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Physicochemical Hydrodynamics of Droplets

out of Equilibrium: A Perspective Review

Detlef Lohse∗ and Xuehua Zhang†

May 11, 2020

Abstract

Droplets abound in nature and technology. In general, they are multicomponent, and,
when out of equilibrium, with gradients in concentration, implying flow and mass transport.
Moreover, phase transitions can occur, with either evaporation, solidification, dissolution, or
nucleation of a new phase. The droplets and their surrounding liquid can be binary, ternary, or
contain even more components, and with several even in different phases. In the last two decades
the rapid advances in experimental and numerical fluid dynamical techniques has enabled major
progress in our understanding of the physicochemical hydrodynamics of such droplets, further
narrowing the gap from fluid dynamics to chemical engineering and colloid & interfacial science
and arriving at a quantitative understanding of multicomponent and multiphase droplet systems
far from equilibrium, and aiming towards a one-to-one comparison between experiments and
theory or numerics.

This review will discuss various examples of the physicochemical hydrodynamics of droplet
systems far from equilibrium and our present understanding of them. These include immiscible
droplets in a concentration gradient, coalescence of droplets of different liquids, droplets in con-
centration gradients emerging from chemical reactions (including droplets as microswimmers)
and phase transitions such as evaporation, solidification, dissolution, or nucleation, and droplets
in ternary liquids, including solvent exchange, nano-precipitation, and the so-called ouzo effect.
We will also discuss the relevance of the physicochemical hydrodynamics of such droplet systems
for many important applications, including in chemical analysis and diagnostics, microanalysis,
pharmaceutics, synthetic chemistry and biology, chemical and environmental engineering, the
oil and remediation industries, inkjet-printing, for micro- and nano-materials, and in nanotech-
nolgoy.
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1 Introduction

Classical hydrodynamics focuses on pure liquids. In nature and technology, fluid dynamical systems
are however multicomponent, and often with gradients in concentration, even changing in time, i.e.,
they are out of equilibrium. These concentration gradients, be they smooth or sharp, can induce a
flow. Moreover, phase transitions can occur, with either evaporation, solidification, dissolution, or
nucleation of a new phase. The liquids can be binary, ternary, or contain even more components,
with several across different phases. The non-equilibrium can be driven by flow, mixing, phase
transitions, chemical reactions, electrical current, heat, etc.

To theoretically deal with such systems, in the 1950s, Levich wrote the wonderful book
“Physicochemical Hydrodynamics” [1]. The central theme of the book is the “elucidation of
mechanisms of transport phenomena and the conversion of understanding so gained into plain,
useful tools for applications,” as L. E. Scriven describes it in the foreword to the book in its 1962
translation into English [1]. Levich can be viewed as a physical chemist and theoretical physicist
at the same time, or, as Scriven puts it, above all, as an “engineering scientist” with a recognizable
“blend of applied chemistry, applied physics, and fluid mechanics.” V. Levich himself, in his fore-
word to the first Russian Edition (1952), describes the scope of physicochemical hydrodynamics
as the “aggregate of problems dealing with the effect of fluid flow on chemicals or physicochemical
transformations as well as the effect of physicochemical factors of the flow.”

First and foremost, Levich’s “Physicochemical hydrodynamics” is a book describing the relevant
theoretical and mathematical concepts, given that in those days the experimental tools to actually
measure the flow on the microscale were very limited and the possibility to perform direct numerical
simulations of the underlying partial differential equations even absent. Today, more than 60 years
later, the scientific and in particular the hydrodynamical and physicochemical communities have
developed tremendously and the experimental, instrumental, and numerical means to actually deal
with the problems Levich defined in his book have become available and are being used to do so.

These developments are more than timely, as the relevance of physicochemical hydrodynamics
of multicomponent and multiphase liquids is ever increasing, in order to address the challenges
of mankind for the 21st century. These challenges include energy, namely storage and batter-
ies, hydrogen production by electrolysis, CO2 capture, polymeric solar cell manufactering, biofuel
production, and catalysis. They also include health and medical issues like chemical analysis and
diagnostics or the production and purification of drugs, advanced material manufacturing, environ-
mental issues like flotation, water cleaning, membrane management, and separation technology, or
food processing and food safety issues. They also include issues in modern production technologies
such as additive manufacturing on ever decreasing length scales and inkjet printing, and in the
paint and coating industry.

These challenges have often been approached with a pure engineering approach, and less in
the spirit of Levich as an engineering scientist. On the other hand, as said above, classical hy-
drodynamics has focused on pure and single-phase liquids. In the last two decades, the advent
of new experimental and numerical tools has allowed for a more integrated understanding of
physicochemical hydrodynamics and to further narrow the gap between classical hydrodynamics
and chemical engineering and colloid & interfacial science. The objective of this effort is to im-
prove the quantitative understanding of multicomponent and multiphase fluid dynamic systems far
from equilibrium, in order to master and better control them. To achieve this objective, one has
to perform controlled experiments and numerical simulations for idealized setups, allowing for a
one-to-one comparison between experiments and numerics/theory, in order to test the theoretical
understanding. This effort indeed is in the spirit of Levich’s “Physicochemical Hydrodynamics”,
but now building on and benefiting from the developments of modern microfluidics, microfabrica-
tion, digital (high-speed) imaging technology, confocal microscopy, atomic force microscopy, and
various computational techniques and opportunities for high-performance computing. These are,
in a nutshell, the blessings from what can be considered as the golden age of fluid dynamics, which
builds on the digital revolution, both on the experimental and the numerical side. Given these
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developments, and given the necessity in chemical engineering to move towards higher precision
and enhanced control, this effort is indeed very timely.

There is a large number of physical phenomena and effects which come into play in multicompo-
nent and multiphase liquids far from equilibrium. These include gradients in concentration, either
in the bulk of the liquid or on the surface, leading to diffusiophoresis and solutal Marangoni flow.
They include (selective) dissolution of (multicomponent) droplets and bubbles in host liquids or
vice versa their nucleation and growth. They also include the coalescence of droplets consisting of
different liquids, possibly with chemical reactions and/or solidification and other transitions from
one phase to another. The material parameters which become important are the various diffusivi-
ties and viscosities of the liquids, their surface tensions and how they depend on the concentrations,
the volatilities and mutual solubilities, latent heats, reaction rates, etc.

Obviously, the field of multicomponent and multiphase hydrodynamics is too large to give an
exhaustive review. So we restrict ourselves to small length scales, focusing on the physicochemical
hydrodynamics of (multicomponent) droplets far from equilibrium. The objective of this perspec-
tive review is to show examples of such systems for which a successful quantitative description and
one-to-one comparison between well-controlled table-top experiments and theory and numerics has
been achieved, to identify the complex interplay of the underlying principles, and to put these ex-
amples into the context of relevant applications of multicomponent and multiphase liquid systems.
In particular, we want to identify the new directions of physicochemical hydrodynamics and want
to outline the scientific challenges and their connections with the technological challenges.

The core of the review is section 2. In the five subsections, we give general examples for the
physicochemical hydrodynamics of (multicomponent) droplets far from equilibrium. In the five
subsections of section 3 we give application fields and examples for the relevance of physicochemical
hydrodynamics in technology. Finally, in section 4 we will try to identify the general lessons one
learns from these examples and applications and will give an outlook to further directions and
perspectives. For better readability, so that in the main sections we can better focus on the
fluid dynamics and the physics, we have included three text boxes, namely one on the relevant
dimensionless numbers in physicochemical hydrodynamics, one for the new experimental methods
which have enabled the recent progress, and one on the new or improved numerical methods.

This perspective review convey ideas, rather than delve into detailed technical aspects or be
encyclopedic. For these aspects we refer to specialized review articles on certain aspects, such as
the one by Cates and Tjhung on binary fluid mixtures [2], by Lauga and Powers on swimmers
[3], by Maass et al. on swimming droplets [4], by Moran and Posner and by Golestanian on
phoretic self-propulsion [5, 6], by Manikantan and Squires on surfactant dynamics [7], by Cazabat
& Guéna [8] and Erbil [9] on evaporation of pure liquid sessile droplets, by Sefiane on patterns
from drying drops [10], by Lohse and Zhang on surface nanobubbles and nanodroplets [11], by Jain
on single-drop microextraction [12], by de Wit on chemo-hydrodynamic patterns and instabilities
[13], etc.
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Box 1: Dimensionless numbers for droplets in physicochemical hydrodynamics
In fluid dynamics, it is common to express the ratio of the various forces (or time or length scales)
in terms of dimensionless numbers. The most famous one is the

• Reynolds number Re = UR/ν, which expresses the ratio of inertial forces to viscous forces.
In the context of droplets, R is the droplet radius, U the (relative) droplet velocity, and ν the
kinematic viscosity of the continuous phase.

