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ABSTRACT 

In recent years, there has been a significant increase in the studies concerning 

brown seaweed as biosorbents for metal removal owing to their high binding ability and 

low cost. This work reports the results of a study regarding the cadmium binding 

equilibria of dead biomass from the seaweed Sargassum muticum; this alga is a pest 

fouling organism that competes with the local fucalean species and may also interfere 

with the “sea industry”; therefore, it would constitute an ideal material to be used as 

biosorbent. 

Seven different treatments were tested in order to obtain a stable biomass that 

could be suitable for industrial use under a broad range of operational conditions. The 

treatments employed were protonation, chemical crosslinking with formaldehyde, KOH, 

Ca(OH)2 and CaCl2 or physical treatments with acetone and methanol. 

The equilibrium adsorption isotherms of Langmuir, Freundlich and Langmuir-

Freundlich, were obtained for the quantitative description of the cadmium uptake. The 

effect of pH on biosorption equilibrium was studied at values ranging from 1 to 6, 

demonstrating the importance of this parameter for an accurate evaluation of the 

biosorption process. Maximum biosorption was found for pH higher than 4.5. The 
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maximum biosorption uptake for the raw biomass was 65 mg⋅g-1, while for 

formaldehyde crosslinking biomass the uptake increases to 99 mg⋅g-1 and for protonated 

biomass to 95mg⋅g-1. 

Potentiometric titrations were carried out to estimate the total number of weak 

acid groups and to obtain their apparent pK value, 3.85, using the Katchalsky model. 

Kinetic studies varying cadmium concentration, algal dose and ionic strength 

were carried out. Over 95% of the maximum cadmium uptake was achieved within 45 

minutes, so the process can be considered relatively fast. A pseudo-second order model, 

for the kinetics of cadmium biosorption, showed to be able to reproduce experimental 

data points with accuracy.  

 

Keywords: Biosorption, Sargassum muticum, cadmium (II), kinetics, equilibrium, acid-

base properties, crosslinking. 

 

INTRODUCTION 

 Sargassum muticum is an invasive alga in Europe. It was first found in 

Bembridge, Isle of Wight, in 1971. Its native habitats are Japanese and Chinese waters, 

where it is much smaller than in the European coast. This alga is an alien species which 

interferes with recreational use of waterways, blocking propellers and intakes; it is also 

a fouling organism in oyster beds and a nuisance to commercial fishermen (Critchley et 

al. 1990). 

On the other hand, environmental pollution from industrial wastewaters, that 

contain heavy metal ions, is an important issue in many parts of the world; several 

technologies have been developed for treating wastewater streams in recent years. 

Biosorption, which uses the ability of biological materials to accumulate heavy metals, 
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is one of those technologies that have gained more importance; an increasing amount of 

work is being focused on it. 

 Many types of biomass have been reported to have high uptake capacities for 

heavy metals, including cadmium (Bailey et al. 1999; Wase and Forster 1997), which is 

included in the “red list” of pollutants by all environment departments and may be 

regarded as highly toxic. Among these materials, some species of brown marine 

macroalgae exhibit much higher uptake values than other types of biomass, higher than 

activated carbon and natural zeolite, and comparable to those of synthetic ion exchange 

resins. This is the case of the different species of Sargassum genus, which have been 

studied by several authors (Cruz et al. 2004; De França et al. 2002; Vegliò et al. 2003), 

especially Volesky and coworkers (Davis et al. 2003a; Volesky 1990; Volesky et al. 

2003). 

 The algae cell wall plays an important role in metal binding (Crist et al. 1988), 

due to its high content in polysaccharides with acid functional groups. The main 

substances of this type in brown algae are alginates, which usually constitute about 20-

40% of the total dry weight (Percival and McDowell 1967), and fucoidans. Alginic acid 

is a linear polymer of 1,4-linked β-D-mannuronic and α-L-guluronic acids. The 

monomer sequence and its relation with proton dissociation and metal binding equilibria 

has been studied by Haug and co-workers (Haug 1961; Haug et al. 1966; Haug et al. 

1974). The term "fucoidans" covers a group of partially sulphonated 

heteropolysaccharides that often contain uronic acids (Lobban and Harrison 1994). In 

brown algae, the carboxyl groups of alginates are more abundant than either carboxyl or 

amine groups of the proteins. Therefore, they are likely to be the main functionalities 

involved in metal binding reactions (Schiewer and Wong 2000). 
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 The purpose of this study was to evaluate the physical chemistry of cadmium 

biosorption: isotherms, kinetics and acid-base properties of the invasive brown seaweed 

Sargassum muticum; moreover, several chemical modifications of the native alga were 

tested for their possible use as adsorbent. As stated above, this species is a problem and 

no general commercial use has been described for it jet, despite its possible value to the 

alginate industry. 

 Also, the eradication of this species in European waters has been attempted 

unsuccessfully; furthermore, no systematic study of the metal biosorption on this alga 

has been carried out and only a brief mention to the Sargassum muticum can be found in 

bibliography (Davis et al. 2003a; Davis et al. 2000; Rey-Castro et al. 2003). 

