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Abstract

Gravitational wave detectors are already operating at interesting sensitivity levels, and
they have an upgrade path that should result in secure detections by 2014. We review the
physics of gravitational waves, how they interact with detectors (bars and interferometers),
and how these detectors operate. We study the most likely sources of gravitational waves
and review the data analysis methods that are used to extract their signals from detector
noise. Then we consider the consequences of gravitational wave detections and observations
for physics, astrophysics, and cosmology.
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1 A New Window onto the Universe

The last six decades have witnessed a great revolution in astronomy, driven by improvements in
observing capabilities across the electromagnetic spectrum: very large optical telescopes, radio
antennas and arrays, a host of satellites to explore the infrared, X-ray, and gamma-ray parts of the
spectrum, and the development of key new technologies (CCDs, adaptive optics). Each new window
of observation has brought new surprises that have dramatically changed our understanding of the
universe. These serendipitous discoveries have included:

• the relic cosmic microwave background radiation (Penzias and Wilson [287]), which has
become our primary tool for exploring the Big Bang;

• the fact that quasi-stellar objects are at cosmological distances (Maarten Schmidt [323]),
which has developed into the understanding that they are powered by supermassive black
holes;

• pulsars (Hewish and Bell [189]), which opened up the study of neutron stars and illuminated
one endpoint for stellar evolution;

• X-ray binary systems (Giacconi and collaborators [326]), which now enable us to make de-
tailed studies of black holes and neutron stars;

• gamma-ray bursts coming from immense distances (Klebesadel et al. [216]), which are not
fully explained even today;

• the fact that the expansion of the universe is accelerating (two teams [313, 288]), which has
led to the hunt for the nature of dark energy.

None of these discoveries was anticipated by the observing team, and in many cases the instru-
ments were built to observe completely different phenomena.

Within a few years another new window on the universe will open up, with the first direct
detection of gravitational waves. There is keen interest in observing gravitational waves directly,
in order to test Einstein’s theory of general relativity and to observe some of the most exotic
objects in nature, particularly black holes. But, in addition, the potential of gravitational wave
observations to produce more surprises is very high.

The gravitational wave spectrum is completely distinct from, and complementary to, the elec-
tromagnetic spectrum. The primary emitters of electromagnetic radiation are charged elementary
particles, mainly electrons; because of overall charge neutrality, electromagnetic radiation is typi-
cally emitted in small regions, with short wavelengths, and conveys direct information about the
physical conditions of small portions of the astronomical sources. By contrast, gravitational waves
are emitted by the cumulative mass and momentum of entire systems, so they have long wave-
lengths and convey direct information about large-scale regions. Electromagnetic waves couple
strongly to charges and so are easy to detect but are also easily scattered or absorbed by material
between us and the source; gravitational waves couple extremely weakly to matter, making them
very hard to detect but also allowing them to travel to us substantially unaffected by intervening
matter, even from the earliest moments of the Big Bang.

These contrasts, and the history of serendipitous discovery in astronomy, all suggest that elec-
tromagnetic observations may be poor predictors of the phenomena that gravitational wave detec-
tors will eventually discover. Given that 96% of the mass-energy of the universe carries no charge,
gravitational waves provide us with our first opportunity to observe directly a major part of the
universe. It might turn out to be as complex and interesting as the charged minor component, the
part that we call “normal” matter.
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8 B.S. Sathyaprakash and Bernard F. Schutz

Several long-baseline interferometric gravitational-wave detectors planned over a decade ago
[Laser Interferometer Gravitational-Wave Observatory (LIGO) [18], GEO [244], VIRGO [109] and
TAMA [363]] have begun initial operations [3, 245, 19] with unprecedented sensitivity levels and
wide bandwidths at acoustic frequencies (10 Hz – 10 kHz) [197]. These large interferometers are
superseding a world-wide network of narrow-band resonant bar antennas that operated for several
decades at frequencies near 1 kHz. Before 2020 the space-based LISA [71] gravitational wave
detector may begin observations in the low-frequency band from 0.1 mHz to 0.1 Hz. This suite of
detectors can be expected to open up the gravitational wave window for astronomical exploration,
and at the same time perform stringent tests of general relativity in its strong-field dynamic sector.

Gravitational wave antennas are essentially omni-directional, with linearly polarized quadrupo-
lar antenna patterns that typically have a response better than 50% of its average over 75% of
the sky [197]. Their nearly all-sky sensitivity is an important difference from pointed astronomi-
cal antennas and telescopes. Gravitational wave antennas operate as a network, with the aim of
taking data continuously. Ground-based interferometers can at present (2008) survey a volume
of order 104 Mpc3 for inspiraling compact star binaries – among the most promising sources for
these detectors – and plan to enhance their range more than tenfold with two major upgrades (to
enhanced and then advanced detectors) during the period 2009 – 2014. For the advanced detectors,
there is great confidence that the resulting thousandfold volume increase will produce regular de-
tections. It is this second phase of operation that will be more interesting from the astrophysical
point of view, bringing us physical and astrophysical insights into populations of neutron star and
black hole binaries, supernovae and formation of compact objects, populations of isolated compact
objects in our galaxy, and potentially even completely unexpected systems. Following that, LISA’s
ability to survey the entire universe for black hole coalescences at milliHertz frequencies will extend
gravitational wave astronomy into the cosmological arena.

However, the present initial phase of observation, or observations after the first enhancements,
may very well produce the first detections. Potential sources include coalescences of binaries
consisting of black holes at a distance of 100 – 200 Mpc and spinning neutron stars in our galaxy
with ellipticities greater than about 10−6. Observations even at this initial level may, of course, also
reveal new sources not observable in any other way. These initial detections, though not expected
to be frequent, would be important from the fundamental physics point of view and could enable
us to directly test general relativity in the strongly nonlinear regime.

Gravitational wave detectors register gravitational waves coherently by following the phase of
the wave and not just measuring its intensity. Since the phase is determined by large-scale motions
of matter inside the sources, much of the astrophysical information is extracted from the phase.
This leads to different kinds of data analysis methods than one normally encounters in astronomy,
based on matched filtering and searches over large parameter spaces of potential signals. This
style of data analysis requires the input of pre-calculated template signals, which means that
gravitational wave detection depends more strongly than most other branches of astronomy on
theoretical input. The better the input, the greater the range of the detectors.

The fact that detectors are omni-directional and detect coherently the phase of the incoming
wave makes them in many ways more like microphones for sound than like conventional telescopes.
The analogy with sound can be helpful, since microphones can be used to monitor environments
for disturbances in any location, and since when we listen to sounds our brains do a form of
matched filtering to allow us to interpret the sounds we want to understand against a background
of noise. In a very real sense, gravitational wave detectors will be listening to the sounds of a
restless universe. The gravitational wave “window” will actually be a listening post, a monitor for
the most dramatic events that occur in the universe.
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1.1 Birth of gravitational astronomy

Gravity is the dominant interaction in most astronomical systems. The big surprise of the last
three decades of the 20th century was that relativistic gravitation is relevant in so many of these
systems. Strong gravitational fields are Nature’s most efficient converters of mass into energy.
Examples where strong-field relativistic gravity is important include the following:

• neutron stars, the residue of supernova explosions, represent up to 0.1% (by number) of the
entire stellar population of any galaxy;

• stellar-mass black holes power many binary X-ray sources and tend to concentrate near the
centers of globular clusters;

• massive black holes in the range 106 – 109M⊙ seem almost ubiquitous in galaxies that have
central bulges, and power active galaxies, quasars, and giant radio jets;

• and, of course, the Big Bang is the only naked singularity we expect to be able to see.

Most of these systems are either dynamical or were formed in catastrophic events; many are
or were, therefore, strong sources of gravitational radiation. As the 21st century opens, we are on
the threshold of using this radiation to gain a new perspective on the observable universe.

The theory of gravitational radiation already makes an important contribution to the under-
standing of a number of astronomical systems, such as neutron star binaries, cataclysmic variables,
young neutron stars, low-mass X-ray binaries, and even the anisotropy of the microwave background
radiation. As the understanding of relativistic phenomena improves, it can be expected that gravi-
tational radiation will play a crucial role as a theoretical tool in modeling relativistic astrophysical
systems.

1.2 What this review is about

The first three-quarters of the 20th century were required to place the mathematical theory of
gravitational radiation on a sound footing. Many of the most fundamental constructs in general
relativity, such as null infinity and the theory of conserved quantities, were developed at least in
part to help solve the technical problems of gravitational radiation. We will not cover this history
here, for which there are excellent reviews [259, 132]. There are still many open questions, since
it is impossible to construct exact solutions for most interesting situations. For example, we still
lack a full understanding of the two-body problem, and we will review the theoretical work on
this problem below. But the fundamentals of the theory of gravitational radiation are no longer
in doubt. Indeed, the observation of the orbital decay in the binary pulsar PSR B1913+16 [388]
has lent irrefutable support to the correctness of the theoretical foundations aimed at computing
gravitational wave emission, in particular to the energy and angular momentum carried away by
the radiation.

It is, therefore, to be expected that the evolution of astrophysical systems under the influence of
strong tidal gravitational fields will be associated with the emission of gravitational waves. Conse-
quently, these systems are of interest both to a physicist, whose aim is to understand fundamental
interactions in nature, their inter-relationships and theories describing them, and to an astrophysi-
cist, who wants to dig deeper into the environs of dense or nonlinearly gravitating systems in
solving the mysteries associated with relativistic phenomena listed in Sections 6, 7 and 8. Indeed,
some of the gravitational wave antennas that are being built are capable of observing systems to
cosmological distances, and even to the edge of the universe. The new window, therefore, is also
of interest to cosmologists.

This is a living review of the prospects that lie ahead for gravitational antennas to test the
predictions of general relativity as a fundamental theory, for using relativistic gravitation as a
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means to understand highly energetic sources, for interpreting gravitational waves to uncover the
(electromagnetically) dark universe, and ultimately for employing networks of gravitational wave
detectors to observe the first fraction of a second of the evolution of the universe.

We begin in Section 2 with a brief review of the physical nature of gravitational waves, giving a
heuristic derivation of the formulas involved in the calculation of the gravitational wave observables
such as the amplitude, frequency and luminosity of gravitational waves. This is followed in Section 3
by a discussion of the astronomical sources of gravitational waves, their expected event rates,
amplitudes, waveforms and spectra. In Section 4 we then give a detailed description of the existing
and upcoming gravitational wave antennas and their sensitivity. Included in Section 4 are bar
and interferometric antennas covering both ground and space-based experiments. Section 4 also
compares the sensitivity of the antennas with the strengths of astronomical sources and expected
signal-to-noise ratios (SNRs). We then turn in Section 5 to data analysis, which is a central
component of gravitational wave astronomy, focusing on those aspects of analysis that are crucial
in gleaning physical, astrophysical and cosmological information from gravity wave observations.

Sections 7 – 9 treat in some detail how gravitational wave observations will aid in a better
understanding of nonlinear gravity and test some of its fundamental predictions. In Section 6 we
review the physics implications of gravitational wave observations, including new tests of general
relativity that can be performed via gravitational wave observations, how these observations may
help in formulating and gaining insight into the two-body problem in general relativity, and how
gravitational wave observations may help to probe the structure of the universe and the nature of
dark energy. In Section 7 we look at the astronomical information returned by gravitational wave
observations, and how these observations will affect our understanding of black holes, neutron
stars, supernovae, and other relativistic phenomena. Section 8 is devoted to the cosmological
implications of gravitational wave observations, including placing constraints on inflation, early
phase transitions associated with spontaneous symmetry breaking, and the large-scale structure of
the universe.

This review is by no means exhaustive. We plan to expand it to include other key topics in
gravitational wave astronomy with subsequent revisions.

Unless otherwise specified we shall use a system of units in which c = G = 1, which means
1M⊙ ≃ 5 × 10−6 s ≃ 1.5 km, 1 Mpc ≃ 1014 s. We shall assume a universe with cold dark-matter
density of ΩM = 0.3, dark energy of ΩΛ = 0.7, and a Hubble constant of H0 = 70 km s−1 Mpc−1.
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Physics, Astrophysics and Cosmology with Gravitational Waves 11

2 Gravitational Wave Observables

To benefit from gravitational wave observations we must first understand what are the attributes
of gravitational waves that we can observe. This section is devoted to a short discussion of the
nature of gravitational radiation.

2.1 Gravitational field vs gravitational waves

Gravitational waves are propagating oscillations of the gravitational field, just as light and radio
waves are propagating oscillations of the electromagnetic field. Whereas light and radio waves are
emitted by accelerated electrically-charged particles, gravitational waves are emitted by accelerated
masses. However, since there is only one sign of mass, gravitational waves never exist on their own:
they are never more than a small part of the overall external gravitational field of the emitter. One
may wonder, therefore, how it is possible to infer the presence of an astronomical body by the
gravitational waves that it emits, when it is clearly not possible to sense its much larger stationary
(essentially Newtonian) gravitational potential. There are, in fact, two reasons:

• In general relativity, the effects of both the stationary field and gravitational radiation are
described by the tidal forces they produce on free test masses. In other words, single geodesics
alone cannot detect gravity or gravitational radiation; we need at least a pair of geodesics.
While the stationary tidal force due to the Newtonian potential φ of a self-gravitating source
at a distance r falls off as ∇∇φ ∼ r−3, the tidal force due to the gravitational wave amplitude
h that it emits at wavelength λ decreases as ∇∇h ∼ r−1λ−2. Therefore, the stationary
coulomb gravitational potential is the dominant tidal force close to the gravitating body (in
the near zone, where r ≤ λ). However, in the far zone (r ≫ λ) the tidal effect of the waves
is much stronger.

• The stationary part of the tidal field is a DC effect, and simply adds to the stationary
tidal forces of all other objects in the universe. It is not possible to discriminate one source
from another. Gravitational waves carry time-dependent tidal forces, and so they can be
discriminated from the stationary field if one knows what kind of time dependence to look
for. Interferometers are ideal detectors in this respect because they sense only changes in the
position of an interference fringe, which makes them insensitive to the DC part of the tidal
field.

Because gravitational waves couple so weakly to our detectors, those astronomical sources that
we can detect must be extremely luminous in gravitational radiation. Even at the distance of
the Virgo cluster of galaxies, a detectable source could be as luminous as the full Moon, if only
for a millisecond! Indeed, while radio astronomers deal with flux levels of Jy, mJy and even
µJy, in the case of gravitational wave sources we encounter fluxes that are typically 1020 Jy or
larger. Gravitational wave astronomy therefore is biased toward looking for highly energetic, even
catastrophic, events.

Extracting useful physical, astrophysical and cosmological information from gravitational wave
observations is made possible by measuring a number of gravitational wave attributes that are
related to the properties of the source. In the rest of this section we discuss those attributes of
gravitational radiation that can be measured via gravitational wave observations. In the process we
will review the basic formulas used in computing the gravitational wave amplitude and luminosity
of a source. These will then be used in Section 3 to make an order-of-magnitude estimate of the
strength of astronomical sources of gravitational waves.
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2.2 Gravitational wave polarizations

Because of the equivalence principle, single isolated particles cannot be used to measure gravita-
tional waves: they fall freely in any gravitational field and experience no effects from the passage
of the wave. Instead, one must look for inhomogeneities in the gravitational field, which are the
tidal forces carried by the waves, and which can be measured only by comparing the positions or
interactions of two or more particles.

In general relativity, gravitational radiation is represented by a second rank, symmetric trace-
free tensor. In a general coordinate system, and in an arbitrary gauge (coordinate choice), this
tensor has ten independent components. However, as in the electromagnetic case, gravitational
radiation has only two independent states of polarization in Einstein’s theory: the plus polarization
and the cross polarization (the names being derived from the shape of the equivalent force fields
that they produce). In contrast to electromagnetic waves, the angle between the two polarization
states is π/4 rather than π/2. This is illustrated in Figure 1, where the response of a ring of free
particles in the (x, y) plane to plus-polarized and cross-polarized gravitational waves traveling in
the z-direction is shown. The effect of the waves is to cause a tidal deformation of the circular ring
into an elliptical ring with the same area. This tidal deformation caused by passing gravitational
waves is the basic principle behind the construction of gravitational wave antennas.

Figure 1: In Einstein’s theory, gravitational waves have two independent polarizations. The effect on
proper separations of particles in a circular ring in the (x, y)-plane due to a plus-polarized wave traveling
in the z-direction is shown in (a) and due to a cross-polarized wave is shown in (b). The ring continuously
gets deformed into one of the ellipses and back during the first half of a gravitational wave period and gets
deformed into the other ellipse and back during the next half.

The two independent polarizations of gravitational waves are denoted h+ and h×. These are the
two primary time-dependent observables of a gravitational wave. The polarization of gravitational
waves from a source, such as a binary system, depends on the orientation of the dynamics inside
the source relative to the observer. Therefore, measuring the polarization provides information
about, for example, the orientation of the binary system.

2.3 Direction to a source

Gravitational wave antennas are linearly-polarized quadrupolar detectors and do not have good
directional sensitivity. As a result we cannot deduce the direction to a source using a single
antenna. One normally needs simultaneous observation using three or more detectors so that the
source can be triangulated in the sky by measuring the time differences in signal arrival times
at various detectors in a network. Ground-based detectors have typical separation baselines of
L ∼ 3 × 106 m, so that at a wavelength of λ = 3 × 105 m = 1 ms (a frequency of 1 kHz) the
network has a resolution of δθ = λ/L = 0.1 rad. If the amplitude SNR is high, then one can
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localize the source by a factor of 1/SNR better than this.
For long-lived sources, however, a single antenna synthesizes many antennas by observing the

source at different points along its orbit around the sun. The baseline for such observations is 2 AU,
so that, for a source emitting radiation at 1 kHz, the resolution is as good as ∆θ = 10−6 rad, which
is smaller than an arcsecond.