In the context of the physicochemical hydrodynamics of droplets, which dissolve or grow, the perhaps
even more relevant dimensionless parameter is the

• (diffusive) Peclet number Pe = UR/D, which compares the advective and diffusive time
scales, where D is the mass diffusivity, which in general is much smaller than the viscosity ν,
reflecting the very slow process of molecular diffusion in liquids.

The ratio between viscosity and diffusivity is the

• Schmidt number Sc = ν/D, which correspondingly in physicochemical hydrodynamics is
quite large, namely ∼ 103, which on the one hand is the reason for many peculiarities in
physicochemical hydrodynamics, and on the other hand introduces many experimental and
numerical difficulties.

Once also thermal effects come into play, the thermal diffusivity κ will play a role. Its ratio to the
molecular diffusivity and the kinematic viscosity is expressed as

• Lewis number Le = κ/D and Prandtl number Pr = ν/κ, which are typically ∼ 400 and
∼ 4, respectively, reflecting that the thermal diffusion is much faster than the molecular one,
and that for standard liquids thermal transport is slightly slower than viscous transport.

In hydrochemical hydrodynamics, surface tension effects are crucial. They can be expressed either
in terms of the

• Weber number We = ρU2R/σ, which is the ratio of inertia to capillarity, where σ is the
surface tension and ρ the density of the liquid, or the

• Capillary number Ca = ηU/σ, ratio of viscous to capillary forces, or the

• Ohnesorge number Oh = η/
√
ρwσR = We1/2/Re, ratio of time of viscous damping to time

of the capillary oscillations, or the

• Bond number Bo = ρgR2/σ, ratio of gravity to capillary forces.

The full richness of hydrochemical droplet fluid dynamics only enters once several liquids and gases
come into play, with different surface tensions, densities, etc. Then the gradient of the hydrodynamic
forces along or across a droplets introduces net forces. The most relevant may be the

• Marangoni number Ma = R∆σ/(ρνD), which compares the Marangoni forces with stabi-
lizing viscous forces and stabilizing mass diffusion. The difference ∆σ in surface tension may
be due to differences ∆c in the composition of the liquid, where c(x, t) is the concentration
field, or due to differences ∆T in the temperature of the liquid. Roughly, ∆σ ≈ ∂σ/∂c ∆c, and
similarly for the temperature, but note that in general the dependence σ(c) is very nonlinear
[14]. In general, of course, σ(T, c), and ∆σ ≈ ∂Tσ|c∆T + ∂cσ|T∆c.

Another way for the system to get out of equilibrium are density differences ∆ρ to which the gravi-
tational acceleration g couples, implying a

• Rayleigh number Ra = gR3∆ρ/(ρνD), which compares destabilizing buoyancy with stabi-
lizing viscosity and diffusivity.

Once chemical reaction come into play, we will also need the

• Damköhler number Da, which expresses the ratio between chemical reaction rate and
(diffusive or convective) mass transport rate.

We will encounter all these numbers in the discussions of the various physicochemical hydrodynamical
effects featured in this review article.
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Box 2: Recent progress in experimental tools to address physicochemical hy-
drodynamics
A whole plethora of new and improved experimental techniques in fluid dynamics has en-
abled the recent progress in understanding the physicochemical hydrodynamics of droplets
and bubbles far from equilibrium. The most relevant of these techniques are:

• Optical visualization with optical wavelength resolution and beyond: These tech-
niques include standard, fluorescence, and confocal microscopy [15–17]. The latter
allows for 3D visualizations, but the choice of proper dyes is essential, as adding dyes
and/or fluorescent molecules (which are often surface active substances) may cause
contamination to the system and artefacts.

• Digital Holographic Microscopy (DHM) can be seen as complementary to confo-
cal microscopy, namely focusing on interfaces rather than on the bulk as standard con-
focal microscopy. The technique – developed only about a decade ago and up to now
mainly used in the biological context [18–20] – is crucial and ideal for high-precision
measurements and visualizations of growing and shrinking droplets with small contact
angle, having a sub-nanometer in-depth resolution.

• Micro-particle-image-velocimetry (µ-PIV) [21] allows to obtain information on
the velocity fields in and around droplets, even if they are moving, growing, or shrink-
ing.

• High-speed imaging with frame rates up to several million frames per second [22]
and stroboscopic illumination by nanosecond laser pulses [23, 24] allow for excellent
temporal resolution. These techniques also include fluorescent high-speed imaging [22].

• Atomic force microscopy (AFM) allows for nanometer or even atomic resolution
both laterally and in-depth. In the last two decades, it has developed such that it
can now routinely also be used in the liquid phase [11]. With techniques like shock-
freezing [25] or instantaneous polymerization with the help of UV radiation [26] the
nucleation and growth process of droplets can be terminated. The latter requires the
use of UV polymerisable liquids as solutes. After solidification of the sessile droplet
phase through UV radiation, the other liquid phase can be removed, paving the way
for AFM of a solid phase in air, which is much easier than of a liquid phase in another
liquid.

• Surface-enhanced Raman spectroscopy (SERS) [27] allows to follow the chem-
ical composition of sessile droplets or bubbles in time.

• Microfluidics: Well-defined channels and substrates with designed structures and
chemical patterns are possible by microfabrication techniques [28–33] to study the
growth and collective interactions of bubbles and droplets.
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Box 3: Recent progress in numerical tools to address physicochemical hydrody-
namics
Alongside the progress in the experimental techniques (see Box 2), also the progress on the
numerical side was crucial in pushing the field ahead. Next to the ever enhancing pure com-
putational power, also the development of new numerical methods and open-source codes
and tools contributed to this progress, which now often make a one-to-one comparison be-
tween experiment and numerical simulations possible.
The main challenge for the numerical simulations in physicochemical hydrodynamics are the
vastly different time scales for the momentum transfer and for the mass transfer, reflected
in the large Schmidt number Sc ≈ 103. This implies that the concentration field must live
on a smaller grid than the velocity field and that the stepping time scale is extremely small.
Here, multigrid resolution techniques are a possible way out [34]. These can be used for
various numerical schemes.
The most relevant techniques for the numerical simulations in physicochemical hydrody-
namics are:

• Finite element methods: Moving droplets or droplets with mass-exchange require
a well-resolved interface with the surrounding phases. This can be achieved with a
sharp-interface finite element method, where the mesh is always conforming with the
interface [35]. Since in general the droplet moves, this requires to co-move all mesh
nodes accordingly with the interface. To that end, with Eulerian-Lagrangian methods
originally developed for fluid-structure interaction [36, 37], the mesh can be treated as
pseudo-elastic body, so that the bulk nodes follow the motion of the interfacial nodes,
which is connected via Lagrange multipliers to the kinematic boundary condition of
the interface [35]. This technique has proven to be extremely versatile for binary and
ternary droplets [17, 38–40], but the challenge remains to efficiently parallelize such
codes.

• Finite Difference (FD) with Immersed Boundary methods (IBM) [34, 41]
are an alternative, allowing for massive parallelization and the calculation of tens
of dissolving or growing droplets over a long time [42, 43]. Just as in finite element
methods, a weak point of such simulations is that they require a-priori input in what
mode (e.g. constant contact angle (CA-mode) vs constant contact radius (CR-mode)
[8, 11]) droplets or bubbles grow or shrink.

• Phase field methods and Cahn-Hilliard type approaches [44] employ a diffuse
interface, but easily allow to describe spontaneous phase-separation and nucleation,
such as occurring in the ouzo effect [45].

• Level-set methods [46, 47] have the advantage that the interfaces between the dif-
ferent phases are sharp. They have been extended to include phase changes and
interfacial flows driven by surface tension gradients [48, 49].

• Lattice Boltzmann (LB) methods [50] – coarse-grained versions of the molecular
theory of fluids enabling massive parallelization – have been adopted and applied to
multiphase flows [51, 52], including the selective evaporation or dissolution of multi-
component droplets [53].

