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Physics and applications of charged domain walls
Petr S. Bednyakov1, Boris I. Sturman2, Tomas Sluka3, Alexander K. Tagantsev4,5 and Petr V. Yudin1

The charged domain wall is an ultrathin (typically nanosized) interface between two domains; it carries bound charge owing to a

change of normal component of spontaneous polarization on crossing the wall. In contrast to hetero-interfaces between different

materials, charged domain walls (CDWs) can be created, displaced, erased, and recreated again in the bulk of a material. Screening

of the bound charge with free carriers is often necessary for stability of CDWs, which can result in giant two-dimensional

conductivity along the wall. Usually in nominally insulating ferroelectrics, the concentration of free carriers at the walls can

approach metallic values. Thus, CDWs can be viewed as ultrathin reconfigurable strongly conductive sheets embedded into the

bulk of an insulating material. This feature is highly attractive for future nanoelectronics. The last decade was marked by a surge of

research interest in CDWs. It resulted in numerous breakthroughs in controllable and reproducible fabrication of CDWs in different

materials, in investigation of CDW properties and charge compensation mechanisms, in discovery of light-induced effects, and,

finally, in detection of giant two-dimensional conductivity. The present review is aiming at a concise presentation of the main

physical ideas behind CDWs and a brief overview of the most important theoretical and experimental findings in the field.
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INTRODUCTION

Ferroelectric materials are very often split into domains, areas that
differ in the direction of spontaneous polarization.1,2 Domain walls
(DW)—very thin regions separating domains—play an essential
role in the electrical, electromechanical, and optical properties of
ferroelectrics. For example, a high wall mobility promotes fast
polarization switching of the material.3 Until recently, although the
structure of ferroelectric walls was addressed both in theory and
experiment, researchers mainly cared about ferroelectric walls as
borders between adjacent domains, rather than finite-thickness
areas exhibiting certain internal structure. However, with a shift of
the researchers’ attention from the micron to nanometer scale,
one got interested in the “inner” properties of ferroelectric and, in
general, ferroic DWs. Specifically, DWs were considered in the
context of nanoelectronics.4

One of the “inner” properties of ferroic walls is their ability to
carry some bound charge, which is apt to be screened with free
carries. Walls carrying bound charge are termed charged domain
walls (CDWs). Remarkably, the screening takes place even in the
case where the adjacent domains are insulating.5 Keeping in mind
that the walls are often easily movable, CDWs can be viewed as
ultrathin movable conductive sheets embedded into an insulating
material.
The pursuit of nano-electronic applications motivated CDW

studies in the 21st century. CDWs have been documented in many
ferroelectrics, including perovskite and non-perovskite oxide
materials, polymer compositions, and improper ferroelectrics. A
conductivity wall/domain contrast up to 13 orders of magnitude
has been recently reported.6 A number of methods enabling CDW
engineering have been developed, and first device prototypes
exploiting CDWs appeared.7,8

Various CDW issues were reviewed in refs 9–11. Not competing
with these articles, in the present paper, we are aiming at a
synoptic presentation of the main concepts behind the under-
standing of CDWs, combined with a brief and updated review of
important findings in the field.

BASIC INFORMATION ABOUT CDWS

For two adjacent domains 1 and 2 with polarizations P1 and P2,
the bound charge with the surface density

σP ¼ P2 � P1ð Þ � n1; (1)

is present at the wall separating them. Here n1 is the wall normal
unit vector pointing inside domain 1. Since the bound charge
creates electrostatic fields in the domains, which is energetically
costly, DWs do not carry often any bound charge. Such walls are
called neutral domain walls (NDWs). DWs with non-zero bound
charge σP are called CDWs. The head-to-head (H–H) configuration
in adjacent domains leads to a positive charge (Fig. 1a, b, d). Tail-
to-tail (T–T) CDWs (with reversed arrows in Fig. 1a, b, d) are
charged negatively. The head-to-tail walls, illustrated by Fig. 1c,
can also carry bound charge; its sign depends on the wall
orientation.
The presence of bound charge leads generally to its screening

with free charges—electrons, holes, and/or mobile ions. This
screening can be regarded as a distinctive feature of CDWs. It is
useful often to distinguish two types of CDWs: strongly charged
(SCDWs) and weakly charged (WCDWs). SCDWs cannot exist
without charge screening because the electric field of the bound
charge would destabilize ferroelectricity. WCDWs might exist as
stable objects without charge screening, though the latter is very
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likely. In the cases when the difference between SCDWs and
WCDWs is not crucial, we will use the general abbreviation CDWs.
DWs slightly deviating from the electro-neutral orientations are

typically WCDWs. They are illustrated by Fig. 1a, c. DWs in
improper ferroelectrics, where the spontaneous polarization P0 is
not the order parameter, belong to WCDWs irrespectively of the
orientation. Here, the electric field cannot destabilize ferroelec-
tricity, it only reduces the value of P0.

3,12,13 DWs in recently
introduced hyperferroelectrics14–16 can also be regarded as
WCDWs. Remarkably, NDWs can carry a distribution of the bound
charge, while the total charge is zero.17,18

In typical and most important proper oxide ferroelectrics, CDWs
essentially deviating from the electro-neutral orientation are
SCDWs. This case is illustrated by Fig. 1b, d. In such materials,
the stabilization of SCDWs requires almost complete screening of
the bound charge with free charges.13 This fact is of prime
importance for the studies and practical harnessing of SCDWs.
It is also useful to distinguish the situations where the walls are

ferroelastic (the adjacent domains differ in the spontaneous strain)
and non-ferroelastic (the spontaneous strains are the same). They
are illustrated by Figs. 1 c, d and 1 a, b, respectively. Elastic forces
prevent rotation of ferroelastic walls contributing to the CDW
stability.19 Most of experimentally accessed SCDWs are
ferroelastic.