For space-based detectors orbiting the sun, like LISA, the baseline is again 2 AU, but the
observing frequency is some five or six orders of magnitude lower, so the basic resolution is only of
order 1 radian. However, as we shall see later, some of the sources that a space-based detector will
observe have huge amplitude SNRs in the range of SNR ∼ 103 – 104, which improves the resolution
to arcminute accuracies in the best cases.

2.4 Amplitude of gravitational waves – the quadrupole approximation

The Einstein equations are too difficult to solve analytically in the generic case of a strongly gravi-
tating source to compute the luminosity and amplitude of gravitational waves from an astronomical
source. We will discuss numerical solutions later; the most powerful available analytic approach is
called the post-Newtonian approximation scheme. This approximation is suited to gravitationally-
bound systems, which constitute the majority of expected sources. In this scheme [79, 169], solu-
tions are expanded in the small parameter (v/c)2, where v is the typical dynamical speed inside the
system. Because of the virial theorem, the dimensionless Newtonian gravitational potential φ/c2

is of the same order, so that the expansion scheme links orders in the expanded metric with those
in the expanded source terms. The lowest-order post-Newtonian approximation for the emitted
radiation is the quadrupole formula, and it depends only on the density (ρ) and velocity fields
of the Newtonian system. If we define the spatial tensor Qjk, the second moment of the mass
distribution, by the equation

Qjk =

∫

ρxjxk d3x, (1)

then the amplitude of the emitted gravitational wave is, at lowest order, the three-tensor

hjk =
2

r

d2Qjk

dt2
. (2)

This is to be interpreted as a linearized gravitational wave in the distant almost-flat geometry far
from the source, in a coordinate system (gauge) called the Lorentz gauge.

2.4.1 Wave amplitudes and polarization in TT-gauge

A useful specialization of the Lorentz gauge is the TT-gauge, which is a comoving coordinate
system: free particles remain at constant coordinate locations, even as their proper separations
change. To get the TT-amplitude of a wave traveling outwards from its source, project the tensor
in Equation (2) perpendicular to its direction of travel and remove the trace of the projected
tensor. The result of doing this to a symmetric tensor is to produce, in the transverse plane, a
two-dimensional matrix with only two independent elements:

hab =

(

h+ h×
h× −h+

)

. (3)

This is the definition of the wave amplitudes h+ and h× that are illustrated in Figure 1. These
amplitudes are referred to as the coordinates chosen for that plane. If the coordinate unit basis
vectors in this plane are êx and êy, then we can define the basis tensors

e+ = êx ⊗ êx − êy ⊗ êy, (4)

e× = êx ⊗ êy + êy ⊗ êx. (5)
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In terms of these, the TT-gravitational wave tensor can be written as

h = h+e+ + h×e×. (6)

If the coordinates in the transverse plane are rotated by an angle ψ, then one obtains new
amplitudes h′+ and h′× given by

h′+ = cos 2ψ h+ + sin 2ψ h×, (7)

h′× = − sin 2ψ h+ + cos 2ψ h×. (8)

This shows the quadrupolar nature of the polarizations, and is consistent with our remark in
association with Figure 1 that a rotation of π/4 changes one polarization into the other.

It should be clear from the TT projection operation that the emitted radiation is not isotropic:
it will be stronger in some directions than in others1. It should also be clear from this that
spherically-symmetric motions do not emit any gravitational radiation: when the trace is removed,
nothing remains.

2.4.2 Simple estimates

A typical component of d2Qjk/dt
2 will (from Equation (1)) have magnitude (Mv2)nonsph, where

(Mv2)nonsph is twice the nonspherical part of the kinetic energy inside the source. So a bound on
any component of Equation (2) is

h .
2(Mv2)nonsph

r
. (9)

It is interesting to observe that the ratio ǫ of the wave amplitude to the Newtonian potential φext

of its source at the observer’s distance r is simply bounded by

h/φext < 2v2
nonsph,

and this bound is attained if the entire mass of the source is involved in the nonspherical motions,
so that (Mv2)nonsph ∼Mv2

nonsph. By the virial theorem for self-gravitating bodies

v2
nonsph ≤ φint, (10)

where φint is the maximum value of the Newtonian gravitational potential inside the system. This
provides a convenient bound in practice [328]:

h . 2φintφext. (11)

The bound is attained if the system is highly nonspherical. An equal-mass star binary system is a
good example of a system that attains this bound.

For a neutron star source, one has φint ∼ 0.2. If the star is in the Virgo cluster (r ∼ 18 Mpc)
and has a mass of 1.4M⊙, and if it is formed in a highly-nonspherical gravitational collapse, then
the upper limit on the amplitude of the radiation from such an event is 1.5 × 10−21. This is a
simple way to get the number that has been the goal of detector development for decades, to make
detectors that can observe waves at or below an amplitude of about 10−21.

1In the case of an inspiraling binary, the root mean square of the two polarization amplitudes in a direction
orthogonal to the orbital plane will be a factor 2

√
2 larger than in the plane.
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2.5 Frequency of gravitational waves

The signals for which the best waveform predictions are available have well-defined frequencies. In
some cases the frequency is dominated by an existing motion, such as the spin of a pulsar. But
in most cases the frequency will be related to the natural frequency for a self-gravitating body,
defined as

ω0 =
√

πGρ̄, or f0 = ω0/2π =
√

Gρ̄/4π, (12)

where ρ̄ is the mean density of mass-energy in the source. This is of the same order as the
binary orbital frequency and the fundamental pulsation frequency of the body. Even though this
is a Newtonian formula, it provides a remarkably good order-of-magnitude prediction of natural
frequencies, even for highly relativistic systems such as black holes.

The frequency of the emitted gravitational waves need not be the natural frequency, of course,
even if the mechanism is an oscillation with that frequency. In many cases, such as binary systems,
the radiation comes out at twice the oscillation frequency. But since, at this point, we are not
trying to be more accurate than a few factors, we will ignore this distinction here. In later sections,
with specific source models, we will get the factors right.

The mean density and hence the frequency are determined by the size R and mass M of
the source, taking ρ̄ = 3M/4πR3. For a neutron star of mass 1.4M⊙ and radius 10 km, the
natural frequency is f0 = 1.9 kHz. For a black hole of mass 10M⊙ and radius 2M = 30 km, it
is f0 = 1 kHz. And for a large black hole of mass 2.5 × 106M⊙, such as the one at the center
of our galaxy, this goes down in inverse proportion to the mass to f0 = 4 mHz. In general, the
characteristic frequency of the radiation of a compact object of mass M and radius R is

f0 =
1

4π

(

3M

R3

)1/2

≃ 1 kHz

(

10M⊙

M

)

. (13)

Figure 2 shows the mass-radius diagram for likely sources of gravitational waves. Three lines
of constant natural frequency are plotted: f0 = 104 Hz, f0 = 1 Hz, and f0 = 10−4 Hz. These
are interesting frequencies from the point of view of observing techniques: gravitational waves
between 1 and 104 Hz are in principle accessible to ground-based detectors, while lower frequencies
are observable only from space. Also shown is the line marking the black-hole boundary. This has
the equation R = 2M . There are no objects below this line, because they would be smaller than
the horizon size for their mass. This line cuts through the ground-based frequency band in such a
way as to restrict ground-based instruments to looking at stellar-mass objects. No system with a
mass above about 104M⊙ can produce quadrupole radiation in the ground-based frequency band.

A number of typical relativistic objects are placed in the diagram: a neutron star, a pair of
neutron stars that spiral together as they orbit, some black holes. Two other interesting lines
are drawn. The lower (dashed) line is the 1-year coalescence line, where the orbital shrinking
timescale due to gravitational radiation backreaction (cf. Equation (28)) is less than one year. The
upper (solid) line is the 1-year chirp line: if a binary lies below this line, then its orbit will shrink
enough to make its orbital frequency increase by a measurable amount in one year. (In a one-year
observation one can, in principle, measure changes in frequency of 1 yr−1, or 3 × 10−8 Hz.)

It is clear from the Figure that any binary system that is observed from the ground will coa-
lesce within an observing time of one year. Since pulsar binary statistics suggest that neutron-
star–binary coalescences happen less often than once every 105 years in our galaxy, ground-based
detectors must be able to register these events in a volume of space containing at least 106 galaxies
in order to have a hope of seeing occasional coalescences. That corresponds to a volume of radius
roughly 100 Mpc. For comparison, first-generation ground-based interferometric detectors have a
reach of around 20 Mpc for such binaries, while advanced interferometers should extend that to
about 200 Mpc.
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Figure 2: Mass-radius plot for gravitational wave sources. The horizontal axis is the total mass of a
radiating system, and the vertical axis is its size. Typical values from various sources for ground-based and
space-based detectors are shown. Lines give order-of-magnitude constraints and relations. Characteristic
frequencies are estimated from f ∼ (Gρ/4π)1/2. The black-hole and binary lines are described in the text.

2.6 Luminosity in gravitational waves

The general formula for the local stress-energy of a gravitational wave field propagating through
flat spacetime, using the TT-gauge, is given by the Isaacson expression [259, 332]

Tαβ =
1

32π

〈

hTT
jk,αh

TT jk
,β

〉

, (14)

where the angle brackets denote averages over regions of the size of a wavelength and times of the
length of a period of the wave. The energy flux of a wave in the xi direction is the T 0i component.

The gravitational wave luminosity in the quadrupole approximation is obtained by integrating
the energy flux from Equation (14) over a distant sphere. When one correctly takes into account
the projection factors mentioned after Equation (2), one obtains [259]

Lgw =
1

5





∑

j,k

...

Qjk

...

Qjk − 1

3

...

Q
2



 , (15)

where Q is the trace of the matrix Qjk. This equation can be used to estimate the backreaction
effect on a system that emits gravitational radiation.

Notice that the expression for Lgw is dimensionless when c = G = 1. It can be converted to
normal luminosity units by multiplying by the scale factor

L0 = c5/G = 3.6 × 1052 W. (16)

This is an enormous luminosity. By comparison, the luminosity of the sun is only 3.8 × 1026 W,
and that of a typical galaxy would be 1037 W. All the galaxies in the visible universe emit, in
visible light, on the order of 1049 W. We will see that gravitational wave systems always emit at
a fraction of L0, but that the gravitational wave luminosity can come close to L0 and can greatly
exceed typical electromagnetic luminosities. Close binary systems normally radiate much more
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energy in gravitational waves than in light. Black hole mergers can, during their peak few cycles,
compete in luminosity with the steady luminosity of the entire universe!

Combining Equations (2) and (15) one can derive a simple expression for the apparent lu-
minosity of radiation F , at great distances from the source, in terms of the gravitational wave
amplitude [332]:

F ∼ |ḣ|2
16π

. (17)

The above relation can be used to make an order-of-magnitude estimate of the gravitational wave
amplitude from a knowledge of the rate at which energy is emitted by a source in the form of
gravitational waves. If a source at a distance r radiates away energy E in a time T , predominantly
at a frequency f , then writing ḣ = 2πfh and noting that F ∼ E/(4πr2T ), the amplitude of
gravitational waves is

h ∼ 1

πfr

√

E

T
. (18)

When the time development of a signal is known, one can filter the detector output through a copy
of the expected signal (see Section 5 on matched filtering). This leads to an enhancement in the
SNR, as compared to its narrow-band value, by roughly the square root of the number of cycles
the signal spends in the detector band. It is useful, therefore, to define an effective amplitude of a
signal, which is a better measure of its detectability than its raw amplitude:

heff ≡
√
nh. (19)

Now, a signal lasting for a time T around a frequency f would produce n ≃ fT cycles. Using this
we can eliminate T from Equation (18) and get the effective amplitude of the signal in terms of
the energy, the emitted frequency and the distance to the source:

heff ∼ 1

πr

√

E

f
. (20)

Notice that this depends on the energy only through the total fluence, or time-integrated flux
E/4πr2 of the wave. As in many other branches of astronomy, the detectability of a source is
ultimately a function of its apparent luminosity and the observing time. However, one should not
ignore the dependence on frequency in this formula. Two sources with the same fluence are not
equally easy to detect if they are at different frequencies: higher frequency signals have smaller
amplitudes.
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3 Sources of Gravitational Waves

3.1 Man-made sources

One source can unfortunately be ruled out as undetectable: man-made gravitational radiation.
Imagine creating a wave generator with the following extreme properties. It consists of two masses
of 103 kg each (a small car) at opposite ends of a beam 10 m long. At its center the beam pivots
about an axis. This centrifuge rotates 10 times per second. All the velocity is nonspherical, so
v2
nonsph in Equation (9) is about 105 m2 s−2. The frequency of the waves will actually be 20 Hz,

since the mass distribution of the system is periodic in time with a period of half the rotation
period. The wavelength of the waves will, therefore, be 1.5 × 107 m, similar to the diameter of
the earth. In order to detect gravitational waves, not near-zone Newtonian gravity, the detector
must be at least one wavelength from the source, say diametrically opposite the centrifuge on the
Earth. Then the amplitude h can be deduced from Equation (9): h ∼ 5 × 10−43. This is far too
small to contemplate detecting! The story changes, fortunately, when we consider astrophysical
sources of gravitational waves, where nature arranges for masses that are 1027 times larger than
our centrifuge to move at speeds close to the speed of light!

Until observations of gravitational waves are successfully made, one can only make intelligent
guesses about most of the sources that will be seen. There are many that could be strong enough to
be seen by the early detectors: star binaries, supernova explosions, neutron stars, the early universe.
In this section, we make rough luminosity estimates using the quadrupole formula and other
approximations, which are usually accurate to within factors of order two, and, very importantly,
they show how key observables scale with the properties of the systems. Where appropriate we also
make use of predictions from the much more accurate modelling that is available for some sources,
such as binary systems and black hole mergers. The detectability depends, of course, not only on
the intrinsic luminosity of the source, but on how far away it is. Often the biggest uncertainties in
making predictions are the spatial density and event rate of any particular class of sources. This is
not surprising, since our information at present comes from electromagnetic observations, and as
our earlier remarks about the differences between the mechanisms of emission of gravitational and
electromagnetic radiation make clear, electromagnetic observations may not strongly constrain the
source population.

3.2 Gravitational wave bursts from gravitational collapse

Neutron stars and black holes are formed from the gravitational collapse of a highly evolved star
or the core collapse of an accreting white dwarf. In either case, if the collapse is nonspherical,
perhaps induced by strong rotation, then gravitational waves could carry away some of the binding
energy and angular momentum depending on the geometry of the collapse. Collapse events are
thought to produce supernovae of various types, and increasingly there is evidence that they also
produce most of the observed gamma-ray bursts [191] in hypernovae and collapsars [397, 249].
Supernovae of Type II are believed to occur at a rate of between 0.1 and 0.01 per year in a milky-
way equivalent galaxy (MWEG); thus, within the Virgo supercluster, we might expect an event
rate of about 30 per year. Hypernova events are considerably rarer and might only contribute
observable gravitational-wave events in current and near-future detectors if they involve so much
rotation that strong non-axisymmetric instabilities are triggered.

Simulating gravitational collapse is a very active area of numerical astrophysics, and most simu-
lations also predict the energy and spectral characteristics of the emitted gravitational waves [167].
However, it is still beyond the capabilities of computers to simulate a gravitational collapse event
with all the physics that might be necessary to give reliable predictions: three-dimensional hy-
drodynamics, neutrino transport, realistic nuclear physics, magnetic fields, rotation. In fact, it is
still by no means clear why Type II supernovae explode at all: simulations typically have great
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difficulty reversing the inflow and producing an explosion with the observed light-curves and en-
ergetics. It may be that the answer lies in some of the physics that has to be oversimplified in
order to be used in current simulations, or in some neutrino physics that we do not yet know, or
in some unexplored hydrodynamic mechanism [276]. In a typical supernova, simulations suggest
that gravitational waves might extract between about 10−7 and 10−5 of the total available mass-
energy [264, 147, 148], and the waves could come off in a burst whose frequency might lie in the
range of ∼ 200 – 1000 Hz.

We can use Equation (18) to make a rough estimate of the amplitude, if the emitted energy and
timescale are known. Using representative values for a supernova in our galaxy, lying at 10 kpc,
emitting the energy equivalent of 10−7M⊙ at a frequency of 1 kHz, and lasting for 1 ms, the
received amplitude would be

h ∼ 6 × 10−21

(

E

10−7M⊙

)1/2(
1 ms

T

)1/2(
1 kHz

f

)(

10 kpc

r

)

. (21)

The upper bound in Equation (11) would give the same amplitude for a source 60 times further
away, which reflects the fact that simulations find it difficult to put significant energy into gravi-
tational waves. This amplitude is large enough for current ground-based detectors to observe with
a reasonably high confidence, but of course the event rate within 10 kpc is expected to be far too
small to make an early detection likely.