• Molecular Dynamics (MD) simulations [54–57] have the advantage that they
do not require to predetermine whether the (sessile) droplet grows or shrinks in the
CA or CR mode as in FD+IBM, but the mode will come up from the respective
chemical properties of the substrate and the liquids involved, see e.g. refs. [58, 59].
The downsides of MD are that (i) only small nanodroplets (∼50 nm) can be simulated,
that (ii) one is restricted to short physical times of at most microseconds, and that
(iii) molecular interaction potentials are needed, which are not from first principles.
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2 Recent fundamental research on physicochemical hydrodynam-

ics in droplet systems

In this section we will give examples for the physicochemical hydrodynamics in selected simple
droplet systems. We will focus on systems in which modern experimental and numerical tech-
niques have led to considerable progress in our understanding, often even allowing for a one-to-one
comparison between experiments and numerics. These modern techniques are highlighted in boxes
2 (experimental) and 3 (computational). In the next section we will focus on the applications
and the relevance of these examples. The focus is on droplets – for a very general overview on
fundamental and applied aspect of bubble systems, we refer to our recent review [60].

2.1 Immiscible droplet in a concentration gradient

One of the most basic examples for a droplet far from physicochemical equilibrium is the one of
an immiscible (oil) droplet (of radius R) in a concentration gradient of two other miscible liquids
(with density lighter respectively heavier than the oil droplet), see figure 1a. The two control
parameters reflecting the non-equilibrium situation are the Marangoni number Ma defined with
the gradient of the surface tension, i.e., ∆σ = R∂zσ, and the Rayleigh number Ra, defined with
the gradient in density, ∆ρ = R∂zρ; see box 1 for the proper nondimensionalization. For the
case of Stokes flow (small Reynolds number) and zero density gradient, the resulting velocity and
the concentration fields can be analytically calculated [61]. The former can be quantified by the
Marangoni velocity VM at the equator of the droplet or, in dimensionless form, the (Marangoni-
)Peclet number PeM = VMR/D. If large enough, i.e., for a large enough concentration gradient,
this Marangoni flow can make the droplet jump upwards in the stratified density gradient, against
gravity [39]!

In more detail, what happens is the following series of events, that we will describe for the
concrete example of an anise oil droplet in a stratified (fully miscible) mixture of water (bottom)
and ethanol (top) with constant density gradient in between, see figure 1a,b,c and ref. [39]: First,
the oil droplet sinks in the gradient region, trying to find its equilibrium position with respect
to density. Ethanol-rich liquid is entrained downwards during this motion. This entrainment is
enhanced by the Marangoni flow along the drop surface, from the ethanol-rich top (low surface
tension) to the ethanol-poor bottom, leading to further entrainment of ethanol-rich liquid. As the
droplet asymptotically approaches the density matched position, the self-enhancing Marangoni
flow eventually overcomes the sinking-induced buoyancy jet. This positive feed-back leads to a
linear instability and exponential growth of the Marangoni flow, which pushes the liquid around
the drop downwards and thus the drop upwards, like a micro-swimmer in the pulling mode [3].
Once this Marangoni flow is dominant (typically after ∼ 60s), the drop shoots upwards towards
the low density region and the process can start over. Up to six hours of consecutive jumps have
been observed. The process only comes to an end once the jumping droplet has sufficiently mixed
the stratified liquid. The system can be seen as canonical example for the competition between
Marangoni (surface tension forces) and Rayleigh (gravity). We will see further examples in other
subsections.

In general, the velocity U of a droplet in a concentration gradient is described with its so-called
mobility M , namely U = M∇c, with the mobility being determined by the droplet radius R, the
concentration dependence of the surface tension, and the dynamic viscosities ηi,o of the inner and
outer liquid, M = R∂cσ/(2ηo + 3ηi) [61, 66–68], provided no other phoretic forces play a role.

Flow driven by concentration gradients and restricted to a few nanometers close to a solid
interface is called diffusiophoresis [66, 67, 69, 70]. This term in particular refers to the motion of a
colloidal particle in a concentration gradient. Though both Marangoni flow and diffusiophoresis
originate from the interplay of surfaces with compositional gradients, we will not focus on diffusio-
phoresis in this review, as in general the term refers to liquid-solid interfaces, and not to droplets.
Note however that there are some exceptions; e.g. in refs. [71, 72] the movement of a charged oil
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droplet in a solute gradient is referred to as diffusiophoresis, as then a discontinuity in the flow
velocity across the droplet interface arises, while the hydrodynamic stresses at the interface are
continuous, see figure 1 of ref. [72].

2.2 Coalescence of droplets of different liquids

A concentration gradient can instantaneously be imposed by a collision of two droplets consisting
of two different liquids. In the case of coalescence of fully miscible droplets, the surface tension
difference at the interface will lead to Marangoni flow, with the droplet of smaller surface tension
being pulled over that with the larger one, while the counteracting force in general is of viscous
nature. The droplets can either be sessile [73, 74, 78] or pendant [75] from a nozzle with a large
contact angle, or even hitting each other in flight [76, 79], or – both as sessile droplets – sitting on
top of each other [77], see figure 2.

Note that the droplets need not be of equal volume and that the coalescence of a droplet with a
pool of a different liquid is included in case (b) of figure 2. In that case, for large enough Ohnesorge
and Marangoni numbers (i.e., dominance of Marangoni forces), the spreading front L(t) displays
a universal scaling law L(t) ∼ t3/4(∆σ)1/2/(ρη)1/4 or L(t)/R ∼ (Ma/Sc)1/2 (tν/R2)3/4 (where R
is the droplet radius) over many orders of magnitude [75, 80, 81]. For case (a) of figure 2 – sessile
droplets – the dynamics can be much richer, as, depending on the surface tension difference ∆σ, it
can either show enhanced coalescence similar to the case in figure 2b , or, more remarkably, delayed
coalescence, due to a competition between capillary pressure and dynamic pressure, induced by
the Marangoni flow, see figure 2a.

The situation further complicates once the different liquids in the drops react with each other
[82] or a solidification (e.g. with cross-linkers) is induced [76], see sketch of figure 2c. Then the
crucial new parameter is the Damköhler number, which compares the time scale of the chemical
reaction with that of the hydrodynamics. Yet another situation occurs when one larger sessile
droplet is immersing a smaller one of a different liquid, as shown in figure 2d. When the two
three-phase-contact-lines touch each other, for certain combinations of surface tensions part of the
interior sessile droplet can be “spit out” by the larger one [77], see figure 2d.

2.3 Droplets in concentration gradients emerging from chemical reactions

In the examples of the two previous subsections the concentration gradient leading to Marangoni
flow was imposed from outside. However, such a gradient can also evolve, e.g. thanks to chemical
reactions. A famous example for such gradients can be achieved with so-called Janus particles,
i.e., particles with different chemical composition on different sides [83]. In the particular work of
Paxton et al. [83] one side of the Janus particle consisted of gold and the other one of platinum.
When put in a H2O2 solution, on the Pt side catalytically generated oxygen nanobubbles emerged,
leading to a chemical potential gradient, which induced a (generalized) Marangoni flow along the
particle surface, pushing the particle backwards. There are many variations of such systems,
employing the concentration gradient between front and rear, e.g. in refs. [84–87]. Note that only
very small gradients ∇σ in surface tension are required to drive visible motion of the microparticles
[4].

For Janus particles, the symmetry-breaking is imposed on the particle. However, even more
interestingly, such symmetry breaking leading to a gradient in concentration around a particle or
droplet can also emerge spontaneously, due to an instability. Michelin et al. [63] theoretically
showed that for large enough Peclet numbers the combined effect of solute dissolution (solubiliza-
tion) (or solute reaction) at the droplet interface and Marangoni flow can produce an instability,
resulting in spontaneous and self-sustained motion of the initially isotropic droplet [68, 88–91].
Here the Peclet number is defined with the mobility M of the droplet, the surface emission rate α
[84], and the droplet radius R, namely Pe = MαR2/D2. The crucial mechanism is that nonlin-
ear mixing of the dissolved substance or the reagent establishes gradients in concentration, which
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then are converted into flow by Marangoni forces or diffusiophoresis [66, 92–95]. The bifurcation
diagram of this process and the resulting swimming velocities are shown in figure 1e, along with
the concentration fields around the droplets for various Peclet numbers, see insets of figure 1e.
They and figure 1a also give an idea on the flow field around the swimming droplet. For even
larger Peclet numbers, the droplet can curl [64], swim helically [96] or even chaotically [65, 68, 72];
examples are shown in figure 1f,g. Once two or even more of such droplets are close to each other,
they show very rich and highly nontrivial collective behavior [97–100].