 

MATERIALS AND METHODS 

Biomass and chemical modifications 

 Samples of the brown marine alga Sargassum muticum were collected from the 

coast of A Coruña (Galicia, NW Spain) in July 2002 (before the Prestige sinking). The 

alga was washed with tap and distilled water to eliminate impurities, oven dried at 60 ºC 

overnight, crushed with an analytical mill, sieved (size fraction of 0.5-1 mm) and stored 

in polyethylene bottles until use. 

 In this study Sargassum muticum biomass with several pretreatments was 

examined: alga protonation (Figueira et al. 2000b) was carried out by soaking it in 0.2 

M HNO3 with regular shaking in a rotary shaker (175 rpm) for 3 h, at a biomass 

concentration of 10 g L-1. Afterwards the material was rinsed thoroughly with deionized 

water until pH 4.5 was attained and then dried in an oven at 60 ºC. The conversion of 

this protonated biomass to Ca-, K- derivated (Figueira et al. 2000a), was carried out 

adding stepwise a 20 mM solution of Ca(OH)2 or KOH, respectively, from an automatic 
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burette to a solution with biomass avoiding pH from exceeding a value of 6, in order to 

prevent alga leaching, until the pH value remained constant at 5. For Ca- pretreatment 

another method was tested with 0.2 M CaCl2 solution for 24 hours under slow stirring 

(Matheickal et al. 1999). 

 Washings in methyl alcohol and acetone were carried out with a 100 mL of 50% 

(v/v) solutions respectively, added to 1 g of biomass and agitated for 24 h (Bai and 

Abraham 2002). 

 The formaldehyde crosslinking procedure was essentially the same as reported 

by Leusch et al. (Leusch et al. 1995): 2.5 g of raw biomass were soaked for 1 hour with 

50 mL of a mixture (1:2, v/v) of formaldehyde (36%) and HCl (0.1 M); after that, the 

alga was filtered and washed with deionized water and a 0.2 M Na2CO3 solution. 

 Following filtration, biomass was dried in an oven at 60 ºC overnight for all the 

pretreatment. Biomass weight loss was determined during and after each treatment. 

Moreover, the spent supernatant solution was analysed for the total organic carbon 

(TOC). All the experiments were done at least by duplicate. 

Equilibrium studies 

 A volume of 40 mL of eight cadmium(II) solutions of several concentrations 

(10, 20, 50, 100, 150, 200, 250 and 350 mgL-1), prepared by dissolving Cd(NO3)2·4H2O 

(Merck pro analysis) in distilled water, was placed in a 100 mL Erlenmeyer flask 

containing 0.1 g of alga. The mixtures were stirred in a rotary shaker at 175 rpm for 3-4 

hours until equilibrium was reached; solutions of NaOH and HNO3 (Merck pro 

analysis) were used for pH adjustment. After that, the algal biomass was filtered 

through a 0.45 µm pore size cellulose nitrate membrane filter and the filtrate was 

analysed for the remaining cadmium ion concentration by differential pulse anodic 

stripping voltammetry (DPASV) using a 757 VA Computrace (Metrohm) with a 
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conventional system of three electrodes: hanging mercury drop electrode as working 

electrode, Pt auxiliary electrode and 3 M Ag/AgCl as reference electrode. 

Equation (I) was used to obtain qeq (mg·g-1), the cadmium ion sorbed at 

equilibrium that represents the metal uptake. 

s
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where V is the volume of cadmium solution (mL), Ci and Ceq are the initial and 

equilibrium concentration of cadmium in solution (mgL-1), respectively, and ms is the 

mass of alga (g). 

Influence of pH on metal biosorption 

 The dependence of Sargassum metal uptake on pH was studied for 10 and 250 

mgL-1 cadmium concentrations in the pH range from 1 to 6. The pH adjustments were 

carried out using NaOH and HNO3 solutions. 

Potentiometric titrations of the biomass samples 

For each titration, ca. 0.2 g of protonated Sargassum biomass was placed in a 

thermostated glass cell at a temperature of 25.0±0.1 ºC, and 40 mL of 0.05M NaNO3 

solution were added to keep ionic strength constant. A certain amount of HCl was also 

added to yield an initial pH value ca. 2. The stirred suspension was allowed to 

equilibrate until the electromotive force (emf) measure was stable before the titrations 

started. The titrating solutions were added from a Crison microBu 2031 automatic 

burette. Electromotive force measurements were done with a Crison micropH 2000 

meter equipped with a Radiometer GK2401C combination glass electrode (sat. 

Ag/AgCl as reference). After each addition of titrant (NaOH, prepared with boiled 

deionized water) the system was allowed to equilibrate until a stable reading was 

obtained. A whole titration typically took 6-7 h. 
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The glass electrode was calibrated in solutions of known proton concentration at 

a constant ionic strength following the procedure describe elsewhere (Brandariz et al. 

1998; Fiol et al. 1992). The electrodes were calibrated in the acid pH range, slopes were 

within 4% of the theoretical Nernst value, coefficients of determination (r2) for the 

Nernst type equation were always greater than 0.9999. 

A nitrogen stream was used to remove dissolved O2 and CO2 during titration 

experiments. 