CDW OBSERVATIONS

In view of the high energy of their formation, CDWs were only
occasionally mentioned in the past.20–24 In the 2000’s, research
activity focused on oxide interfaces4,25 revived the interest in
electronically compensated CDWs as potential hardware of
reconfigurable conducting paths. To date, CDWs are documented
in many ferroelectrics, using different experimental techniques.
Below, we overview the accumulated experimental findings,
highlighting the results promising for applications and/or
essentially contributing to the physics of CDWs (see the section
'Theoretical insights into CDW properties').
Since the 1980s, transmission electron microscopy (TEM)

techniques has allowed experimentalists to resolve the shapes
of DWs and identify their charged parts. In particular, CDWs were
observed in KNbO3 crystals26 and Pb(Zr,Ti)O3 (PZT) ceramics.22

Presently, high-resolution and scanning TEM techniques allow for
observation of individual atomic displacements and, hence, give

information about the internal CDW structure. With these
techniques, CDWs were documented in single crystals of LiNbO3,

27

YMnO3,
28 and (Ca,Sr)3Ti2O7,

29,30 thin films of BiFeO3,
8,31–33

PbTiO3,
34 and PZT,35–40 and ceramics of BiFeO3,

41 (K,Na)NbO3,
42

TmMnO3,
43 and LuMnO3.

43 TEM techniques, supplemented by
analyses of the energy losses of electrons (EELS) were employed
recently to detect elemental components of the material in the
vicinity of CDWs.30,38–41 Other methods were also in use: scanning
electron microscopy for observations of the intersections of CDWs
with etched surfaces of LiNbO3 crystals,44 high-resolution X-ray
photoemission electron microscopy to visualize and characterize
conducting DWs in ErMnO3,

45 low-energy electron microscopy
(electron backscattering) to image CDWs in LiNbO3 crystals.46

High-resolution TEM studies have provided crucial information
about the widths of domain walls. Figure 2a shows one of the
images obtained in such studies. This image enabled evaluation of

SCDWWCDWa b
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Fig. 1 Schematic of charged domain walls for tetragonal perovskite
ferroelectrics. Arrows show directions of spontaneous polarization. a
180° non-ferroelastic weakly charged domain wall (WCDW). b 180°
non-ferroelastic strongly charged domain wall (SCDW). c 90°
ferroelastic WCDW. d 90° ferroelastic SCDW. Small deviations of
WCDWs from their electro-neutral orientations (shown with dashed
lines) are exaggerated. Twist in (c) and (d) schematically shows the
difference in spontaneous strains between ferroelastic domains
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Fig. 2 Observation of ferroelectric CDWs. a High-resolution TEM
image of a 180° CDW in ultra thin Pb(Zr0.2Ti0.8)O3 film, after ref. 35

(scale bar, 1 nm). This image enabled evaluation of a large thickness
(5–10 nm) of the wall. Red line indicates the CDW center. b, c CDWs
in La-modified BiFeO3 thin films visualized via scanning probe
microscopy. b Amplitude image of PFM signal in the vertical mode,
which gives positions of the walls (scale bar, 1 μm). c Conductive-
AFM image of the same area, after ref. 48. d 90° CDWs (vertical
alternating dark and bright stripes) in h110ic oriented BaTiO3 crystal
observed with optical microscopy by an intensity analysis of
transmitted non-polarized light (scale bar, 100 μm). The contrast is
conditioned by the rotations of the optical indicatrices of ferroelastic
domains. After ref. 68

Physics and applications of charged domain walls

P.S. Bednyakov et al.

2

npj Computational Materials (2018)    65 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



the CDW thickness (5–10 nm) against (1–2 nm) for the NDW in PZT
ultra thin films.35 This experimental finding corroborates the
theoretical insights and estimates and supports the approach
currently used for the description of CDWs which are roughly one
order of magnitude thicker than NDWs (see the section
'Theoretical insights into CDW properties').
Different variants of scanning probe microscopy were exten-

sively used in the studies of CDWs on the mesoscale. A
combination of piezo-force microscopy (PFM) with conductive
atomic force microscopy (c-AFM) was found to be an efficient tool
for CDW identification.47 Using such an approach, CDWs in BiFeO3:
La thin films were documented.48 Here, the information about the
phase and amplitude of signals in the vertical and lateral modes
enables one to locate the positions of CDWs. Figure 2b shows an
amplitude image of PFM signal in the vertical mode. It gives the
positions of the walls while they were identified as SCDWs, using
the phase of this signal combined with the PFM signal in the
lateral mode (not shown). An enhanced conduction of these walls
was documented, using c-AFM (Fig. 2c). In combination and
separately, PFM and c-AFM techniques were also applied for CDW
observation in PZT,38,40,49,50 BiFeO3,

31,48,51 and PST52 thin films,
ErMnO3,

53,54 LiNbO3,
55,56 HoMnO3,

57 YbMnO3,
58 and Cu3B7O13Cl

59

crystals, BiFeO3 ceramics,41 hybrid improper ferroelectric (Ca,
Sr)3Ti2O7,

60 and organic ferroelectrics.61

Other scanning techniques employed for CDW visualization are:
Kelvin-probe force microscopy in HoMnO3,

57 microwave impe-
dance characterization in Pr(Sr0.1Ca0.9)2Mn2O7,

62 scanning spread-
ing resistance microscopy in BiFeO3,

8 and local Hall effect in
YbMnO3.

