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Abstract:

Despite some 60 years of work on the subject of the Kerr rotating black hole there is

as yet no widely accepted physically based and pedagogically viable ansatz suitable

for deriving the Kerr solution without significant computational effort. (Typically

involving computer-aided symbolic algebra.) Perhaps the closest one gets in this

regard is the Newman–Janis trick; a trick which requires several physically unmoti-

vated choices in order to work. Herein we shall try to make some progress on this

issue by using a non-ortho-normal tetrad based on oblate spheroidal coordinates to

absorb as much of the messy angular dependence as possible, leaving one to deal

with a relatively simple angle-independent tetrad-component metric. That is, we

shall write gab = gAB eAa eBb seeking to keep both the tetrad-component metric

gAB and the non-ortho-normal co-tetrad eAa relatively simple but non-trivial. We

shall see that it is possible to put all the mass dependence into gAB, while the non-

ortho-normal co-tetrad eAa can be chosen to be a mass-independent representation of

flat Minkowski space in oblate spheroidal coordinates: (gMinkowski)ab = ηAB eAa eBb.

This procedure separates out, to the greatest extent possible, the mass dependence

from the rotational dependence, and makes the Kerr solution perhaps a little less

mysterious.
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1 Introduction

The Kerr solution was discovered in 1963 [1, 2], and quickly became a mainstay

of general relativity, though it took the wider astrophysics community somewhat

longer to appreciate its full significance. Understanding how the Kerr solution was

first discovered is tricky [3], and even to this day no really clean pedagogical first-

principles derivation exists. Typically one tells the students: “Here is the answer, feed

it into your favourite computer algebra system [Maple, Mathematica, Wolfram Alpha,

whatever ] and check that the Ricci tensor is zero.” Interest in the Kerr spacetime is

both intense and ongoing, with many review articles [4–12], at least two dedicated

books [13, 14], and many textbook discussions [15–24].

The closest one has to a pedagogical first-principles derivation of the Kerr spacetime

is via the Newman–Janis trick [25, 26], developed in 1965, which was immediately

used in then deriving the electro-magnetically charged Kerr–Newman spacetime [27].

Despite many valiant efforts [28–38] it is still fair to say that no fully convincing

explanation of why the Newman–Janis trick works has been forthcoming.1

Herein we shall try a different approach:

• First, since we know that for a Newtonian rotating fluid body the Maclaurin

spheroid is a good first approximation [41–45], and that this is an example of

an oblate spheroid in flat 3-space, one strongly suspects that oblate spheroidal

coordinates might be useful when it comes to investigating rotating black holes.

(And for that matter, other rotating bodies in general relativity.)

• Second, we know that the tetrad formalism is extremely useful [46], both in

purely classical general relativity and especially when working with elementary

particles with spin.

• Third, in a rather different context, the use of non-ortho-normal tetrads has

recently proved to be extremely useful [47].

These observations suggest that it might be useful to write the spacetime metric in

the form

gab = gAB eAa eBb, (1.1)

where we shall seek to push all of the mass dependence into the tetrad-component

metric gAB, while pushing as much as possible of the rotational aspects of the problem

into the non-ortho-normal co-tetrad eAa. Specifically we shall show that we can

choose the non-ortho-normal co-tetrad to represent flat Minkowski space in oblate

spheroidal coordinates

(gMinkowski)ab = ηAB eAa eBb; ηAB = diag{−1, 1, 1, 1}. (1.2)

This procedure separates out, to the greatest extent possible, the mass dependence

from the rotational dependence, and makes the Kerr solution perhaps a little less

mysterious.

1A somewhat different ansatz, based on rather strong assumptions regarding the geodesics, has
been explored in references [39, 40].
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2 Preliminaries

In any spacetime manifold one can always (at least locally) set up a flat metric

(gflat)ab and from that flat metric extract a (non-unique) co-tetrad

(gflat)ab = ηAB eAa eBb; ηAB = diag{−1, 1, 1, 1}. (2.1)

Given such a co-tetrad, one can construct the associated tetrad eA
a, (which is just

the matrix inverse of the co-tetrad) and then for any arbitrary (non-flat) metric gab
one can always write:

gab = gAB eAa eBb ; gAB = gab eA
a eB

b. (2.2)

We wish to derive the Kerr solution by finding a suitable flat-space tetrad, then make

a natural and simple ansatz for gAB, and check that gab satisfies the vacuum Einstein

equations Rab = 0.