Kinetic studies 

A cadmium ion selective electrode (CdISE, Orion) with a Ag/AgCl reference 

electrode (Orion), previously calibrated in cadmium concentration, was employed to 

follow the reaction kinetics. Comparative measurements were also made using DPASV 

technique. Experiments were carried out in a glass cell furnished with a thermostated 

jacket at a temperature of 25.0±0.1 ºC maintaining pH=4.5±0.1; a nitrogen stream was 

used to remove dissolved O2 and CO2. Three groups of experiments were run: 

Effect of initial metal concentration: A sample of 0.25 g of alga was added to 

100 mL volume of several cadmium solutions (10, 50, 100 and 250 mgL-1) with ionic 

strength adjusted to 0.05M with NaNO3. 

Effect of alga dose: Several alga weights (0.12, 0.25, 0.40, 0.50, 0.60 g) were 

added to a 100 mL volume of 100 mgL-1 cadmium solution with ionic strength adjusted 

to 0.05M with NaNO3. 

Effect of ionic strength: Four concentrations of NaNO3 (0.05, 0.1, 0.2, and 0.5 

M) were used for ionic strength adjustment of a 100 mgL-1 cadmium solution (0.25 g 

algal mass). 

 

 7



RESULTS AND DISCUSSION 

Equilibrium studies 

Adsorption isotherms 

 The adsorption of a substance from one phase to the surface of another in a 

specific system, leads to a thermodynamically defined distribution of that substance 

between the phases as the system reaches equilibrium. This distribution can be 

expressed in terms of adsorption isotherms (Kinniburgh 1986), whereby the metal 

species sequestered by the sorbent (alga) through a number of several mechanisms, is in 

equilibrium with its residue left free in the solution. 

 In order to developed an operational procedure, different absorbents could be 

compared quantitatively under several conditions by using an equation to analyse 

equilibrium data. Ideally, the models used for quantitative description of biosorption 

should be capable of predicting metal biosorption, reflecting the mechanisms of this 

sorbate uptake. However, the adsorption isotherms most commonly used in biosorption, 

the Langmuir and Freundlich models, were developed under many assumptions that are 

well known not met in the case of biosorption; for instance, they do not take into 

account the fact that metal ion biosorption is mainly an ion exchange phenomenon 

(Crist et al. 1992). 

We selected the simple Langmuir, Freundlich and Langmuir-Freundlich 

isotherm equations (Table I) to fit the experimental data points. The main reason for the 

extended used of these isotherms is that they incorporate constants easily interpretable. 

These constants reflect the feature of the sorbent and can be used to compare the 

biosorption performance: as showed in Table I, qmax, represents the maximum 

biosorption and b is an affinity parameter. A high value of parameter b indicates a steep 

desirable beginning of the isotherm, reflecting the high affinity of the biosorbent for the 
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sorbate; n is an empirical parameter, which varies with the degree of heterogeneity and 

Kf relates to biosorption capacity. Moreover, these models are capable of reflecting 

satisfactorily the experimental data if environmental parameters, such as pH, are 

controlled carefully during experiments. 

 Figure I shows Langmuir fitted data, corresponding to the cadmium biosorption 

by raw Sargassum muticum biomass at three different pH values (3, 4.5 and 6). The 

adjustable parameters obtained (qmax, b, n and Kf) are listed in Table II, showing that 

Langmuir model exhibits lower errors and better fits than Freundlich model; in addition, 

Langmuir-Freundlich isotherm can describe experimental data with similar accuracy, 

although three parameters are necessary to fit data, so the errors increase (data fit not 

shown).  

To obtain biomass stable and suitable for industrial use, it may be necessary to 

reinforce the algae. Reinforcement can be achieved by chemical crosslinking (e.g., with 

formaldehyde) or by simple physical treatment (Volesky 1990). 

 Figure II shows biosorption isotherms at pH=4.5±0.1 for all the treatments 

carried out with Sargassum muticum; the experimental data points were fitted to the 

Langmuir isotherm equation and the corresponding adjustable parameters are shown in 

Table III; in the case of CaCl2 a slight reduction in the biosorption capacity (per total 

mass) as result of the addition of inert materials or blocking or consumption of binding 

sites can be observed. However, most of the treatments used enhance the alga cadmium 

uptake and the affinity of the biosorption due probably to a better accessibility of the 

binding sites for the metals or an increase in the quantity of these sites. 

 In order to control biomass stability, Table III shows the percentages of algal 

weight loss in water during 3-4 h of stirring (W2) and the percentages of weight loss due 

to treatments as well (W1), based in the final dry weight compared to the initial weight. 
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Total organic carbon leached from the biomass was measured in the spent supernatant 

solution after biosorption equilibrium was attained with 350 mgL-1 of cadmium solution 

(the maximum cadmium concentration used in the experiments). 

 The results from Table III demonstrate that the major biomass leaching and 

weight loss occur with the raw biomass. As showed, metal ions can stabilize 

biosorbents, in many cases, by crosslinking of the active sites. In all the procedures, 

biomass weight loss and TOC values decrease, indicating stabilization of the biomass 

attained through the modification process. 

 The raw biomass is stabilized with the majority cations present in seawater, 

mainly Na, K, Ca and Mg. As a result of the acid treatment, these ions binded to active 

sites are substituted by protons, obtaining one of the greatest weight losses(Crist et al. 