58

On the millimeter scale, CDWs can be detected optically in the
reflection and transmission configurations. The first one is relevant
to experiments with BaTiO3 and PbTiO3,

21 LiNbO3,
24,63–66 and

Pb5Ge3O11.
23,67 As for the transmission configuration, CDWs in

(110)c and (111)c cuts of BaTiO3 crystals (hereafter the subscript c
indicates the pseudocubic reference frame) were observed both in
polarized and non-polarized (Fig. 2d) light.13,68–72 Non-ferroelastic
180° CDWs were also identified in transmitted polarized light in
PbTiO3 and LiNbO3 crystals.

21,56,65

CDWs were also observed, using other optical methods: The
two-beam photorefractive coupling and directional light scatter-
ing in Sn2P2S6,

73 surface laser intensity modulation in LiNbO3,
24

second-harmonic generation in Pr(Sr0.15Ca0.85)2Mn2O7,
74 Cheren-

kov second-harmonic generation in LiNbO3,
75,76 Raman confocal

microscopy in LiNbO3, LiTaO3, and SBN,77,78 and optical micro-
scopy in LiNbO3

66 and Pr(Sr0.15Ca0.85)2Mn2O7.
74 Raman scattering

was also employed to determine the local symmetry in the vicinity
of CDWs in LiNbO3, LiTaO3,

77,78 BaTiO3
69 and (K,Na)NbO3.

79

THEORETICAL INSIGHTS INTO CDW PROPERTIES

Here, we overview the available theoretical knowledge on such
important properties of CDWs as concentrations of screening
charges, the wall thicknesses, and the formation energies. These
properties and their interrelations will be considered mainly for
SCDWs. Modeling of CDW conductivity is reviewed in the section
'CDW conductivity'.
For SCDWs with representative polarization P0= 30 μC/cm2 and

wall width w= 10 nm,13,35,80 the screening charge concentration
can be estimated as 2P0/ew ≈ 3 × 1020 cm−3, where e is the
elementary charge. This is an extremely high value for nominally
insulating wide-bandgap ferroelectrics. The screening charges can
be electrons, holes, or/and mobile ions. For electron–hole (e–h)
screening, high concentrations caused by band bending at the
wall usually results in degeneracy of the fermion gas.81

For e–h screened SCDWs in typical proper ferroelectrics, the
wall widths are expected to be appreciably larger than those in
the case of NDWs. Along with the gradient energy in Landau
theory,82 which promotes widening of DWs, for SCDWs, there

exists an additional widening mechanism.80,83 It is conditioned by
a decreasing dependence of the kinetic energy81 of free electron

(hole) gas on DW thickness w. This widening mechanism is found
to be strong, leading roughly to about an order-of-magnitude
increase of the SCDW width compared to that relevant to
NDWs.80,83,84 This result was obtained with different calculation

methods for 180° SCDWs within the Landau theory coupled to the
quasi-classical Thomas–Fermi model85 for the free-charge con-
centration. It was also shown that in the morphotropic boundary

type materials (e.g., BaTiO3 at room temperature), 90° SCDWs are
expected to be yet a few times thicker than 180° SCDWs.86 This is
due to reduction of the excess order-parameter energy, owing to
electron screening. The above estimate for 180° SCDWs corrobo-

rates the results of the comparative high-resolution TEM studies of
NDW and SCDW in PZT (see the section 'CDW observations').
A more advanced treatment of 180° SCDWs was offered by

combining the Landau theory with the self-consistent Hartree
approximation for screening electrons.87 It has revealed a generic
discrete quantum structure of CDWs and the condition for

employment of the Thomas–Fermi approximation. Specifically,
the electron motion perpendicular to the walls is quantized such
that the electron energy spectrum exhibits a finite number of

subbands related to free electron propagation along the wall (Fig.
3a). This spectrum can cause specific light absorption associated
with CDWs. It was shown also that the Thomas–Fermi approxima-
tion holds true when more than three electronic subbands are

present. This is the case for typical oxide ferroelectrics. The true
quantum screening regime with less than four electronic
subbands looks interesting but exotic nowadays.
The above considerations imply that the ferroelectric possesses

electronic states only below the valence band (VB) edge EV and
above the conductive band (CB) edge EC. However, any real

material possesses localized electronic levels (traps) within the
bandgap. Experiments show that the effective trap concentration
Nt varies around 1017 cm−3 in nominally undoped ferroelectrics.88

It was shown analytically and numerically84,87 that the presence of
traps leads to modification of the SCDW structure: The wall
consists of a relatively narrow core, containing most of the
screening charge, and some tails (Fig. 3b) so that the potential

decays far from the core. The width of the core is close to the wall
width w, obtained with neglected traps,80,87 while the tail length ‘
is much larger than w. For a H–H CDW (electron screening), the
most important parameters—the width we, the tail length ‘e , and
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Fig. 3 General quantum and spatial properties of CDWs. a
Schematic electronic structure of the wall, EF is the Fermi energy,
Ej(k) is the dependence of the electron energy on the inwall
wavevector for the j-th subband, and Δe is the difference between
the energy at the wall center and the Fermi level (the core energy
drop). The levels with energies Ej(k)≲ EF are filled with electrons. b
Schematic band-bending diagram showing position of the CB edge
in the presence of electrostatic potential φ for a 180° CDW of the
H–H type. The spatial structure of the wall includes the core and
tails; we is the CDW width, le is the tail length, and EC refers to the
case φ= 0. After ref. 87
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the core energy drop Δe (Fig. 3b)—are found to be80,87

we ’ 1:3 �h6ε3f =P0m
3
ee

5
� �1=5

‘e ’ 0:4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εf EC � EFð Þ=e2Nt

p

Δe ’ 4:35 �h6P40=ε
2
f m

3
e

� �1=5
;

(2)

where εf ≫ 1 is the dielectric constant, me is the effective electron
mass, and EF is the Fermi energy. The condition of degeneracy of
electrons is kBT ≪ Δe. For a T–T CDW, it is sufficient to replace me

by the hole mass mh and EC−EF by EF−EV. For representative
parameters P0= 30 μC/cm2, εf= 500, me=m

