
Physically Observable Cryptography
(Extended Abstract)

Silvio Micali1 and Leonid Reyzin2

1 MIT CSAIL
200 Technology Square

Cambridge MA 02139 USA
2 Boston University Computer Science

111 Cummington Street
Boston MA 02215 USA

reyzin@cs.bu.edu

Abstract. Complexity-theoretic cryptography considers only abstract
notions of computation, and hence cannot protect against attacks that
exploit the information leakage (via electromagnetic fields, power con-
sumption, etc.) inherent in the physical execution of any cryptographic al-
gorithm. Such “physical observation attacks” bypass the impressive bar-
rier of mathematical security erected so far, and successfully break math-
ematically impregnable systems. The great practicality and the inherent
availability of physical attacks threaten the very relevance of complexity-
theoretic security.

To respond to the present crisis, we put forward physically observable
cryptography: a powerful, comprehensive, and precise model for defining
and delivering cryptographic security against an adversary that has ac-
cess to information leaked from the physical execution of cryptographic
algorithms. Our general model allows for a variety of adversaries. In this

paper, however, we focus on the strongest possible adversary, so as to
capture what is cryptographically possible in the worst possible, physi-
cally observable setting. In particular, we

– consider an adversary that has full (and indeed adaptive) access to
any leaked information;

– show that some of the basic theorems and intuitions of traditional
cryptography no longer hold in a physically observable setting; and

– construct pseudorandom generators that are provably secure against
all physical-observation attacks.

Our model makes it easy to meaningfully restrict the power of our general
physically observing adversary. Such restrictions may enable schemes
that are more efficient or rely on weaker assumptions, while retaining
security against meaningful physical observations attacks.

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 278–296, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Physically Observable Cryptography 279

1 Introduction

“Non-Physical” Attacks. A non-physical attack against a cryptographic
algorithm A is one in which the adversary is given some access to (at times even
full control over) A’s explicit inputs (e.g., messages and plaintexts) and some
access to A’s outputs (e.g., ciphertexts and digital signatures). The adversary
is also given full knowledge of A —except, of course, for the secret key— but
absolutely no “window” into A’s internal state during a computation: he may
know every single line of A’s code, but whether A’s execution on a given input
results in making more multiplications than additions, in using lots of RAM,
or in accessing a given subroutine, remains totally unknown to him. In a non-
physical attack, A’s execution is essentially a black box. Inputs and outputs may
be visible, but what occurs within the box cannot be observed at all.

For a long time, due to lacking cryptographic theory and the consequent naive
design of cryptographic algorithms, adversaries had to search no further than
non-physical attacks for their devious deeds. (For instance, an adversary could
often ask for and obtain the digital signature of a properly chosen message and
then forge digital signatures at will.) More recently, however, the sophisticated
reduction techniques of complexity-theoretic cryptography have shut the door to
such attacks. For instance, if one-way functions exist, fundamental tools such as
pseudorandom generation [17] and digital signatures [27,24] can be implemented
so as to be provably secure against all non-physical attacks.

Unfortunately, other realistic and more powerful attacks exist.
“Physical-Observation” Attacks. In reality, a cryptographic algorithm A
must be run in a physical device P , and, quite outside of our control, the laws of
Nature have something to say on whether P is reducible to a black box during
an execution of A. Indeed, like for other physical processes, a real algorithmic
execution generates all kinds of physical observables, which may thus fall into
the adversary’s hands, and be quite informative at that. For instance, Kocher
et al. [20] show that monitoring the electrical power consumed by a smart card
running the DES algorithm [25] is enough to retrieve the very secret key! In an-
other example, a series of works [26,2] show that sometimes the electromagnetic
radiation emitted by a computation, even measured from a few yards away with
a homemade antenna, could suffice to retrieve a secret key.
Physically Observable Cryptography. Typically, physical-observation at-
tacks are soon followed by defensive measures (e.g., [9,19]), giving us hope that
at least some functions could be securely computed in our physical world. How-
ever, no rigorous theory currently exists that identifies which elementary func-
tions need to be secure, and to what extent, so that we can construct complex
cryptographic systems provably robust against all physical-observation attacks.
This paper puts forward such a theory.

280 S. Micali and L. Reyzin

Our theory is not about “shielding” hardware (neither perfectly1 nor par-
tially2) but rather about how to use partially shielded hardware in a provably
secure manner. That is, we aim at providing rigorous answers to questions of
the following relative type:

(1) Given a piece of physical hardware P that is guaranteed to compute a specific,
elementary function f(x) so that only some information LP,f (x) leaks to the
outside,

is it possible to construct

(2) a physical pseudorandom generator, encryption scheme, etc., provably secure
against all physically-observing adversaries?

Notice that the possibility of such reductions is far from guaranteed: hardware
P is assumed “good” only for computing f , while any computation outside P
(i.e., beyond f) is assumed to be fully observable by the adversary.

Providing such reductions is important even with the current, incomplete
knowledge about shielding hardware.3 In fact, physically observable cryptogra-
phy may properly focus the research in hardware protection by identifying which
specific and elementary functions need to be protected and how much.
A New and General Model. Physically observable cryptography is a new
and fascinating world defying our traditional cryptographic intuition. (For exam-
ple, as we show, such fundamental results as the equivalence of unpredictability
and indistinguishability for pseudorandom generators [30] fail to hold.) Thus, as
our first (and indeed main) task, we construct a precise model, so as to be able
to reason rigorously.