The solubilization or chemical reactions at the droplet interface can be of various nature. Many
examples are given in the review article by Maass et al. [4]. These include simply dissolving or
slowly reacting droplets, but also micellar solubilization [101, 102] of a surfactant on the oil droplet
well above the critical micelle concentration (CMC), nematic liquid crystal droplets self-propelling
in a highly concentrated surfactant solution [64, 96, 103], droplets with a surfactant undergoing
a chemical reaction [97], binary droplets with selective dissolution [104], and many others [4].
Obviously, the driving strength of solubilization or dissolution will decrease as function of time
and the droplet will shrink, leading to transitions in the motion pattern, e.g. from random, to
helical, to straight [96], but this process is very slow and can take many hours. An interesting
case is also when the droplet crosses its own trace. Another flabbergasting case is a surface-active
chemotactic droplet which is even able to navigate through a complex maze, thanks to an imposed
concentration gradient and the self-propelling property [62, 105, 106]. Such an example is shown
in figure 1d.

2.4 Droplets in concentration gradients emerging from phase transitions

The simplest case of a droplet in an out-of-equilibrium situation may be a volatile droplet evaporat-
ing in air or a soluble droplet dissolving in another, originally pure liquid. For a spherical droplet
in the bulk of a host liquid this problem was analytically solved by Epstein and Plesset [107]. That
calculation was originally made for dissolving bubbles, but later generalized to dissolving droplets
[108]. Also the evaporation or dissolution of a single sessile droplet consisting of a pure liquid in a
solvent has meanwhile reasonably well been understood [8, 9, 11, 109–114] – even if it is not purely
diffusive so that convective effects outside the droplet due to density differences of the liquids come
into play [115], enhancing the dissolution.

The situation becomes more interesting once multiple dissolving or evaporating sessile droplets
interact, as in general they shield each other: The reason is that dissolving neighboring droplets
reduce the concentration gradient at the interface and thus the outflux from the droplet, leading to
longer (and heterogeneous – depending on the position of the droplet) life-times [42, 43, 116–120],
even when the solvent is flowing over the sessile droplets [42]. Such a situation has recently been
explored both experimentally and numerically, leading to reasonable agreement, as seen in figure
3. Note that the dissolution delay by shielding only holds in the pure diffusive regime. Once
convective effects come into play (i.e., density difference between the droplet and its host liquid
with large resulting Rayleigh numbers), remarkably, collective effects can also enhance dissolution,
due to the collective interaction of individual density plumes [120].

Coming back to single sessile droplets, concentration gradients can also emerge from selective
evaporation (or dissolution) from a sessile binary droplet (or – again more generally – a droplet
consisting of several miscible liquids). The reason lies in a combination of the (in general) different
volatility of the components and the singularity of the evaporation (or dissolution) rate at the
rim of the droplet [8, 110, 112, 121] (provided the contact angle is smaller than 90o), leading to a
concentration gradient at the interface of the droplet. The resulting surface tension gradient drives
a Marangoni flow inside the droplet [17, 38, 40, 122–132], see figure 4a. This effect is very similar
to what leads to the so-called tears of wine [133] inside a partially filled wine-glass: In this case,
selective evaporation of ethanol at the edge of the meniscus leads to larger surface tension, which
thus pulls part of the remaining wine upwards along the alcohol-wetting glass, finally leading to
an instability of the film and droplets sinking down the glass wall. In evaporating droplets, the
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Marangoni convection can be so violent – with velocity exceeding mm/s – that the axisymmetry
breaks [38, 125]. The same can happen through moisture absorption: Shin et al. [134] show that
the absorption of water vapor (i.e., moisture) to a sessile or pendent glycerol droplet can lead to
an axisymmetry breaking Bénard-Marangoni instability of the resulting flow, which is driven by
water concentration gradients at the droplet-air interface, emerging from preferential absorption
of the water at the rim of the droplet. The evaporation, absorption, and dissolution dynamics of
multicomponent sessile droplets presently is a very active area of research.

Depending on the nature of the two components of the binary liquid, the (stronger) evaporation
of one component can lead to several different scenarios for the physicochemical hydrodynamics of
the sessile binary droplet. In a first scenario [129, 130, 135], the selective evaporation of one liquid
can lead to segregation of this liquid in the center of the droplet thanks to shielding by the other,
non-volatile liquid. This scenario occurs once the Marangoni flow arising through concentration
differences at the droplet-air interface is too weak to fully mix the two liquids.

An even more interesting second scenario comes into play once the two miscible liquids of the
binary droplet display a sufficiently large density gradient [40, 131], as can become the case for e.g.
a droplet consisting of water and glycerol [40]. This density gradient is “activated” by selective
evaporation of the more volatile liquid, which in ref. [40] is water. In dimensionless form, it is
expressed as Rayleigh number Ra. The gravitational forces resulting from the density gradient
compete with the Marangoni forces on the droplet-air interface, whose strength in dimensionless
form is expressed as Marangoni numberMa. Once the gravitational forces win, Rayleigh convection
rolls dominate and the flow pattern in sessile droplets (figure 4b) is very different from that in
pendant droplets (figure 4c). For sub-millimeter droplets this is remarkable as the Bond number
of such droplets is Bo ≪ 1, on first sight implying that gravity does not play a role – but only
as compared to capillarity (implying the spherical-cap-shape of the droplet), but not as compared
to viscosity. The full phase diagram in the Ra vs Ma parameter space is displayed in figure 4d,
featuring either pure Rayleigh convection rolls, or pure Marangoni convection rolls, or both at the
same time. Also for large Rayleigh numbers the axisymmetry can be broken, and a Rayleigh-Taylor
instability can emerge [137].

Instabilities can also emerge once a binary droplet evaporates on a bath of an immiscible liquid
[81, 138, 139], see figure 5a. Here, similarly as in subsection 2.2, the Marangoni stress in the drop
pulls the droplet outwards but is balanced by the viscous stress in the oil bath, leading to a bulk
flow (black arrows in figure 5a1). The evaporation causes a transition from partial to complete
wetting, which sets the radius of the central drop in figures 5a2,a3. In the limiting case of the bath
height going to zero, one has the situation of a binary droplet on a thin film. Here the outwards
Marangoni flow can get so violent that a hole emerges in the film [140].

The dynamics of an evaporating binary sessile droplet – be it on a substrate or a liquid – is
further complicated once also surfactants come into play [125, 128]. Also in this case the Marangoni
driving of the flow can be so strong that its axisymmetry is broken. The surfactants and the
composition of the binary droplet also strongly affect the pattern of the deposit as Kim et al.
demonstrated with evaporating whisky droplets [125].

Note that not only the dissolution of sessile binary droplets with the resulting Marangoni flows
is highly non-trivial, as elaborated above, but even the dissolution of spherical binary droplets
in the bulk: The reason is that, due to selective dissolution, concentration gradients inside the
droplet between its surface and its bulk can arise [144]. These can lead to considerable memory
effects (in particular for small droplets), which do not exist for the dissolution of a pure droplet
[144–146].

Another example for a concentration gradient (i.e., an out-of-equilibrium situation) which
emerges from phase transitions is a freezing miscible mixture of different liquids with different
freezing temperatures. A particularly intriguing case is a pure immiscible droplet in a binary liquid
undergoing solidification of one component [147]. Then a concentration gradient is emerging, acting
on the droplet, either pushing it away from the solidification front or towards it, possibly finally
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leading to the engulfment of the droplet [141]. An example is shown in figure 5b. A generalization
of this problem are freezing colloids which show extremely rich and intriguing behavior [147].

2.5 Droplets in ternary liquids: Nucleation and growth

The examples up to now dealt with miscible, sparingly miscible, and immiscible liquids, but the
solubility of one liquid in another one was always constant. However, in ternary liquids, this need
not be the case: The mutual solubilities in general depend on the relative concentrations of the
liquid. This is commonly expressed in the so-called ternary diagram, see figure 6a for a sketch of a
typical situation. In particular, the ternary diagram can contain so-called ouzo-regions, in which
sub-micrometer-sized droplets of one species can metastably exists. The best-known example for
such liquids is indeed ouzo itself.