0
e ¼ 0:3 (m0

e is the free
electron mass), Nt= 1017 cm−3, and EC−EF= 1.5 eV we obtain: we

≃ 7 nm, ‘e ’ 1 μm, and Δe≃ 0.4 eV. These rough estimates also
show that the SCDW width w exceeds the width of NDWs by
nearly one order of magnitude. The theoretical prediction of the
tails has yet to be verified in an experiment.
The formation energy is a vital characteristic of CDWs, for it

controls the possibility of their spontaneous appearance and
deliberate creation of them. For typical proper oxide ferroelectric
treated as a defect-free dielectric, the formation energy (per unit
area) of an individual electron (or hole) screened SCDW in an
isolated sample can be estimated80 as W ’ 2P0Eg=e whereas Eg=
EC−EV is the bandgap. The same estimate is valid for creation of a
couple of walls: electron screened SCDW+ hole screened SCDW.
This estimate has a simple interpretation: for the full screening,
one should transfer 2P0/e electrons [per unit area] across the
bandgap, paying the energy penalty Eg/e per electron. A more
elaborate treatment87 provides expressions for the formation
energies for the electron (We) and hole (Wh) screened CDWs:

We ’ 2P0 EC � EFð Þ=e; Wh ’ 2P0 EF � EVð Þ=e: (3)

Note that We+Wh=W. Since the electronic energies entering
these expressions are ’ 1 eV, these values are roughly two orders
of magnitude larger than the typical NDW energies.80 The above
large formation energy rises a questions about feasibility of CDWs.
Experimental observations of CDWs motivate one to look for
energetically less costly screening scenarios, avoiding the electron
transfer across the bandgap.
A possibility of reduction of CDW energy occurs if defects

providing free carriers are mobile. Specifically, in n-type materials,
electrons needed for screening of the bound charge at H–H CDWs
can be collected from a macroscopically large area avoiding the
electron transfer across the bandgap.13 At the same time, the
ionized donors can be used for screening of T–T CDWs. Evidently,
an analogous scenario works for p-type materials. In such “mixed”
free-carrier/ion screening scenarios, substantially smaller wall-
formation energies than for the e–h screening are expected.13,89

These screening scenarios entail a clear manifestation. In the case
of a quasi-periodic H–H/T–T CDW pattern, the minimal possible
period is expected to be a decreasing function of concentration of
the defects providing free carriers. This prediction corresponds to
the experimental data obtained for CDW structures in BaTiO3

crystals possessing variable concentration of oxygen donor-like
vacancies13,68 (see also the section 'CDW engineering').
An alternative way to avoid the over-bandgap electron transfer

is to use super-bandgap illumination as a mean to produce
screening electrons and holes. A theory of this mechanism of
SCDW formation was recently offered.90 It can be considered as a
generalization of the previous results,80,87 which explores the
concept of intensity-dependent quasi-Fermi levels for electrons
and holes.91 This scenario has been implemented
experimentally.72

Above we restricted ourselves to infinite one-dimensional
CDWs. What happens if a CDW connects two electrodes? This

brings us to a qualitatively different 2D case, which is relevant not
only to the basics, but also to the conductivity issues to be
considered in the section 'CDW conductivity'. The matter is that
the application of an equipotential electrode to the crystal surface
flattens the band bending (Fig. 3b) in the vicinity of the electrode.
On the other hand, this bending is the driving force for the free-
charge accumulation at the wall.68 Thus, the electron (hole) gas at
CDWs can be disconnected from the electrodes with dielectric
gaps. However these gaps can be essentially narrowed or even
closed in the presence of a d.c. electric field. This is illustrated by
Fig. 4 obtained by phase-field modeling.68 In addition, the d.c.
field can facilitate tunneling through the gaps.
The above discussion was dealing with theoretical insights into

SCDWs. As for WCDWs, most attention was paid to improper
ferroelectrics of the hexagonal manganite type, like ErMnO3. The
wall structure was probed using the Landau theory92 in
combination with ab initio calculations93 while the effect of
screening charge was ignored. The experimental profiles for NDWs
and CDWs in ErMnO3

92 were approximated using the phenom-
enological model92 while the documented small differences
between the thicknesses of NDWs and CDWs was attributed to
the effect of the crystalline anisotropy.
Ab initio calculations within the density-functional theory (DFT)

for CDWs is a less developed but rapidly growing activity. Most of
DFT calculations are relevant to NDWs, see, e.g., refs 47,94,95. DFT
simulations of CDWs represent a more complicated problem
owing to the necessity to account for long-range correlation
effects and trap recharging. Ab initio calculations53 were
performed for a 10-unit-cell stack of YMnO3, which contains one
H–H and one T–T wall. In these materials, P0~6 μC/cm

2, which,
taking the wall width w= 10 nm,92 leads to a still appreciable
bound charge concentration of 2P0/ew ≈ 0.6 × 1020 cm−3. If this
charge is screened with the e–h free carriers, to provide such
screening, the Fermi level at the CDW should be quite close to the
edge of the VB (or CB). This was observed in ab initio
simulations,53 where the Fermi level contacted VB. This should
promote the conduction at T–T walls screened by holes, which is
consistent with the experimental observations53 (see the section
'CDW conductivity').
The advantage of ab initio simulations is a possibility of

engineering of new materials. Recently, a concept of
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Fig. 4 Color-scale maps of the phase-field calculated free-electron
concentration at a H–H CDW in BaTO3 contacted with an
electrode.68 a Short-circuited configuration, the electron gas is
disconnected from both electrodes with dielectric gaps. b Under
applied voltage of 12 V, one of the gaps is closed while the other
becomes much narrower, facilitating electron tunneling. After ref. 68
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hyperferroelectrics—a new class of proper ferroelectrics which are
not destabilized by unscreened depolarization field was intro-
duced.14 The possible CDWs in these materials may be naturally
stable, as confirmed by first-principles calculations of H–H and T–T
walls in ABC-type hexagonal hyperferroelectrics.16 However,
scarce data on CDWs in hyperferroelectrics still need additional
validation. Ab initio simulations are efficiently employed for
bandgap design: the impact of CDWs on the bandgap width was
addressed in organometal halide perovskites, which is of interest
in the context of photovoltaics.96

