for ML(PBE0). Fig. 3b shows that the ML(PBE0) and the

two D-ML models predict eigenenergies with high delity and

accurately represent the data sets with a MAE (RMSE) as low as 2

and 4 meV for PBE0(H2O) and G0W0@PBE0, respectively. On

closer inspection, we nd that the excitation spectrum of the

molecule in the test set with the most eigenvalues in the rep-

resented energy range shows quantitative agreement with the

reference spectrum and a MAE (RMSE) of 29 (52) meV in the

vicinity of the peaks (see Fig. 3c). The spectrum for the molecule

with the highest prediction error (Fig. 3d) shows noticeable

deviations only for the D-ML(G0W0@PBE0) model. Here the

model predicts a splitting of the HOMO levels and underesti-

mates the energy of the LUMO compared to the reference data

with a MAE of 0.51 meV and a RMSE of 0.94 meV on the spec-

trum in the vicinity of the peaks. We note that this molecule is

a rare case in the data base that contains more heteroatoms

than carbon atoms, which could be a reason for the increased

prediction errors.

The D-ML(G0W0@PBE0) is only trained on a subset of 4k

datapoints of the GW5000 data set as no quasiparticle energies

are available for the full 62k data points of the OE62 data set. By

applying the SchNet + H ML(PBE0) and D-ML(G0W0@PBE0)

models to predict the quasiparticle energies of the full OE62

data set, we can gauge the transferability of the models across

chemical space. We nd that the models predict the same

vertical shi of occupied and unoccupied states between PBE0

and G0W0@PBE0 levels of theory for the full OE62 data set that

we have shown in Fig. 3b for the GW5000 set (see ESI Fig. S4b†).

In addition, the predictions show a linear correlation of the

Kohn–Sham HOMO and LUMO orbital energies with the cor-

responding quasiparticle energies (Fig. S4a†). This linear rela-

tion has previously been identied for HOMO energies of the

smaller GW5000 subset in ref. 66, which we can now extend for

all orbitals in the OE62 set. Not surprisingly, the application of

the D-ML(G0W0@PBE0) induces a downward shi of occupied

PBE0 energies and an upward shi in energy for unoccupied

orbitals to create electron removal and addition quasiparticle

energies. Hardly any shi can be found for the eigenenergies

obtained from the implicit solvation model indicating that

solvation has a minor impact on the molecular resonances.

The combined SchNet + H ML(PBE0) and D-

ML(G0W0@PBE0) models can predict (inverse) photoemission

spectra, ionization potentials and electron affinities of large and

complex organic molecules which are well out of reach for ab

initio calculations at this level of theory. Previous works have

predicted individual HOMO and LUMO quasiparticle energies

of the GW5000 (ref. 27) and GW100 (ref. 63 and 78) data sets.

Ourmodel is able to predict many quasiparticle resonances over

a wide energy range and is therefore able to simulate photo-

emission spectra.

2.3 Prediction of energy levels and photoemission spectra of

functional organic molecules

In the following, we report the ML-based prediction of the

photoemission spectra of a range of organic molecules which

are commonly used as acceptor and donor compounds in

organic electronics applications. To showcase the wide appli-

cability of our model, three different types of functional organic

molecules are selected: azenes, derivatives of azulenes, and

other polycyclic aromatic hydrocarbons. Azulenes are particu-

larly interesting as they exhibit unusually low HOMO–LUMO

gaps for molecules of such small conjugation length due to

their topological properties.79,80 Polycyclic aromatic hydrocar-

bons are oen considered for the design of new organic light-

emitting diode materials, eld-effect transistors or photovol-

taics.3,7,81 Their electronic properties make these molecules not

only relevant for optoelectronic applications, but also for other

research areas such as astrochemistry82 and atmospherical

chemistry.83

The excitation spectra are predicted with the ML model

trained on PBE0 orbital energies of the OE62 data set (denoted

as ML(PBE0)) and the D-ML model trained on the difference of

the ML(PBE0) model and the G0W0@PBE0 values of 4k data-

points of the GW5000 data set. The combination of bothmodels

is denoted as ML(G0W0@PBE0) in the following. All photo-

emission spectra shown in Fig. 4a–d and ESI Fig. S6–S8† are ML

predictions of molecules the model has not seen before. In

addition to the photoemission spectra, the LUMO energies are

plotted and the spectra obtained from Kohn–Sham eigenvalues

are shown to highlight the D-ML quasiparticle correction. The

spectra obtained with ML(G0W0@PBE0) are in excellent

agreement with experiment. Compared to spectra based on

Kohn–Sham orbital energies, they accurately reect the

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 10755–10764 | 10759
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positions and intensities of photoemission features. In addi-

tion, the model correctly predicts the spectral ngerprints of

similar molecules and accurately describes substituent effects.