1992). Evidences of this fact are supported by comparing the potentiometric titration of 

protonated (Figure V) and raw biomass (data not shown); in the latter, no evidence of 

protons is found. The acid wash releases significant quantities of organic carbon, 

although lower than raw biomass. The acid treatment is one of the most aggressive for 

the stability of the cell structure, by releasing a substantial portion of soluble biomass 

material, smaller organic molecules and ions. Similar percent weight losses were found 

with methanol and acetone washes, in this case probably due to the extraction of 

proteins and lipid fractions of the biomass surface (Bai and Abraham 2002). 

Formaldehyde crosslinking has a previous acid treatment included in the weight loss 

value; even so, the high value obtained account for the weight loss for acid wash, in 

contrast to KOH and Ca(OH)2 treatments, with lower leaching values. 

On the other hand, no significant differences were found between the two 

calcium treatments, both giving very low values for biomass losses and organic 

leaching; the effectiveness of these treatments in stabilizing the biomass is due to the 
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crosslinking reaction taking place in the alginate molecules, which results in a 

cooperative association of long regions of polymer chains, leading to an “egg-carton” 

structure (Lobban and Harrison 1994). 

 As showed in Table III, there is a small biomass weight loss after the treatment, 

so treated alga can still leach some material during the biosorption process; 

nevertheless, these biomass losses do not affect significantly to the uptake processes. 

 As a result of this study, different useful choices are possible in order to modify 

the raw biomass. Both methods, protonation and crosslinking with formaldehyde, lead 

to higher uptakes that increase nearly 50 % the uptake of the raw biomass. But both of 

them are also associated with the highest values of TOC in solution. This fact reveals an 

important leaching of biomass during the modification of the alga. On the other hand, 

uptakes of calcium-treated biomass remain practically the same as raw biomass. The 

effect of calcium ions is to stabilize the biomass by means of the formation of an "egg-

box structure", which is reflected by the low TOC leached to solution and the lowest 

values of the percent loss of mass during treatment and during the biosorption process. 

This behaviour can suppose a great advantage when the algal biomass has to be 

employed in columns for several adsorption/desorption cycles. 

 The maximum cadmium(II) uptake values found in this work for modified or 

raw biomass (65-99 mg⋅g-1) are similar to values found in the literature for other algae 

of the Sargassum genus (70-120 mg⋅g-1) or other marine algae (Cruz et al. 2004; Davis 

et al. 2003b). Usually, biosorption capacities of marine algae are higher than the 

exhibited by many of the adsorbents commonly used in practical metal recovery 

applications. As an example, reported values of 43 mg⋅g-1 for yeast (Chang et al. 1997), 

19-31 mg⋅g-1 for fungus (Holan and Volesky 1995), 14 mg⋅g-1 for chitin (Benguella and 

Benaissa 2002) or 8 mg⋅g-1 for active carbon (Leyva-Ramos et al. 1997) can be found in 
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literature. More extensive compilations of the adsorption of metals by different 

biosorbent materials can be found in the literature.(Bailey et al. 1999; Volesky 1990; 

Wase and Forster 1997) 

Effect of pH on cadmium uptake 

 The biosorption capacity of the algae strongly depends on the initial solution pH, 

so characterization of the pH effect on biosorption equilibrium is necessary for an 

accurate evaluation of biosorption process (Wase and Forster 1997). 

The speciation diagram calculated with the program MINEQL+ (Schecher and 

McAvoy 1992) (Figure III) confirms that cadmium (II) ion is the relevant species in the 

range of pH studied; at pH values greater than 8, insoluble cadmium hydroxides are 

formed with total cadmium concentration less than 450 mgL-1, so precipitation may 

occur; on the other hand, an extremely acid pH can damage the structure of the algae. 

Moreover, the pH can change the state of the active binding sites of the algae, mainly 

carboxyl groups of alginates. 

Figure IV shows the dependence of cadmium uptake with the solution pH at two 

different initial metal concentrations. From the s-shape of the curve, it is seen that there 

is a slight increase in the pH range between 1.0 and 2.0, a fast increase in cadmium 

uptake with increasing pH from 2.0 to 4.0, while around pH 4.5, the cadmium 

biosorption capacity levelled off at a maximum value reaching a plateau. However, at 

pH less than 2, the cadmium uptake capacity is almost negligible, but not zero; it could 

be explained by metal ion binding to strong acidic groups that do not become 

protonated at this pH (Schiewer and Volesky 1995). Equilibrium experiments were 

carried out at pH 4.5, where the maximum uptake capacity was achieved, avoiding 

cadmium precipitation. 
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The increase in cadmium biosorption from pH 2.0 to pH 4.0 can be explained by 

the change in the ionic state of the carboxyl functional groups, which present a pKa 

value between 2-4 (Haug and Smidsrod 1970; Rey-Castro et al. 2004a) (this work, see 

below). This implies that the metal biosorption depends on the protonation or 

deprotonation of the cell wall polymer functional groups. At pH values lower than pKa, 

carboxylate groups are closely associated with the hydrogen ions, restricting access to 

sites to cadmium ions as a result of repulsive forces, and resulting in a low cadmium 

uptake. This effect is stronger at lower pH. At pH values higher than pKa, more 

carboxylate groups carry negative charge and the positively charged cadmium ions will 

be bound, reducing the electrostatic repulsion and increasing the cadmium uptake. 

These experimental observations can be explained by an exchange between the metal 

ions and protons initially present in the biomass and the metal in solution (Crist et al. 

1999). 