It should be mentioned that, for a CDW, besides the formation
energy its stability is important. As was mentioned in the section
'Basic information about CDWs', elastic effects contribute to
stability of ferroelastic CDWs. At the same time, even being
screened, CDWs exhibit positive formation energy. This means
that, unless the boundary conditions prevent disappearance of the
walls, any CDW configuration has to be regarded as metastable.
The decay mechanisms can be very complicated. In practice,
depending on the type of ferroelectric, the temperature, etc., the
decay time can range from a fraction of second to years.

CDW CONDUCTIVITY

The very large conductivity of CDWs in nominally insulating
ferroelectrics is relevant both to the fundamental knowledge and
applications in nanoelectronics.4,47,68 Here we represent first the
main theoretical insights into CDW conduction properties and
consider then the relevant experimental data.
In the case of e–h screening, CDW conductivity is expected to

be due to the freedom of movement of the compensating
electrons or holes in the wall plane. Since the concentrations of
compensating free carriers at CDWs can readily be above 1020

cm−3, large metallic-like inwall conductivity is expected. This
simple idea, expressed in 1973,5 lies in the basis of all available
models of CDW conductivity. In the case of mixed electron-ion
screening, the ion-screened CDW is expected to possess a
relatively small conductivity because of low ion mobility.
Let n= n(z) be the concentration of the compensating charge

carriers (electrons or holes) for positively or negatively charged
walls as a function the coordinate z in the direction perpendicular
to the wall. The specific bulk conductivity σ can be expressed as σ
= eμn, where μ is mobility of the screening carriers. It is implied
that the current flows along the wall, i.e., we deal with a quasi-2D
effect. The specific surface CDW conductivity reads σS ¼ eμnw,
where n is the average over z concentration of compensating
carriers and w is the CDW width.
Determination of n(z) and w requires modeling of CDW

structure. In practice, inclined 180° CDWs, characterized by the
inclination angle θi between the wall plane and the polarization
direction, see Fig. 1a, b, are important. The total bound charge to
be screened is 2P0sinθi in this case, and the width w is expected to
be weakly dependent on θi for not very small inclination angles.
Thus, we have roughly nw � 2P0sinθi . This feature is consistent
with the results of continuum numerical simulations for LiNbO3

crystals.84,97

This above continuum medium model of CDW conductivity is
oversimplified. First, we know that the discrete quantum subband
structure depicted in Fig. 3a is generic for CDWs. A part of the
subbands can be filled with electrons (holes) and, thus, excluded
from the charge transport. For this reason, the total concentration
of conductive charge carriers can be substantially smaller than
2P0sinθi. This can explain the results of recent experiments with
CDWs in YbMnO3 crystals.58 Second, the mobility μ can differ
substantially from the value expected for the 3D band transport in
metals. This can be due to (i) roughness of the CDW and (ii) 2D
character of the electron scattering processes.
Often, CDW conduction experiments run in tip configurations

when the electric current flows between a continuous bottom

electrode and a tip top electrode. Here, the total resistance
extracted from the I–V characteristic can be approximated by R=
F/σS where F ≈ 0.72·log(5d/a) is a dimensionless geometric factor
accounting for a sharp convergence of stream lines of the current
density from continuous bottom electrode to the tip.6 Fortunately,
it depends weakly on the ratio of the sample thickness d to the tip
contact length a facilitating estimates of σS and σ from
experimental data.
The presence of a large CDW conductivity does not ensure that

it is easily available via Ohmic contacts. As we have seen in the
section 'Theoretical insights into CDW properties', dielectric gaps
are possible between the electrodes and highly conductive
electron gas at the wall. These gaps depend generally on the
applied d.c. voltage V and the work-function difference between
the crystal and metal. Thus, complicated I–V characteristics are
generally envisaged.
Turning to the experimental side, we mention first that an

elevated conductivity of SbSI crystals owing to the presence of
CDWs was reported already in 1976.20 At that time, it did not
attract a strong interest. Such an interest arose in 2009 after the
report of high local conductivity of domain walls in BiFeO3

crystals.47,98 However, the walls investigated were nominally
neutral. A stimulating result, relevant to CDWs, dates from 2012
when a large conductivity was detected at transient CDWs of
nucleating nano-domains in PZT thin films.50 The conductivity
contrast between the walls and the bulk reached ~104. This
discovery triggered a research endeavor to detect and explore
similar phenomena in other systems.
An important advance was achieved with 90° CDWs in BaTiO3

stabilized by the ferroelastic clamping.68 Experiments were
conducted with a set of pad electrodes covering either H–H, or
T–T CDWs, or bulk areas (Fig. 5a). Conductivity of the T–T CDWs
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Fig. 5 CDW conductance in BaTiO3 a and LiNbO3 b, c crystals. a I–V
characteristic for different regions of the crystal: with a H–H SCDW,
with a T–T CDW, and without walls. Insert shows schematically the
experimental configuration comprising h110ic oriented BaTiO3