Example: Consider Schwarzschild spacetime. Order the coordinates as {t, r, θ, φ}.
Take the co-tetrad for flat space written in spherical polar coordinates to be:

eAa =











1 0 0 0

0 1 0 0

0 0 r 0

0 0 0 r sin θ











. (2.3)

Then, given the symmetries of the spacetime, a natural and simple ansatz for the

tetrad-component metric gAB would be

gAB =











−f(r) 0 0 0

0 1
f(r)

0 0

0 0 1 0

0 0 0 1











. (2.4)

In this situation the Einstein equations yield

f(r) = 1− 2m

r
. (2.5)

Similarly, for the Reissner–Nordström spacetime one simply has

f(r) = 1− 2m

r
+

Q2

r2
. (2.6)

We shall now seek to do something similar for the Kerr spacetime.
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3 Oblate spheroidal coordinates

The Cartesian metric for flat spacetime can be rewritten in terms of oblate spheroidal

coordinates by defining

x =
√
r2 + a2 sin θ cosφ ;

y =
√
r2 + a2 sin θ sinφ ;

z = r cos θ .

(3.1)

Then, ordering the coordinates as {t, r, θ, φ}, the metric is

gab =











−1 0 0 0

0 r2+a2 cos2 θ
r2+a2

0 0

0 0 r2 + a2 cos2 θ 0

0 0 0 (r2 + a2) sin2 θ











. (3.2)

Setting A ∈ {0, 1, 2, 3}, an obvious (but naive) co-tetrad for this metric is

(enaive)
A
a =













1 0 0 0

0
√

r2+a2 cos2 θ
r2+a2

0 0

0 0
√
r2 + a2 cos2 θ 0

0 0 0
√
r2 + a2 sin θ













. (3.3)

However, trying to use this co-tetrad would not be ideal for deriving the Kerr space-

time since the Kerr spacetime is stationary not static, meaning that the Kerr metric

must have non-zero, off-diagonal components.

We could introduce non-diagonal components in our ansatz for the tetrad-component

metric gAB, however this vastly complicates the computations. In order to simplify

the derivation, we will instead find a non-diagonal co-tetrad eAa which will allow us

to make gAB diagonal. More specifically, we will make an ansatz of the form

gAB =











−f(r) 0 0 0

0 1
f(r)

0 0

0 0 1 0

0 0 0 1











, (3.4)

as we did for the Schwarzschild and Reissner–Nordström spacetimes.
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4 An improved co-tetrad

Note that there exist an infinite number of co-tetrads for any given spacetime metric,

related via local Lorentz transformations. (That is, if eAa is a co-tetrad, then so

is LA
B eBa, where LA

B is a tangent-space Lorentz transformation). We wish to

transform the naive tetrad given in equation (3.3) via a Lorentz transformation into

a more useful form.

Since we are using an ansatz for gAB of the form given in equation (3.4), we wish

the e0t component of our new tetrad to be the reciprocal of the e1r component.

Furthermore, we will ask that the gtφ component be the only non-zero off-diagonal

component of our final spacetime metric gab. This then constrains the relevant local

Lorentz transformation to be of the form

LA
B =













√

r2+a2

r2+a2 cos2 θ
0 0 L0

3

0 1 0 0

0 0 1 0

L3
0 0 0 L3

3













. (4.1)

However, since LA
B is a Lorentz transformation, it must satisfy

LC
A ηCD LD

B = ηAB . (4.2)

This tightly constrains the components of LA
B; in fact this requirement can be used

to solve for the remaining 3 components. They are given by

L3
3 = L1

1 =

√

r2 + a2

r2 + a2 cos2 θ
;

L3
0 = L0

3 = − a sin θ√
r2 + a2 cos2 θ

.

(4.3)

Here a can be either positive or negative depending on the sense of rotation.