For instance, the model accurately predicts the differences of

1,3-dibromoaculene and 1,3-dichloroaculene (see panel d and

ESI† for details). Even a highly complex molecule such as 1,3-

dibenzoylazulene with 48 atoms (see Fig. 4d), is predicted with

high accuracy with respect to the experimental spectrum.

In addition to the photoemission spectra, we predict the

electron affinities and ionization potentials of molecules of the

acene family. As can be seen in Fig. 4d, acenes are built from

linearly condensed benzene rings and are oen referred to as

“1d graphene strips”. Acenes are especially interesting as they

are relevant in electronic devices due to their narrow HOMO–

LUMO gaps that can result in generally high conductivity.2,77

The predicted ionization potentials and electron affinities t

well to experimental values although the HOMO–LUMO gaps

are slightly underestimated. This underestimation is not an

artifact of the ML model, but is a well known limitation of the

G0W0 method for acene molecules.77 Due to the instability of

hexacene (n ¼ 6), the experimental prediction of charged

excitations is challenging, hence no electron affinity value is

available to which the ML predictions can be compared.2 The

respective photoemission spectra are reported in ESI Fig. S8†

and are in qualitatively good agreement with experimental

spectra reported in literature.77

3 Conclusion

In this work, we have developed a machine learning model that

can be used to predict orbital energies of large and complex

molecules in various congurations duringmolecular dynamics

and orbital and quasiparticle energies across chemical

compound space in general. By using physical relations and

building an internal ML basis that exploits the fundamental

symmetries of a quantum chemical Hamiltonian, but does not

scale with system size, molecular resonances such as orbital

and quasiparticle energies can be predicted with high accuracy.

The developed model is accurate enough to be used in combi-

nation with aD-MLmodel trained on the difference between the

ML predicted orbital energies of DFT and quasiparticle energies

from many-body perturbation theory. This provides an

extremely data-efficient way to eliminate errors in spectral

signatures that arise from exchange–correlation approxima-

tions in Kohn–Sham DFT and to achieve close to experimental

accuracy in the prediction of photoemission spectra, ionization

potentials, and electron affinities. We evidence this by predict-

ing these quantities with high accuracy compared to experiment

for unseen azulene-like molecules, acenes, and polyaromatic

hydrocarbons that are oen targeted for the design of new

organic electronic materials.3 The model clearly has the ability

to distinguish between functional groups and predict trends as

a function of molecule size in conjugated systems. The results

demonstrate the transferability and scalability of the model.

While we have only shown the application of this model for

frontier orbital and quasiparticle energies, we are condent that

it will be similarly applicable to the prediction of core-levels and

X-ray photoemission signatures.6,41

The ability to efficiently predict molecular resonances at

high accuracy is key to enable large-scale computational

screening of novel acceptor and donor molecules to be used in

organic electronics and thin lm device applications.7,81,84 We

expect that the presented method will be very useful in this

context. It will likely be especially powerful in combination with

generative ML85,86 or reinforcement learning models87 that can

recommend new molecular structures with specic tailored

properties. In this way, a fully automated search algorithm for

new molecules with optimally tuned acceptor and donor levels

could be created.81,88,89

4 Methods

The underlyingMLmodel used in this work is SchNet.28,90 As the

network architecture of SchNet is explained in the original

references in details, we will only briey describe it here: SchNet

is a convolutional message-passing neural network that was

originally developed to model scalar valued properties and their

derivatives91 and has recently been extended to model multiple

Fig. 4 Experimental and ML predicted photoemission spectra along

with the LUMO (quasiparticle) orbital energies at the PBE0

(G0W0@PBE0) level for (a) perylene, (b) chrysene, (c) 1,3-dibenzoyla-

zulene, and (d) 1,3-dichloroazulene. A Pseudo-Voigt lineshape64,65

based on a 30% Lorentzian and 70% Gaussian ratio with 0.3 eV width

was used. (e) Electron affinities and ionization potentials of acene

molecules are plotted with increasing ring size. (1)Experimental

photoemission spectra have been extracted from ref. 75, (2) ref. 76, and
(13) ref. 77.
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energy levels and multi-state properties in the context of

molecular excited states. This model was previously termed

SchNarc and we call it MS-SchNet for consistency in this

work.35,92

4.1 SchNet + H

(MS-)SchNet combines a network that learns the molecular

representation in an end-to-end fashion with a network that

maps this tailored representation to the targeted outputs. The

rst part of the network, the input layer I in Fig. 1, takes atomic

positions, r1 to rNa, with Na being the number of atoms in

a system, and elemental charges, z1 to zNa, as an input. It

transforms this information into atomistic descriptors using

lter-generating networks and atom-wise layers to optimize the

representation. This representation enters into the network, L

in Fig. 1, which itself contains layers that learn atomistic

features xa. These features are sum-pooled and usually form

(excitation) energies. The SchNet + H model developed here is

an adaption of MS-SchNet, in which the architecture of the

network is altered such that the nal fully-connected layer

represents a symmetric matrix, HML (H in Fig. 1), that returns

a diagonal matrix of n eigenvalues 3ML
i aer diagonalization:

diag({3ML
i }) ¼ UTHMLU. (1)

As SchNet learns the molecular representation, the need for

extensive hyperparameter search is reduced. As illustrated in

Fig. 1, Hamiltonian elements for states i and j, Hij, are obtained

by sum-pooling of atomic features, xa. wija denotes the weights

that connect the last layer of the standard SchNet network to the

pseudo-Hamiltonian layer.