crystal with CDWs; top pad electrodes (Pt) are shown with circles
while the continuous bottom electrode is not shown. After ref. 68. b,
c I–V characteristics for different CDW configurations in LiNbO3: an
array of 1464 parallel CDWs sandwiched between top (Ag) and
bottom (Cr) electrodes b and an array of 32 parallel CDWs contacted
by two Cr pads patterned from the bottom electrode c. After ref. 6
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showed no difference compared to the bulk. However, conduc-
tivity of the H–H CDWs was found to be much higher than that of
the bulk. This is illustrated by Fig. 5a. Using the data of Fig. 5a, the
conductivity of the H–H CDWs was evaluated to be 108–1010 times
higher than that of the bulk. Furthermore, this conductivity
exhibited a metallic-type decreasing temperature dependence. A
remarkable feature of this CDW conductivity was the threshold
behavior of the I–V dependence (see the section 'Theoretical
insights into CDW properties'). Such a behavior is explained within
the CDW theory. The absence of large conductivity at T–T CDWs is
in agreement with the electron/ion screening scenario for CDWs in
BaTiO3: the H–H CDWs are screened by highly mobile electrons
while T–T walls are screened by much less mobile oxygen
vacancies (see the section 'Theoretical insights into CDW
properties').
Using the c-AFM method, CDW conductivity was also detected

in BiFeO3 thin films.48 The current flowing through H–H CDWs was
more than three orders of magnitude larger than that flowing
through the bulk or through NDWs. Figure 2b, c show a PFM
image of the domain structure and the corresponding map of
electric current. Conducting lines are clearly seen at H–H CDWs.
The H–H CDWs exhibited a non-thermally-activated conductivity,
which contrasted with a thermally-activated conductivity of 71°
nominally neutral walls.
Ferroelastic bent CDWs in PZT also exhibit non-thermally-

activated conductivity. Narrow feroelastic domain inclusions
limited with a pair of weakly bent ferroelectric walls were
addressed. In view of their weak bending, the walls are expected
to be WCDWs. Using high-resolution cryogenic c-AFM, clear
current maxima corresponding to each of the two bent DWs
limiting narrow inclusions were identified.38 Also, a correlation
between the local concentration of charged dopants and the CDW
conductance was established using the EELS TEM technique.40

In 2017, record-breaking conductivity was reported for 180°
CDWs in LiNbO3 crystals,6,76,99 while the earlier studies reported
only transient currents66 and d.c. conductivity under super-
bandgap illumination.55 We highlight here the results from ref. 6.
In this work, inclined (θi ≈ 1°) positively charged walls (and also
arrays of such walls) were engineered, using biased μm-sized tips.
Conductance was measured, using different configurations of
electrodes made of different materials. The conductance of a wall
array measured between a bottom Cr electrode and Ag-paste top
electrode was reported to be of rectifying type (Fig. 5b). The

measurements where the wall was contacted with two bottom Cr
electrodes yielded the ohmic behavior (Fig. 5c). The data of Fig. 5c
were used to evaluate the specific surface resistance of CDWs and
their bulk conductivity σ. With the wall width w= 10 nm, the latter
was estimated as σ ≈ 0.02(Ωcm)−1. This value exceeds the dark
conductivity of LiNbO3 by at least 13 orders of magnitude. While
the CDW thermally-activated conductivity was highly stable for T
⪅ 70 °C, it decayed gradually and irreversibly at higher tempera-
tures. This can be interpreted by the replacement of the e–h
screening with the ionic charge compensation via thermo-
activated migration of charged defects.
CDW conductance in improper ferroelectrics drew considerable

attention as well, hexagonal manganites were of prime interest
here. In these materials, DWs are interlocked with structural
antiphase boundaries resulting in a full spectrum of DW
orientations, ranging from neutral to maximally charged. Figure
6 illustrates this situation for ErMnO3 crystals.53 As seen from
conducting-AFM contrast in Fig. 6, CDWs in hexagonal manganites
demonstrate both increased (T–T) and suppressed (H–H) con-
ductivities. The enhanced conduction of T–T walls demonstrated
in this figure is consistent with the results of ab initio calculations
(see the section 'Theoretical insights into CDW properties'). Similar
conductive behavior was reported in hybrid improper ferroelectric
Ca2.46Sr0.54Ti2O7.

60 Despite their suppressed conductivity at
relatively low applied voltages, H–H CDWs can be switched into
a conductive state when a threshold voltage is exceeded, as
demonstrated for ErMnO3.

100

Recently c-AFM conduction experiments were advanced to
include local Hall measurements.58 This was done as applied to
T–T CDWs in YbMnO3 crystals. The positive sign of screening
charge carriers (holes) and their mobility μ ≈ 50 cm2/Vs, relevant to
the band transport, were established. Remarkably, the estimated
concentration of screening holes (~1016 cm−3) was found to be
about four orders of magnitude below the value of 2P0/ew for w=
10 nm. This can be qualitatively interpreted as a manifestation of
the quantum subband structure of the wall (see the section
'Theoretical insights into CDW properties').

CDW ENGINEERING

A lot of efforts were put into engineering of CDW patterns in the
tetragonal phase of BaTiO3 crystals.

13,68,72 The basic method used
was the frusrative poling:13,101 a thin crystal plate is brought into
the tetragonal phase under a dc electric field normal to it, which
equally favors two or more tetragonal domain states. For the
[110]c oriented field, the preferable tetragonal states are poled
along [010]c and [100]c directions, while, for the [111]c orientation,
the preferable states are poled along [010]c, [100]c, and [001]c.
Frusrative poling not necessarily leads to CDW formation since
NDWs with lower energy per unit area can be generated as well.
To avoid the preference of the system to form NDWs, one should
reduce the formation energy of CDWs in question.
Frusrative poling was implemented on crossing the border to

tetragonal ferroelectric phase from cubic or orthorhombic phases.
Since the interphase borders on the field/temperature (E–T)
diagram are inclined, they can be crossed either by variation of E
(Fig. 7a, line 2) or T (Fig. 7a, lines 1 and 3).
In the case of 〈110〉c poling of nominally stoichiometric BaTiO3

and the cubic/tetragonal border, the preferable domain states can
be separated either with a NDW parallel to the plane of the plate
or with a CDW normal to it. Though, the energy per unit area of
NDWs is smaller than that of CDWs (see the section 'Theoretical
insights into CDW properties'), a smaller area of a CDW reduces
the formation energy of the latter.
In ref. 13 for h111ic poling (the (E–T) “trajectory” is shown in Fig.