3.3 Gravitational wave pulsars

Some likely gravitational wave sources behave like the centrifuge example we used in the first
paragraph of this section, only on a grander scale. Suppose a neutron star of radius R and mass M
spins with a frequency f and has an irregularity, a deformation of its otherwise axially symmetric
shape. We idealize this as a “bump” of mass m on its surface, although of course it will really be
a distribution of mass leading to an asymmetrical quadrupole tensor. The moment of inertia of
the bump will be mR2, and it is conventional to parameterize the bump in terms of the fractional
asymmetry it creates in the moment of inertia tensor itself. If we idealize the star as having
uniform density, then the spherical moment of inertia is 2MR2/5, and so the bump has fractional
asymmetry

ǫ =
5

2

m

M
, m = 0.4ǫM. (22)

The bump will emit gravitational radiation at frequency 2f because the star spins about its net
center of mass, so it effectively has mass excesses on both sides of the star. The nonspherical
velocity will be just vnonsph = 2πRf . The radiation amplitude will be, from Equation (9),

hbump ∼ (4/5)(2πRf)2ǫM/r, (23)

and the luminosity, from Equation (15) (assuming that roughly four comparable components of
Qjk contribute to the sum),

Lbump ∼ (16/125)(2πf)6ǫ2M2R4.

The radiated energy would presumably come from the rotational energy of the star Mv2/5. This
would lead to a spindown of the star on a timescale

tspindown ∼ 1

5
Mv2/Lbump ∼ 25

32π
ǫ−2f−1

(

M

R

)−1

v−3. (24)

It is believed that neutron star crusts are not strong enough to support fractional asymmetries
larger than about ǫ ∼ 10−6 [370], and realistic asymmetries may be much smaller.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

http://www.livingreviews.org/lrr-2009-2


20 B.S. Sathyaprakash and Bernard F. Schutz

From these considerations one can estimate the likelihood that the observed spindown timescales
of pulsars are due to gravitational radiation. In most cases, it seems that gravitational wave losses
could account for a substantial amount of the spindown: the required asymmetries are much
smaller than 10−4, often smaller than 10−7. But an interesting exception is the Crab pulsar,
PSR J0534+2200, whose young age and consequently short spindown time (measured to be 8.0 ×
1010 s, about 2500 yr) would require an exceptionally large asymmetry. If we take the neutron
star’s radius to be 10 km, so that M/R ∼ 0.21 and the speed of any irregularity is v/c ∼ 6.2×10−3,
then Equation (24) would require an asymmetry of ǫ ∼ 1.4 × 10−3. Of course, we have made a
lot of approximations to get here, only keeping our estimates of amplitudes and energies correct
to within factors of two, but a more careful calculation reduces this only by a factor of two to
ǫ ∼ 7 × 10−4 [12]. What makes this interesting is the fact that an asymmetry this large would
produce radiation detectable by first-generation interferometers. Conversely, an upper limit from
first-generation interferometers would provide direct observational limits on the asymmetry and
on the fraction of energy lost by the Crab pulsar to gravitational waves.

From Equation (23) the Crab pulsar would, if its spindown is dominated by gravitational wave
losses, produce an amplitude at the Earth of h ∼ 1.5 × 10−24, if its distance is 2 kpc. Is this
detectable when present instruments are only capable of seeing millisecond bursts of radiation at
levels of 10−21? The answer is yes, if the observation time is long enough. Indeed, the latest
LIGO observations have not detected any gravitational waves from the Crab pulsar, which has
been used to set an upper limit on the asymmetry in its mass distribution [12]. The limit depends
on the model assumed for the pulsar. If one assumes that gravitational waves are produced at
exactly twice the pulsar spin frequency and uses the inferred values of the pulsar orientation and
polarization angle, then for a canonical value of the moment-of-inertia I = 1038 kg m2, one gets an
upper limit on the ellipticity of ǫ ≤ 1.8× 10−4, assuming the pulsar is at 2 kpc. This is a factor of
4.2 below the spindown limit [12]. If, however, one assumes that gravitational waves are emitted
at a frequency close, but not exactly equal, to twice the spin frequency and one uses a uniform
prior for the orientation and polarization angle, then one gets ǫ ≤ 9 × 10−4, which is 0.8 of the
limit derived from the spin-down rate.

Indeed, even signals weaker than the amplitude determined by the Crab spindown rate will be
observable by present detectors, and these may be coming from a larger variety of neutron stars,
in particular low-mass X-ray binary systems (LMXBs). The neutron stars in them are accreting
mass and angular momentum, so they should be spinning up. Observations suggest that most
neutron stars are spinning at speeds between about 300 and 600 Hz, far below their maximum,
which is greater than 1000 Hz. The absence of faster stars suggests that something stops them
from spinning up beyond this range. Bildsten suggested [77] that the limiting mechanism may
be the re-radiation of the accreted angular momentum in gravitational waves, possibly due to a
quadrupole moment created by asymmetrical heating induced by the accreted matter. Another
possible mechanism [285] is that a “bump” of the kind we have treated is formed by accreting
matter channeled onto the surface by the star’s magnetic field. It is also possible that accretion
drives an instability in the star that leads to steady emission [308, 270]. In either case, the stars
could turn out to be long-lived sources of gravitational waves. This idea, which is a variant of one
proposed long ago by Wagoner [383], is still speculative, but the numbers make a plausible case.
We discuss it in more detail in Section 7.3.5.
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3.4 Radiation from a binary star system

3.4.1 Radiation from a binary system and its backreaction

A binary star system can also be treated as a “centrifuge”. Two stars of the same mass m in a
circular orbit of radius R have all their mass in nonspherical motion, so that

(Mv2)nonsph = M(ΩR)2 =
M2

R
,

where Ω is the orbital angular velocity. The gravitational wave amplitude can then be written

hbinary ∼ 2
M

r

M

R
. (25)

Since the internal radius R of the orbit is not an observable, it is sometimes convenient to replace
R by the orbital angular frequency Ω using the above orbit equation, giving

hbinary ∼ 2

r
M5/3Ω2/3. (26)

The gravitational wave luminosity of such a system is, by a calculation analogous to that for
bumps on neutron stars (assuming that four components of Qij to be significant),

Lbinary ∼ 4

5

(

M

R

)5

, (27)

in units given by the fundamental luminosity L0 in Equation (16). This shows that self-gravitating
systems always emit at a fraction of L0, since M/R is always smaller than 1, but it can approach
L0 for highly-relativistic systems where M/R ∼ 1.

The radiation of energy by the orbital motion causes the orbit to shrink. The shrinking will
make any observed gravitational waves increase in frequency with time. This is called a chirp. The
timescale2 for this in a binary system with equal masses is

tchirp =
Mv2

2
/Lbinary ∼ 5M

8

(

M

R

)−4

. (28)

As the binary evolves, the frequency and amplitude of the wave grow and this drives the binary
to evolve even more rapidly. The signal’s frequency, however, will not increase indefinitely; the
slow inspiral phase ends either when the stars begin to interact and merge or (if they are very
compact) when the distance between the stars is roughly at the last stable orbit (LSO) R = 6M ,
which corresponds to a gravitational wave frequency of

fLSO ∼ 220

(

20M⊙

M

)

Hz, (29)

where we have normalized this to a binary with M = 20M⊙. This is the last stable orbit (LSO)
frequency.

A compact-object binary that coalesces after passing through the last stable orbit is a powerful
source of gravitational waves, with a luminosity that approaches the limiting luminosity L0. This
is called a coalescing binary in gravitational wave searches. Since a typical search might last on
the order of one year, a coalescing binary can be defined as a system that has a chirp time smaller

2In Sections 5.1 we will use parameters called chirp times, instead of the masses, to characterize a binary. The
timescale defined here is closely related to the chirp times.
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than one year. In Figure 2 the coalescence line is shown as a straight line with slope 3/4 (set tchirp

to a constant in Equation (28)). Binary systems below this line have a chirp time smaller than one
year. It is evident from the figure that all binary systems observable by ground-based detectors
will coalesce in less than a year.

As mentioned for gravitational wave pulsars, the raw amplitude of the radiation from a long-
lived system is not by itself a good guide to its detectability, if the waveform can be predicted.
Data analysis techniques like matched filtering are able to eliminate most of the detector noise
and allow the recognition of weaker signals. The improvement in amplitude sensitivity is roughly
proportional to the square root of the number of cycles of the waveform that one observes. For
neutron stars that are observed from a frequency of 10 Hz until they coalesce, there could be on
the order of 104 cycles, meaning that the sensitivity of a second-generation interferometric detector
would effectively be 100 times better than its broadband (prefiltering) sensitivity. Such detectors
could see typical coalescences at ∼ 200 Mpc. The event rate for second-generation detectors is
estimated at around 40 events per year, with rather large error bars [101, 211, 242].

3.4.2 Chirping binaries as standard sirens

When we consider real binaries we must do the calculation for systems that have unequal masses.
Still assuming for the moment that the binary orbit is circular, the quadrupole amplitude turns
out to be

hbinary ∼ 1

r
M5/3Ω2/3, (30)

where we define the chirp mass M as

M = µ3/5M2/5 = ν3/5M, ν =
µ

M
, (31)

with µ the reduced mass, M the total mass and ν the symmetric mass ratio. We have left out of
Equation (30) a factor of order one that depends on the angle from which the binary system is
viewed. The two polarization amplitudes can be found in Equation (132).

Remarkably, the other observable, namely the shrinking of the orbit as measured by the rate
of change of the orbital frequency Pb also depends on the masses just through M [290]:

Ṗb = −192π

5

(

2πM
Pb

)5/3

. (32)

In this case, the chirp time is

tchirp =
5M

96

1

ν

(

M

R

)−4

. (33)

This is just the equal-mass chirp time of Equation (28) scaled inversely with the symmetric mass
ratio ν = m1m2/M

2. From this equation it is clear that systems with large mass ratios between
the components can spend a long time in highly relativistic orbits, whereas equal-mass binaries
can be expected to merge after only a few orbits in the highly relativistic regime.

If one observes Pb and Ṗb, one can infer M from Equation (32). Then, from the observed
amplitude in Equation (30), the only remaining unknown is the distance r to the source. Gravita-
tional wave observations of orbits that shrink because of gravitational energy losses can therefore
directly determine the distance to the source [329]. By analogy with the “standard candles” of
electromagnetic astronomy, these systems are now being called “standard sirens”. Although our
calculation here assumed an equal-mass circular system, the conclusion is robust: any binary, even
with ellipticity and extreme mass ratio, encodes its distance in its gravitational wave signal.

This is another way in which gravitational wave observations are complementary to electromag-
netic ones, providing information that is hard to obtain electromagnetically. One consequence is
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the possibility that observations of coalescing compact object binaries could allow one to measure
the Hubble constant [329] or other cosmological parameters. This will be particularly interesting
for the LISA project, whose observations of black hole binaries could contribute an independent
measurement of the acceleration of the universe [195, 131, 48].

Because chirping systems are so interesting we have also drawn, in Figure 2, a line where the
chirp time can be measured in one year. This means that the change in frequency due to the chirp
must be larger than the frequency resolution 1 yr−1. A little algebra shows that the condition for
the chirp to be resolved in an observation time T in a binary with period Pb is

Pbtchirp = T 2. (34)

Since Pb ∝ R3/2M−1/2, this condition leads to a line of slope 7/11 in the logarithmic plot in
Figure 2. The line drawn there corresponds to a resolution time T of one year. All binaries below
this line will chirp in a short enough time for their distances to be measured.

3.4.3 Binary pulsar tests of gravitational radiation theory

The most famous example of the effects of gravitational radiation on an orbiting system is the
Hulse–Taylor Binary Pulsar, PSR B1913+16. In this system, two neutron stars orbit in a close
eccentric orbit. The pulsar provides a regular clock that allows one to deduce, from post-Newtonian
effects, all the relevant orbital parameters and the masses of the stars. The key to the importance
of this binary system is that all of the important parameters of the system can be measured before
one takes account of the orbital shrinking due to gravitational radiation reaction. This is because a
number of post-Newtonian effects on the arrival time of pulses at the Earth, such as the precession
of the position of the periastron and the time-dependent gravitational redshift of the pulsar period
as it approaches and recedes from its companion, can be measured accurately, and they fully
determine the masses, the semi-major axis and the eccentricity of their orbit [394, 344].

Equation (28) for the chirp time predicts that this system would change its orbital period
Pb = 7.75 hrs on the timescale (taking M = 1.4M⊙ and R = 106 km)

tchirp = Pb/Ṗb ∼ 1.9 × 1018 s.

From this one can infer that Ṗb ∼ 1.5×10−14. But this has to be corrected for our oversimplification
of the orbit as circular: an eccentric orbit evolves much faster because, during the phase of closest
approach, the velocities are much higher, and the emitted luminosity is a very strong function
of the velocity. Using equations first computed by Peters and Mathews [290], for the actual
eccentricity of 0.62, one finds (see Equation (109) below) ṖT = −(2.40242 ± 0.00002) × 10−12.
Observations [394, 388] currently give ṖO = −(2.4184 ± 0.0009) × 10−12. There is a significant
discrepancy between these, but it can be removed by realizing that the binary system is accelerating
toward the center of our galaxy, which produces a small period change. Taking this into account
gives a corrected prediction of −(2.4056 ± 0.0051) × 10−12, and this agrees with the observation
within the uncertainties [394, 355]. This is the most sensitive test that we have of the correctness
of Einstein’s equations with respect to gravitational radiation, and it leaves little room for doubt
in the validity of the quadrupole formula for other systems that may generate detectable radiation.

A number of other binary systems are now known in which such tests are possible [344]. The
most important of the other systems is the “double pulsar” in which both neutron stars are seen
as pulsars [246]. This system will soon overtake the Hulse–Taylor binary as the most accurate test
of gravitational radiation.

3.4.4 White-dwarf binaries

Binary systems at lower frequencies are much more abundant than coalescing binaries, and they
have much longer lifetimes. LISA will look for close white-dwarf binaries in our galaxy, and will
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probably see thousands of them. White dwarfs are not as compact as black holes or neutron stars.
Although their masses can be similar to that of a neutron star their sizes are much larger, typically
3,000 km in radius. As a result, white-dwarf binaries never reach the last stable orbit, which would
occur at roughly 1.5 kHz for these masses. We will discuss the implications of multi-messenger
astronomy for white-dwarf binaries in Section 7.4.

The maximum amplitude of the radiation from a white-dwarf binary will be several orders
of magnitude smaller than that of a neutron star or black hole binary at the same distance but
close to coalescence. However, a binary system with a short period is long lived, so the effective
amplitude (after matched filtering) improves as the square root of the observing time. Besides
that, these sources are nearer: there are many thousands of such systems in our galaxy radiating
in the LISA frequency window above about 1 mHz, and LISA should be able to see all of them.
Below 1 mHz there are even more sources, so many that LISA will not resolve them individually,
but will see them blended together in a stochastic background of radiation, as shown in Figure 5.

3.4.5 Supermassive black hole binaries

Observations indicate that the center of every galaxy probably hosts a black hole whose mass is
in the range of 106 – 109M⊙ [305], with the black holes mass correlating well with the mass of the
galactic bulge. A black hole whose mass is in the above range is called a supermassive black hole
(SMBH). There is now abundant observational evidence that galaxies often collide and merge, and
there are good reasons to believe that when that happens, friction between the SMBHs and the
stars and gas of the irregular merged galaxy will lead the SMBHs to spiral into a common nucleus
and (on a timescale of some 108 yr) even get close enough to be driven into complete orbital decay
by gravitational radiation reaction. In many systems this should lead to a black hole merger within
a Hubble time [221]. For a binary with two nonspinning M = 106M⊙ black holes, the frequency
of emitted gravitational waves at the last stable orbit is, from Equation (29), fLSO = 4 mHz;
during and after the merger the frequency rises from 4 mHz to the quasi-normal-mode frequency
of 24 mHz (if the spin of the final black hole is negligible). (Naturally, all these frequencies simply
scale inversely with the mass for other mass ranges.) This is in the frequency range of LISA, and
observing these mergers is one of the central purposes of the mission.

SMBH mergers are so spectacularly strong that they will be visible in LISA’s data stream
even before applying any matched filter, although good models of the inspiral and particularly the
merger radiation will be needed to extract source parameters. Because the masses of such black
holes are so large, LISA can see essentially any merger that happens in its frequency band anywhere
in the universe, even out to extremely high redshifts. It can thereby address astrophysical questions
about the origin, growth and population of SMBHs. The recent discovery of an SMBH binary [221]
and the association of X-shaped radio lobes with the merger of SMBH binaries [254] has further
raised the optimism concerning SMBH merger rates, as has the suggestion that an SMBH has
been observed to have been expelled from the center of its galaxy, an event that could only have
happened as a result of a merger between two SMBHs [222]. The rate at which galaxies merge is
about 1 yr−1 out to a red-shift of z = 5 [185], and LISA’s detection rate for SMBH mergers might
be roughly the same.

Modelling of the merger of two black holes requires numerical relativity, and the accuracy and
reliability of numerical simulations is now becoming good enough that they will soon become an
integral part of gravitational wave searches.