There are, of course, many possible models for physically observable cryp-
tography, each rigorous and meaningful in its own right. How do we choose?
We opted for the most pessimistic model of the world that still leaves room for
cryptography. That is, we chose a very general model for the interplay of phys-
ical computation, information leakage, and adversarial power, trying to ensure
that security in our model implies security in the real world, no matter how
unfriendly the latter turns out to be (unless it disallows cryptographic security
altogether).
First Results in the General Model. A new model is of interest only
when non-trivial work can be done within its confines. We demonstrate that this
is the case by investigating the fundamental notion of pseudorandom generation.
In order to do so, we provide physically-observable variants of the traditional def-
initions of one-way functions, hardcore bits, unpredictability and indistinguisha-
bility. Already in the definitions stage, our traditional intuition is challenged by
1 Perfectly shielded hardware, so that all computation performed in it leaks nothing

to the outside, might be impossible to achieve and is much more than needed.
2 We are after a computational theory here, and constructing totally or partially

shielded hardware is not a task for a computational theorist.
3 Had complexity-theoretic cryptography waited for a proof of existence of one-way

functions, we would be waiting still!

Physically Observable Cryptography 281

the unexpected behavior of these seemingly familiar notions, which is captured
by several (generally easy to prove) claims and observations.

We then proceed to the two main theorems of this work. The first theo-
rem shows that unpredictable physically observable generators with arbitrary
expansion can be constructed from any (properly defined) physically observable
one-way permutation. It thus provides a physically observable analogue to the
results of [13,7] in the traditional world. Unfortunately, this construction does
not result in indistinguishable physically observable generators.

Our second main theorem shows that indistinguishable physically observable
generators with arbitrary expansion can be constructed from such generators
with 1-bit expansion. It is thus the equivalent of the hybrid argument (a.k.a.
“statistical walk”) of [15].

Both of these theorems require non-trivial proofs that differ in significant
ways from their traditional counterparts, showing how different the physically
observable world really is.

Specialized Models. The generality of our model comes at a price: results in
it require correspondingly strong assumptions. We wish to emphasize, however,
that in many settings (e.g., arising from advances in hardware manufacturing) it
will be quite meaningful to consider specialized models of physically observable
cryptography, where information leakage or adversarial power are in some way
restricted. It is our expectation that more efficient results, or results relying on
lesser assumptions, will be awaiting in such models.

Passive vs. Active Physical Adversaries. Traditional cryptography has
benefited from a thorough understanding of computational security against pas-
sive adversaries before tackling computational security against active adver-
saries. We believe similar advantages can be gained for physical security. Hence,
for now, we consider physically observing adversaries only. Note, however, that
our adversary has a traditional computational component and a novel physical
one, and we do not start from scratch in its computational component. Indeed,
our adversary will be computationally quite active (e.g., it will be able to adap-
tively choose inputs to the scheme it attacks), but will be passive in its physical
component (i.e., it will observe a physical computation without tampering with
it). Attacks (e.g., [4,8,6,5,28]), defenses (e.g., [26,23]), and models (e.g., [12])
for physically active adversaries are already under investigation, but their full
understanding will ultimately depend on a full understanding of the passive case.

Other Related Work. We note that the question of building protected hard-
ware has been addressed before with mathematical rigor. In particular, Chari,
Jutla, Rao and Rohatgi [9] consider how to protect a circuit against attackers
who receive a noisy function of its state (their motivation is protection against
power analysis attacks). Ishai, Sahai and Wagner [18] consider how to guarantee
that adversaries who can physically probe a limited number of wires in a circuit
will not be able to learn meaningful information from it. This line of research is
complementary to ours: we consider reductions among physical computing de-
vices in order to guarantee security against all physical observation attacks under
some assumptions, whereas the authors of [9] and [18] consider how to build par-

282 S. Micali and L. Reyzin

ticular physical computing devices secure against a particular class of physical
observations attacks. In a way, this distinction is analogous to the distinction in
traditional cryptography between research on cryptographic reductions on the
one hand, and research on finding instantiations of secure primitives (one-way
functions, etc.) on the other.

2 Intuition for Physically Observable Computation

Our model for physically observable (PO for short) computation is based on the
following (overlapping)

Informal Axioms

1. Computation, and only computation, leaks information
Information may leak whenever bits of data are accessed and computed
upon. The leaking information actually depends on the particular operation
performed, and, more generally, on the configuration of the currently active
part of the computer. However, there is no information leakage in the absence
of computation: data can be placed in some form of storage where, when not
being accessed and computed upon, it is totally secure.

2. Same computation leaks different information on different computers
Traditionally, we think of algorithms as carrying out computation. However,
an algorithm is an abstraction: a set of general instructions, whose physi-
cal implementation may vary. In one case, an algorithm may be executed
in a physical computer with lead shielding hiding the electromagnetic radi-
ation correlated to the machine’s internal state. In another case, the same
algorithm may be executed in a computer with a sufficiently powerful in-
ner battery hiding the power utilized at each step of the computation. As a
result, the same elementary operation on 2 bits of data may leak different
information: e.g., (for all we know) their XOR in one case and their AND in
the other.

3. Information leakage depends on the chosen measurement
While much may be observable at any given time, not all of it can be observed
simultaneously (either for theoretical or practical reasons), and some may be
only observed in a probabilistic sense (due to quantum effects, noise, etc.).
The specific information leaked depends on the actual measurement made.
Different measurements can be chosen (adaptively and adversarially) at each
step of the computation.