Ouzo is a transparent Greek liquor (equivalently, one can take as example the French Pastis,
the Italian Sambuca, or the Turkish Raki), which chemically – in spite of its actual more complex
composition – for our purposes can be considered as a ternary liquid consisting of ethanol, water,
and (anise) oil. When served, water is usually added, which lowers the solubility of the oil (see
the ternary diagram of figure 6a), thus leading to oil oversaturation and subsequently to the
nucleation of oil droplets in the bulk liquid and thus to the characteristic milky color. This process
is called “ouzo effect” [148–150] or also solvent exchange or solvent shifting. The ouzo emulsion is
amazingly stable against Ostwald ripening [151, 152], i.e., the capillary pressure driven shrinkage
of the smaller droplets and the simultaneous growth of the larger ones (coarsening). Moreover, the
nucleated droplets have a relatively sharp size distribution. Both features – the absence Ostwald
ripening and the sharp droplet size distribution – are not fully understood and an active area of
research [153].

When the solvent exchange process takes place in the presence of a hydrophobic surface, sessile
nanodroplets will nucleate at this surface and then grow [11, 26]. This offers the opportunity
for a bottom-up approach in “building” droplets or also crystals. Nucleation and growth of the
droplets strongly depend on the geometrical and chemical nature of the substrate and pinning of
the contact line respective the absence thereof plays a paramount role [154, 155] in determining
the growth mode of the droplet (constant contact radius (CR) mode vs constant contact angle
(CA) mode). It is this pinning that enables the stability of surface nanodroplets and nanobubbles
against evaporation or dissolution [11, 156, 157].

The advances in modern microfluidics and microscopy of various kinds (see box 2) allowed to
monitor the growth of the nucleated sessile nanodroplets as function of the control parameters
[163, 164, 168, 169] – including on patterned surfaces [170, 171], as function of time [172], and
including collective effects of the nucleating droplets [173–175].

The essence of the process is sketched in figure 6b: A bad (but fully saturated with a solute)
solvent in a narrow channel (of submillimeter height h) is replacing a good one (also saturated or
at least containing sufficient solute), leading to a front of oversaturation of the solute, which passes
by the substrate. This passage leads to nucleation of nanodroplets on the substrate (provided the
wetability of the droplet liquid on the substrate allows for this) and to their growth. This growth
is controlled by the thickness of the diffusive boundary layer around the droplets (which is set by
the Prandtl-Blasius-Pohlhausen boundary layer theory [176]) and thus the mean flow velocity, or,
in dimensionless numbers, the Peclet number Pe. One can theoretically derive 〈V olf 〉 ∼ h3Pe3/4

for the final area averaged volume 〈V olf 〉 of the droplets [163, 177], which agrees very well with
the experimental data.

The solvent shifting can also be driven by evaporation or dissolution of one of the solvents. Such
experiments combine features of the Marangoni flow in ternary droplets triggered by evaporation
or dissolution as described in subsection 2.4 with the nucleation of microdroplets triggered by
solvent shifting as described in this subsection.

A very illustrative and simple example for such an experiment is the evaporation of an ouzo
droplet on a substrate under ambient conditions [17, 38], see figure 7, where we show optical and
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confocal snapshots and sketches of the four different stages of the evaporation process of the ouzo
droplet [17, 38]: In phase I, the spherical cap-shaped droplet remains transparent, while the more
volatile ethanol is evaporating, preferentially at the rim of the drop due to the geometric singularity
there, as explained in subsection 2.4. This leads to a local ethanol concentration reduction and
according to the ternary diagram figure 6a to oil droplet nucleation at the rim. This is the beginning
of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to the typical
milky ouzo appearance. These microdroplets can coalesce and form an oil ring at the rim of the
droplet (early in phase III). At some point all ethanol has evaporated and the drop, which now
has a characteristic non-spherical-cap shape with the water drop sitting on top of the oil ring,
thus is transparent again (late in phase III). Finally, in phase IV, also all water has evaporated,
leaving behind a tiny spherical cap-shaped oil drop. The entire evaporation process takes about
a quarter of an hour. Note that this example of an evaporating ouzo droplet on a substrate can
also numerically be treated, employing finite element methods, resulting in a very good agreement
between numerics and experiments [17, 38].

There are various variations of the theme of an evaporating or dissolving ternary droplet: In
ref. [178] an ouzo droplet evaporating on a superamphiphobic surface is studied, again both ex-
perimentally and numerically. In this case the contact angle is much larger than 90o, resulting in
a maximal evaporation rate at the apex of the droplet and correspondingly to a start of the oil
microdroplet nucleation at that position. Obviously, the Marangoni flow is then also towards the
apex of the droplet, and not towards the rim, as it was the case for contact angles smaller than 90o.
In ref. [179] the dissolution of a water-ethanol drop in a bath of anise oil was analyzed: Here during
the dissolution, two types of microdroplet nucleation was observed, namely oil microdroplet nu-
cleation in the aqueous drop (“ouzo effect”) and water microdroplet nucleation in the surrounding
oil (“inverse ouzo effect”), see figure 6a. Again, various physicochemical hydrodynamical processes
such as Marangoni flow, Rayleigh convection, diffusion and nucleation compete in an extremely
rich way, but can nonetheless be disentangled [179] by including the key physics in a simple model
[179–182].

An even richer system with two big drops consisting of different aqueous liquids (one water
drop, and one consisting of ethanol-water mixtures) in a bath of toluene as host liquid is studied
in ref. [183]. The diffusion of the aqueous liquids through the toluene leads to the nucleation of
aqueous microdroplets (inverse ouzo effect) in between the two bigger drops. A variation of this
experiment is sketched in figure 6c1: Two droplets of two different slightly soluble liquids are
approached to each other in a third liquid. Even before they touch (a situation we had discribed in
subsection 2.2), there will be diffusive exchange of matter. In figure 5c the solubility of the yellow
liquid is larger than that of the red one, leading to a concentration gradient of the yellow liquid on
the red drop and thus in general to Marangoni forces and the resulting Marangoni flow in the red
drop and in between the drops. This will dramatically change the diffusive process and the forces
between the droplets. In case of ternary liquids with a solubility gap it can also lead to nucleation
of microdroplets, as in ref. [183].

Droplets of ternary liquids can phase separate in many different ways [45, 153, 159, 167, 184–
186], showing extremely rich and complex behavior. For example, a miscible droplet of diethylph-
thalate (DEP) oil, water, and ethanol, which has a ternary diagram similar to that shown in the
sketch of figure 6a, demixes upon contact with an aqueous phase, to give alternating, onion-like
layers of oil and water [45, 167], see figure 6c. The detailed dynamics of this liquid-liquid phase
separation and the type of emerging structures strongly depends on the exact relative initial com-
position of the ternary liquid and their viscosity. The process is controlled by diffusion of water
into the ternary droplet and vice versa of its components out of the droplet. The liquid-liquid
phase separation can be modelled with Cahn-Hilliard type approaches [45].

A microfluidics co-flow device similar to that of figure 6c1 operated with ternary liquids is
also very well suited to impose a well-defined concentration gradient, in order to quantitatively
study the competition between diffusion, Marangoni convection, and nucleation of microdroplets
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in the ouzo-region or inverse ouzo-regime of the ternary diagram [187]. The reason is that, with
the controlled and laminar flow profiles of such a device, detailed experimental information on the
conditions for droplet formation and their radial migration in the ternary flow can be obtained
and compared with the ternary phase diagrams.

3 Relevance and applications of physicochemical hydrodynamics

in droplet systems

After having shown some examples of recent fundamental work on the physicochemical hydrody-
namics in well-defined droplet systems in the previous section, we will now come to the relevance of
multicomponent droplet systems in applications. In the introduction we have already mentioned
various application fields. In the following subsections we want to go into more detail for five
quite different application fields. Also for these applications we cannot be encyclopedic, nor go
into depth, but we hope to convey the flavor of the applications and their great potential. As in
the previous section we ended with ternary droplets with a solubility gap, here we will directly
continue with them, and only then come to miscible binary and multicomponent droplets.

3.1 Chemical analysis and diagnostics

Liquid-liquid extraction – the transfer of a solute from one solvent to another – is one of the core
processes in chemical technology and analysis. For chemical analysis such as chromatography,
ever since the pioneering work of the Nobel Laureate Fritz Pregl [142] on microanalysis, there have
been continuous efforts to further miniaturize the extraction process of the analyte and to optimize
the extraction recovery and preconcentration factor. The driving factors for the miniaturization
have continued to increase in recent years [12], reflecting the urgency of the problem: First, the
need to detect trace quantities of some substance is still increasing in the medical, biomedical,
food safety, and environmental context. Next, the health monitoring systems of the future will
be based on rapid measurements on small sample volumes. Finally, the miniaturization will lead
to less chemical waste and environmental strain, i.e., towards “greener” analytical methods and
process technologies.