3.4.6 Extreme and intermediate mass-ratio inspiral sources

The SMBH environment of our own galaxy is known to contain a large number of compact objects
and white dwarfs. Near the central SMBH there is a disproportionately large number of stellar-
mass black holes, which have sunk there through random gravitational encounters with the normal
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stellar population (dynamical friction). Three body interaction will occasionally drive one of these
compact objects into a capture orbit of the central SMBH. The compact object will sometimes be
captured [305, 338, 337] into a highly eccentric trajectory (e > 0.99) with the periastron close to
the last stable orbit of the SMBH. Since the mass of the captured object will be about 1 – 100M⊙,
while the SMBH will have a far greater mass, we essentially have a “test mass” falling in the
geometry of a Kerr black hole. By Equation (33) we would expect that the small body would
spend many orbits in the relativistic regime near the horizon of the large black hole: a 10M⊙

black hole falling into a 106M⊙ black hole would require on the order of 105 orbits. The emitted
gravitational radiation [317, 179, 178, 67, 171, 57] would consist of a very long wave train that
carries information about the nearly geodesic trajectory of the test body, thereby providing a very
clean probe to survey the spacetime geometry of the central object (which could be a Kerr black
hole or some other compact object) and test whether or not this geometry is as predicted by general
relativity [318, 198, 177, 176, 68].

This kind of event happens occasionally to every SMBH that lives in the center of a galaxy.
Indeed, since the SNR from matched filtering builds up in proportion to the square root of the
observation time tchirp ∝ ν−1 = (µ/M)−1 [cf. Equation (33)] and the inherent amplitude of the
radiation is linear in ν [cf. Equation (30)], the SNR varies with the symmetric mass ratio as

√
ν

and typical SNR will be about ten to a thousand times smaller than an SMBH binary at the same
distance. LISA will, therefore, be able to see such sources only to much smaller distances, say
between 1 to 10 Gpc depending on the mass ratio. For events at such distances LISA’s SNR after
matched filtering could be in the range 10 – 100, but matched filtering will be very difficult because
of the complexity of the orbit, especially of its evolution due to radiation effects. However, this
volume of space contains a large number of galaxies, and the event rate is expected to be several
tens to hundreds per year [67]. There will be a background from more distant sources that might
in the end set the limit on how much sensitivity LISA has to these events.

Due to relativistic frame dragging, for each passage of the apastron the test body could ex-
ecute several nearly circular orbits at its periastron. Therefore, long periods of low-frequency,
small-amplitude radiation will be followed by several cycles of high-frequency, large-amplitude ra-
diation [317, 179, 178, 67, 171, 57]. The apastron slowly shrinks, while the periastron remains more
or less at the same location, until the final plunge of the compact object before merger. Moreover,
if the central black hole has a large spin then spin-orbit coupling leads to precession of the orbital
plane thereby changing the polarization of the wave as seen by LISA.

Thus, there is a lot of structure in the waveforms owing to a number of different physical effects:
contribution from higher-order multipoles due to an eccentric orbit, precession of the orbital plane,
precession of the periastron, etc., and gravitational radiation backreaction plays a pivotal role
in the dynamics of these systems. If one looks at the time-frequency map of such a signal one
notices that the signal power is greatly smeared across the map [320], as compared to that of a
sharp chirp from a nonspinning black-hole binary. For this reason, this spin modulated chirp is
sometimes referred to as a smirch [322]. More commonly, such sources are called extreme mass
ratio inspirals (EMRIs) and represent systems whose mass ratio is in the range of ∼ 10−3 – 10−6.
Inspirals of systems with their mass ratio in the range ∼ 10−2 – 10−3 are termed intermediate mass
ratio inspirals or IMRIs. These latter systems correspond to the inspiral of intermediate mass
black holes of mass ∼ 103 – 104M⊙ and might constitute a prominent source in LISA provided the
central SMBH grew in mass as a result of a number of mergers of small black holes [30, 31, 32].

While black hole perturbation theory with a careful treatment of radiation reaction is necessary
for the description of EMRIs, IMRIs may be amenable to a description using a hybrid scheme of
post-Newtonian approximations and perturbation theory. This is an area that requires more study.
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3.5 Quasi-normal modes of a black hole

In 1970, Vishveshwara [381] discussed a gedanken experiment, similar in philosophy to Ruther-
ford’s (real) experiment with the atom. In Vishveshwara’s experiment, he scattered gravitational
radiation off a black hole to explore its properties. With the aid of such a gedanken experiment,
he demonstrated for the first time that gravitational waves scattered off a black hole will have a
characteristic waveform, when the incident wave has frequencies beyond a certain value, depending
on the size of the black hole. It was soon realized that perturbed black holes have quasi-normal
modes (QNMs) of vibration and in the process emit gravitational radiation, whose amplitude, fre-
quency and damping time are characteristic of its mass and angular momentum [296, 220]. We will
discuss in Section 6.4 how observations of QNMs could be used in testing strong field predictions
of general relativity.

We can easily estimate the amplitude of gravitational waves emitted when a black hole forms at
a distance r from Earth as a result of the coalescence of compact objects in a binary. The effective
amplitude is given by Equation (20), which involves the energy E put into gravitational waves
and the frequency f at which the waves come off. By dimensional arguments E is proportional to
the total mass M of the resulting black hole. The efficiency at which the energy is converted into
radiation depends on the symmetric mass ratio ν of the merging objects. One does not know the
fraction of the total mass emitted nor the exact dependence on ν. Flanagan and Hughes [164] argue
that E ∼ 0.03(4ν)2M . The frequency f is inversely proportional to M ; indeed, for Schwarzschild
black holes f = (2πM)−1. Thus, the formula for the effective amplitude takes the form

heff ∼ 4ανM

πr
, (35)

where α is a number that depends on the (dimensionless) angular momentum a of the black hole
and has a value between 0.7 (for a = 0, Schwarzschild black hole) and 0.4 (for a = 1, maximally
spinning Kerr black hole). For stellar mass black holes at a distance of 200 Mpc the amplitude is:

heff ≃ 10−21
( ν

0.25

)

(

M

20M⊙

)(

r

200 Mpc

)−1

. (36)

For SMBHs, even at cosmological distances, the amplitude of quasinormal mode signals is pretty
large:

heff ≃ 3 × 10−17
( ν

0.25

)

(

M

2 × 106M⊙

)(

r

6.5 Gpc

)−1

. (37)

In the first case we have a pair of 10M⊙ black holes inspiraling and merging to form a single black
hole. In this case the waves come off at a frequency of around 500 Hz [cf. Equation (13)]. The
initial ground-based network of detectors might be able to pick these waves up by matched filtering,
especially when an inspiral event precedes the ringdown signal. A 100M⊙ black hole plunging into
a 106M⊙ black hole at a distance of 6.5 Gpc (z ≃ 1) gives out radiation at a frequency of about
15 mHz. Note that in the latter case the radiation is redshifted from 30 mHz to 15 mHz. Such
an event produces an amplitude just large enough to be detected by LISA. At the same distance,
a pair of 106M⊙ SMBHs spiral in and merge to produce a fantastic amplitude of 3 × 10−17, way
above the LISA background noise. In this case, the signals would be given off at about 7.5 mHz
and will be loud and clear to LISA. It will not only be possible to detect these events, but also to
accurately measure the masses and spins of the objects before and after merger and thereby test
the black hole no-hair theorem and confirm whether the result of the merger is indeed a black hole
or some other exotic object (e.g., a boson star or a naked singularity).
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3.6 Stochastic background

In addition to radiation from discrete sources, the universe should have a random gravitational
wave field that results from a superposition of countless discrete systems and also from funda-
mental processes, such as the Big Bang. Observing any of these backgrounds would bring useful
information, but the ultimate goal of detector development is the observation of the background
radiation from the Big Bang. It is expected to be very weak, but it will come to us unhindered
from as early as 10−30 s, and it could illuminate the nature of the laws of physics at energies far
higher than we can hope to reach in the laboratory.

It is usual to characterize the intensity of a random field of gravitational waves by its energy
density as a function of frequency. Since the energy density of a plane wave is the same as its flux
(when c = 1), we have from Equation (17)

ρgw =
π

4
f2h2.

But the wave field in this case is a random variable, so we must replace h2 by a statistical mean
square amplitude per unit frequency (Fourier transform power per unit frequency) called Sgw(f),
so that the energy density per unit frequency is proportional to f2Sgw(f). It is then conventional to
talk about the energy density per unit logarithm of the frequency, which means multiplying by f .
The result, after being careful about averaging over all directions of the waves and all independent
polarization components, is [27, 359]

dρgw

d ln f
= 4π2f3Sgw(f).

Finally, what is of most interest is the energy density as a fraction of the closure or critical
cosmological density, given by the Hubble constant H0 as ρc = 3H2

0/8π. The resulting ratio is
called Ωgw(f):

Ωgw(f) =
10π2

3H2
0

f3Sgw(f).

The only tight constraint on Ωgw from non–gravitational-wave astronomy is that it must be
smaller than 10−5, in order not to disturb the agreement between the standard Big Bang model
of nucleosynthesis (of helium and other light elements) and observation. If the universe contains
this much gravitational radiation today, then at the time of nucleosynthesis the (blue-shifted)
energy density of this radiation would have been comparable to that of the photons and the three
neutrino species. Although the radiation would not have participated in the nuclear reactions, its
extra energy density would have required that the expansion rate of the universe at that time be
significantly faster, in order to evolve into the universe we see today. In turn, this faster expansion
would have provided less time for the nuclear reactions to “freeze out”, altering the abundances
from the values that are observed today [281, 346]. First-generation interferometers should be able
to set direct limits on the cosmological background at around this level. Radiation in the lower-
frequency LISA band, from galactic and extra-galactic binaries, is expected to be much smaller
than this bound.

Random radiation is indistinguishable from instrumental noise in a single detector, at least
for short observing times. If the random field is produced by an anisotropically-distributed set of
astrophysical sources (the binaries in our galaxy, for example) then over a year, as the detector
changes its orientation, the noise from this background should rise and fall in a systematic way,
allowing it to be identified. But this is a rather crude way of detecting the radiation, and a better
way is to perform a cross-correlation between two detectors, if available.

In cross-correlation, which amounts to multiplying the outputs and integrating, the random
signal in one detector essentially acts as a template for the signal in the other detector. If they
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match, then there will be a stronger-than-expected correlation. Notice that they can only match
well if the wavelength of the gravitational waves is longer than the separation between the detectors:
otherwise time delays for waves reaching one detector before the other degrade the match. The
outcome is not like standard matched filtering, however, since the “filter” of the first detector has
as much noise superimposed on its template as the other detector. As a result, the amplitude
SNR of the correlated field grows only with observing time T as T 1/4, rather than the square root
growth that characterizes matched filtering [359].
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4 Gravitational Wave Detectors and Their Sensitivity

Detectors of gravitational waves generally divide into two classes: beam detectors and resonant
mass detectors. In beam detectors, gravitational waves interact with a beam of electromagnetic
radiation, which is monitored in some way to register the passage of the wave. In resonant mass
detectors, the gravitational wave transfers energy to a massive body, from which the resultant
oscillations are observed.

Both classes include a variety of systems. The principal beam detectors are the large ground-
based laser interferometers currently operating in several locations around the globe, such as the
LIGO system in the USA. The ESA–NASA LISA mission aims to put a laser interferometer into
space to detect milliHertz gravitational waves. But beam detectors do not need to involve inter-
ferometry: the radio beams transponded to interplanetary spacecraft can carry the signature of
a passing gravitational wave, and this method has been used to search for low-frequency gravita-
tional waves. And radio astronomers have for many years monitored the radio beams of distant
pulsars for evidence of gravitational waves; new radio instrumentation is turning this into a pow-
erful and promising method of looking for stochastic backgrounds and individual sources. And at
ultra-low frequencies, gravitational waves in the early universe may have left their imprint on the
polarization of the cosmic microwave background.

Resonant mass detectors were the first kind of detector built in the laboratory to detect grav-
itational waves: Joseph Weber [387] built two cylindrical aluminum bar detectors and attempted
to find correlated disturbances that might have been caused by a passing impulsive gravitational
wave. His claimed detections led to the construction of many other bar detectors of comparable
or better sensitivity, which never verified his claims. Some of those detectors were not developed
further, but others had their sensitivities improved by making them cryogenic, and today there are
two ultra-cryogenic detectors in operation (see Section 4.1).

In the following, we will examine the principal detection methods that hold promise today and
in the near future.

4.1 Principles of the operation of resonant mass detectors

A typical “bar” detector consists of a cylinder of aluminum with a length ℓ ∼ 3 m, a very nar-
row resonant frequency between f ∼ 500 Hz and 1.5 kHz, and a mass M ∼ 1000 kg. A short
gravitational wave burst with h ∼ 10−21 will make the bar vibrate with an amplitude

δℓgw ∼ hℓ ∼ 10−21 m. (38)

To measure this, one must fight against three main sources of noise.

1. Thermal noise. The original Weber bar operated at room temperature, but the most
advanced detectors today, Nautilus [51] and Auriga [227], are ultra-cryogenic, operating at
T = 100 mK. At this temperature the root mean square (rms) amplitude of vibration is

〈δℓ2〉1/2
th =

(

kT

4π2Mf2

)1/2

∼ 6 × 10−18 m. (39)

This is far larger than the gravitational wave amplitude expected from astrophysical sources.
But if the material has a high Q (say, 106) in its fundamental mode, then that changes
its thermal amplitude of vibration in a random walk with very small steps, taking a time
Q/f ∼ 1000 s to change by the full amount. However, a gravitational wave burst will cause
a change in 1 ms. In 1 ms, thermal noise will have random-walked to an expected amplitude
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change (1000 s/1 ms)1/2 = Q1/2 times smaller, or (for these numbers)

〈δℓ2〉1/2
th: 1 ms =

(

kT

4π2Mf2Q

)1/2

∼ 6 × 10−21 m. (40)

So ultra-cryogenic bars can approach the goal of detection near h = 10−20 despite thermal
noise.

2. Sensor noise. A transducer converts the bar’s mechanical energy into electrical energy, and
an amplifier increases the electrical signal to record it. If sensing of the vibration could be
done perfectly, then the detector would be broadband: both thermal impulses and gravita-
tional wave forces are mechanical forces, and the ratio of their induced vibrations would be
the same at all frequencies for a given applied impulsive force.

But sensing is not perfect: amplifiers introduce noise, and this makes small amplitudes harder
to measure. The amplitudes of vibration are largest in the resonance band near f , so amplifier
noise limits the detector sensitivity to gravitational wave frequencies near f . But if the noise
is small, then the measurement bandwidth about f can be much larger than the resonant
bandwidth f/Q. Typical measurement bandwidths are 10 Hz, about 104 times larger than
the resonant bandwidths, and 100 Hz is not out of the question [59].

3. Quantum noise. The zero-point vibrations of a bar with a frequency of 1 kHz are

〈δℓ2〉1/2
quant =

(

~

2πMf

)1/2

∼ 4 × 10−21 m. (41)

This is comparable to the thermal limit over 1 ms. So, as detectors improve their thermal
limits, they run into the quantum limit, which must be breached before a signal at 10−21 can
be seen with such a detector.

It is not impossible to do better than the quantum limit. The uncertainty principle only
sets the limit above if a measurement tries to determine the excitation energy of the bar, or
equivalently the phonon number. But one is not interested in the phonon number, except
in so far as it allows one to determine the original gravitational wave amplitude. It is
possible to define other observables that also respond to the gravitational wave and can be
measured more accurately by squeezing their uncertainty at the expense of greater errors
in their conjugate observable [110]. It is not yet clear whether squeezing will be viable for
bar detectors, although squeezing is now an established technique in quantum optics and will
soon be implemented in interferometric detectors (see below).

Reliable gravitational wave detection, whether with bars or with other detectors, requires coin-
cidence observations, in which two or more detectors confirm each other’s findings. The principal
bar detector projects around the world formed the International Gravitational Event Collabora-
tion (IGEC) [202] to arrange for long-duration coordinated observations and joint data analysis.
A report in 2003 of an analysis of a long period of coincident observing over three years found
no evidence of significant events [50]. The ALLEGRO bar [243] at Louisiana State University
made joint data-taking runs with the nearby LIGO interferometer, setting an upper limit on the
stochastic gravitational-wave background at around 900 Hz of h2

100Ωgw(f) ≤ 0.53 [17]. More re-
cently, because funding for many of the bar detector projects has become more restricted, only two
groups continue to operate bars at present (end of 2008): the Rome [367] and Auriga [227] groups.
The latest observational results from IGEC may be found in [54].

It is clear from the above discussion that bars have great difficulty achieving the sensitivity
goal of 10−21. This limitation was apparent even in the 1970s, and that motivated a number
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of groups to explore the intrinsically wide-band technique of laser interferometry, leading to the
projects described in Section 4.3.1 below. However, the excellent sensitivity of resonant detec-
tors within their narrow bandwidths makes them suitable for specialized, high-frequency searches,
including cross-correlation searches for stochastic backgrounds [119]. Therefore, novel and imagi-
native designs for resonant-mass detectors continue to be proposed. For example, it is possible to
construct large spheres of a similar size (1 to 3 m diameter) to existing cylinders. This increases
the mass of the detector and also improves its direction-sensing. One can in principle push to
below 10−21 with spheres [117]. A spherical prototype called MiniGRAIL[234] has been operated
in the Netherlands[181]. A similar prototype called the Schenberg detector[203] is being built in
Brazil [21]. Nested cylinders or spheres, or masses designed to sense multiple modes of vibration
may also provide a clever way to improve on bar sensitivities [86].

While these ideas have interesting potential, funding for them is at present (2008) very re-
stricted, and the two remaining bar detectors are likely to be shut down in the near future, when
the interferometers begin operating at sensitivities clearly better than 10−21.