4. Information leakage is local
The information that may be leaked by a physically observable device is
the same in any execution with the same input, independent of the com-
putation that takes place before the device is invoked or after it halts. In
particular, therefore, measurable information dissipates: though an adver-
sary can choose what information to measure at each step of a computation,
information not measured is lost. Information leakage depends on the past

Physically Observable Cryptography 283

computational history only to the extent that the current computational
configuration depends on such history.

5. All leaked information is efficiently computable from the computer’s internal
configuration.
Given an algorithm and its physical implementation, the information leakage
is a polynomial-time computable function of (1) the algorithm’s internal con-
figuration, (2) the chosen measurement, and possibly (3) some randomness
(outside anybody’s control).

Remarks

As expected, the real meaning of our axioms lies in the precise way we use them
in our model and proofs. However, it may be worthwhile to clarify here a few
points.

– Some form of security for unaccessed memory is mandatory. For instance, if
a small amount of information leakage from a stored secret occurs at every
unit of time (e.g., if a given bit becomes 51% predictable within a day) then
a patient enough adversary will eventually reconstruct the entire secret.

– Some form of security for unaccessed memory is possible. One may object
to the requirement that only computation leaks information on the grounds
that in modern computers, even unaccessed memory is refreshed, moved from
cache and back, etc. However, as our formalization below shows, all we need
to assume is that there is some storage that does not leak information when
not accessed. If regular RAM leaks, then such storage can be the hard drive;
if that also leaks, use flash memory; etc.

– Some form of locality for information leakage is mandatory. The hallmark
of modern cryptography has been constructing complex systems out of basic
components. If the behavior of these components changed depending on the
context, then no general principles for modular design could arise. Indeed, if
corporation A produced a properly shielded device used in computers build
by corporation B, then corporation B should not damage the shielding on
the device when assembling its computers.

– The restriction of a single adversarial measurement per step should not mis-
interpreted. If two measurements M1 and M2 can be “fruitfully” performed
one after the other, our model allows the adversary to perform the single
measurement M = (M1, M2).

– The polynomial-time computability of leaked information should not be mis-
interpreted. This efficient computability is quite orthogonal to the debate on
whether physical (e.g., quantum) computation could break the polynomial-
time barrier. Essentially, our model says that the most an adversary may
obtain from a measurement is the entire current configuration of the cryp-
tographic machine. And such configuration is computable in time linear in
the number of steps executed by the crypto algorithm. For instance, if a
computer stores a Hamiltonian graph but not its Hamiltonian tour, then

284 S. Micali and L. Reyzin

performing a breadth-first search on the graph should not leak its Hamilto-
nian tour.
(Of course, should an adversary more powerful than polynomial-time be
considered, then the power of the leakage function might also be increased
“accordingly.”)

Of course, we do not know that these axioms are “exactly true”, but definitely
hope to live in a world that “approximates” them to a sufficient degree: life
without cryptography would be rather dull indeed!

3 Models and Goals of Physically Observable
Cryptography

Section 3.1 concerns itself with abstract computation, not yet its physical im-
plementation. Section 3.2 describes how we model physical implementations of
such abstract computation. Section 3.3 defines what it means, in our model, to
build high-level constructions out of low-level primitives.

3.1 Computational Model

Motivation. Axiom 1 guarantees that unaccessed memory leaks no informa-
tion. Thus we need a computing device that clearly separates memory that is
actively being used from memory that is not. The traditional Turing machine,
which accesses its tape sequentially, is not a suitable computational device for
the goal at hand: if the reading head is on one end of the tape, and the ma-
chine needs to read a value on the other end, it must scan the entire tape, thus
accessing every single memory value. We thus must augment the usual Turing
machine with random access memory, where each bit can be addressed individ-
ually and independently of other bits, and enable the resulting machine to copy
bits between this random-access memory and the usual tape where it can work
on them. (Such individual random access can be realistic implemented.)

Axiom 4 guarantees that the leakage of a given device is the same, inde-
pendent of the computation that follows or precedes it. Thus we need a model
that can properly segregate one portion of a computation from another. The
traditional notion of computation as carried out by a single Turing machine is
inadequate for separating computation into multiple independent components,
because the configuration of a Turing machine must incorporate (at a minimum)
all future computation. To enable the modularity of physically observable cryp-
tography, our model of computation will actually consist of multiple machines,
each with its own physical protection, that may call each other as subroutines.
In order to provide true independence, each machine must “see” its own memory
space, independent of other machines (this is commonly known as virtual mem-
ory). Thus our multiple machines must be accompanied by a virtual memory
manager that would provide for parameter passing while ensuring memory inde-
pendence that is necessary for modularity. (Such virtual memory management
too can be realistically implemented.)

Physically Observable Cryptography 285

Formalization Without Loss of Generality. Let us now formalize this
model of computation (without yet specifying how information may leak). A
detailed formalization is of course necessary for proofs to be meaningful. This is
particularly true in the case of a new theory, where no strong intuition has yet
been developed. However, the particular choice of these details is not crucial. Our
theorems are robust enough to hold also for different reasonable instantiations
of this model.
Abstract Virtual-Memory Computers. An abstract virtual-memory com-
puter, or abstract computer for short, consists of a collection of special Tur-
ing machines, which invoke each other as subroutines and share a special
common memory. We call each member of our collection an abstract virtual-
memory Turing machine (abstract VTM or simply VTM for short). We write
A = (A1, . . . , An) to mean that an abstract computer A consists of abstract
VTMs A1, . . . , An, where A1 is a distinguished VTM: the one invoked first and
whose inputs and outputs coincide with those of A. Note that abstract comput-
ers and VTMs are not physical devices: they represent logical computation, may
have many different physical implementations. We consider physical computers
in Section 3.2, after fully describing logical computation.