Hence, explicitly, we have

LA
B =













√

r2+a2

r2+a2 cos2 θ
0 0 − a sin θ

√

r2+a2 cos2 θ

0 1 0 0

0 0 1 0

− a sin θ
√

r2+a2 cos2 θ
0 0

√

r2+a2

r2+a2 cos2 θ













. (4.4)

Note that det
(

LA
B

)

= 1 and that this local Lorentz transformation corresponds to

the velocity β = a sin θ
√

r2+a2
∈ (−1,+1).
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Our new improved co-tetrad is now given by

eAa = LA
B (enaive)

B
a

=















√

r2+a2

r2+a2 cos2 θ
0 0 −

√

r2+a2a sin2 θ
√

r2+a2 cos2 θ

0
√

r2+a2 cos2 θ
r2+a2

0 0

0 0
√
r2 + a2 cos2 θ 0

− a sin θ
√

r2+a2 cos2 θ
0 0 (r2+a2) sin θ

√

r2+a2 cos2 θ















.
(4.5)

Using the ansatz for gAB, as given in equation (3.4), we now find

gab = gAB eAa eBb

=











−f(r)(r2+a2)+a2 sin2 θ
r2+a2 cos2 θ

0 0 gtφ
0 r2+a2 cos2 θ

f(r)(r2+a2)
0 0

0 0 r2 + a2 cos2 θ 0

gtφ 0 0 gφφ











.
(4.6)

Here

gtφ =
(r2 + a2) a sin2 θ (f(r)− 1)

r2 + a2 cos2 θ
, (4.7)

and

gφφ =
(r2 + a2) sin2 θ (r2 + a2 − f(r)a2 sin2 θ)

r2 + a2 cos2 θ
. (4.8)

5 Final step: Einstein equations

We now apply the Einstein equations to the ansatz developed above. The vacuum

Einstein equations then give a system of (partial) differential equations for the metric

components gab. Explicitly finding the set of PDEs is still best done with a computer

algebra system, but one now has a well-defined and relatively simple problem to

solve, and the PDEs reduce to ODEs for the function f(r). The simplest of these

ODEs is

Rθθ =
df(r)

dr
(r3 + ra2) + f(r)(r2 − a2)− r2 + a2 = 0 . (5.1)

This is a first-order linear ODE which has the solution

f(r) = 1− 2mr

r2 + a2
. (5.2)

This finally results in the fully explicit metric

gab =













−
(

1− 2mr
ρ2

)

0 0 −2mra sin2 θ
ρ2

0 ρ2

∆
0 0

0 0 ρ2 0

−2mra sin2 θ
ρ2

0 0 Σ sin2 θ













. (5.3)
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Here (as usual) we have ρ =
√
r2 + a2 cos2 θ, while ∆ = r2 + a2 − 2mr, and in

turn Σ = r2 + a2 + 2mra2 sin2 θ/ρ2. Notice that equation (5.3) is just the Kerr

metric written in the usual Boyer–Lindquist coordinates, which hence concludes the

derivation.

6 Summary

The Kerr metric (and the Minkowski metric) can be related to the mass-independent

co-tetrad

eAa =















√

r2+a2

r2+a2 cos2 θ
0 0 −

√

r2+a2a sin2 θ
√

r2+a2 cos2 θ

0
√

r2+a2 cos2 θ
r2+a2

0 0

0 0
√
r2 + a2 cos2 θ 0

− a sin θ
√

r2+a2 cos2 θ
0 0 (r2+a2) sin θ

√

r2+a2 cos2 θ















. (6.1)

by the very simple relations

(gKerr)ab = gAB eAa eBb; (gMinkowski)ab = ηAB eAa eBb; (6.2)

where the tetrad-component metric is particularly simple

gAB =











−f(r) 0 0 0

0 1
f(r)

0 0

0 0 1 0

0 0 0 1











; f(r) = 1− 2mr

r2 + a2
. (6.3)

This manifestly has the appropriate limit as a → 0 and cleanly separates out the

angular and radial behaviour. Furthermore the only change needed to accomodate

the electromagnetically charged Kerr–Newman solution is to replace 2mr → 2mr−Q2

and so to set

f(r) = 1− 2mr −Q2

r2 + a2
. (6.4)

We have been relatively slow and careful in developing and presenting the analysis,

trying to provide physical motivations for our choices at each step of the process.

Of course, once you see the answer, the reason it works is obvious in hindsight —

simply take the usual Boyer–Lindquist ortho-normal co-tetrad for Kerr, set m → 0,

and then set ηAB → gAB to compensate. Given this, can we now generalize the

ansatz to deal with other coordinate representations [48, 49] of the Kerr spacetime?

(Or its slow-rotation Lense–Thirring [50–55] approximation?)
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7 Extensions of the basic ansatz

We now develop several extensions and generalizations of the basic ansatz (6.3)

presented above.