7a with line 3), the competing NDWs and CDWs had approxi-
mately the same areas. Nevertheless, CDW patterns were
generated, by using samples with elevated oxygen deficiency,

Fig. 6 CDW conductance in improper ferroelectric ErMnO3. The c-
AFM scan shows suppressed conductance at H–H walls (dark),
enhanced conductance at T–T walls (bright), and a continuous
transition between these two states with changing inclination angle
(scale bar, 2 μm). Arrows show the direction of P0. After ref.

53
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proving the enhanced concentrations of free elections and mobile
donors (oxygen vacancies), which promote the mixed elecron/ion
screening scenario with essentially reduced CDW energy (see the
section 'Theoretical insights into CDW properties'). A remarkable
correlation between the charge concentration and the domain
size was reported, which is consistent with the theoretical
prediction for this scenario. Yet another approach to the reduction
of the CDW formation energy was employed in ref. 72. Here, for
h111ic poling in nominally stoichiometric BaTiO3, the orthorhom-
bic/tetragonal phase border was crossed along line 1 in Fig. 7a,
under a super-bandgap illumination that reduces the CDW
formation energy (see the section 'Theoretical insights into CDW
properties'). One should note that the CDW patterns in (111)c
plates are always stable under a moderate electric field (~1 kV/
mm), while after removal of the field the domain patterns may
persist for a long time or disappear quickly, depending on the
sample.
In the view of utilizing CDWs for nanocircuitry, CDW nanoscale

manipulation in La-doped BiFeO3 thin films is of special interest.48

As-grown films exhibit a random mixture of domain states (central
part of Fig. 7b). The films were scanned with a biased AFM tip,
which followed special trajectories creating an effective trailing
field.102 Such a scanning leads to formation of two encountering
domains (Fig. 7b). Merging the encountering domains yields a
CDW.48 In this approach, the tip-geometry-enhanced electron
tunneling into the ferroelectric film was exploited to promote an

efficient screening of the bound charge and reduce the CDW
formation energy. Some results of characterization of the CDW
pattern created in this way are shown in Fig. 2b, c. This method
was also applied to CDW engineering in (Pb,Sr)TiO3 thin films.52 In
this work, along with the trailing electric field, the formation of
CDWs was also controlled with poling using patterned electrodes.
Next we consider specific features of CDW engineering in

LiNbO3. They are due to two interrelated factors—specific
ferroelectric properties103 and persistent experimental efforts
toward optical applications.27,65,104,105 Domain walls in this
material can be neutral, weakly, and strongly charged. Commer-
cially available periodic domain structures, designed for optical
applications, possess predominantly neutral or almost neutral
DWs. However, there are numerous experimental tools for
production of CDWs with a tunable angle θi between the wall
and its electro-neural orientation, which controls the bound
charge.
Stable H–H CDWs with the inclination angle θi= 90° were

obtained first without application of electric fields by a severe
heat-treatment close to the Curie temperature (≈1200 °C) with
subsequent cooling down.106 Field-assisted poling of commer-
cially available z-cut LiNbO3 wafers combining tip and continuous
electrodes leads to inclined H–H CDWs with θi ⪅ 1°.6,55,76 The
origin of the inclinations is not quite clear; most probably, they are
due to expansion of the field stream lines toward the continuous
electrode. The inclination angle can be varied by doping with Mg
and thermal treatments.
A different method for fabrication of various domain structures

leading to CDWs is known as prohibited poling.107–111 It can be
exemplified as follows: a UV laser heats locally (on the μm scale)+
z-face of a LiNbO3 sample close to the Curie point. After cooling
down, the sample shows no signs of domain inversion. However,
during subsequent field-assisted repoling of the sample at room
temperature, the exposed area remains non-inverted (prohibited
poling), as shown schematically in Fig. 8a. The resulting domain
structure possesses a CDW whose inclination angle θi varies from
90° at the maximum depth to 0° near the surface. Experimental
evidences of such domain patterns are obtained by etching, PFM,
and electron microscopy methods (Fig. 8b, c).
The physical mechanism behind the inhibition poling effect is,

most probably, a local increase of the coercive field during the UV
exposition because of high-temperature out-diffusion of
lithium.109 Remarkably, the CDW formation occurs pretty fast (on
the scale of minutes), whereas diffusion of ions is extremely slow
in lithium niobate.103 This indicates that electrons are responsible
for the charge screening.
Now we address CDW engineering in improper ferroelectrics.

The available data suggest that spontaneous CDW forma-
tion53,59,60 occurs quite often. However, CDW engineering was
only recently carried out in Cu-Cl boracite ferroelectrics.59 In this
material, the spontaneous polarization and spontaneous strain are
linearly coupled. Exploiting this property of the material, quadrant
domain structures were created with application of about 1 GPa
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the cubic (C), tetragonal (T), and orthorhombic (O) phases are
shown with straight lines. Lines (with arrows) 1, 2, and 3 show
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in refs 13,68,72, respectively. b Engineering of CDWs in [001]c films of
BiFeO3:La using trailing field.102 The map of sign of [100]c
component of the spontaneous polarization (dark—positive,
bright—negative). The as-grown film exhibits random domain
states (scale bar, 1 μm). The right and left parts of the film are
treated with a biased AFM tip, moving along zig-zag lines. This
creates an effective trailing field102 directed along red arrows. The
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into single-domain states. The in-plane polarization components are
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Fig. 8 Domain structure of a UV treated sample of LiNbO3 after its
subsequent repoling. a Schematic front view for created domain
line. The inclination angle of CDW θi varies from 90° at the maximum
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etched sample imaged with scanning electron microscopy (scale
bar, 1 μm). After refs 108,111
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pressure in the middle of the quadrant. The structure contained
NDWs as well as H–H and T–T 90° CDWs, the T–T walls were found
highly conductive. It was shown that this way injected CDWs can
also be displaced by applying a properly oriented dc electric field.