In addition to the traditional input, output, work and random tapes of a
probabilistic Turing machine, a VTM has random access to its own virtual ad-
dress space (VAS): an unbounded array of bits that starts at address 1 and goes
on indefinitely.

The salient feature of an abstract virtual memory computer is that, while
each VTM “thinks” it has its own individual VAS, in reality all of them, via a
proper memory manager, share a single physical address space (PAS).
Virtual-Memory Management. As it is common in modern operating sys-
tems, a single virtual-memory manager (working in polynomial time) supervises
the mapping between individual VASes and the unique PAS. The virtual-memory
manager also allows for parameter passing among the different VTMs.

When a VTM is invoked, from its point of view every bit in its VAS is
initialized to 0, except for those locations where the caller placed the input. The
virtual-memory manager ensures that the VAS of the caller is not modified by
the callee, except for the callee’s output values (that are mapped back into the
caller’s VAS).

Virtual-memory management is a well studied subject (outside the scope
of cryptography), and we shall refrain from discussing it in detail. The only
explicit requirement that we impose onto our virtual-memory manager is that it
should only remap memory addresses, but never access their content. (As we shall
discuss in later sections, this requirement is crucial to achieving cryptographic
security in the physical world, where each memory access may result in a leakage
of sensitive information to the adversary.)
Accessing Virtual Memory. If A is a VTM, then we denote by mA the
content of A’s VAS, and, for a positive integer j, we denote by mA[j] the bit
value stored at location j. Every VTM has an additional, special VAS-access
tape. To read the bit mA[j], A writes down j on the VAS-access tape, and enters

286 S. Micali and L. Reyzin

a special state. Once A is in that state, the value mA[j] appears on the VAS-
access tape at the current head position (the mechanics of this are the same as
for an oracle query). To write a bit b in location j in its VAS, A writes down
(j, b) on the VAS-access tape, and enters another special state, at which point
mA[j] gets set to b.

Note that this setup allows each machine to work almost entirely in VAS, and
use its work tape for merely computing addresses and evaluating simple gates.
Inputs and Outputs of a VTM. All VTM inputs and outputs are binary
strings always residing in virtual memory. Consider a computation of a VTM A
with an input i of length � and an output o of length L. Then, at the start of
the computation, the input tape of A contains 1�, the unary representations of
the input length. The input i itself is located in the first � bit positions of A’s
VAS, which will be read-only to A. At the end of the computation, A’s output
tape will contain a sequence of L addresses, b1, . . . , bL, and o itself will be in
A’s VAS: o = mA[b1] . . . mA[bL]. (The reason for input length to be expressed in
unary is the preservation of the notion of polynomial running time with respect
to the length of the input tape.)
Calling VTMs as Subroutines. Each abstract VTM in the abstract virtual-
memory computer has a unique name and a special subroutine-call tape. When
a VTM A′ makes a subroutine call to a VTM A, A′ specifies where A′ placed
the input bits to A and where A′ wants the output bits of A, by writing the
corresponding addresses on this tape. The memory manager remaps locations
in the VAS of A′ to the VAS of A and vice versa. Straightforward details are
provided in the full version of the paper.

3.2 Physical Security Model

Physical Virtual-Memory Computers. We now formally define what in-
formation about the operation of a machine can be learned by the adversary.
Note, however, that an abstract virtual-memory computer is an abstract object
that may have different physical implementations. To model information leak-
age of any particular implementation, we introduce a physical virtual-memory
computer (physical computer for short) and a physical virtual-memory Turing
machine (physical VTM for short). A physical VTM P is a pair (L, A), where
A is an abstract VTM and L is the leakage function described below. A physi-
cal VTM is meant to model a single shielded component that can be combined
with others to form a computer. If A = (A1, A2, . . . , An) is an abstract com-
puter and Pi = (Li, Ai), then we call Pi a physical implementation of Ai and
P = (P1, P2, . . . Pn) a physical implementation of A.

If a physical computer P is deterministic (or probabilistic, but Las Vegas),
then we denote by fP(x) the function computed by P on input x.
The Leakage Function. The leakage function L of a physical VTM P =
(L, A) is a function of three inputs, L = L(·, ·, ·).
– The first input is the current internal configuration C of A, which incor-

porates everything that is in principle measurable. More precisely, C is a

Physically Observable Cryptography 287

binary string encoding (in some canonical fashion) the information of all the
tapes of A, the locations of all the heads, and the current state (but not the
contents of its VAS mA). We require that only the “touched” portions of
the tapes be encoded in C, so that the space taken up by C is polynomially
related to the space used by T (not counting the VAS space).

– The second input M is the setting of the measuring apparatus, also encoded
as a binary string (in essence, a specification of what the adversary chooses
to measure).

– The third input R is a sufficiently long random string to model the random-
ness of the measurement.

By specifying the setting M of its measuring apparatus, while A is in configu-
ration C, the adversary will receive information L(C, M, R), for a fresh random
R (unknown to the adversary).

Because the adversary’s computational abilities are restricted to polynomial
time, we require the function L(C, M, R) to be computable in time that is poly-
nomial in the lengths of C and M .
The Adversary. Adversaries for different cryptographic tasks can be quite
different (e.g., compare a signature scheme adversary to a pseudorandom gener-
ator distinguisher). However, we will augment all of the them in the same way
with the ability to observe computation. We formalize this notion below.