Hij ¼

X

Na

a

wijaxa (2)

Diagonalization of the pseudo-Hamiltonian matrix is carried

out aer each pass trough the network and the eigenvalues

predicted by the ML model enter the loss function, L2:

L2 ¼
1

N

X

n

i

�

3
ML
i � 3

ref
i

�

(3)

where 3refi indicate reference eigenvalues in the training data set.

Due to the fact that we backpropagate through the diagonal-

ization, the atom-wise features are connected and form a global

molecular representation of the orbital energies.

SchnNet + H models consistently provide better accuracy

thanMS-SchNetmodels. While the accuracy of direct training in

MS-SchNet can be improved by placing a Gaussian function on

top of the orbital energies in the loss function, this did not lead

to more accurate results than the SchNet + H model. Our goal

was to develop a model that predicts molecular resonances

across chemical space and does not scale with system size. We

therefore dene an energy range within which we represent all

orbital energies up to amaximum number of values that denes

the size of HML. The energy range that was tted for each data

set is reported in ESI Table S2.† A varying number of orbital

energies are used for training with the maximum number of

eigenvalues being 53 for the OE62 and GW5000 training sets.66

Every molecule that contains fewer orbital energies than the

maximum amount of tted values can be predicted by using

a mask in the loss function that makes sure only relevant values

are included.

4.2 D-MS-SchNet

The GW5000 training set contains 5k data points and represents

a subset of the OE62 data set with G0W0@PBE0 quasiparticle

energies. Due to the complexity of the data set with molecules

up to 100s of atoms, 5k data points are not enough to train

a model directly on quasiparticle energies (MAEs of 0.3 eV). To

circumvent this problem, D-ML20 was applied. This approach

can be used to train the difference between a baseline method

and a higher accuracy method. In this case, we trained a model

on the difference between the orbital energies obtained from

DFT as predicted by the SchNet + H model, 3ML(DFT), and the

quasiparticle energies of G0W0@PBE0, 3QC(G0W0):

D3
ML(G0W0 � DFT) ¼ 3

ref(G0W0) � 3
ML(DFT) (4)

For the D-ML model, a conventional MS model is sufficient

as the differences in DFT (predicted by the SchNet + H model)

and G0W0 vary less strongly as a function of input than the

actual targets.93,94 The architecture of the D-ML model is iden-

tical to panel (b) in Fig. 1. The D-ML model is trained separately

from the SchNet + H model and is not combined in an end-to-

end fashion. Nevertheless, the models depend on each other as

the SchNet + H models provides the baseline for the D-ML

model and predictions of both models need to be combined to

obtain reliable quasiparticle energies.

Although the accuracy of the D-models can be improved by

using DFT reference values as the baseline for D-models (MAE

of 0.02 eV are obtained with DFT baseline models compared to

MAEs of 0.16 eV with SchNet + H(PBE0) baseline models), the

ML predicted DFT values are chosen as a baseline to circumvent

the use of DFT reference calculations for new predictions alto-

gether. This provides an ML prediction that is independent of

electronic structure calculations and practical for large-scale

screening studies. The predicted G0W0@PBE0 values are ob-

tained by using the following equation:

3
ML(G0W0) ¼ 3

ML(DFT) + D3ML(G0W0 � DFT). (5)

For the prediction of G0W0@PBE0 values, we thus use two

ML models, one SchNet + H model trained on DFT orbital

energies and one MS-SchNet model trained on the difference

between quasiparticle and orbital energies. Further details on

model size, training and test set split, and model parameters

can be found in the ESI.† The chosen model parameters are

reported in ESI Table S3.†

4.3 Spectra predictions

The comparison to experimental photoemission spectra shown

in Fig. 4 and ESI Fig. S5–S7† is obtained by convolution of the

orbital energies to account for electronic lifetime broadening,

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 10755–10764 | 10761
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instrument response, and many-body effects, such as inelastic

losses. For the broadening we use a Pseudo-Voigt lineshape64,65

with 30% Lorentzian and 70% Gaussian and varying widths of

0.3–0.5 eV. The spectral shis of all eigenvalues of molecules

across chemical compound space given in Fig. 3 and ESI Fig. S4

and S7† are obtained by Gaussian convolution with a width of

0.5 eV and subsequent summation.
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