7.1 Eddington–Finkelstein (Kerr–Schild) form

Take

gAB =











−1 + Φ Φ 0 0

Φ 1 + Φ 0 0

0 0 1 0

0 0 0 1











; Φ =
2mr

r2 + a2
. (7.1)

Keep exactly the same non-ortho-normal co-tetrad eAa as above. Then the metric

gab = gAB eAa e
B
b is still Ricci flat — so it is the Kerr solution in disguise. This mod-

ified ansatz was inspired by inspecting and generalizing the Eddington–Finkelstein

(Kerr–Schild) form of Schwarzschild. Defining ℓA = (1, 1, 0, 0) we note that

gAB = ηAB + Φ ℓA ℓB (7.2)

which is of Kerr–Schild form. Contracting with the co-tetrad and defining ℓa = ℓA eAa

we have

gab = (gMinkowski)ab + Φ ℓa ℓb, (7.3)

where the Minkowski space metric is written in oblate spheroidal coordinates as per

(3.2) and

ℓa =

(

√

r2 + a2

r2 + a2 cos2 θ
,

√

r2 + a2 cos2 θ

r2 + a2
, 0,−a sin2 θ

√

r2 + a2

r2 + a2 cos2 θ

)

. (7.4)

Since ℓa is easily checked to be a null vector, this is manifestly seen to be Kerr

spacetime in Kerr–Schild form [3, 4, 13].

7.2 Quasi-Painlevé–Gullstrand form

Take

gAB =











−1 + Φ
√
Φ 0 0√

Φ 1 0 0

0 0 1 0

0 0 0 1











; Φ =
2mr

r2 + a2
. (7.5)

Keep exactly the same non-ortho-normal co-tetrad eAa as above. Then the metric

gab = gAB eAa e
B
b is still Ricci flat — so it is the Kerr solution in disguise.
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This modified ansatz was inspired by looking at and generalizing the Painlevé-

Gullstrand form of Schwarzschild; though it was not derived therefrom — more

on this point later. The tetrad metric gAB is of Painlevé–Gullstrand form, but the

coordinate metric gab is not, (and, in view of the analysis by Valiente-Kroon [62, 63],

cannot possibly be), of Painlevé–Gullstrand form.

It is convenient to introduce two vectors, TA = (1, 0, 0, 0) and SA = (0, 1, 0, 0), since

then

gAB = ηAB + Φ TA TB +
√
Φ (TA SB + SA TB). (7.6)

We can furthermore factorize this as follows

gAB = ηCD

(

δCA +
√
Φ SC TA

) (

δDB +
√
Φ SD TB

)

, (7.7)

implying the existence of a factorizable ortho-normal co-tetrad

(eortho)
A
a =

(

δAB +
√
Φ SA TB

)

eBa. (7.8)

Note that all the mass-dependence is concentrated in Φ, whereas all the angular

dependence is still concentrated in the usual mass-independent non-ortho-normal

tetrad eBa.

Let us see what happens in the coordinate basis: Setting

Ta = TA eAa =

(

√

r2 + a2

r2 + a2 cos2 θ
, 0, 0,−a sin2 θ

√

r2 + a2

r2 + a2 cos2 θ

)

, (7.9)

and

Sa = SA eAa =

(

0,

√

r2 + a2 cos2 θ

r2 + a2
, 0, 0

)

, (7.10)

we see

gab = (gMinkowski)ab + Φ Ta Tb +
√
Φ (Ta Sb + Sa Tb), (7.11)

where the Minkowski space metric is written in oblate spheroidal coordinates as per

(3.2). The vectors Ta and Sa are orthonormal timelike and spacelike vectors with

respect to both the Minkowski metric (3.2) and the full metric (7.11). In the language

of the Hamilton–Lisle “river model” [57] these are easily identified as what they call

the “twist” and “flow” vectors, and so this quasi-Painlevé–Gullstrand version of

the Kerr metric is equivalent to the Doran form [56] of the Kerr metric. This is

the closest we can get to putting the Kerr metric into Painlevé–Gullstrand form —

partial success at the tetrad level, but failure at the coordinate level. Finally, we

observe that explicit computation reveals that gtt = −1, so this version of the metric

is definitely unit lapse [48].