4.2 Principles of the operation of beam detectors

Interferometers use laser light to measure changes in the difference between the lengths of two
perpendicular (or nearly perpendicular) arms. Typically, the arm lengths respond differently to
a given gravitational wave, so an interferometer is a natural instrument to measure gravitational
waves. But other detectors also use electromagnetic radiation, for example, ranging to spacecraft
in the solar system and even pulsar timing.

The basic equation we need is for the effect of a plane linear gravitational wave on a beam
of light. Suppose the angle between the direction of the beam and the direction of the plane
wave is θ. We imagine a very simple experiment in which the light beam originates at a clock,
whose proper time is called t, and is received by a clock, whose proper time is tf . The beam and
gravitational-wave travel directions determine a plane, and we denote the polarization component
of the gravitational wave that acts in this plane by h+(t), as measured at the location of the
originating clock. The proper distance between the clocks, in the absence of the wave, is L. If the
originating clock puts timestamps onto the light beam, then the receiving clock can measure the
rate of arrival of the timestamps. If there is no gravitational wave, and if the clocks are ideal, then
the rate will be constant, which can be normalized to unity. The effect of the gravitational wave
is to change the arrival rate as a function of the emission rate by

dtf
dt

= 1 +
1

2
(1 + cos θ) {h+[t+ (1 − cos θ)L] − h+(t)} . (42)

This is very simple: the beam of light leaves the emitter at the time when the gravitational wave
of phase t passes the emitter, and it reaches the receiver at the time when the gravitational wave
of phase t+ (1− cos θ)L is passing the receiver. So in the plane wave case, only the amplitudes of
the wave at the emitting and receiving events affect the time delay.

In order to use such an arrangement to detect gravitational waves, one needs two very stable
clocks. The best clocks today are stable to a few parts in 1016 [40], which implies that the
minimum amplitude of gravitational waves that could be detected by such a two-clock experiment
is h ∼ 10−15. However, this equation is also fundamental to the detection of gravitational waves
by pulsar timing, in which the originating ‘clock’ is a pulsar. By correlating many pulsar signals,
one can beat down the single-pulsar noise. This is described below in Section 4.4.2.

An arrangement that uses only one clock is one that sends a beam out to a receiver, which
then reflects or retransmits (transponds) the beam back to the sender. The sender has the clock,
which measures variations in the round-trip time. This method has been used with interplanetary
spacecraft, which has the advantage that the only clock is on the ground, which can be made more
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stable than one carried in a spacecraft (see Section 4.4.1). For the same arrangement as above,
the return time treturn varies at the rate

dtreturn

dt
= 1 +

1

2
{(1 − cos θ)h+(t+ 2L) − (1 + cos θ)h+(t)

+ 2 cos θ h+[t+ L(1 − cos θ)]} . (43)

This is known as the three-term relation, the third term being the wave strength at the time the
beam returns back to the sender.

But the sensitivity of such a one-path system as a gravitational wave detector is still limited
by the stability of the clock. For that reason, interferometers have become the most sensitive
beam detectors: effectively one arm of the interferometer becomes the ‘clock’, or at least the time
standard, that variations in the other arm are compared to. Of course, if both arms are affected by a
gravitational wave in the same way, then the interferometer will not see the wave. But this happens
only in very special geometries. For most wave arrival directions and polarizations, the arms are
affected differently, and a simple interferometer measures the difference between the round-trip
travel time variations in the two arms. For the triangular space array LISA, the measured signal
is somewhat more complex (see Section 4.4.3 below), but it still preserves the principle that the
time reference for one arm is a combination of the others.

4.2.1 The response of a ground-based interferometer

Ground-based interferometers are the most sensitive detectors operating today, and are likely
to make the first direct detections [197]. The largest detectors operating today are the LIGO
detectors [302], two of which have arm lengths of 4 km. This is much smaller than the wavelength
of the gravitational wave, so the interaction of one arm with a gravitational wave can be well
approximated by the small-L approximation to Equation (43), namely

dtreturn

dt
= 1 + sin2 θLḣ+(t). (44)

(See [69] for first corrections to the short-arm approximation.) To analyze the full detector, where
the second arm will normally point out of the plane we have been working in up till now, it is
helpful to go over to a tensorial expression, independent of special coordinate orientations. The
gravitational wave will act in the plane transverse to the propagation direction; let us call that
direction N̂ and let us set up radiation basis vectors êR

x and êR
y in the transverse plane, such that

êR
x lies in the plane formed by the wave propagation direction and the arm of our gravitational

wave sensor, which lies along the x-axis of the detector plane, whose unit vector is êx. (For a
picture of this geometry, see the left-hand panel of Figure 3, where for the moment we are ignoring
the y-arm of the detector shown there.)

With these definitions, the wave amplitude h+ is the one that has êR
x and êR

y as the axes of its
ellipse. The full wave amplitude is described, as in Equation (6), by the wave tensor

h(t) = h+(t)e+ + h×(t)e×, (45)

where e+ and e× are the polarization tensors associated with these basis vectors (compare Equa-
tion (4)):

e+ = (êR
x ⊗ êR

x − êR
y ⊗ êR

y ), e× = (êR
x ⊗ êR

y + êR
y ⊗ êR

x ). (46)

The unique way of expressing Equation (44) in terms of h is

(

dtreturn

dt

)

x−arm

= 1 + Lêx · ḣ · êx. (47)
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This does not depend on any special orientation of the arm relative to the wave direction, and
does not depend on the basis we chose in the transverse plane, so we can use it as well for the
second arm of the interferometer, no matter what its orientation. Let us assume it lies along the
unit vector by êy. (We do not, in fact, have to assume that the two arms are perpendicular to each
other, but it simplifies the diagram a little.) The return-time derivative along the second arm is
then given by

(

dtreturn

dt

)

x−arm

= 1 + Lêy · ḣ · êy

. The interferometer responds to the difference between these times,

(

dδtreturn

dt

)

=

(

dtreturn

dt

)

x−arm

−
(

dtreturn

dt

)

y−arm

= Lêx · ḣ · êx − Lêy · ḣ · êy

. By analogy with the wave tensor, we define the detector tensor d by [146]

d = L(êx ⊗ êx − êy ⊗ êy). (48)

(If the arms are not perpendicular this expression would still give the correct tensor if the unit
vectors lie along the actual arm directions.) Then we can express the differential return time rate
in the simple invariant form

(

dδtreturn

dt

)

= d : ḣ, (49)

where the notation d : h ≡ dlmh
lm denotes the Euclidean scalar product of the tensors d and h.

Equation (49) can be integrated over time to give the instantaneous path-length (or time-delay, or
phase) difference between the arms, as measured by the central observer’s proper time clock:

δtreturn(t) = d : h. (50)

This is a robust and compact expression for the response of any interferometer to any wave in
the long-wavelength (short-arm) limit. Its dependence on the wave direction is called its antenna
pattern.

It is conventional to re-express this measurable in terms of the stretching of the arms of the
interferometer. Within our approximation that the arms are shorter than a wavelength, this makes
sense: it is possible to define a local inertial coordinate system that covers the entire interferometer,
and within this coordinate patch (where light travels at speed 1) time differences measure proper
length differences. The differential return time is twice the differential length change of the arms:

δL(t) =
1

2
d : h. (51)

For a bar detector of length L lying along the director â, the detector tensor is

d = Lâ⊗ â, (52)

although one must be careful that the change in proper length of a bar is not simply given by
Equation (51), because of the restoring forces in the bar.

When dealing with observations by more than one detector, it is not convenient to tie the
alignment of the basis vectors in the sky plane with those in the detector frame, as we have done
in the left-hand panel of Figure 3, since the detectors will have different orientations. Instead it
will usually be more convenient to choose polarization tensors in the sky plane according to some
universal reference, e.g., using a convenient astronomical reference frame. The right-hand panel of

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

http://www.livingreviews.org/lrr-2009-2


34 B.S. Sathyaprakash and Bernard F. Schutz

Figure 3 shows the general situation, where the basis vectors α̂ and β̂ are rotated by an angle ψ
from the basis used in the left-hand panel. The polarization tensors on this new basis,

ǫ+ = (α̂⊗ α̂− β̂ ⊗ β̂), ǫ× = (α̂⊗ β̂ + β̂ ⊗ α̂), (53)

are found by the following transformation from the previous ones:

ǫ+ = e+ cos 2ψ + e× sin 2ψ,

ǫ× = −e+ sin 2ψ + e× cos 2ψ. (54)

Then one can write Equation (51) as

δL(t)

L
= F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t), (55)

where F+ and F× are the antenna pattern functions for the two polarizations defined on the
sky-plane basis by

F+ ≡ d : e+, F× ≡ d : e×. (56)

Using the geometry in the right-hand panel of Figure 3, one can show that

F+ =
1

2

(

1 + cos2 θ
)

cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ,

F× =
1

2

(

1 + cos2 θ
)

cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ. (57)

Figure 3: The relative orientation of the sky and detector frames (left panel) and the effect of a rotation
by the angle ψ in the sky frame (left panel).

These are the antenna-pattern response functions of the interferometer to the two polarizations
of the wave as defined in the sky plane [359]. If one wants the antenna pattern referred to the
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detector’s own axes, then one just sets ψ = 0. If the arms of the interferometer are not perpendic-
ular to each other, then one defines the detector-plane coordinates x and y in such a way that the
bisector of the angle between the arms lies along the bisector of the angle between the coordinate
axes [334]. Note that the maximum value of either F+ or F× is 1.

The corresponding antenna-pattern functions of a bar detector whose longitudinal axis is aligned
along the z direction, are

F+ = sin2 θ cos 2ψ, F× = sin2 θ sin 2ψ. (58)

Any one detector cannot directly measure both independent polarizations of a gravitational
wave at the same time, but responds rather to a linear combination of the two that depends
on the geometry of the detector and source direction. If the wave lasts only a short time, then
the responses of three widely-separated detectors, together with two independent differences in
arrival times among them, are, in principle, sufficient to fully reconstruct the source location and
gravitational wave polarization. A long-lived wave will change its location in the antenna pattern
as the detector moves, and it will also be frequency modulated by the motion of the detector; these
effects are in principle sufficient to determine the location of the source and the polarization of the
wave.
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Figure 4: The antenna pattern of an interferometric detector (left panel) with the arms in the x-y plane
and oriented along the two axes. The response F for waves coming from a certain direction is proportional
to the distance to the point on the antenna pattern in that direction. Also shown is the fractional area in
the sky over which the response exceeds a fraction ǫ of the maximum (right panel).

Since the polarization angle of an incoming gravitational wave would generally be expected to
be unrelated to its direction of arrival, depending rather on the internal orientations in the source,
it is useful to characterize the directional sensitivity of a detector by averaging over the polarization
angle ψ. If the wave has a given amplitude h and is linearly polarized, then, if we are interested in
a single detector’s response, it is always possible to align the polarization angle ψ in the sky plane
with that of the wave, so that the wave has pure +-polarization. Then the rms response function
of the detector is

F =

(∫

F 2
+ dψ

)1/2

. (59)

The function F is often simply called the antenna pattern. For a resonant bar, the antenna pattern
is

F = sin2 θ, (60)

and for an interferometer, it is given by

F
2

=
1

4

(

1 + cos2 θ
)2

cos2 2φ+ cos2 θ sin2 2φ. (61)
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The antenna pattern of an interferometric detector is plotted in the left panel of Figure 4, which
clearly shows the quadrupolar nature of the detector. Note that the response of an interferometer
is the best for waves coming from a direction orthogonal to the plane containing the detector, and
it is zero for waves in the plane of an interferometer’s arms (i.e., θ = π/2) that arrive from a
direction bisecting the two arms (i.e., φ = π/4) or from directions differing from this by a multiple
of π/2. What is the response of an antenna to a linearly-polarized source at a random location in
the sky? This is given by the rms value of F over the sky,

[

1

4π

∫

F
2
sin θ dθ dφ

]1/2

, (62)

which is smaller than the maximum response by a factor of 2/
√

15 (52%) for a bar detector and
by
√

2/5 (63%) for an interferometer.
The polarization amplitudes of the radiation from an inspiraling binary, a rotating neutron

star, or a ringing black hole, take a simple form as follows:

h+ =
h0

2

(

1 + cos2 ι
)

cos Φ(t), h× = h0 cos ι sinΦ(t),

where h0 is an overall (possibly time-dependent) amplitude, Φ(t) is the signal’s phase and ι is
the angle made by the characteristic direction in the source (e.g., the orbital or the spin angular
momentum) with the line of sight. In this case, the response takes a particularly simple form:

h(t) = F+h+ + F×h× = Ah0 cos(Φ(t) − Φ0), (63)

where

A =
(

A2
+ +A2

×

)1/2
, tanΦ0 =

A×

A+
, A+ =

1

2
F+(1 + cos ι2), A× = F× cos ι.

Note that A, just as F , takes values in the range [0, 1]. In this case the average response has
to be worked out by considering all possible sky locations, polarizations (which drops out of the
calculation) and source orientations. More precisely, the rms response is

A =
1

8π2

∫ π

0

sin ιdι

∫ π

0

sin θ dθ

∫ 2π

0

dϕ
(

A2
+ +A2

×

)

. (64)

For an interferometer the above integral gives 2/5. Thus, the rms response is still 40% of the peak
response.

The right-hand panel of Figure 4 shows the percentage area of the sky over which the antenna
pattern of an interferometric detector is larger than a certain fraction ǫ of the peak value. The
response is better than the rms value over 40% of the sky, implying that gravitational wave detectors
are fairly omni-directional. In comparison, the sky coverage of most conventional telescopes (radio,
infrared, optical, etc.) is a tiny fraction of the area of the sky.

4.3 Practical issues of ground-based interferometers

A detector with an arm length of 4 km responds to a gravitational wave with an amplitude of
10−21 with

δlgw ∼ hl ∼ 4 × 10−18 m.

Light takes only about 10−5 s to go up and down one arm, much less than the typical period of
gravitational waves of interest. Therefore, it is beneficial to arrange for the light to remain in an
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arm longer than this, say for 100 round trips. This increases its effective path length by 100 and
hence the shift in the position of a given phase of the light beam will be of order 10−16 m. Most
interferometers keep the light in the arms for this length of time by setting up optical cavities in
the arms with low-transmissivity mirrors; these are called Fabry–Pérot cavities.

The main sources of noise against which a measurement must compete are:

1. Ground vibration. External mechanical vibrations must be screened out. These are a
problem for bar detectors, too, but are more serious for interferometers, not least because
interferometers bounce light back and forth between the mirrors, and so each reflection
introduces further vibrational noise. Suspension/isolation systems are based on pendulums.
A pendulum is a good mechanical filter for frequencies above its natural frequency. By
hanging the mirrors on pendulums of perhaps 0.5 m length, one achieves filtering above a few
Hertz. Since the spectrum of ground noise falls at higher frequencies, this provides suitable
isolation. But these systems can be very sophisticated; the GEO600 [143] detector has a
three-stage pendulum and other vibration isolation components [291]. The most ambitious
multi-stage isolation system has been developed for the Virgo detector [175].

2. Thermal noise. Vibrations of the mirrors and of the suspending pendulum can mask
gravitational waves. As with vibrational noise, this is increased by the bouncing of the light
between the mirrors. Opposite to bars, interferometers perform measurements at frequencies
far from the resonant frequency, where the amplitude of thermal vibration is largest. Thus,
the pendulum suspensions have thermal noise at a few Hertz, so measurements will be made
above 40 Hz in the first detectors. Internal vibrations of the mirrors have natural frequencies
of several kHz, which sets an effective upper limit to the observing band. By ensuring that
both kinds of oscillations have very high Q, one can confine most of the vibration energy to
a small bandwidth around the resonant frequency, so that at the measurement frequencies
the vibration amplitudes are extremely small. This allows interferometers to operate at
room temperature. But mechanical Qs of 107 or higher are required, and this is technically
demanding.

Thermal effects produce other disturbances besides vibration. Some of the mirrors in inter-
ferometers are partly transmissive, as is the beam splitter. A small amount of light power
is absorbed during transmission, which raises the temperature of the mirror and changes its
index of refraction. The resulting “thermal lensing” can ruin the optical properties of the
system, and random fluctuations in lensing caused by time-dependent thermal fluctuations
(thermo-refractive noise) can appear at measurement frequencies. These effects can limit
the amount of laser power that can be used in the detector. Other problems can arise from
heating effects in the multiple-layer coatings that are applied to the reflective surfaces of
mirrors.

3. Shot noise. The photons that are used to do interferometry are quantized, and so they
arrive at random and make random fluctuations in the light intensity that can look like a
gravitational wave signal. The more photons one uses, the smoother the interference signal
will be. As a random process, the error improves with the square root of the number N of
photons. Using infrared light with a wavelength λ ∼ 1 µm, one can expect to measure to an
accuracy of

δlshot ∼ λ/(2π
√
N).

To measure at a frequency f , one has to make at least 2f measurements per second, so one
can accumulate photons for a time 1/2f . With light power P , one gets N = P/(hc/λ)/(2f)
photons. In order that δlshot should be below 10−16 m, one needs high light power, far
beyond the output of any continuous laser.
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Light-recycling techniques overcome this problem, by using light efficiently. An interferometer
actually has two places where light leaves. One is where the interference is measured, the
difference port. The other is the sum of the two return beams on the beam splitter, which goes
back towards the input laser. Normally one makes sure that no light hits the interference
sensor, so that only when a gravitational wave passes does a signal register there. This
means that all the light normally returns toward the laser input, apart from small losses at
the mirrors. Since mirrors are of good quality, only one part in 103 or less of the light is lost
during a 1 ms storage time. By placing a power-recycling mirror in front of the laser, one can
reflect this wasted light back in, allowing power to build up in the arms until the laser merely
resupplies the mirror losses [149]. This can dramatically reduce the power requirement for
the laser. The first interferometers work with laser powers of 5 – 10 W. Upgrades will use ten
or more times this input power.