Acid-base properties 

 In order to estimate the total amount of active sites in protonated Sargassum 

biomass, a simple potentiometric titration was carried out with a NaOH solution. The 

number of carboxyl groups per gram of alga, [COOH]total (mmol g-1), was calculated by 

estimation of the position of inflection points (Veq) in the resulting titration curves 

(Figure V), using the following equation: 

[ ] [ ]
s

eq
total m

NaOHV
COOH

·
=  (II) 

 Sulfate groups are known to be present in the Sargassum alga (Percival and 

McDowell 1967), however, no evidence of their presence was found in the titration 

curves. The total number of weak acid groups found was 2.61 mmol g-1 , determined in 

0.05M NaNO3. As expected, ionic strength does not influence in the number of acidic 

 13



groups titrated, but strongly affects their apparent pK values. A physicochemical model 

that accounts for the effects of pH and ionic strength on the proton binding equilibria of 

algae was recently proposed by Rey-Castro et al.(Rey-Castro et al. 2003) 

 The proton binding active zone of the algal biomass is supposed to be 

constituted of a polyelectrolyte that forms a charged, three-dimensional structure. 

Moreover, surface charge models also reproduced with similar accuracy experimental 

equilibrium data (Rey-Castro et al. 2004b). 

Katchalsky found that the titration curve of a polyacid could be empirically 

described by two constants, pK and n (Katchalsky et al. 1954), according to the 

equation: 

α
α-1log⋅−= npKpH  

(III) 

where α represents the degree of dissociation, defined in Equation (IV), and n is an 

empirical parameter that accounts for the chemically heterogeneous nature of the algal 

biomass, and whose value is greater than one, 

[ ]
( ) ( )NaOHVVVC

COO
+⋅

=
−

000 /
α  

(IV) 

where C0 is the initial concentration of the carboxylic acid, V0 is the initial volume and 

VNaOH is the volume of NaOH added during titration. 

From the slope and intercept of straight line plots of pH against log((1-α)/α), 

pKα=0.5 and n values were experimentally determined. Figure VI shows these values and 

the fit of the experimental data points to Equation (III) with the coefficient of 

determination. 

 The obtained pKα=0.5 value is 3.85 which agrees well with the values 

corresponding to carboxyl groups from mannuronic and guluronic acids (3.38 and 3.65) 
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of alginate (Haug 1961) or to lately calculated pK values for alginic acid (Rey-Castro et 

al. 2004a); so these groups are likely to be responsible for cadmium biosorption. 

Kinetic studies 

 Equilibrium relationships comprise different conditions for biosorption 

processes attributed to the necessary time for a system to achieve thermodynamic 

stability. Whereas the extent of biosorption is dependent only on the initial and final 

equilibrium states, the rate of biosorption is dependent on the way leading from the 

initial to the final state. In porous media, these include three steps (Weber Jr. et al. 

1991): film diffusion of the sorbate (metal) from the bulk solution to the surface of the 

biosorbent particle, followed by diffusion through the particle and chemical binding 

reaction of the sorbate. 

 External film diffusion resistance can be eliminated if shaking rate is enough to 

assure that all the cell wall binding sites are really available for metal uptake; we 

selected a shaking rate of 175 rpm, which is enough to neglect the effect of film 

diffusion (Cruz et al. 2004). The rate at which biosorption takes place has great 

importance when designing biosorption systems; kinetic models are important for 

investigating the biosorption mechanism and rate controlling steps, such as pore 

diffusion and chemical reaction process. Several kinetics models have been used to fit 

experimental data, so it is important to establish the time dependence of such systems 

under various process conditions (Aharoni and Sparks 1991). 

 Biosorption of metals by biomass cell surfaces is generally considered a fast 

process; the decrease of cadmium concentration in solution with time showed that the 

rate of cadmium uptake is rather fast; in general, the system reached over 50% of the 

maximum cadmium uptake by the biomass within 5 minutes of contact and it was 

observed that over 95% of the maximum cadmium uptake was removed from solution 
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within 45 minutes; on the other hand, it was observed that there were not significant 

differences in the time necessary to achieve the 50 % of maximum metal uptake when 

experiment conditions were changed (see Table IV). 

 In an attempt to present an equation representing kinetic biosorption of cadmium 

onto alga, several mechanisms were proposed: Elovich, pseudo-first order, diffusion 

(Aharoni and Sparks 1991) and pseudo-second order (Ho 2003); the Elovich and 

intraparticle diffusion models fit well until the first 5 or 10 minutes of experimental data 

respectively (data fit not shown), although best data fits, in the whole data range, were 

found with a pseudo-second order process. In this model, the rate limiting step is a 

biosorption mechanism involving chemisorption, where metal removal from solution is 

due to purely physicochemical interactions between biomass and metal solution (Aksu 

2001). However, the fact that experimental data may be fitted by a given rate expression 

is not sufficient evidence that the molecularity of the reaction is that implied by the rate 

expression. 

The kinetic rate equation proposed by Ho (Ho and McKay 2000; Ho et al. 1996), 

Equation (V), can be considered a pseudo-second order chemical biosorption process 

with respect to the alga biosorption sites, due to the fact that cadmium displace divalent 

ions, among others, from these sites. 