In the last two decades so-called single-drop microextraction [12] has become very popular for
sample preparation of trace organic and inorganic analysis. The principle of this method is shown
in figure 5d. Here a solute A dissolved in water accumulates in a droplet of water-immiscible liquid
B, due to its higher solubility in B as compared to water. After an equilibrium has been achieved,
the droplet, which now consists of a mixture of A and B, is extracted with a syringe, to be further
analysed by e.g. chromatography.

The scale on which single-drop microextraction can be done obviously remains limited, but
this limitation is overcome in the modern technique of dispersive liquid-liquid microextraction
(DLLME), which was invented less than 15 years ago [143, 188, 189] and heavily makes use of the
solubility gap of ternary liquids and thus the ouzo effect as explained in subsection 2.5. Here, a
mixture of two miscible liquids B and C (with low concentration of B) is put into water containing
the analyte A, with B being immiscible with water (say, carbon-tetrachloride [189]), but C being
miscible (say, acetone [189]), see figure 5e. When poured into the aqueous solution containing A,
droplets of B will immediately nucleate and then further grow out of the oversaturated solution.
The liquid B is chosen such that it has much higher solubility for the analyte A than water and is
heavier than water and liquid C. The large total surface of the nucleated microdroplet ensemble
will greatly help the extraction process. The final step is to centrifuge the dispersion and take out
the A-B phase.

The relevant parameters to characterize the performance of liquid-liquid extraction processes
are the so-called preconcentration factor, defined as the ratio of the analyte concentration in the
centrifuged droplets, and the so-called extraction recovery, defined as the percentage of analyte
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which could be extracted. Hitherto, it has not been possible to a-priori calculate these parameters,
hindering the optimalization of liquid-liquid extraction processes, which presently is often done by
trial-and-error. Even liquid-handling robot systems [190] were built to automate the evolutionary
process of finding the optimum. Clearly, a quantitative understanding of the nucleation and the
diffusive dynamics of droplets in ternary systems is crucial to make progress towards a quantitative
understanding and systematic optimization of DDLME.

Another diagnostic application of the physicochemical hydrodynamics of droplets far from equi-
librium is nanoextraction of tracers [191]. Sample preparation is considered to be the most difficult
step in analytic workflow. Current methods for extraction and separation of minute amounts of
substances in liquid samples are laborious, time-consuming, often involve large amounts of toxic
organic solvents, and are difficult to automatize, implying high costs of man-power. However,
liquid-liquid extraction and online analysis of traces of analytes in aqueous solutions, including in
biomedical, health, pharmaceutical and environmental contexts, may be dramatically improved by
surface nanodroplet-based sensing techniques [192–194]. The basis of such nanoextraction are sur-
face nanodroplets pre-formed by solvent exchange on a substrate within a microflow channel. The
principle is that the partition coefficient of the compound in the droplets is much higher than in
the solution. The compound in the liquid can thus be extracted into the surface nanodroplets and
be quantified by surface-sensitive spectroscopic techniques [194]. This approach can potentially
achieve extraction-detection of analytes at extremely low concentrations in one single and simple
step, allowing for fully automized sample analysis through programmable nanodroplet production
for extraction and in-situ detection.

3.2 Pharmaceutics and chemical & environmental engineering

The ouzo effect is not only relevant for microextraction in chemical analysis and diagnosis, but also
for drug production and delivery [150] and in pharmaceutical science and cosmetics [195], providing
a basis for the preparation of pharmaceutical products, formulation of cosmetics and insecticides,
liquid-liquid extraction and for many other practical processes. In this context the ouzo effect is
also called “nano-precipitation”. Small hydrophobic organic molecules, lipids, or polymers also
exhibit similar microphase separation and, by mixing them with a poor solvent, form nanodroplets
or nanoparticles with homogeneous sizes. Note that often the details of the mixing process matter.
Why this is the case has not yet been fully understood. E.g., in some case the mixing must be
very rapid – a process then called “flash nanoprecipitation”, which has been demonstrated to be
a simple way to produce drug-loaded polymeric nanoparticles, protein nanoparticles, and other
multifunctional colloids with narrow size distribution [196–198]. Droplet formation by solvent
exchange is also highly relevant for separation and purification in other applications of the chemi-
cal and pharmaceutical industry, including undesirable oiling-out crystallization in production of
pharmaceutical ingredients, amino acids, and proteins [199].

Also on a larger scale, understanding and controlling nucleating and growing droplets in liquid-
liquid phase separation is essential for improving the efficiency of industrial operations, e.g. in
extraction of natural resources, recycling of valuables from waste and removing organics in waste
water treatment, in flotation, and in renewable energy technologies.

Finally, dilution-induced phase separation (i.e., the ouzo effect) is important for advanced
oil recovery processes [200]. An example is paraffinic froth treatment in the industrial process
of oil sands extraction [201]. Heavy oil bitumen with a considerable amount of fine solids and
water is separated from oil sands ore by warm-water extraction to form bitumen froth. Solids
and water are removed by adding sufficient light alkane (which is a poor solvent for asphaltenes,
a solubility family of extremely heavy species of bitumen) to achieve a critical solvent/bitumen
ratio. Asphaltene precipitation triggered by this dilution then forms agglomeration with water
drops and solids, sweeping the solids and water off under gravity and producing diluted bitumen
of high quality which is easy to transport [202]. Control of the size distribution and morphology of
asphaltene precipitates may lead to a more efficient oil recovery approach, with less hydrocarbon
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loss to waste [200].

3.3 Synthetic chemistry and biology

Apart from encapsulation and precursors for nanoparticles as described in the previous subsection,
the droplets and their physicochemical hydrodynamics also find many applications in chemical
synthesis. They provide a confined environment in synthetic chemistry to realize cascade reactions
in a fashion similar to artificial cells. The surface of microdroplets serves as a biphasic site for cat-
alysts to access immiscible liquid phases inside and outside of droplets, significantly improving the
specificity and efficiency of interfacial catalytic reactions for biofuel upgrading [203]. The droplets
generated from chemical reactions were found to preferentially and differentially segregate and
compartmentalize RNA, suggesting that droplets may play a role in protecting essential chemical
components for the origin of life [204]. Indeed, the droplets can grow and divide from addition of
materials produced in droplet reaction, resembling prebiotic protocells [205–207].

Microdroplets can also act as microlabs or chemical microreactors, and often chemical reactions,
which do not take place in bulk water, do occur in microdroplets [208, 209]. To account for the
enhanced chemical reactions in the microdroplets, a reaction-adsorption mechanism was proposed
[210]. According to this mechanism, the molecules at the interface are more active, which is
attributed to the solvation energy getting available thanks to solubilization. The energy required
for the molecules at the interface to react is therefore less than that in the bulk reaction [210].

As an entity of microcompartment, droplets formed from aqueous liquid-liquid phase separa-
tion of polyelectrolytes have drawn intensive interest from biology and cell research. The process
of phase separation of an aqueous solution consisting of two oppositely charged polyelectrolytes
into two immiscible aqueous phases – coacervate droplets and supernatant – is called “coacerva-
tion” [211]. The dense coacervate droplets are rich in polymers while the supernatant is a dilute
equilibrium phase, poor in polymers. Coacervation has a long history of utilization in encapsu-
lation applications [212]. The process of coacervation was also proposed as crucial in theories of
abiogenesis (the development of life) [213]. Coacervation is driven by both entropy and electro-
static interactions between polyelectrolytes, influenced by molecule weight, charge distribution and
chirality of polymers, the concentration and the weight ratio of the two polymers and the ionic
strength of the aqueous medium. Prior to the macroscopic phase separation, the size distribu-
tion of the polyelectrolyte complexes becomes very narrow. Intermolecular complexes of several
hundred nanometers form until macroscopic phase separation occurs.

The research interest in this subject has recently further intensified due to the functional
roles of intracellular coacervates and their relation to diseases [214], and due to the extraordinary
properties of coacervates as new materials, namely underwater superglue, deep tissue bonding
or bone fixation, scaffold coatings, bone cement, and drug encapsulating materials [215]. What
remains largely unknown is the evolution of nanoscale coacervates. Model polyelectrolytes with
defined molecular weight and charge distribution have been studied to understand the effect of
charge patterns [216]. It would be interesting to quantify the temporal evolution of the coacervate
nanocolloids during the phase separation process, to better understand its fluid dynamics.