Definition 1. We say that the adversary F observes the computation of a phys-
ical computer P = (P1, P2, . . . , Pn), where Pi = (Li, Ai) if:

1. F is invoked before each step of a physical VTM of P, with configuration of
F preserved between invocations.

2. F has a special read-only name tape that contains the name of the physical
VTM Pi of P that is currently active.

3. At each invocation, upon performing some computation, F writes down a
string M on a special observation tape, and then enters a special state.
Then the value Li(C, M, R), where Pi is the currently active physical VTM
and R is a sufficiently long fresh random string unknown to F , appears on
the observation tape, and P takes its next step.

4. This process repeats until P halts. At this point F is invoked again, with its
name tape containing the index 0 indicating that P halted.

Notice that the above adversary is adaptive: while it cannot go back in time, its
choice of what to measure in each step can depend on the results of measurements
chosen in the past. Moreover, while at each step the adversary can measure only
one quantity, to have a strong security model, we give the adversary all the
time it needs to obtain the result of the previous measurement, decide what to
measure next, and adjust its measuring apparatus appropriately.

Suppose the adversary F running on input xF observes a physical computer
P running on input xP , then P halts and produces output yP , and then F halts
and produces output yF . We denote this by

yP ← P(xP) � F (xF)→ yF .

288 S. Micali and L. Reyzin

Note that F sees neither xP nor yP (unless it can deduce these values indirectly
by observing the computation).

3.3 Assumptions, Reductions, and Goals

In addition to traditional, complexity-theoretic assumptions (e.g., the existence
of one-way permutations), physically observable cryptography also has physical
assumptions. Indeed, the very existence of a machine that “leaks less than com-
plete information” is an assumption about the physical world. Let us be more
precise.

Definition 2. A physical VTMs is trivial if its leakage function reveals its entire
internal configuration4 and non-trivial otherwise.

Fundamental Premise. The very existence of a non-trivial physical VTM is
a physical assumption.

Just like in traditional cryptography, the goal of physically observable cryp-
tography is to rigorously derive desirable objects from simple (physical and com-
putational) assumptions. As usual, we refer to such rigorous derivations as re-
ductions. Reductions are expected to use stated assumptions, but should not
themselves consist of assumptions!

Definition 3. Let P ′ and P be physical computers. We say that P ′ reduces to
P (alternatively, P implies P ′) if every non-trivial physical VTM of P ′ is also
a physical VTM of P.

4 Definitions and Observations

Having put forward the rules of physically observable cryptography, we now need
to gain some experience in distilling its first assumptions and constructing its
first reductions.

We start by quickly recalling basic notions and facts from traditional cryp-
tography that we use in this paper.

4.1 Traditional Building Blocks

We assume familiarity with the traditional GMR notation (recalled in our Ap-
pendix A).

We also assume familiarity with the notions of one-way function [10] and
permutation; with the notion of of hardcore bits [7]; with the fact that all one-
way functions have a Goldreich-Levin hardcore bit [13]; and with the notion of
4 It suffices, in fact, to reveal only the current state and the characters observed by the

reading heads—the adversary can infer the rest by observing the leakage at every
step.

Physically Observable Cryptography 289

a natural hardcore bit (one that is simply a bit of the input, such as the last bit
of the RSA input [3]). Finally, recall the well-known iterative generator of Blum
and Micali [7], constructed as follows:

iterate a one-way permutation on a random seed, outputting the hardcore bit
at each iteration.

(All this traditional material is more thoroughly summarized in the full version
of the paper.)

4.2 Physically Observable One-Way Functions and Permutations

Avoiding a Logical Trap. In traditional cryptography, the existence of a
one-way function is currently an assumption, while the definition of a one-way
function does not depend on any assumption. We wish that the same be true
for physically observable one-way functions. Unfortunately, the most obvious
attempt to defining physically observable one-way functions does not satisfy
this requirement. The attempt consists of replacing the Turing machine T in the
one-way function definition with a physical computer P observed by F . Precisely,

Definition Attempt: A physically observable (PO) one-way functions is a func-
tion f : {0, 1}∗ → {0, 1}∗ such that there exists a polynomial-time physical
computer P that computes f and, for any polynomial-time adversary F , the
following probability is negligible as a function of k:

Pr[x R← {0, 1}k ; y ← P(x) � F (1k)→ state ; z ← F (state, y) : f(z) = y].

Intuitively, physically observable one-way functions should be “harder to
come by” than traditional ones: unless no traditional one-way functions exist,
we expect that only some of them may also be PO one-way. Recall, however,
that mathematically a physical computer P consists of pairs (L, A), where L is a
leakage function and A an abstract VTM, in particular a single Turing machine.
Thus, by setting L be the constant function 0, and A = {T}, where T is the
Turing machine computing f , we obtain a non-trivial computer P = {(L, A)}
that ensures that f is PO one-way as soon as it is traditionally one-way. The
relevant question, however, is not whether such a computer can be mathemat-
ically defined, but whether it can be physically built. As we have said already,
the mere existence of a non-trivial physical computer is in itself an assumption,
and we do not want the definition of a physically observable one-way function to
rely on an assumption. Therefore, we do not define what it means for a function
f to be physically observable one-way. Rather, we define what it means for a
particular physical computer computing f to be one-way.

We shall actually introduce, in order of strength, three physically observable
counterparts of traditional one-way functions and one-way permutations.

290 S. Micali and L. Reyzin

Minimal One-Way Functions and Permutations. Avoiding the logical
trap discussed above, the first way of defining one-way functions (or permuta-
tions) in the physically observable world is to say that P is a one-way function if
it computes a permutation fP that is hard to invert despite the leakage from P’s
computation. We call such physically observable one-way functions and permu-
tations “minimal” in order to distinguish them from the other two counterparts
we are going to discuss later on.