2
teq

t )q(qk
dt

dq
−⋅=  (V) 

where k (g mg-1min-1) is the pseudo-second order constant of biosorption, qt (mg g-1) is 

the metal uptake at time t and qeq (mg g-1) is the cadmium ion sorbed at equilibrium, 

which is given by Equation (I). 

 Integrating and separating variables in Equation (V) for the boundary conditions: 

qt = 0 at t = 0 and qt at time t, the following equation is obtained: 
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 This equation can be rearranged to obtain a linear form law for a pseudo-second 

order process: 

t·
q

1

q·k

1

q

t

eq
2
eqt

+=  (VII) 

The equilibrium biosorption capacity and the pseudo-second order rate constant 

were experimentally determined from slope and intercept of straight line plots of t/qt 

against t. The pseudo-second order kinetic model has been applied successfully to metal 

biosorption by several biomasses like microalga (Aksu 2001), yeast (Vasudevan et al. 

2003), peat (Ho et al. 2000), macroalga (Cruz et al. 2004) or tree fern (Ho 2003).  

 A cadmium ion selective electrode (CdISE) was employed to obtain the 

cadmium concentration in the kinetic studies; moreover, additional measurements were 

made with DPASV technique in order to compared both methods; better results were 

found with CdISE, since this technique allows to obtain easier and faster a great number 

of experimental points.  

Effect of initial metal concentration 

 Experimental data points obtained for the biosorption of cadmium by Sargassum 

muticum at several cadmium concentrations are shown in Figure VII. Good fits between 

predicted curves, with a pseudo-second order model, and experimental data points were 

found (fits not shown; see coefficients of determination in Table V), supporting the idea 

that chemisorption is the rate-limiting step and that the mechanism follows a pseudo-

second order process model. 

Table V shows the percentage of cadmium removed from solution and the 

constants obtained from Equation (VII), qeq and k. All the fits show very good 

coefficients of determination. The equilibrium biosorption capacity, qeq, increases with 
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an increase in the initial cadmium concentration, however, the percentage of removed 

metal decreased. The values of qeq obtained from the fitting to the pseudo second order 

model are very similar to the experimental values obtained from the equilibrium 

biosorption isotherm. This fact constitutes an additional confirmation of the pseudo 

second order model. On the other hand, the rate constant, k, were found to increase with 

the reduction in cadmium concentration. 

The corresponding linear plots of the values of qeq, and k against Ci (initial 

cadmium concentration) were regressed to obtain empirical expressions for these values 

in terms of Ci. The best fits were found with exponential expressions (fits not shown). 

Equation parameters are the following: 

( ) ( )

( ) ( ) 993.0rC·07.056.0k

998.0rC·12.066.0q

204.058.0
i

204.082.0
ieq

=±=

=±=

±−

±

 (VIII)

 Substituting the values of qeq and k from the equations above in Equation (VI), 

the rate law for a pseudo-second order reaction and the relationship between qt, Ci and t 

can be represented as: 

tC·37.01
tC·25.0

q 24.0
i

06.1
i

t
+

=  (IX) 

 This equation can be used to derive the amount of cadmium removed at any 

given ion concentration and reaction time, as showed in Figure VII (solid lines), where 

very good accuracy with experimental data can be observed . 

Effect of alga dose 

 The results of the effect of Sargassum muticum dose on experiments carried out 

are shown in Figure VIII. The rate constant and the equilibrium biosorption capacity 

were calculated from the intercept and slope of the straight line plots of t/qt against t in 
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Equation (VII), and are shown in Table V with the corresponding coefficients of 

determination. 

The qeq values increased with a decrease in alga mass but, as expected, there was 

an increase in the percentage of cadmium removed from solution with an increase in 

alga mass, due to the raise in the amount of activated biomass sites (see Table V). 

The data showed a good compliance with the pseudo-second order model and 

the coefficients of determination of the linear plots were very good. The corresponding 

linear plots of the values of qeq and k against ms were regressed to obtain expressions for 

these values in terms of the ms parameters as follows: 

( ) ( )

( ) ( ) 963.0rm·004.0037.0k

999.0rm·2.09.10q

214.081.0
s

201.067.0
seq

=±=

=±=

±

±−

 (X) 

Substituting the values of qeq and k from the equations above in Equation (VI), 

the rate law for a pseudo-second order reaction and the relationship between qt, ms and t 

can be represented as: 

tm·4.01
tm·4.4

q
14.0

s

53.0
s

t
+

=
−

 (XI) 

This equation can be used to derive the amount of cadmium sorbed at any given 

alga dose and the reaction time, as showed in Figure VIII (solid lines). Very good 

compliance with experimental data can be observed, likewise in the study of the effect 

of initial cadmium concentration. 

Effect of ionic strength 

 Results obtained from the biosorption of cadmium by Sargassum muticum at 

several ionic strengths are shown in Figure IX. The rate constant and the equilibrium 

biosorption capacity were calculated from the intercept and slope of the straight line 

plots of t/qt against t in Equation (VII), and are listed in Table V with the corresponding  
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coefficients of determination. As expected, a decrease in cadmium biosorption was 

observed with an increase in ionic strength, due to the strong competitiveness of 

electrolyte ions for the biomass adsorption sites (Schiewer and Wong 2000). 