– 9 –



7.3 1-free-function form

Let h(r) be an arbitrary differentiable function and take

gAB =











−f(r) −f(r)h(r) 0 0

−f(r)h(r) 1
f(r)

− f(r)h(r)2 0 0

0 0 1 0

0 0 0 1











; f(r) = 1− 2mr

r2 + a2
. (7.12)

Keep exactly the same non-ortho-normal co-tetrad eAa as above. Then the metric

gab = gAB eAa e
B
b is still Ricci flat — so it is the Kerr solution in disguise.

This ansatz was inspired by looking at and generalizing the Boyer–Lindquist, Kerr–

Schild, and quasi-Painlevé–Gullstrand forms of Kerr discussed above; not derived

therefrom. With hindsight, one strongly suspects an underlying coordinate transfor-

mation is responsible for this behaviour. Indeed after a little “reverse engineering”

one is lead to consider the not particularly obvious coordinate transformation

t → t+

∫

h(r) dr; φ → φ+

∫

a h(r)

r2 + a2
dr. (7.13)

Writing the new coordinates as x̄a the relevant Jacobi matrix is

Ja
b = (x̄a),b =

∂x̄a

∂xb
=











1 h(r) 0 0

0 1 0 0

0 0 1 0

0 ah(r)
r2+a2

0 1











. (7.14)

Going to the tetrad basis an easy computation yields

JA
B = Ja

b ea
A ebB =











1 h(r) 0 0

0 1 0 0

0 0 1 0

0 0 0 1











. (7.15)
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But then it is easy to check that











1 h(r) 0 0

0 1 0 0

0 0 1 0

0 0 0 1











T 









−f(r) 0 0 0

0 1
f(r)

0 0

0 0 1 0

0 0 0 1





















1 h(r) 0 0

0 1 0 0

0 0 1 0

0 0 0 1











=











−f(r) −f(r)h(r) 0 0

−f(r)h(r) 1
f(r)

− f(r)h(r)2 0 0

0 0 1 0

0 0 0 1











. (7.16)

That is, the 1-free-function ansatz (7.12) can be obtained from the basic ansatz (6.3)

by the very specific coordinate transformation (7.13); with the specific coordinate

transformation being carefully “reverse engineered” to do minimal violence to the

original basic ansatz.

7.4 Lense–Thirring limit

Consider the slow rotation limit a → 0, explicitly keeping the first two terms, while

keeping h(r) arbitrary, then

eAa =











1 0 0 −a sin2 θ

0 1 0 0

0 0 r 0

−a sin θ
r

0 0 r sin θ











+O(a3) . (7.17)

and

gAB =











−f(r) −f(r)h(r) 0 0

−f(r)h(r) 1
f(r)

− f(r)h(r)2 0 0

0 0 1 0

0 0 0 1











; f(r) = 1− 2m

r
+

2ma2

r3
+O(a4) .

(7.18)

Thus our 1-free-function ansatz (7.12) leads to an entire class of tetrad metrics gAB,

(and implicitly, the corresponding coordinate basis metrics gab), that are appropriate

for describing the exterior spacetime of slowly rotating objects. This Lense–Thirring

slow rotation limit [50, 51], in its various incarnations [52–55] is of significant impor-

tance in observational astrophysics.
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7.5 Summary

In this section we have seen how our basic ansatz (6.3), which we originally developed

for physically motivating and then deriving the Kerr solution with a minimum of

fuss, can be extended and modified to deal with other coordinate representations

of the Kerr metric — such as the Eddington–Finkelstein (Kerr–Schild) coordinates

(7.1), the quasi-Painlevé–Gullstrand (Doran) coordinates (7.5), and an entire 1-free-

function class of coordinate systems (7.12) that still respect most of the fundamental

symmetries of the original ansatz.

8 Discussion

We have physically motivated an ansatz for the Kerr spacetime metric, partially

based on Newtonian physics, (the fact that Maclaurin’s oblate spheroids already

became of interest for rotating bodies some 280 years ago), and partially based on

the fact that tetrad methods are known to be useful in general relativity. Specifically,

the key step is to write the coordinate metric as gab = gAB eAa eBb, while allowing

the use of non-ortho-normal tetrads.

We have seen that doing so permits one to force all of the non-trivial angular depen-

dence into a mass-independent co-tetrad eAa that is compatible with flat spacetime

in oblate spheroidal coordinates, while forcing all of the mass-dependence (and none

of the angular dependence) into the tetrad-basis metric gAB. This clean separation

between angular dependence and mass dependence greatly simplifies the computa-

tional complexity of the problem. We expect these ideas to have further applications

and implications.
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