Definition 4. A polynomial-time deterministic physical computer P is minimal
one-way function if for any polynomial-time adversary F , the following proba-
bility is negligible as a function of k:

Pr[x R← {0, 1}k ; y ← P(x) � F (1k)→ state ; z ← F (state, y) : fP(z) = y].

Furthermore, if fP is length-preserving and bijective, we call P a minimal
one-way permutation.

Durable Functions and Permutations. A salient feature of an abstract
permutation is that the output is random for a random input. The following
definition captures this feature, even in the presence of computational leakage.

Definition 5. A durable function (permutation) is a minimal one-way function
(permutation) P such that, for any polynomial-time adversary F , the value |pP

k −
pR

k | is negligible in k, where

pP
k = Pr[x R← {0, 1}k ; y ← P(x) � F (1k)→ state : F (state, y) = 1]

pR
k = Pr[x R← {0, 1}k ; y ← P(x) � F (1k)→ state ; z

R← {0, 1}k :
F (state, z) = 1] .

Maximal One-Way Functions and Permutations. We now define physi-
cally observable one-way functions that leak nothing at all.

Definition 6. A maximal one-way function (permutation) is a minimal one-
way function (permutation) P such that the leakage functions of its component
physical VTMs are independent of the input x of P (in other words, x has no
effect on the distribution of information that leaks).

One can also define statistically maximal functions and permutations, where
for any two inputs x1 and x2, the observed leakage from P(x1) and P(x2) is
statistically close; and computationally maximal functions and permutations,
where for any two inputs x1 and x2, what P(x1) leaks is indistinguishable from
what P(x2) leaks. We postpone defining these formally.

4.3 Physically Observable Pseudorandomness

One of our goals in the sequel will be to provide a physically observable analogue
to the Blum-Micali [7] construction of pseudorandom generators. To this end,

Physically Observable Cryptography 291

we provide here physically observable analogues of the notions of indistinguisha-
bility [30] and unpredictability [7].
Unpredictability. The corresponding physically observable notion replaces
“unpredictability of bit i + 1 from the first i bits” with “unpredictability of bit
i + 1 from the first i bits and the leakage from their computation.”

Definition 7. Let p be a polynomially bounded function such that p(k) > k
for all positive integers k. Let G be a polynomial-time deterministic physical
computer that, on a k-bit input, produces p(k)-bit output, one bit at a time (i.e.,
it writes down on the output tape the VAS locations of the output bits in left to
right, one a time). Let Gi denote running G and aborting it after it outputs the
i-th bit. We say that G is a PO unpredictable generator with expansion p if for
any polynomial-time adversary F , the value |pk − 1/2| is negligible in k, where

pk = Pr[(i, state1)← F (1k) ; x
R← {0, 1}k ;

y1y2 . . . yi ← Gi(x) � F (state1)→ state2 : F (state2, y1 . . . yi) = yi+1] ,

(where yj denotes the j-th bit of y = G(x)).

Indistinguishability. The corresponding physically observable notion re-
places “indistinguishability” by “indistinguishability in the presence of leakage.”
That is, a polynomial-time adversary F first observes the computation of a pseu-
dorandom string, and then receives either that same pseudorandom string or a
totally independent random string, and has to distinguish between the two cases.

Definition 8. Let p be a polynomially bounded function such that p(k) > k
for all positive integers k. We say that a polynomial-time deterministic physical
computer G is a PO indistinguishable generator with expansion p if for any
polynomial-time adversary F , the value |pG

k − pR
k | is negligible in k, where

pG
k = Pr[x R← {0, 1}k ; y ← G(x) � F (1k)→ state : F (state, y) = 1]

pR
k = Pr[x R← {0, 1}k ; y ← G(x) � F (1k)→ state ; z

R← {0, 1}p(k) :
F (state, z) = 1] .

4.4 First Observations

Reductions in our new environment are substantially more complex than in the
traditional setting, and we have chosen a very simple one as our first exam-
ple. Namely, we prove that minimal one-way permutations compose just like
traditional one-way permutations.

Claim. A minimal one-way permutation P implies a minimal one-way permuta-
tion P ′ such that fP′(·) = fP(fP(·)).

292 S. Micali and L. Reyzin

Proof. To construct P ′, build a trivial physical VTM that simply runs P twice.
See full version of the paper for details. We wish to emphasize that, though
simple, the details of the proof of Claim 4.4 illustrate exactly how our axioms
for physically observable computation (formalized in our model) play out in our
proofs.

Despite this good news about our simplest definition, minimal one-way per-
mutations are not suitable for the Blum-Micali construction due to the following
observation.

Observation 1 Minimal one-way permutations do not chain. That is, an ad-
versary observing the computation of P ′ from Claim 4.4 and receiving fP(fP(x))
may well be able to compute the intermediate value fP(x).

This is so because P may leak its entire output while being minimal one-way.

Unlike minimal one-way permutations, maximal one-way permutations do
suffice for the Blum-Micali construction.

Claim. A maximal one-way permutation P implies a PO unpredictable genera-
tor.

Proof. The proof of this claim, whose details are omitted here, is fairly straight-
forward: simply mimic the Blum-Micali construction, computing x1 = P(x0),
x2 = P(x1), . . . , xn = P(xn−1) and outputting the Goldreich-Levin bit of xn,
of xn−1, . . . , of x1. Note that the computation of Goldreich-Levin must be done
on a trivial physical VTM (because to do otherwise would involve another as-
sumption), which will result in full leakage of xn, xn−1, . . . , x0. Therefore, for
unpredictability, it is crucial that the bits be computed and output one at a time
and in reverse order like in the original Blum-Micali construction.