3.4 Inkjet printing

Binary and multicomponent droplets obviously are extremely relevant in inkjet printing [217–
220] as nearly all inks are multicomponent and not only contain pigments and surfactants, but
also consist of various different liquids, with different surface tensions, volatilities, and viscosities.
Moreover, different nozzles of an inkjet printer are operated with different inks. Both features
imply that selective evaporation and coalescence of droplets of different liquids as described in
subsections 2.4 and 2.2 are very crucial processes in inkjet printing.

This not only holds for droplets on the substrate towards which the droplets are jetted but also
on the nozzle-plate of the inkjet channel, close to the nozzle out of which the droplets are jetted,
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and to the meniscus of the ink itself. Here selective evaporation of one component of the ink can
be a major problem, as we will demonstrate with two examples from piezoacoustic inkjet printing
[217], which is one of the most advanced and most controlled forms of inkjet printing:

• In piezoacoustic inkjet printing, the ink in the nozzle is well mixed, thanks to the acoustic field
driving the jetting of the droplets. Therefore the material properties of the ink such as surface
tension or viscosity are determined by the composition of the various liquid components. Now
imagine a nozzle at rest for some printing cycles, as that particular ink is not needed. In that
time – say many seconds – one or more components of the ink can selectively evaporate out
of the nozzle. This changes the material properties of the remaining ink such as the surface
tension and therefore the required pulse strength for jetting once the nozzle is activated again
– a major source of inaccuracy.

• Even worse, droplets of ink on the nozzle plate can selectively evaporate, introducing a con-
centration gradient and thus surface tension gradient on the nozzle, leading to a Marangoni
flow [221, 222]. Once this flow is directed towards the nozzle it can lead to transport of dirt
particle into the nozzle which can lead to air bubble entrainment and nozzle failure [223, 224]
– a major disaster for the printing process.

Also on the substrate on which the droplets are jetted Marangoni flow within one droplet
[17, 38, 40, 122, 125–132] (see figures 4a,b,c) or in between different droplets [73] (figure 2) can
lead to unwanted effects, in particular as these flows transport pigments. Or does the emerging
Marangoni flow between the droplets perhaps even help in mixing the droplets (“bleeding of mixed
colors”)? Yet another question is how the multicomponent nature of the evaporating droplet and
the resulting flows affect the coating pattern [10, 125, 218, 225, 226]. The jetted multicomponent
droplets on the substrate may in addition undergo phase changes by evaporation, solidification, or
chemical reactions. In the latter case of chemical reactions inside the droplets, including reactions
leading to solidification, as e.g. with crosslinkers [76], many questions arise: What does exactly
happen when one reactant diffuses into a droplet of another reactant, e.g. from a neighboring
droplet or from some reservoir? How does the reaction propagate from the droplet surface where the
two reactants first make contact? How does a two-component paint “chemically dry” through cross-
linkers? “Watching paint dry” is in fact interesting, relevant, and largely unexplored science! It is
also very timely, because of sharpened environmental regulations with respect to the evaporation
of (toxic) solvents.

3.5 Nanotechnology and nano- & micro-materials

The solidification process after drop-drop coalescence – with one droplet filled with crosslinkers
and the other one with a liquid responsive to it – has indeed been used to manufacture micro-
particles of controlled shape and size at very high rate [76]. As the process takes place after
collision of such droplets in air (see figure 2e), Visser et al. [76] called it “in-air microfluidics”. Its
control parameters are – next to the droplet sizes and their velocities – the droplet compositions,
through which different degrees of Marangoni-flow-driven encapsulation can be achieved, leading
to controlled mono-disperse emulsions, particles, and fibers with diameters of 20 to 300 µm.

Also ternary liquids have been used to manufacture micro- and even nanoparticles, namely by
employing the ouzo effect – or then also called nano-precipitation. In fact, with this process micro
and nanomaterials can be built bottom-up in a well-controlled way [227–229].

Another important material science application for which the physicochemical hydrodynamics
of droplets is relevant are freezing colloids [147], as e.g. shown in figure 5b. Here the crucial question
is: How do immersed droplets interact with the freezing front in binary or multicomponent freezing
liquids? On the one hand particle-reinforced metal alloys require homogeneous distribution of
particles in the matrix, and an immediate engulfment is therefore preferred. On the other hand, for
single-crystal growth, a complete rejection of impurities is obviously crucial [141, 230]. A rejection
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is also preferred whenever engulfed droplets or bubbles would introduce uncontrolled defects into
a cooling alloy.

Finally, a very important application of the physicochemical hydrodynamics of droplets is in
the semiconductor industry and in nanotechnology where surfaces like wafers have to be extremely
clean and dry. This can be achieved by the so-called Marangoni drying [127, 231–235], where
gradients in surface tension are imposed to drive the liquid of a thin film outwards, e.g. through
local vapor deposition of a different fluid (often isopropyl alcohol – IPA), which absorbs on the film,
or through deposition of a multicomponent droplet [140]. For Marangoni drying to work properly,
the interaction of sessile droplets on the wafer is of course essential and unexpected hinderance of
coalescence of droplets of different liquids as shown in refs. [73, 74] (see figure 2a2) are obviously a
major problem.

In the context of drying wafers with their nanoscale structures, capillary forces can also cause
major problems [236]: When a sessile droplet attached to different structures on a surface is
evaporating, the capillary forces, which are tremendous on the tiny length scales relevant on
wafers, pull these structures together, which can make them break [237–239].

4 General Lessons

We hope to have given an idea how in the last years the community is working towards a deepened
quantitative understanding of physicochemical hydrodynamics of droplets far from equilibrium,
in order to illuminate the fundamental fluid dynamics of immersed (multicomponent) (surface)
droplets. To do so we have shown controlled experiments and numerical simulations for idealized
setups, allowing for a one-to-one comparison between experiments and numerics/theory, in order
to test the theoretical understanding.

Much remains to be done, both from a fundamental point of view, but also from the application
side, with many new and extremely relevant applications of the physicochemical hydrodynamics
of droplets far from equilibrium popping up at a very high rate. But we expect that the rapid
progress in this field is continuing, as from our point of view we are living in the golden age of fluid
dynamics: The reasons are the continuous increase in computational power, so that simulations
which we did not dare to dream of even ten years ago are now possible and that a similar revolution
(for the same reason) is taking place in digital high-speed imaging, thanks to which we can now
routinely resolve the millisecond time scale and even smaller scales, revealing new physics on these
scales, which up to now was inaccessible, and producing a huge amount of data on the flow.
Moreover, other advanced equipment like confocal microscopy, digital holographic microscopy and
atomic force microscopy are coming to be used more and more in fluid dynamics. Considering all
of these advances together, the gap between what can be measured and what can be simulated
ab initio is narrowing more quickly than we had anticipated at the end of the last century. Other
gaps are also closing. Fluid dynamics is bridging out into various neighboring disciplines, such
as chemistry, and in particular colloid science, chemical analysis and diagnostics, lab-on-a-chip
mircrofluidics, catalysis, electrolysis, medicine, biology, computational and data science, among
many others. Here the techniques, approaches and traditions from fluid dynamics can offer a great
deal of help to solve outstanding problems. Vice versa, these fields can offer wonderful questions
to fluid dynamics.