4. Quantum effects. Shot noise is a quantum noise, and like all quantum noises there is a
corresponding conjugate noise. As laser power is increased to reduce shot noise, the position
sensing accuracy improves, and one eventually comes up against the Heisenberg uncertainty
principle: the momentum transferred to the mirror by the measurement leads to a disturbance
that can mask a gravitational wave. To reduce this backaction pressure fluctuation, scientists
are experimenting with a variety of interferometer configurations that modify the quantum
state of the light, by “squeezing” the Heisenberg uncertainty ellipse, in order to reduce the
effect of this uncertainty on the variable being measured, at the expense of its (unmeasured)
conjugate. The key point here is that we are using a quantum field (light) to measure
an effectively classical quantity (gravitational wave amplitude), so we do not need to know
everything about our quantum system: we just need to reduce the uncertainty in that part of
the quantum field that responds to the gravitational wave at the readout of our interferometer.
The best results on squeezing so far [371] have been obtained during preparations for the
GEO-HF upgrade of the GEO600 detector [395]. These techniques may be needed for the
second-generation advanced detectors and will certainly be needed for advances beyond that.

5. Gravity gradient noise. One noise that cannot be screened out is that due to changes in
the local Newtonian gravitational field on the timescale of the measurements. A gravitational
wave detector will respond to tidal forces from local sources just as well as to gravitational
waves. Environmental noise comes not only from man-made sources, but even more impor-
tantly from natural ones: seismic waves are accompanied by changes in the gravitational
field, and changes in air pressure are accompanied by changes in air density. The spectrum
falls steeply with increasing frequency, so for first-generation interferometers this will not be
a problem, but it may limit the performance of more advanced detectors. And it is the pri-
mary reason that detecting gravitational waves in the low-frequency band below 1 Hz must
be done in space.

4.3.1 Interferometers around the globe

The two largest interferometer projects are LIGO [302] and VIRGO [175]. LIGO has built three
detectors at two sites. At Hanford, Washington, there is a 4 km and a 2 km detector in the same
vacuum system. At Livingston, Louisiana, there is a single 4 km detector, oriented to be as nearly
parallel to the Hanford detector as possible. After a series of “engineering” runs, which helped to
debug the instruments, interspersed with several “science runs”, which helped to test and debug
the data acquisition system and various analysis pipelines, LIGO reached its design sensitivity goal
in the final months of 2005. In November 2005, LIGO began a two-year data-taking run, called
S5, which acquired a year’s worth of triple coincidence data among the three LIGO detectors. S5
ended on 30 September 2007. Although interferometers are pretty stable detectors, environmental
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disturbances and instrumental malfunctions can cause them to lose lock during which the data
quality will be either poor or ill defined. The typical duty cycle at one of the LIGO sites is about
80%, and hence about two years of operation was required to accumulate a year’s worth of triple
coincident data. Up to date information on LIGO can be found on the project’s website [103]. A
recent review of LIGO’s status is [303].

VIRGO finished commissioning its single 3-km detector at Cascina, near Pisa, in early 2007
and began taking data in coincidence with LIGO in May 2007, thus joining for the last part of
S5. VIRGO is a collaboration among research laboratories in Italy and France, and its umbrella
organization EGO looks after the operation of the site and planning for the future. There are
websites for both VIRGO [380] and EGO [152]. A recent review of VIRGO’s status is [20].

A smaller 600-m detector, GEO600, has been operational near Hanover, Germany, since 2001
[143]. It is a collaboration among research groups principally in Germany and Britain. Although
smaller, GEO600 has developed and installed second-generation technology (primarily in its suspen-
sions, mirror materials and interferometer configuration) that help it achieve a higher sensitivity.
GEO600 technology is being transferred to LIGO and VIRGO as part of their planned upgrades,
described below. Full information about GEO can be found on its website [261]. A recent review
of GEO600’s status is [396].

LIGO and GEO have worked together under the umbrella of the LIGO Scientific Collaboration
(LSC) since the beginning of science data runs in 2001. The LSC contains dozens of groups from
universities around the world, which contribute to data analysis and technology development. The
two detector groups pool their data and analyze it jointly. The LSC has a website containing
detailed information, and providing access to the publications and open-source software of the
collaboration [236].

VIRGO has signed an agreement with the LSC to pool data and analyze it jointly, thereby
creating a single worldwide network of long-baseline gravitational wave detectors. VIRGO is not,
however, a member of the LSC.

The LSC has already published many papers on the analysis of data acquired during its science
runs, and many more can be expected. The results from these science runs, which will be discussed
later, are already becoming astrophysically interesting. The LSC maintains a public repository of
its papers and contributions to conference proceedings [237].

For instance, although the search for continuous waves from known pulsars has not found any
definitive candidates, it has been possible to set stringent upper limits ǫ ≤ few × 10−6 on the
magnitude of the ellipticity of some of these systems [10]. In particular, in the case of the Crab
pulsar, gravitational wave observations have begun to improve [12] the upper limit on the strength
of radiation obtained by radio observations of the spin-down rate.

A yet smaller detector in Japan, TAMA300 [362], with 300 m arms, was the first large-scale
interferometer to achieve continuous operation, at a sensitivity of about 10−19 – 10−20. TAMA is
seen as a development prototype, and its sensitivity will be confined to higher frequencies (above
∼ 500 Hz). An ambitious follow-on detector called the Large-scale Cryogenic Gravitational-Wave
Telescope (LCGT) is being planned in Japan, and, as its name suggests, it will be the first to
use cooled mirrors to reduce the effects of thermal noise. TAMA [269] and the LCGT [268] have
websites where one can get more information. A recent review of TAMA’s status is [130].

There are plans for a detector in Australia, and a small interferometer is operating in Western
Australia [252]. The Australian Interferometric Gravitational Observatory (AIGO) [368] is a pro-
posal of the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) [56].
The ACIGA collaboration is a member of the LSC and assists in mirror and interferometry devel-
opment, but it is not yet clear whether and when a larger detector might be funded. From the
point of view of extracting information from observations, it is very desirable to have large-scale
detectors in Japan and Australia, because of their very long baselines to the USA and Europe.
But the future funding of both LCGT and AIGO is not secure as of this writing (2008).
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The initial sensitivity levels achieved by LIGO, VIRGO, and GEO are just the starting point.
Detailed plans exist for upgrades for all three projects. In October 2007, both LIGO and VIRGO
began upgrading to enhanced detectors, which should improve on LIGO’s S5 sensitivity by a factor
of roughly two. These should come online in 2009. After a further observing run, called S6, the
detectors will again shut down for a much more ambitious upgrade to advanced detectors, to
operate around 2014. This will provide a further factor of five in sensitivity, and hence in range.
Altogether the two upgrades will extend the volume of space that can be surveyed for gravitational
waves by a factor of 1000, and this will make regular detections a virtual certainty. Advanced
LIGO has a website giving the plans for the upgrade in the context of development from the initial
sensitivity [235].

GEO600 will remain in science mode during the upgrade to enhanced detectors, just in case a
nearby supernova or equally spectacular event should occur when the larger detectors are down.
But, when the enhanced detectors begin operating, GEO will upgrade to GEO-HF [395], a mod-
ification designed to improve its sensitivity in the high-frequency region above 1 kHz, where its
short arm length does not prevent it being competitive with the larger instruments. GEO is also
a partner in the Advanced LIGO project, contributing high-power lasers and high-Q suspensions
for controlling thermal noise.

Beyond that, scientists are now studying the technologies that may be needed for a further
large step in sensitivity to third-generation detectors. This may involve cooling mirrors, using
ultra-massive substrates of special materials, using purely nontransmissive optics, and even cir-
cumventing the quantum limit in interferometers, as has been studied for bars. The goal of third-
generation detectors would be to be limited just by gravity-gradient noise and quantum effects. A
design study for a concept called the “Einstein Telescope” started in Europe in 2008.

4.3.2 Very-high–frequency detectors

The gravitational wave spectrum above the detection band of conventional interferometers, say
above 10 kHz, may not be empty, and stochastic gravitational waves from the Big Bang may be
present up to megaHertz frequencies and beyond. It is exceedingly difficult to build sensitive detec-
tors at these high frequencies, but two projects have made prototypes: a microwave-based detector
that senses the change in polarization as the electromagnetic waves follow a waveguide circuit as
a gravitational wave passes by [126], and a more conventional light-based interferometer [23].

4.4 Detection from space

Space offers two important ingredients for beam detectors: long arms and a free vacuum. In this
section, we describe the three ways that space has been and will be used for gravitational wave
detection: ranging to spacecraft (Section 4.4.1), pulsar timing (Section 4.4.2), and direct detection
using space-based interferometers (Section 4.4.3).

4.4.1 Ranging to spacecraft

Both NASA and ESA perform experiments in which they monitor the return time of communi-
cation signals with interplanetary spacecraft for the characteristic effect of gravitational waves.
For missions to Jupiter and Saturn, for example, the return times are of order 2 – 4 × 103 s. Any
gravitational wave event shorter than this will, by Equation (43), appear three times in the time
delay: once when the wave passes the Earth-based transmitter, once when it passes the spacecraft,
and once when it passes the Earth-based receiver. Searches use a form of data analysis using
pattern matching. Using two transmission frequencies and very stable atomic clocks, it is possible
to achieve sensitivities for h of order 10−13, and even 10−15 may soon be reached [40].
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4.4.2 Pulsar timing

Many pulsars, particularly the old millisecond pulsars, are extraordinarily regular clocks when
averaged over timescales of a few years, with random timing irregularities too small for the best
atomic clocks to measure. If one assumes that they emit pulses perfectly regularly, then one can
use observations of timing irregularities of single pulsars to set upper limits on the background
gravitational-wave field. Here, the one-way formula Equation (42) is appropriate. The transit
time of a signal to the Earth from the pulsar may be thousands of years, so we cannot look for
correlations between the two terms in a given signal. Instead, the delay is a combination of the
effects of waves at the pulsar when the signal was emitted and waves at the Earth when it is
received. If one observes a single pulsar, then because not enough is known about the intrinsic
irregularity in pulse emission, the most one can do is to set upper limits on a background of
gravitational radiation at very low frequencies [242, 344].

If one simultaneously observes two or more pulsars, then the Earth-based part of the delay is
correlated, and this offers, in addition, a means of actually detecting strong gravitational waves
with periods of several years that pass the Earth (in order to achieve the long-period stability
of pulse arrival times). Observations are currently underway at a number of observatories. The
most stringent limits to date are from the Parkes Pulsar Timing Array [208], which sets an upper
limit on a stochastic background of Ωgw ≤ 2 × 10−8. Two further collaborations for timing have
been formed: the European Pulsar Timing Array (EPTA) [345] and NanoGrav [39]. Astrophysical
backgrounds in this frequency band are likely (see Section 8.2.2), so these arrays have a good
chance of making early detections. Future timing experiments will be even more powerful, using
new phased arrays of radio telescopes that can observe many pulsars simultaneously, such as the
Low Frequency Array (LOFAR) [156] and the Square Kilometer Array [107].

Pulsar timing can also be used to search for individual events, not just a stochastic signal. The
first example of an upper limit from such a search was the exclusion of a black-hole–binary model
for 3C66B [209].

4.4.3 Space interferometry

Gravity-gradient noise on the Earth is much larger than the amplitude of any expected waves from
astronomical sources at frequencies below about 1 Hz, but this noise falls off rapidly as one moves
away from the Earth. A detector in space would not notice the Earth’s noisy environment. The
Laser Interferometer Space Antenna (LISA) project, currently being developed in collaboration
by ESA and NASA with a view toward launching in 2018, would open up the frequency window
between 0.1 mHz and 0.1 Hz for the first time [196, 144]. There are several websites that provide
full information about this project [24, 153, 266].

We will see below that there are many exciting sources expected in this wave band, for example
the coalescences of giant black holes in the centers of galaxies. LISA would see such events with
extraordinary sensitivity, recording typical SNRs of 1000 or more for events at redshift one.

A space-based interferometer can have arm lengths much greater than a wavelength. LISA, for
example, would have arms 5 × 106 km long, and that would be longer than half a wavelength for
any gravitational waves above 30 mHz. In this regime, the response of each arm will follow the
three-term formula we encountered earlier. The short-arm approximation we used for ground-based
interferometers works for LISA only at the lowest frequencies in its observing band.

LISA will consist of three free-flying spacecraft, arranged in an array that orbits the sun at 1 AU,
about 20 degrees behind the Earth in its orbit. They form an approximately equilateral triangle
in a plane tilted at 60◦ to the ecliptic, and their simple Newtonian elliptical orbits around the sun
preserve this arrangement, with the array rotating backwards once per year as the spacecraft orbit
the sun. By passing light along each of the arms, one can construct three different Michelson-
type interferometers, one for each vertex. With this array one can measure the polarization of
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a gravitational wave directly. The spacecraft are too far apart to use simple mirrors to reflect
light back along an arm: the reflected light would be too weak. Instead, LISA will have optical
transponders: light from one spacecraft’s on-board laser will be received at another, which will
then send back light from its own laser locked exactly to the phase of the incoming signal.

The main environmental disturbances to LISA are forces from the sun: solar radiation pressure
and pressure from the solar wind. To minimize these, LISA incorporates drag-free technology.
Interferometry is referenced to an internal proof mass that falls freely, unattached to the spacecraft.
The job of the spacecraft is to shield this mass from external disturbances. It does this by sensing
the position of the mass and firing its own jets to keep itself (the spacecraft) stationary relative
to the proof mass. To do this, it needs thrusters of very small thrust that have accurate control.
The key technologies that have enabled the LISA mission are the availability of such thrusters,
accelerometers needed to sense disturbances to the spacecraft, and lasers capable of continuously
emitting 1 W of infrared light for many years. ESA is planning to launch a satellite called LISA
Pathfinder to test all of these technologies in 2010 [230].

LISA is not the only proposal for an interferometer in space for gravitational wave detection.
The DECIGO proposal is a more ambitious design, positioned at a higher frequency to fill the
gap between LISA and ground-based detectors [213]. Even more ambitious, in the same frequency
band, is the Big Bang Observer, a NASA concept study to examine what technology would be
needed to reach the ultimate sensitivity of detecting a gravitational wave background from inflation
at these frequencies [267].

4.5 Characterizing the sensitivity of a gravitational wave antenna

The performance of a gravitational wave detector is characterized by the power spectral density
(henceforth denoted PSD) of its noise background. One can construct the noise PSD as follows;
a gravitational wave detector outputs a dimensionless data train, say x(t), which in the case of
an interferometer is the relative strain in the two arms, scaled to represent the value of h that
would produce that strain if the wave is optimally oriented with respect to the detector. In the
absence of any gravitational wave signal, the detector output is just an instance of noise n(t), that
is, x(t) = n(t). The noise auto-correlation function κ is defined as

κ ≡ n(t1)n(t2), (65)

where an overline indicates the average over an ensemble of noise realizations. In general, κ depends
both on t1 and t2. However, if the detector output is a stationary noise process, i.e., its performance
is, statistically speaking, independent of time, then κ depends only on τ ≡ |t1 − t2|.

The assumption of stationarity is not strictly valid in the case of real gravitational-wave detec-
tors; however, if their performance doesn’t vary greatly over time scales much larger than typical
observation time scales, stationarity could be used as a working rule. While this may be good
enough in the case of binary inspiral and coalescence searches, it is a matter of concern for the
observation of continuous and stochastic gravitational waves. In this review, for simplicity, we
shall assume that the detector noise is stationary. In this case the one-sided noise PSD, defined
only at positive frequencies, is the Fourier transform of the noise auto-correlation function:

Sh(f) ≡ 1

2

∫ ∞

−∞

κ(τ)e2πifτ dτ, f ≥ 0,

≡ 0, f < 0, (66)

where a factor of 1/2 is included by convention. By using the Fourier transform of n(t), that
is ñ(f) ≡

∫∞

−∞
n(t)e2πift dt, in Equation (65) and substituting the resulting expression in Equa-
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tion (66), it is easy to shown that for a stationary noise process background

ñ(f)ñ∗(f ′) =
1

2
Sh(f)δ(f − f ′), (67)

where ñ∗(f) denotes the complex conjugate of ñ(f). The above equation justifies the name PSD
given to Sh(f).