Observation 2 Using maximal (or durable or minimal) one-way permutations
in the Blum-Micali construction does not yield PO indistinguishable generators.

Indeed, the output from the above construction is easily distinguishable from ran-
dom in the presence of leakage, because of the eventual leakage of x0, x1, . . . , xn.

The above leads to the following observation.

Observation 3 A PO unpredictable generator is not necessarily PO indistin-
guishable.

However, indistinguishability still implies unpredictability, even in this physically
observable world.

If the maximal one-way permutation satisfies an additional property, we can
obtain PO indistinguishable generators. Recall that a (traditional) hardcore bit
of x is natural if it is a bit in some fixed location of x.

Physically Observable Cryptography 293

Claim. A maximal one-way permutation P for which fP has a (traditional)
natural hardcore bit implies a PO indistinguishable generator.

Proof. Simply use the previous construction, but output the natural hardcore
bit instead of the Goldreich-Levin one. Because all parameters (including inputs
and outputs) are passed through memory, this output need not leak anything.
Thus, the result is indistinguishable from random in the presence of leakage,
because there is no meaningful leakage.

The claims and observations so far have been fairly straightforward. We now
come to the two main theorems.

5 Theorems

Our first main theorem demonstrates that the notion of a durable function is in
some sense the “right” analogue of the traditional one-way permutation: when
used in the Blum-Micali construction, with Goldreich-Levin hardcore bits, it
produces a PO unpredictable generator; moreover, the proof seems to need all of
the properties of durable functions. (Identifying the minimal physically observ-
able assumption for pseudorandom generation is a much harder problem, not
addressed here.)

Theorem 1. A durable function implies a PO unpredictable generator (with any
polynomial expansion).

Proof. Utilize the Blum-Micali construction, outputting (in reverse order) the
Goldreich-Levin bit of each xi, just like in Claim 4.4. The hard part is to show
that this is unpredictable. Durable functions, in principle, could leak their own
hardcore bits—this would not contradict the indistinguishability of the output
from random (indeed, by the very definition of a hardcore bit). However, what
helps us here is that we are using specifically the Goldreich-Levin hardcore bit,
computed as r · xi for a random r. Note that r will be leaked to the adversary
before the first output bit is even produced, during its computation as r ·xn. But
crucially, the adversary will not yet know r during the iterated computation of
the durable function, and hence will be unable to tailor its measurement to the
particular r. We can then show (using the same error-correcting code techniques
for reconstructing xi as in [13]) that r · xi is unpredictable given the leakage
obtained by the adversary. More details of the proof are deferred to the full
version of the paper.

Our second theorem addresses the stronger notion of PO indistinguishabil-
ity. We have already seen that PO indistinguishable generators can be built out
of maximal one-way permutations with natural hardcore bits. However, this as-
sumption may be too strong. What this theorem shows is that as long as there is
some way to a build the simplest possible PO indistinguishable generator—the
one with one-bit expansion—there is a way to convert it to a PO indistinguish-
able generator with arbitrary expansion.

294 S. Micali and L. Reyzin

Theorem 2. A PO indistinguishable generator that expands its input by a single
bit implies a PO indistinguishable generator with any polynomial expansion.

Proof. The proof consists of a hybrid argument, but such arguments are more
complex in our physically observable setting (in particular, rather than a tra-
ditional single “pass” through n intermediate steps —where the first is pseudo-
random and the last is truly random— they now require two passes: from 1 to
n and back). Details can be found in full version of the paper.

6 Some Further Directions

A New Role for Older Notions. In traditional cryptography, in light of
the Goldreich-Levin construction [13], it seemed that finding natural hardcore
bits of one-way functions became a nearly pointless endeavor (from which only
minimal efficiency could be realized). However, Claim 4.4 changes the state of
affairs dramatically. This shows how physically observable cryptography may
provide new impetus for research on older subjects.

(Another notion from the past that seemed insignificant was the method of
outputting bits backwards in the Blum-Micali generator. It was made irrelevant
by the equivalence of unpredictability and indistinguishability. In our new world,
however, outputting bits backwards is crucially important for Claim 4.4 and
Theorem 1.)
Inherited vs. Generated Randomness. Our definitions in the physically
observable model do not address the origin of the secret input x for a one-way
function P: according to the definitions, nothing about x is observable by F
before P starts running. One may take another view of a one-way function,
however: one that includes the generation of a random input x as the first step.
While in traditional cryptography this distinction seems unimportant, it is quite
crucial in physically observable cryptography: the very generation of a random x
may leak information about x. It is conceivable that some applications require a
definition that includes the generation of a random x as part of the functionality
of P. However, we expect that in many instances it is possible to “hardwire” the
secret randomness before the adversary has a chance to observe the machine,
and then rely on pseudorandom generation.
Deterministic Leakage and Repeated Computations. Our definitions
allow for repeated computation to leak new information each time. However,
the case can be made (e.g., due to proper hardware design) that some devices
computing a given function f may leak the same information whenever f is
evaluated at the same input x. This is actually implied by making the leakage
function deterministic and independent of the adversary measurement. Fixed-
leakage physically observable cryptography promises to be a very useful restriction
of our general model (e.g., because, for memory efficiency, crucial cryptographic
quantities are often reconstructed from small seeds, such as in the classical pseu-
dorandom function of [16]).