Finally, anyone who dismissed the experiments with tears of wine or with coffee, whisky or ouzo
drops as a gimmick is very much mistaken: On the one hand, as we have seen, we learn important
physics, chemistry, fluid dynamics, and colloid and materials science from these systems and pro-
cesses, with many modern applications in diagnostics, pharmaceutics, biology, medicine, chemical
and environmental engineering, inkjet printing, nanotechnology, and micro-manufacturing, all of
huge relevance. On the other hand – and here we come to the education in science which may
be even more important than one or the other application – the deciphering of these everyday
phenomena are examples par excellence of the physicist’s approach: first translate an observed
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phenomenon into a clean experiment with well-defined control parameters, then make precise ob-
servations and record data, then develop a theory and a model and confirm these by calculations
and numerical simulations, and finally make predictions about how the system will behave with
values for the control parameters from an even wider range. Studying the fluid physics of these
everyday systems is therefore also very suitable for the conceptual training of PhD students, who
can learn in this way, simultaneously and by example, clean experimentation, theory formulation,
modelling and numerical simulation, which from our point of view is much more motivating and
broader than being a small cog for a specific detail of a large large-scale experiment with thousands
of scientists involved.
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Figure 1: (a) Immiscible droplet (red) in a concentration gradient, shown through the color gradi-
ent, with the heavier water in the bottom (bluish) and the lighter ethanol at the top (yellowish). We
will stick to this color code in the sketches throughout the article. The surface tension at the top
of the drop (A) is smaller than at the bottom (B), leading to some Marangoni flow, whose stream-
lines (calculated in the viscous limit, assuming constant density [61]) are shown (in the frame of
reference of the drop). Also shown is the Marangoni velocity VM . The velocity fields for a more
complicated configuration of a partially (but poorly) miscible anise oil drop in an ethanol-water con-
centration gradient are shown in (b) (experimental, from a snapshot and from PIV images) and (c)
(numerical result). On the right of each of these figures, the velocity field is shown, both as color
code and as stream lines (in the lab frame). On the left, in (b) the snapshot is shown and in (c) the
ethanol concentration inside and outside the anise oil drop (also shown in the lab frame). Figures
(b) and (c) refer to the situation of ref. [39]. (d) Maze solving by chemotactic droplet swimmers:
A chemical gradient of the ionic surfactant tetradecyltrimethylammonium bromide (TTAB) was
imposed; the oil droplet propelling in the gradient inside the maze consists of the nematic liquid
crystal 4-pentyl-4’-cyano-biphenyl. The trajectories of the swimmers that passed both entrance and
exit points are shown, with the line color corresponding to the time in the experiment. Figure taken
from ref. [62]. (e) Long-time spontaneous swimming velocity U∞ as function of the Peclet number
Pe. The concentration field around the droplet (or particle) is shown for three different Peclet
numbers. A clear bifurcation towards droplet motion thanks to spontaneous symmetry breaking is
seen at Pe = 4. Figure adapted from ref. [63]. (f) Curling nematic droplet (R ≈ 25µm, phoretic)
from the experiments of ref. [64], where the Peclet number is estimated to be larger than 4. (g)
Chaotic droplet motion for a phoretic droplet with an even larger Peclet number Pe = 13. Figure
taken from the numerical simulations of [65].
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Figure 2: Various types of coalescence of two droplets consisting of different liquids. In (a1) a side-
view sketch of a coalescent experiment of two sessile droplets is shown [73, 74]. The outcome is
shown in (a2), where we show top-view snapshots for two different surface tension differences ∆σ
established with different 1,2-butanediol/water mixtures, featuring enhanced (upper row) respective
delayed (bottom row) coalescence. Figures adapted from [73, 74]. In (b1) we sketch a side view of
two pendent droplets [75], with the one with lower surface tension creeping over the one with higher
surface tension. A detailed sketch of the process is shown in (b2), with the viscous velocity profile
caused by the viscous force, counteracting the Marangoni force, which here however wins, leading
to encapsulation. Sketches adapted from [75]. (c) Similarly, an encapsulation is also possible for
jetted droplets of different liquids [76]. Here, one droplet contains a cross-linker and the other
a polymer, such that the coalescence leads to solidification. In (d1) we sketch two snapshots (at
two different times t1 and t2 > t1) of another geometry of droplet-droplet interaction, namely one
sessile droplet sitting on another smaller one. When the two three-phase-contact-lines touch each
other (left, t1), part of the smaller droplet can be “spit out” (right, t2). Three actual snapshots of
confocal images at consecutive times are shown in (d2). Figures adopted from [77].
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Figure 3: Collective dissolution for droplets: (a) Time evolution of droplet dissolution: The upper
row shows the experimental results for a 10×10 oil droplet array with a spacing of 5 µm for a
flow rate of 200µL/min (corresponding to a Peclet number of Pe = 237) for four difference times
t, normalized using T , which is the total time for the droplet array to completely dissolve. The
length of the scale bar is 45 µm. The lower row shows a pseudocolour plot of the concentration
field from numerical simulations for a 7×7 droplet array for corresponding flow conditions. Blue
and red corresponds to oil and water, respectively. The water is injected into the chamber along
the êx direction. (b) Total dissolution time (Ti) of droplets along the span-wise direction y and (c)
the stream-wise direction x. In (b) and (c), on the left the experimental data are shown, and on
the right the numerical ones. Figures adapted from [42].
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Figure 4: (a) Evaporation of a 5 pL binary droplet consisting of ethanol (0.1%) and water. The
higher evaporation rate at the rim and the selective evaporation of the ethanol leads to a surface
tension gradient ∇σ at the droplet-air interface, driving Marangoni convection inside the droplet.
Note that for larger driving (i.e., larger Marangoni number), the axisymmetry of the process breaks.
The evaporation of a binary sessile (b) and of a binary pendant (c) droplet: (b1/c1) and (b2/c2)
show the measured velocity field within the sessile/pendant droplet droplet at midheight/at the
substrate, as shown in the side view sketches (b3/c3). The different flow patterns in (b) and (c)
clearly reveal that gravity (pointing downwards) plays a major role. Figure taken from [40]. (d)
Phase diagram in the Ra vs Ma parameter space for an evaporating binary droplet: Depending on
Ra and Ma, either Rayleigh convection rolls are seen, or Marangoni convections rolls, or both.
We also show the respective flow and concentration patterns. Figure taken from [136].
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Figure 5: (a) Marangoni bursting: Evaporation-induced emulsification of a two-component droplet
(isopropanol and water) on an immiscible bath. (a1) Sketch of the mechanism. (a2) and (a3)
Top view of the flow pattern for two different isopropanol concentrations of the deposited binary
alcohol-water droplet, from lower ((a2), 0.4 mass fraction) to higher ((a3), 0.45 mass fraction).
Figures taken from [139] (after adoption). (b1) Typical interaction between a droplet and the
solidification front, showing the accumulation of solute and its redistribution around the droplet.
Horizontal cross section. Here the temperature gradient leading to the freezing is 5 K/mm, with
a sample velocity of 2µm/s. Figure taken from [141]. The sketches (b2) (early times) and (b3)
(later times when the front has passed over the oil droplet) visualize the process. (c) Two droplets
of two different slightly soluble liquid are approached to each other in a third liquid and interact
diffusively, even before they coalesce. (d) Classical single droplet microextraction, as developed by
Pregl [142]. (e) Principle of Dispersed Liquid-Liquid Microextraction (DLLME), as first suggested
in ref. [143]. For an explanation we refer to the text.
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Figure 6: (a) Schematic ternary diagram of a ternary mixture of water (w), a solute (S) like
ethanol, and an oil (O) like anise oil in the case of ouzo. At the corners, the respective liquid has
a 100% concentration. The concentration then linearly decreases to zero at the other two corners,
along the axes of the triangle. Above the binodal curve, the three liquids are fully miscible (blue
region). Below the spinodal curve (red region), water and oil separate into two phases. In between
the binodal curve and the spinodal curve, there is a small region (yellow) in which sub-micrometer-
sized oil droplets in water (“ouzo region”) or water droplets in oil (“reverse ouzo”) are metastable.
Figure adapted from [158]. More complicated ternary diagrams with so-called pre-ouzo regimes with
oil nanodroplets in an otherwise miscible regime are possible [159]. Principle of solvent exchange:
(b1) A bad solvent (here water) is replacing a good solvent (here ethanol), leading to a front of
oversaturation and thus to the nucleation of (here oil) droplets at the (hydrophobic) surface. Note
that the plug-flow like nature of the oversaturation front is due to Taylor-Aris dispersion [160–
163]. The velocity profile itself remains parabolic. (b2) For fixed position at the wall, a front of
oversaturation ζ(t) > 0 is passing by, leading to droplet growth. Figure adapted from [164]. (c1)
Ternary liquid of oil, water, and ethanol brought into contact with an aqueous phase with a co-flow
device [165, 166], leading to phase-separation in the emerging droplets, which develop onion-like
structures. (c2) Details of the developing onion-like structures of a phase-separating ternary liquid
of (a). The time is given in seconds. The length-scale given in the first snapshot at 0.75s is 100µm.
Figure taken from [167].
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Figure 7: Evaporating ouzo droplet: (a) Optical image of phase III of the droplet, with a milky
droplet sitting on an oil ring. The seven insets show earlier and later snapshots of the droplet.
(b) Confocal image early in phase III, when the oil ring starts to develop. (c) The four sketches
show different lifetime phases of the evaporating ouzo droplet, see the text for more details. Figures
adapted from [17].
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