CDW FUNCTIONALITIES

Harnessing CDWs in prototypes of electronic devices can be
viewed as an ultimate practical goal of the scientific activity in the
field. On the way toward applications, conductance control via
unique properties of CDWs received appreciable atten-
tion.7,8,58,100,112–117 Below we consider simple examples of CDW
exploitation.
Nanodevices could be designed such that the high conductivity

of the wall could be created or erased on demand to provide
resistive switching. Such an idea can be implemented either in the
parallel-plate-capacitor configuration8,112 or coplanar capacitor
configuration.7

With (110)c oriented films, the coplanar capacitor configuration
was chosen to provide up to 103 on/off ratio.7 Here, in the on
regime, the coplanar electrodes were connected with a wall that
contained both neutral and charged segments. The resistance was
determined by the neutral segments because of their relatively
small conductivity. This prototype of nonvolative ferroelectric
domain wall memory was scalable to below 100 nm, exhibited
excellent endurance and retention characteristics, and a multilevel
data storage capacity. Thus, an important step toward integrated
multi-terminal nanoscale DW devices was made. Employment of
configurations with very low CDW resistance will enable one to
proceed to much higher on/off ratios.
The functionality of the parallel-plate setup made of a (100)

BiFeO3 film was shown to be essentially controlled by the
presence of a CDW.8 The schematic of such a setup is shown in
Fig. 9.
Here the configuration shown in Fig. 9a does not contain CDWs.

By applying positive voltage to this configuration one can
generate a segment of CDW (Fig. 9b), the length of which
increases as a function of voltage. After the voltage removal, the
modified configuration stays unchanged while by applying a large
enough negative voltage, the system is then brought back to the
original configuration. Thus, the system exhibits a switching
instability. If the CDW segment is large enough (more than 20% of
the film thickness in this experiment), the across-the-film
conduction of the two states differs up to 5 orders of magnitude.
The elevated conduction of the “on” state is controlled by two
factors: the high conductivity of the CDW segment and the
conductivity of the 180° NDW, which is enhanced due to the

impact of the electrostatic potential created by the charge at the
CDW segment.
Manipulation of charge transport in H–H CDWs in improper

ferroelectrics like hexagonal manganites was also demonstrated.

In semiconducting ErMnO3, an electric-field control switching
between resistive and conductive states was documented.100 In
YbMnO3, the T–T CDW conductance was manipulated with
external magnetic field.58

The suppressed conductivity of some DW parts in hexagonal
manganites is of interest in view of potential application for nano-

capacitors, particularly in YMnO3, where insulating CDWs had
conductivity contrast up to 500 with respect to the bulk.113 Along
with enhanced conductivity and other potential functionalities,

CDW enhanced piezo-response was also actively analyzed.69–

71,101,118–120

SUMMARY AND OUTLOOK

The last decade was marked by a tremendous progress in
investigation of ferroelectric CDWs. The field has evolved into a
vast area of experimental and theoretical studies with promising

results for applications. To date, CDWs have been documented in
both bulk crystals and thin films. Numerous experimental
techniques operating at the nanoscale were applied to (developed
for) the fabrication and identification of various walls (weakly and

strongly charged, inclined, etc.) and for analysis of their properties.
Giant CDW conductivity, with up to 13 orders of magnitude
enhancement as compared to the bulk, is now reliably detected

for numerous materials. The possibilities of creation, displacement,
and annihilation of CDWs, as well as a number of applications,
have been demonstrated. An impressive amount of theoretical
studies have been performed employing analytical and numerical

studies within the Landau theory and also ab initio DFT
simulations. It is possible now to judge about the charge
screening mechanisms inherent in CDWs, about their widths

(~10 nm), energy, quantum structure, the effect of light, etc.
Despite this impressive progress, the studies of CDWs are still at

their infancy and it is too early to compare CDW funtionalities with
other systems, e.g., memristors. This is greatly due to diversity and
complexity of the subject matter. Thus, we expect a gradual
maturation of the field. This inlcudes a deeper penetration into the

nanoscale, more control with nano-fabrication techniques, better
spatial resolution, and specialization of experimental methods as
applied to particular materials. We also expect quantization and a
better control of tip-related measurements of CDW conductivity.

On the theoretical side, we hope to see specialization of the ab
initio theory as applied to the actual charge screening mechan-
isms, an analysis of the impact of the quantum structure of CDWs

on the 2D conductivity, and account for the effect of the wall
roughness on the carrier mobility. Involvement of light into
various CDW properties also looks highly promising. The funda-
mental differences between the properties of CDWs and NDWs

will be clarified.
As for future applications of CDWs, the general trend here is

indeed in miniaturization of the tip-related CDW configurations.
Along this way, prototypes of novel reconfigurable functional
elements, such as field and stress controlled memory cells, logical
elements, and data storage devices, are anticipated. Switch from

two- to three-terminal prototypes and fabrication of array
structures are also envisaged. Performance of these devices,
including such issues as low switching energy, high electrical

tunability, memristive functionality, scaling behavior, speed, and
endurance and retention characteristics will be considered and
improved.
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