Physically Observable Cryptography 295

Signature Schemes. In a forthcoming paper we shall demonstrate that dig-
ital signatures provide another example of a crucial cryptographic object con-
structible in our general model. Interestingly, we shall obtain our result by relying
on some old constructions (e.g., [21] and [22]), highlighting once more how old
research may play a role in our new context.

Acknowledgment. The work of the second author was partly funded by the
National Science Foundation under Grant No. CCR-0311485.

References

1. Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing,
Seattle, Washington, 15–17 May 1989.

2. D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-channel(s).
In Cryptographic Hardware and Embedded Systems Conference (CHES ’02), 2002.

3. W. Alexi, B. Chor, O. Goldreich, and C. Schnorr. RSA and Rabin functions:
Certain parts are as hard as the whole. SIAM J. Computing, 17(2):194–209, 1988.

4. Ross Anderson and Markus Kuhn. Tamper resistance — a cautionary note. In
The Second USENIX Workshop on Electronic Commerce, November 1996.

5. Ross Anderson and Markus Kuhn. Low cost attacks on tamper resistant devices.
In Fifth International Security Protocol Workshop, April 1997.

6. Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
In Burton S. Kaliski, Jr., editor, Advances in Cryptology—CRYPTO ’97, volume
1294 of Lecture Notes in Computer Science, pages 513–525. Springer-Verlag, 1997.

7. M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing, 13(4):850–863, November 1984.

8. D. Boneh, R. DeMillo, and R. Lipton. On the importance of checking crypto-
graphic protocols for faults. In Walter Fumy, editor, Advances in Cryptology—
EUROCRYPT 97, volume 1233 of Lecture Notes in Computer Science, pages 37–
51. Springer-Verlag, 11–15 May 1997.

9. S. Chari, C. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power analysis attacks. In Wiener [29], pages 398–412.

10. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

11. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signa-
tures. Journal of Cryptology, 9(1):35–67, Winter 1996.

12. Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin.
Tamper Proof Security: Theoretical Foundations for Security Against Hardware
Tampering. Proceedings of the Theory of Cryptography Conference, 2004.

13. O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In
ACM [1], pages 25–32.

14. Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

15. Oded Goldreich and Silvio Micali. Unpublished.
16. O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions.

Journal of the ACM, 33(4):792–807, October 1986.
17. J. H̊astad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of pseudo-

random generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

296 S. Micali and L. Reyzin

18. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology—
CRYPTO 2003, Lecture Notes in Computer Science. Springer-Verlag, 2002.

19. Joshua Jaffe, Paul Kocher, and Benjamin Jun. United states patent 6,510,518: Bal-
anced cryptographic computational method and apparatus for leak minimizational
in smartcards and other cryptosystems, 21 January 2003.

20. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Wiener [29], pages 388–397.

21. Leslie Lamport. Constructing digital signatures from a one way function. Technical
Report CSL-98, SRI International, October 1979.

22. Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Advances
in Cryptology—CRYPTO ’89, volume 435 of Lecture Notes in Computer Science,
pages 218–238. Springer-Verlag, 1990, 20–24 August 1989.

23. S. W Moore, R. J. Anderson, P. Cunningham, R. Mullins, and G. Taylor. Improving
smartcard security using self-timed circuits. In Asynch 2002. IEEE Computer
Society Press, 2002.

24. Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In ACM [1], pages 33–43.

25. FIPS publication 46: Data encryption standard, 1977. Available from
http://www.itl.nist.gov/fipspubs/.

26. Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards. In Smart Card Programming
and Security (E-smart 2001) Cannes, France, volume 2140 of Lecture Notes in
Computer Science, pages 200–210, September 2001.

27. John Rompel. One-way functions are necessary and sufficient for secure signa-
tures. In Proceedings of the Twenty Second Annual ACM Symposium on Theory
of Computing, pages 387–394, Baltimore, Maryland, 14–16 May 1990.

28. Sergei Skorobogatov and Ross Anderson. Optical fault induction attacks. In Cryp-
tographic Hardware and Embedded Systems Conference (CHES ’02), 2002.

29. Michael Wiener, editor. Advances in Cryptology—CRYPTO ’99, volume 1666 of
Lecture Notes in Computer Science. Springer-Verlag, 15–19 August 1999.

30. A. C. Yao. Theory and applications of trapdoor functions. In 23rd Annual Sym-
posium on Foundations of Computer Science, pages 80–91, Chicago, Illinois, 3–5
November 1982. IEEE.

A Minimal GMR Notation

– Random assignments. If S is a probability space, then “x← S” denotes the
algorithm which assigns to x an element randomly selected according to S.
If F is a finite set, then the notation “x← F” denotes the algorithm which
assigns to x an element selected according to the probability space whose
sample space is F and uniform probability distribution on the sample points.

– Probabilistic experiments. If p(·, ·, · · ·) is a predicate, the notation Pr[x ←
S; y ← T ; ... : p(x, y, · · ·)] denotes the probability that p(x, y, · · ·) will be true
after the ordered execution of the algorithms x← S, y ← T,

	Introduction
	Intuition for Physically Observable Computation
	Models and Goals of Physically Observable Cryptography
	Computational Model
	Physical Security Model
	Assumptions, Reductions, and Goals

	Definitions and Observations
	Traditional Building Blocks
	Physically Observable One-Way Functions and Permutations
	Physically Observable Pseudorandomness
	First Observations

	Theorems
	Some Further Directions
	Minimal GMR Notation