 In order to explain the influence of electrolyte concentration on cadmium 

biosorption, we fitted the parameter qeq to an empirical expression like Debye-Hückel 

equation, which accounts for the effect of ionic strength (Sastre de Vicente 1997), : 

2
1

eq IBA)qlog( ⋅+=  (XII) 

parameter k seems to remain practically constant in the ionic strength range studied. The 

corresponding equations are the following: 

( ) ( )

003.0013.0k

95.0r10q 2
I07.044.003.058.1

eq

2
1

±=

==
⎥⎦
⎤

⎢⎣
⎡ ⋅±−±

 (XIII)

Substituting the values of qeq and k from the equations above in Equation (VI), 

the rate law for a pseudo-second order reaction and the relationship between qt, I and t 

can be represented as: 

t10013.01

t10013.0q
2

1

2
1

I44.058.1

I88.016.3

t

⋅⋅+

⋅⋅
=

⎟
⎠
⎞

⎜
⎝
⎛ ⋅−

⎟
⎠
⎞

⎜
⎝
⎛ ⋅−

 (XIV)

This equation can be used to derive the amount of cadmium sorbed at any given 

ionic strength, as showed in Figure IX (solid lines); the results obtained with this 

equation were not as good as with Equation (IX) and (XI) due probably to the simplicity 

of the model accounting for the ionic strength effects (Sastre de Vicente 1997). 
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CONCLUSIONS 

The invasive alga in Europe, Sargassum muticum, can be considered as a 

promising biosorbent material. It could compete with commercial biosorbents because 

of its low cost, among several reasons studied in this paper summarizes below. 

High metal uptake values were found under many operational conditions, such 

as: pH, cadmium concentration, alga mass or ionic strength. Moreover, several 

pretreatments were proposed in order to increase the metal removal and affinity 

constant: the protonated and formaldehyde crosslinked biomass showed around 50% of 

increase in the qmax value and more than 175% in b value. These parameters were 

determined using the Langmuir isotherm model. The maximum metal uptake for the 

raw biomass was 65 mg⋅g-1, for the protonated biomass 95 mg⋅g-1 and for the 

formaldehyde-biomass 99 mg⋅g-1. 

The stability of the alga, attained through the modification process, was also 

improved by the decrease in biomass weight loss (between 60-99.67%) and TOC values 

(between 31-96%) for all the pretreatments studied.  

The solution pH is an important parameter, which affects biosorption of 

cadmium by the alga. The fact that at pH value lower than 2 the cadmium uptake 

capacity is almost negligible, is interesting in order to regenerate the biomass in 

desorption cycles. Maximum uptakes were found for pH higher than 4.5. 

On the other hand, cadmium biosorption kinetic is relatively fast, with 95% of 

the maximum metal uptake remove from solution within 45 minutes. A pseudo-second 

order empirical model can describe this process, supporting the idea that chemisorption 

is the rate-limiting step. Simple empirical equations were obtained to derive reaction 

time and the amount of cadmium removed at any given ion concentration, alga mass or 

ionic strength. 
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These results obtained in the study, demonstrated the suitability of the alga 

Sargassum muticum for industrial use as biosorbent, although more experiments have to 

be carried out for its practical applicability.  
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Tables 

Table I. Adsorption isotherm equations 

Isotherm Equation 
Number of adjustable 

parameters 

Langmuir 
eq

eqmax

eq
Cb1

Cbq
q

⋅+

⋅
=

⋅
 2 

Freundlich n/1
feq C·Kq =  2 

Langmuir-Freundlich 
n/1

eq

n/1
eqmax

eq
)Cb(1

)Cb(q
q

⋅+

⋅
=

⋅
 3 
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Table II. Adsorption parameters of Langmuir, Freundlich and Langmuir-Freundlich 

isotherm equations at different pH values, for 0.1g of raw Sargassum biomass without 

electrolyte addition. 

Isotherm Langmuir 

 qmax (mg g-1) b (mg-1L) r2

pH 3 154 ± 40 0.0025 ± 0.0009 0.9868 

pH 4.5 69 ± 2 0.065 ± 0.003 0.9954 

pH 6 74 ± 2 0.044 ± 0.003 0.9970 

Isotherm Langmuir-Freundlich 

 qmax (mg g-1) b (mg-1L) n r2

pH 3 96 ± 35 0.006 ± 0.003 0.83 ± 0.21 0.9886 

pH 4.5 75 ± 3 0.052 ± 0.006 1.19 ± 0.07 0.9984 

pH 6 70 ± 2 0.051 ± 0.006 0.87 ± 0.04 0.9988 

Isotherm Freundlich 

 Kf  n  r2

pH 3 0.8 ± 0.3 1.25 ± 0.11 0.9807 

pH 4.5 12 ± 2 2.94 ± 0.35 0.9489 

pH 6 10 ± 3 2.63 ± 0.42 0.9185 
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Table III. Adsorption parameters obtained using the Langmuir isotherm equation, total 

organic carbon measurements (TOC), percentage of weight loss of algal biomass due to 

treatments (W1) and percentage of weight loss of algal biomass in water measured after 

treatment (W2), of the different pretreatments for Sargassum biomass. 