It is obvious that Sh(f) has dimensions of time but it is conventional to use the dimensions
of Hz−1, since it is a quantity defined in the frequency domain. The square root of Sh(f) is
the noise amplitude,

√

Sh(f), and has dimensions of Hz−1/2. Both noise PSD and noise am-
plitude measure the noise in a linear frequency bin. It is often useful to define the power per
logarithmic bin h2

n(f) ≡ fSh(f), where hn(f) is called the effective gravitational-wave noise, and
it is a dimensionless quantity. In gravitational-wave–interferometer literature one also comes across
gravitational-wave displacement noise or gravitational-wave strain noise defined as hℓ(f) ≡ ℓhn(f),
and the corresponding noise spectrum Sℓ(f) ≡ ℓ2Sh(f), where ℓ is the arm length of the inter-
ferometer. The displacement noise gives the smallest strain δℓ/ℓ in the arms of an interferometer
that can be measured at a given frequency.
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Figure 5: The right panel plots the noise amplitude spectrum,
p

fSh(f), in three generations of ground-
based interferometers. For the sake of clarity, we have only plotted initial and advanced LIGO and a
possible third generation detector sensitivities. VIRGO has similar sensitivity to LIGO at the initial and
advanced stages, and may surpass it at lower frequencies. Also shown are the expected amplitude spectrum
of various narrow and broad-band astrophysical sources. The left panel is the same as the right except for
the LISA detector. The SMBH sources are assumed to lie at a redshift of z = 1, but LISA can detect these
sources with a good SNR practically anywhere in the universe. The curve labelled “Galactic WDBs” is
the confusion background from the unresolvable Galactic population of white dwarf binaries.

4.5.1 Noise power spectral density in interferometers

As mentioned earlier, the performance of a gravitational wave detector is characterized by the
one-sided noise PSD. The noise PSD plays an important role in signal analysis. In this review we
will only discuss the PSDs of interferometric gravitational-wave detectors.

The sensitivity of ground based detectors is limited at frequencies less than a Hertz by the time-
varying local gravitational field caused by a variety of different noise sources, e.g., low frequency
seismic vibrations, density variation in the atmosphere due to winds, etc. Thus, for data analysis
purposes, the noise PSD is assumed to be essentially infinite below a certain lower cutoff fs. Above
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Table 1: Noise power spectral densities Sh(f) of various interferometers in operation and under construc-
tion: GEO600, Initial LIGO (ILIGO), TAMA, VIRGO, Advanced LIGO (ALIGO), Einstein Telescope
(ET) and LISA (instrumental noise only). For each detector the noise PSD is given in terms of a dimen-
sionless frequency x = f/f0 and rises steeply above a lower cutoff fs. The parameters in the ET design
sensitivity curve are α = −4.1, β = −0.69, a0 = 186, b0 = 233, b1 = 31, b2 = −65, b3 = 52, b4 = −42,
b5 = 10, b6 = 12, c1 = 14, c2 = −37, c3 = 19, c4 = 27. (See also Figure 5.)

Detector fs/Hz f0/Hz S0/Hz−1 Sh(x)/S0

GEO 40 150 1.0 × 10−46 (3.4x)−30 + 34x−1 + 20(1−x2+0.5x4)
(1+0.5x2)

ILIGO 40 150 9.0 × 10−46 (4.49x)−56 + 0.16x−4.52 + 0.52 + 0.32x2

TAMA 75 400 7.5 × 10−46 x−5 + 13x−1 + 9(1 + x2)

VIRGO 20 500 3.2 × 10−46 (7.8x)−5 + 2x−1 + 0.63 + x2

ALIGO 20 215 1.0 × 10−49 x−4.14 − 5x−2 + 111(1−x2+0.5x4)
1+0.5x2

ET 10 200 1.5 × 10−52 xα + a0x
β + b0(1+b1x+b2x2+b3x3+b4x4+b5x5+b6x6)

1+c1x+c2x2+c3x3+c4x4

LISA 10−5 10−3 9.2 × 10−44 (x/10)−4 + 173 + x2

this cutoff, i.e., for f ≥ fs, Table 1 lists the noise PSD Sh(f) for various interferometric detectors
and some of these are plotted in Figure 5.

For LISA, Table 1 gives the internal instrumental noise only, taken from [162]. It is based
on the noise budget obtained in the LISA Pre-Phase A Study [70]. However, in the frequency
range 10−4 – 10−2 Hz, LISA will be affected by source confusion from astrophysical backgrounds
produced by several populations of galactic binary systems, such as closed white-dwarf binaries,
binaries consisting of Cataclysmic Variables, etc. At frequencies below about 1 mHz, there are too
many binaries for LISA to resolve in, say, a 10-year mission, so that they form a Gaussian noise.
Above this frequency range, there will still be many resolvable binaries which can, in principle, be
removed from the data.

Nelemans et al. [272] estimate that the effective noise power contributed by binaries in the
galaxy is

Sgal
h = 2.1 × 10−38

(

f

fs

)7/3

Hz−1, fs = 10−3 Hz, (68)

normalized to the same fs as we use for LISA in Table 1. This power is a mean frequency average
based on projections of the population LISA will find, but, of course, above about 1 mHz, LISA will
resolve many binaries and identify most of the members of this population. Barack and Cutler [67]
have provided a prescription for including this effect when adding in the confusion noise. They
make the conservative assumption that individual binaries contaminate the instrumental noise
Sinstr

h (see Table 1) in such a way that, effectively, one or a few frequency resolution bins need to
be cut out and ignored when detecting other signals, including, of course, other binary signals. This
would have approximately the same effect as if the overall instrumental noise at that frequency
were raised by an amount obtained simply by dividing the noise by the fraction η of bins free of
contamination. Of course, when this fraction reaches zero (below 1 mHz), this approximation is
not valid, and instead one should just add the full binary confusion noise in Equation (68) to the
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instrumental noise. A smooth way of merging these two regimes is to set

Sfull
h = min

(

1

η
Sinstr

h , Sinstr
h + Sgal

h

)

, (69)

where Sinstr
h is from Table 1 and Sgal

h is from Equation (68). This prescription uses the contaminated
instrumental noise, when it is below the total noise power from the binaries, but then uses the
total binary confusion power when the prescription for allowing for contamination breaks down.

The fraction η of uncontaminated frequency bins as a function of frequency remains to be
specified. Let dN/df be the number of binaries in the galaxy per unit frequency. Since the size
of the frequency bin for an observation that lasts a time Tobs is 1/Tobs, the expected number of
binaries per frequency bin is

∆N(f) =
1

Tobs

dN(f)

df
.

Barack and Cutler multiply this by a “fudge factor” κ > 1 to allow for the fact that any binary
may contaminate several bins, so that κ∆N(f) is the expected number of contaminated bins per
binary. If this is small, then it will equal the fractional contamination at frequency f . In that case,
the fraction of uncontaminated bins is just 1 − κ∆N(f). However, if the expected contamination
per bin approaches or exceeds one, then we have to allow for the fact that the binaries are really
randomly distributed in frequency, so that the expected fraction not contaminated comes from the
Poisson distribution,

η = exp(−κ∆N). (70)

Inserting this into Equation (69) gives a reasonable approximation to the effective instrumental
noise if binaries cannot be removed in a clean way from the data stream when looking for other
signals.

Because LISA will observe binaries for several years, the accuracy with which it will know the
frequency, say, of a binary, will be much better than the frequency resolution of LISA during the
observation of a transient source, such as many of the IMBH events considered by Barack and
Cutler. Therefore, there is a good chance that, in the global LISA data analysis, the effective noise
can be reduced below the one-year noise levels that are normally used in projecting the sensitivity
of LISA and the science it can do.

4.5.2 Sensitivity of interferometers in units of energy flux

In radio astronomy one talks about the sensitivity of a telescope in terms of the limiting detectable
energy flux from an astronomical source. We can do the same here too. Given the gravitational
wave amplitude h we can use Equation (17) to compute the flux of gravitational waves. One can
translate the noise power spectrum Sh(f), given in units of Hz−1 at frequency f , to Jy (Jansky),
with the conversion factor 4c3f2/(πG). In Figure 6, the left panel shows the noise power spectrum
in astronomical units of Jy and the right panel depicts the noise spectrum in units of Hz−1 together
with lines of constant flux.

What is striking in Figure 6 is the magnitude of flux. While modern radio interferometers are
sensitive to flux levels of milli and micro-Jy the gravitational wave interferometers need their sources
to be 24 – 27 orders of magnitude brighter. Turning this argument around, the gravitational wave
sources we expect to observe are not really weak, but rather extremely bright sources. The difficulty
in detecting them is due to the fact that gravitation is the weakest of all known interactions.

4.6 Source amplitudes vs sensitivity

How does one compare the gravitational wave amplitude of astronomical sources with the instru-
mental sensitivity and assess what sort of sources will be observable against noise? Comparisons
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Figure 6: The sensitivity of interferometers in terms of the limiting energy flux they can detect, Jy/Hz,
(left panel) and in terms of the gravitational wave amplitude with lines of constant flux levels (right panel).

are almost always made in the frequency domain, since stationary noise is most conveniently char-
acterized by its PSD.

The simplest signal to characterize is a long-lasting periodic signal with a given fixed frequency
f0. In an observation time T, all the signal power |h̃(f0)|2 is concentrated in a single frequency bin of
width 1/T . The noise against which it competes is just the noise power in the same bin, Sh(f0)/T .
The power SNR is then T |h̃(f0)|2/Sh(f0), and the amplitude SNR is

√
T |h̃(f0)|/|Sh(f0)|1/2. This

improves with observation time as the square root of the time. The reason for this is that the noise
is stationary, but longer and longer observation times permit the signal to compete only with noise
in smaller and smaller frequency windows.

Of course, no expected gravitational-wave signal would have a single fixed frequency in the
detector frame, because the detector is attached to the Earth, whose motion produces frequency
modulations. But the principle of this SNR increase with time can still be maintained if one has
a signal model that allows one to exclude more and more noise from competing with the signal
over longer and longer periods of time. This happens with matched filtering, which we return to
in Section 5.

Short-lived signals have wider bandwidths, and long observation times are not relevant. To char-
acterize their SNR, it is useful to define the dimensionless noise power per logarithmic bandwidth,
fSh(f), which we earlier called h2

n(f). The signal Fourier amplitude h̃(f) ≡
∫∞

−∞
dt h(t)e2πift has

dimensions of Hz−1 and so the Fourier amplitude per logarithmic frequency, which is called the
characteristic signal amplitude hc = f |h̃(f)|, is dimensionless. This quantity should be compared
with hn(f) to obtain a rough estimate of the SNR of the signal: SNR ∼ hc/hn.

4.7 Network detection

Gravitational wave detectors are almost omni-directional. As discussed in Section 4.2.1, both inter-
ferometers and bars have good sensitivity over a large area of the sky. In this regard, gravitational
wave antennas are unlike conventional astronomical telescopes, e.g., optical, radio, or infrared
bands, which observe only a very small fraction of the sky at any given time. The good news
is that gravitational wave interferometers will have good sky coverage and therefore only a small
number (around six) are enough to survey the sky. The bad news, however, is that gravitational
wave observations will not automatically provide the location of the source in the sky. It will either
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be necessary to observe the same source in several non–co-located detectors and triangulate the
position of the source using the information from the delay in the arrival times of the signals to
different detectors, or observe for a long time and use the location-dependent Doppler modulation
caused by the motion of the detector relative to the source to infer the source’s position in the sky.
The latter is a well-known technique in radio astronomy of synthesizing a long-baseline observa-
tion to gain resolution, and only possible for sources, such as rotating neutron stars or stochastic
backgrounds, that last for a long enough duration.

A network of detectors is, therefore, essential for source reconstruction. Network observation
is not only powerful in identifying a source in the sky, but independent observation of the same
source in several detectors adds to the detection confidence, especially since the noise background
in the first generation of interferometers is not well understood and is plagued by nonstationarity
and non-Gaussianity.

4.7.1 Coherent vs coincidence analysis

The availability of a network of detectors offers two different methods by which the data can be
combined. One can either first bring the data sets together, combine them in a certain way, and
then apply the appropriate filter to the network data and integrate the signal coherently, coherent
detection [282, 87, 160, 41], or first analyze the data from each detector separately by applying the
relevant filters and then look for coincidences in the multi-dimensional space of intrinsic (masses
of the component stars, their spins, . . .) and extrinsic (arrival times, a constant phase, source
location, . . .) parameters, coincidence detection [205, 207, 160, 42, 353, 2, 6, 7, 8].

A recent comparison of coherent analysis vis-a-vis coincidence analysis under the assumption
that the background noise is Gaussian and stationary has concluded that coherent analysis, as one
might expect, is far better than coincidence analysis [263]. These authors also explore, to a limited
extent, the effect of nonstationary noise and reach essentially the same conclusion.

At the outset, coherent analysis sounds like a good idea, since in a network of ND similar
detectors the visibility of a signal improves by a factor of

√
ND over that of a single detector. One

can take advantage of this enhancement in SNR to either lower the false alarm rate by increasing
the detection threshold, while maintaining the same detection efficiency, or improve detection
efficiency at a given false alarm rate.

However, there are two reasons that current data-analysis pipelines prefer coincidence anal-
ysis over coherent analysis. Firstly, since the detector noise is neither Gaussian nor stationary,
coincidence analysis can potentially reduce the background rate far greater than one might think
otherwise. Secondly, coherent analysis is computationally far more expensive than coincidence
analysis and it is presently not practicable to employ coherent analysis.

Coincidence analysis is indeed a very powerful method to veto out spurious events. One can
associate with each event in a given detector an ellipsoid, whose location and orientation depends
on where in the parameter space and when the event was found, and the SNR can be used to
fix the size of the ellipsoid [314]. One is associating with each event a ‘sphere’ of influence in the
multi-dimensional space of masses, spins, arrival times, etc., and there is a stringent demand that
the spheres associated with events from different detectors should overlap each other in order to
claim a detection. Since random triggers from a network of detectors are less likely to be consistent
with one another, this method serves as a very powerful veto.

It is probably not possible to infer beforehand which method might be more effective in detecting
a source, as this might depend on the nature of the detector noise, on how the detection statistic is
constructed, etc. An optimal approach might be a suitable combination of both of these methods.
For instance, a coherent follow-up of a coincidence analysis (as is currently done by searches for
compact binaries within the LSC) or to use coincidence criteria on candidate events from a coherent
search.
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Coherent addition of data improves the visibility of the signal, but ‘coherent subtraction’ of
the data in a detector network should lead to data products that are devoid of gravitational wave
signals. This leads us naturally to the introduction of the null stream veto.

4.7.2 Null stream veto

Data from a network of detectors, when suitably shifted in time and combined linearly with co-
efficients that depend on the source location, will yield a time series that, in the ideal case, will
be entirely be devoid of the gravitational signal. Such a combination is called a null stream. For
instance, for a set of three misaligned detectors, each measuring a data stream xk(t), k = 1, 2, 3,
the combination x(t) = A23(θ, ϕ)h1(t+τ1)+A31(θ, ϕ)h2(t+τ2)+A12(θ, ϕ)h3(t+τ3), where Aij are
functions of the responses of the antennas i and j, and τk’s, k = 1, 2, 3, are time delays that depend
on the source location and the location of the antenna, is a null stream. If xk(t), k = 1, 2, 3, contain
a gravitational wave signal from an astronomical source, then x(t) will not contain the signature of
this source. In contrast, if x(t) and xk(t) both contain the signature of a gravitational wave event,
then that is an indication that one of the detectors has a glitch.

The existence and usefulness of a null stream was first pointed out by Gürsel and Tinto [184].
Wen and Schutz [390] proposed implementing it in LSC data analysis as a veto, and this has been
taken up now by several search groups.

4.7.3 Detection of stochastic signals by cross-correlation

Stochastic background sources and their detection is discussed in more detail in Section 8. Here we
will briefly mention the problem in the context of detector networks. As mentioned in Section 3.6,
the universe might be filled with stochastic gravitational waves that were either generated in the
primeval universe or by a population of background sources. For point sources, although each
source in a population might not be individually detectable, they could collectively produce a
confusion background via a random superposition of the waves from that population. Since the
waves are random in nature, it is not possible to use the techniques described in Sections 4.7.1,
4.7.2 and 5.1 to detect a stochastic background. However, we might use the noisy stochastic signal
in one of the detectors as a “matched-filter” for the data in another detector [359, 163, 27, 91].
In other words, it should be possible to detect a stochastic background by cross-correlating the
data from a pair of detectors; the common gravitational-wave background will grow in time more
rapidly than the random backgrounds in the two instruments, thereby facilitating the detection of
the background.

If two instruments with identical spectral noise density Sh are cross-correlated over a bandwidth
∆f for a total time T , the spectral noise density of the output is reduced by a factor of (T∆f)1/2.
Since the noise amplitude is proportional to the square root of Sh, the amplitude of a signal that
can be detected by cross-correlation improves only with the fourth root of the observing time. This
should be compared with the square root improvement that matched filtering gives.

The cross-correlation technique works well when the two detectors are situated close to one
another. When separated, only those waves whose wavelength is larger than or comparable to
the distance between the two detectors, or which arrive from a direction perpendicular to the
separation between the detectors, can contribute coherently to the cross-correlation statistic. Since
the instrumental noise builds up rapidly at lower frequencies, detectors that are farther apart are
less useful in cross-correlation. However, very near-by detectors (as in the case of two LIGO
detectors within the same vacuum tube in Hanford) will suffer from common background noise
from the control system and the environment, making it rather difficult to ascertain if any excess
noise is due to a stochastic background of gravitational waves.
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4.8 False alarms, detection threshold and coincident observation

Gravitational-wave event rates in initial interferometers is expected to be rather low: about a few
per year. Therefore, one has to set a high threshold, so that the noise-generated false alarms
mimicking an event are negligible.