Treatment qmax(mg g-1)  b (mg-1L) TOC (mgL-1) W1 W2

Formaldehyde 99 ± 2 0.16 ± 0.01 24.8 ± 0.3 39 9 

H+ 95 ± 2 0.16 ± 0.01 83.9 ± 0.6 37 12 

Acetone 88 ± 4 0.08 ± 0.01 5.2 ± 0.2 31 6 

Methanol 86 ± 3 0.12 ± 0.02 7.4 ± 0.2 30 4 

KOH 86 ± 2 0.40 ± 0.05 13.4 ± 0.2 19 8 

Raw biomass 65 ± 2 0.06 ± 0.01 122 ± 1  30 

Ca(OH)2 61 ± 3 0.06 ± 0.01 8.8 ± 0.1 6 0.1 

CaCl2 57 ± 2 0.07 ± 0.01 11.1 ± 0.3 6 0.2 

Table IV. Necessary time for removing 50 and 95 % of the maximum cadmium uptake 

at different experimental conditions: * 0.25 g alga, I=0.05M NaNO3; **Ci=100 mgL-1, 

I=0.05M NaNO3; ***0.25 g alga, Ci =100 mgL-1. 

 t (min)  t (min)  t (min) 

*Ci (mgL-1) 50 % 95 % **ms /g 50 % 95 % ***I / M 50 % 95 %

10 2.5 9 0.12 4 45 0.05 3 30 

50 1.5 15 0.25 4 30 0.1 2.5 25 

100 1.5 16 0.40 3 25 0.2 3 16 

250 1.5 25 0.50 3 18 0.5 3 15 

   0.60 2.5 14    
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Table V. Percentage of cadmium removed and parameters obtained from the pseudo-

second order rate reaction for the effect of initial cadmium concentration, alga mass and 

ionic strength on metal uptake kinetics. Experimental conditions were: * 0.25 g alga, 

I=0.05M NaNO3; **Ci=100 mgL-1, I=0.05M NaNO3; ***0.25 g alga, Ci =100 mgL-1. 

*Ci / mgL-1 Cd removed % r2 qeq (mg g-1) k (g mg-1min-1) 

10 81 ± 5 0.9992 3.28 ± 0.02 0.150 ± 0.010 

50 82 ± 3 0.9999 15.73 ± 0.04 0.065 ± 0.004 

100 75 ± 3 0.9999 30.14 ± 0.03 0.034 ± 0.001 

250 63 ± 3 0.9999 61.00 ± 0.08 0.020 ± 0.001 

**ms /g     

0.12 54 ± 4 0.9999 44.96 ± 0.09 0.007 ± 0.001 

0.25 69 ± 3 0.9997 27.35 ± 0.13 0.014 ± 0.001 

0.40 83 ± 2 0.9998 20.73 ± 0.08 0.016 ± 0.001 

0.50 87 ± 2 0.9999 17.32 ± 0.05 0.030 ± 0.001 

0.60 88 ± 2 0.9994 14.92 ± 0.10 0.026 ± 0.002 

***I / M     

0.05 75 ± 3 0.9995 30.97 ± 0.17 0.013 ± 0.001 

0.1 69 ± 3 0.9998 28.33 ± 0.11 0.012 ± 0.001 

0.2 55 ± 2 0.997 22.53 ± 0.28 0.018 ± 0.002 

0.5 48 ± 2 0.9990 19.21 ± 0.04 0.012 ± 0.001 
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Figure captions 

Figure I: Nonlinearised isotherms for cadmium biosorption by Sargassum muticum at 

different pH values and biomass concentration of 2.5 gL-1. The lines correspond to 

Langmuir isotherm fits. 

Figure II: Nonlinearised isotherms for cadmium biosorption at pH=4.5±0.1 by 2.5 gL-1 

of Sargassum muticum with several pretreatments. The lines correspond to Langmuir 

isotherm fits. 

Figure III: Speciation diagram for cadmium(II) species present in solution at different 

pH and cadmium concentrations. 

Figure IV: Effect of pH on cadmium biosorption by 2.5 gL-1 of Sargassum muticum 

with initial cadmium concentration of 10 mgL-1 (open squares) and 250 mgL-1 (solid 

squares). 

Figure V: Titration curve (pH vs. NaOH volume) for 0.2 g of Sargassum muticum with 

ionic strength adjusted to 0.05M with NaNO3. Squares represent experimental data 

points and solid line is the derivative of the experimental curve. 

Figure VI: Katchalsky model (straight line) for 0.2 g of Sargassum muticum with ionic 

strength adjusted to 0.05M with NaNO3. Squares represent experimental data points. 

Figure VII: Kinetics for cadmium uptake by 2.5 gL-1 of Sargassum muticum dose with 

ionic strength adjusted to 0.05M with NaNO3 at different initial cadmium 

concentrations. The lines correspond to the modelled results using the pseudo-second 

order equation including the dependence of qt and k on Ci according to Equation (IX). 

Figure VIII: Kinetics for cadmium uptake by Sargassum muticum at different alga 

mass with 100 mgL-1 cadmium solution and ionic strength adjusted to 0.05M with 
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NaNO3. The lines correspond to the modelled results using the pseudo-second order 

equation including the dependence of qt and k on ms according to Equation (XI). 

Figure IX: Kinetics for cadmium uptake by 2.5 gL-1 of Sargassum muticum dose at 

several ionic strengths with 100 mgL-1 of cadmium solution. The lines correspond to the 

modelled results using the pseudo-second order equation including the dependence of qt 

and k on I according to Equation (XIV). 
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