For a detector output sampled at 1 kHz and processed through a large number of filters, say
103, one has ∼ 3 × 1013 instances of noise in a year. If the filtered noise is Gaussian, then the
probability P (x) of observing an amplitude in the range of x to x+ dx is

P (x) dx =
1√
2πσ

exp

(−x2

2σ2

)

dx, (71)

where σ is the standard deviation. The above probability-distribution function implies that the
probability that the noise amplitude is greater than a given threshold η is

P (x|x ≥ η) =

∫ ∞

η

P (x) dx =
1√
2πσ

∫ ∞

η

exp

(−x2

2σ2

)

dx. (72)

Demanding that no more than one noise-generated false alarm occur in a year’s observation means
that P (x|x ≥ η) = 1/(3 × 1013). Solving this equation for η, one finds that η ≃ 7.5σ in order
that false alarms are negligible in a year’s observation. Therefore, a source is detectable only if its
amplitude is significantly larger than the effective noise amplitude, i.e., fh̃(f) ≫ hn(f).

The reason for accepting only such high-sigma events is that the event rate of a transient source,
i.e., a source lasting for a few seconds to minutes, such as a binary inspiral, could be as low as a few
per year, and the noise generated false alarms, at low SNRs ∼ 3–4, over a period of a year, tend to
be quite large. Setting higher thresholds for detection helps in removing spurious, noise generated
events. However, signal enhancement techniques (cf. Section 5) make it possible to detect a signal
of relatively low amplitude, provided there are a large number of wave cycles and the shape of the
wave is known accurately.

Real detector noise is neither Gaussian nor stationary and therefore the filtered noise cannot
be expected to obey these properties either. One of the most challenging problems is how to
remove or veto the false alarm generated by a non-Gaussian and/or nonstationary background.
There has been some effort to address the issue of non-Gaussianity [124] and nonstationarity [260];
more work is needed in this direction. However, it is expected that the availability of a network
of gravitational wave detectors alleviates the problem to some extent. This is because a high
amplitude gravitational wave event will be coincidentally observed in several detectors, although
not necessarily with the same SNR, while false alarms are, in general, not coincident, as they are
normally produced by independent sources located close to the detectors.

We have seen that coincident observations help to reduce the false alarm rate significantly. The
rate can be further reduced, and possibly even nullified, by subjecting coincident events to further
consistency checks in a detector network consisting of four or more detectors. As discussed in
Section 2, each gravitational wave event is characterized by five kinematic (or extrinsic) observables:
location of the source with respect to the detector (D, θ, ϕ) and the two polarizations (h+, h×).
Each detector in a network measures a single number, say the amplitude of the wave. In addition,
in a network of N detectors, there are N − 1 independent time delays in the arrival times of the
wave at various detector locations, giving a total of 2N − 1 observables. Thus, the minimum
number of detectors needed to reconstruct the wave and its source is N = 3. More than three
detectors in a network will have redundant information that will be consistent with the quantities
inferred from any three detectors, provided the event is a true coincident event and not a chance
coincidence, and most likely a true gravitational wave event. In a detector network consisting of
N(≥ 4) detectors, one can perform 2N − 6 consistency checks. Such consistency checks further
reduce the number of false alarms.
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When the shape of a signal is known, matched filtering is the optimal strategy to pull out a
signal buried in Gaussian, stationary noise (see Section 5.1). The presence of high-amplitude tran-
sients in the data can render the background nonstationary and non-Gaussian, therefore matched
filtering is not necessarily an optimal strategy. However, the knowledge of a signal’s shape, es-
pecially when it has a broad bandwidth, can be used beyond matched filtering to construct a
χ2 veto [28] to distinguish between triggers caused by a true signal from those caused by high-
amplitude transients or other artifacts. One specific implementation of the χ2 veto compares the
expected signal spectrum with the real spectrum to quantify the confidence with which a trigger
can be accepted to be caused by a true gravitational wave signal and has been the most powerful
method for greatly reducing the false alarm rate. We shall discuss the χ2 veto in more detail in
Section 5.1.
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5 Data Analysis

Observing gravitational waves requires a data analysis strategy, which is in many ways different
from conventional astronomical data analysis. There are several reasons why this is so:

• Gravitational wave antennas are essentially omni-directional, with their response better than
50% of the root mean square over 75% of the sky (see Figure 4, right panel, recalling that
the rms response is 2/5 of the peak). Hence, data analysis systems will have to carry out
all-sky searches for sources.

• Interferometers are typically broadband covering three to four orders of magnitude in fre-
quency. While this is obviously to our advantage, as it helps to track sources whose frequency
may change rapidly, it calls for searches to be carried out over a wide range of frequencies.

• In Einstein’s theory, gravitational radiation has two independent states of polarization. Mea-
suring polarization is of fundamental importance (as there are other theories of gravity
in which the number of polarization states is more than two and in some theories even
dipolar and scalar waves exist [392]) and has astrophysical implications too (for example,
gravitational-wave–polarization measurement is one way to resolve the mass-inclination de-
generacy of binary systems observed electromagnetically, as discussed in Section 7.1.1). Po-
larization measurements would be possible with a network of detectors, which means analysis
algorithms that work with data from multiple antennas will have to be developed. This should
also benefit coincidence analysis and the efficiency of event recognition.

• Unlike typical detection techniques for electromagnetic radiation from astronomical sources,
most astrophysical gravitational waves are detected coherently, by following the phase of the
radiation, rather than just the energy. That is, the SNR is built up by coherent superposition
of many wave cycles emitted by a source. The phase evolution contains more information
than the amplitude does and the signal structure is a rich source of the underlying physics.
Nevertheless, tracking a signal’s phase means searches will have to be made not only for
specific sources but over a huge region of the parameter space for each source, placing severe
demands both on the theoretical understanding of the emitted waveforms as well as on the
data analysis hardware.

• Finally, gravitational wave detection is computationally intensive. Gravitational wave anten-
nas acquire data continuously for many years at the rate of several megabytes per second.
About 1% of this data is signal data; the rest is housekeeping data that monitors the oper-
ation of the detectors. The large parameter space mentioned above requires that the signal
data be filtered many times for different searches, and this puts big demands on computing
hardware and algorithms.

Data analysis for broadband detectors has been strongly developed since the mid 1980s [359,
331, 330]. The field has a regular series of annual Gravitational Wave Data Analysis Workshops; the
published proceedings are a good place to find current thinking and challenges. Early coincidence
experiments with interferometers [273] and bars [29] provided the first opportunities to apply these
techniques. Although the theory is now fairly well understood [206], strategies for implementing
data analysis depend on available computer resources, data volumes, astrophysical knowledge, and
source modeling, and so are under constant revision.

We will begin with a discussion of the matched filtering algorithm and next use it to estimate
the SNRs for binary coalescences in various detectors. After that, we will develop the theory of
matched filtering further to work out the computational costs to carry out online searches, that is
to search at the same rate as the data is acquired. In the final section, we will use the formalism
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developed in earlier sections to discuss parameter estimation. The foundations of signal analysis
lie in the statistics of making “best estimates” of whether a signal is present in noisy data or not.
See the Living Review by Jaranowski and Królak [206] for a discussion of this in the gravitational
wave context.

5.1 Matched filtering and optimal signal-to-noise ratio

Matched filtering is a data analysis technique that efficiently searches for a signal of known shape
buried in noisy data [186]. The technique consists in correlating the output of a detector with a
waveform, variously known as a template or a filter. Given a signal h(t) buried in noise n(t), the
task is to find an ‘optimal’ template q(t) that would produce, on the average, the best possible
SNR. In this review, we shall treat the problem of matched filtering as an operational exercise.
However, this intuitive picture has a solid basis in the theory of hypothesis testing. The interested
reader may consult any standard text book on signal analysis, for example Helstrom [186], for
details.

Let us first fix our notation. We shall use x(t) to denote the detector output, which is assumed
to consist of a background noise n(t) and a useful gravitational wave signal h(t). The Fourier
transform of a quantity x(t) will be denoted x̃(f) and is defined as

x̃(f) =

∫ ∞

−∞

x(t)e2πift dt. (73)

5.1.1 Optimal filter

The detector output x(t) is just a realization of noise n(t), i.e., x(t) = n(t), when no signal is
present. In the presence of a signal h(t) with an arrival time ta, x(t) takes the form,

x(t) = h(t− ta) + n(t). (74)

The correlation c of a template q(t) with the detector output is defined as

c(τ) ≡
∫ ∞

−∞

x(t)q(t+ τ) dt. (75)

In the above equation, τ is called the lag ; it denotes the duration by which the filter function lags
behind the detector output. The purpose of the above correlation integral is to concentrate all
the signal energy at one place. The following analysis reveals how this is achieved; we shall work
out the optimal filter q(t) that maximizes the correlation c(τ) when a signal h(t) is present in the
detector output. To do this let us first write the correlation integral in the Fourier domain by
substituting for x(t) and q(t), in the above integral, their Fourier transforms x̃(f) and q̃(f), i.e.,
x(t) ≡

∫∞

−∞
x̃(f) exp (−2πift) df and q(t) ≡

∫∞

−∞
q̃(t) exp (−2πift) df , respectively. After some

straightforward algebra, one obtains

c(τ) =

∫ ∞

−∞

x̃(f)q̃∗(f)e−2πifτ df, (76)

where q̃∗(f) denotes the complex conjugate of q̃(f).
Since n is a random process, c is also a random process. Moreover, correlation is a linear

operation and hence c obeys the same probability distribution function as n. In particular, if n is
described by a Gaussian random process with zero mean, then c is also described by a Gaussian
distribution function, although its mean and variance will, in general, differ from those of n. The
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mean value of c, denoted by S ≡ c, is, clearly, the correlation of the template q with the signal h,
since the mean value of n is zero:

S ≡ c(τ) =

∫ ∞

−∞

h̃(f)q̃∗(f)e−2πif(τ−ta) df. (77)

The variance of c, denoted N2 ≡ (c− c)2, turns out to be,

N2 = (c− c)2 =

∫ ∞

−∞

Sh(f) |q̃(f)|2 df. (78)

Now the SNR ρ is defined by ρ2 ≡ S2/N2.
The form of integrals in Equations (77) and (78) leads naturally to the definition of the scalar

product of waveforms. Given two functions, a(t) and b(t), we define their scalar product 〈a, b〉 to
be [159, 161, 114, 128]

〈a, b〉 ≡ 2

∫ ∞

0

df

Sh(f)

[

ã(f)b̃∗(f) + ã∗(f)b̃(f)
]

. (79)

Note that Sh(f) ≥ 0 [cf. Equation (67)], consequently, the scalar product is real and positive
definite.

Noting that the Fourier transform of a real function h(t) obeys h̃(−f) = h̃∗(f), we can write
down the SNR in terms of the above scalar product:

ρ2 =

〈

he2πif(τ−ta), Shq
〉

√

〈Shq, Shq〉
. (80)

From this it is clear that the template q that obtains the maximum value of ρ is simply

q̃(f) = γ
h̃(f)ei2πf(τ−ta)

Sh(f)
, (81)

where γ is an arbitrary constant. From the above expression for an optimal filter we note two
important things. First, the SNR is maximized when the lag parameter τ is equal to the time of
arrival of the signal ta. Second, the optimal filter is not just a copy of the signal, but rather it is
weighted down by the noise PSD. We will see below why this should be so.

5.1.2 Optimal signal-to-noise ratio

We can now work out the optimal SNR by substituting Equation (81) for the optimal template in
Equation (80),

ρopt = 〈h, h〉1/2
= 2







∫ ∞

0

df

∣

∣

∣h̃(f)
∣

∣

∣

2

Sh(f)







1/2

. (82)

We note that the optimal SNR is not just the total energy of the signal (which would be
2
∫∞

0
df |h̃(f)|2), but rather the integrated signal power weighted down by the noise PSD. This is

in accordance with what we would guess intuitively: the contribution to the SNR from a frequency
bin where the noise PSD is high is smaller than from a bin where the noise PSD is low. Thus, an
optimal filter automatically takes into account the nature of the noise PSD.

The expression for the optimal SNR Equation (82) suggests how one may compare signal
strengths with the noise performance of a detector. Note that one cannot directly compare h̃(f)
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with Sh(f), as they have different physical dimensions. In gravitational wave literature one writes
the optimal SNR in one of the following equivalent ways

ρopt = 2







∫ ∞

0

df

f

∣

∣

∣

√
fh̃(f)

∣

∣

∣

2

Sh(f)







1/2

= 2







∫ ∞

0

df

f

∣

∣

∣fh̃(f)
∣

∣

∣

2

fSh(f)







1/2

, (83)

which facilitates the comparison of signal strengths with noise performance. One can compare the
dimensionless quantities, f |h̃(f)| and

√

fSh(f), or dimensionful quantities,
√
f |h̃(f)| and

√

Sh(f).
Signals of interest to us are characterized by several (a priori unknown) parameters, such as the

masses of component stars in a binary, their intrinsic spins, etc., and an optimal filter must agree
with both the signal shape and its parameters. A filter whose parameters are slightly mismatched
with that of a signal can greatly degrade the SNR. For example, even a mismatch of one cycle in
104 cycles can degrade the SNR by a factor two.

When the parameters of a filter and its shape are precisely matched with that of a signal, what
is the improvement brought about, as opposed to the case when no knowledge of the signal is
available? Matched filtering helps in enhancing the SNR in proportion to the square root of the
number of signal cycles in the detector band, as opposed to the case in which the signal shape is
unknown and all that can be done is to Fourier transform the detector output and compare the
signal energy in a frequency bin to noise energy in that bin. We shall see below that, in initial
interferometers, matched filtering leads to an enhancement of order 30 – 100 for compact binary
inspiral signals.

5.1.3 Practical applications of matched filtering

Matched filtering is currently being applied to mainly two sources: detection of (1) chirping signals
from compact binaries consisting of black holes and/or neutron stars and (2) continuous waves
from rapidly-spinning neutron stars.

5.1.3.1 Coalescing binaries. In the case of chirping binaries, post-Newtonian theory (a per-
turbative approximation to Einstein’s equations in which the relevant quantities are expanded as
a power-series in 1/c, where c is the speed of light) has been used to model the dynamics of these
systems to a very high order in v/c, where v is the relative speeds of the objects in the binary
(see also Section 6.5, in which binaries are discussed in more detail). This is an approximation
that can be effectively used to match filter the signal from binaries whose component bodies are
of equal, or nearly equal, masses and the system is still “far” from coalescence. In reality, one
takes the waveform to be valid until the last stable circular orbit (LSCO). In the case of bina-
ries consisting of two neutron stars, or a neutron star and a black hole, tidal effects might affect
the evolution significantly before reaching the LSCO. However, this is likely to occur at frequen-
cies well-above the sensitivity band of the current ground-based detectors, so that for all practical
purposes post-Newtonian waveforms are a good approximation to low-mass (M < 10M⊙) binaries.

As elucidated in Section 6.5.2, progress in analytical and numerical relativity has made it pos-
sible to have a set of waveforms for the merger phase of compact binaries too. The computational
cost in matched filtering the merger phase, however, will not be high, as there will only be on
the order of a few 100 cycles in this phase. But it is important to have the correct waveforms to
enhance signal visibility and, more importantly, to enable strong-field tests of general relativity.

In the general case of black-hole–binary inspiral the search space is characterized by 17 different
parameters. These are the two masses of the bodies, their spins, eccentricity of the orbit, its
orientation at some fiducial time, the position of the binary in the sky and its distance from the
Earth, the epoch of coalescence and phase of the signal at that epoch, and the polarization angle.
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However, not all these parameters are important in a matched filter search. Only those parameters
that change the shape of the signal, such as the masses, orbital eccentricity and spins, or cause
a modulation in the signal due to the motion of the detector relative to the source, such as the
direction to the source, are to be searched for and others, such as the epoch of coalescence and the
phase at that epoch, are simply reference points in the signal that can be determined without any
significant burden on computational power.

For binaries consisting of nonspinning objects that are either observed for a short enough
period that the detector motion can be neglected, or last for only a short time in the sensitive
part of a detector’s sensitivity band, there are essentially two search parameters – the component
masses of the binary. It turns out that the signal manifold in this case is nearly flat, but the
masses are curvilinear coordinates and are not good parameters for choosing templates. Chirp
times, which are nonlinear functions of the masses, are very close to being Cartesian coordinates
and template spacing is more or less uniform in terms of these parameters. Chirp times are
post-Newtonian contributions at different orders to the duration of a signal starting from a time
when the instantaneous gravitational-wave frequency has a fiducial value fL to a time when the
gravitational wave frequency formally diverges and system coalesces. For instance, the chirp times
τ0 and τ3 at Newtonian and 1.5 PN orders, respectively, are

τ0 =
5

256π ν fL
(πMfL)

−5/3
, τ3 =

1

8 ν fL
(πMfL)

−2/3
, (84)

where M is the total mass and ν = m1m2/M
2 is the symmetric mass ratio. The above relations

can be inverted to obtain M and ν in terms of the chirp times:

M =
5

32π2 fL

τ3
τ0
, ν =

1

8π fL τ3

(

32π τ0
5 τ3

)2/3

. (85)

There is a significant amount of literature on the computational requirements to search for
compact binaries [321, 145, 277, 279]. The estimates for initial detectors are not alarming and
it is possible to search for these systems online. Searches for these systems by the LSC (see, for
example, [8]) employs a hexagonal lattice of templates [118] in the two-dimensional space of chirp
times. For the best LIGO detectors we need several thousand templates to search for component
masses in the range [mlow,mhigh] = [1, 100]M⊙ [279]. Decreasing the lower-end of the mass range

leads to an increase in the number of templates that goes roughly as m
−8/3
low and most current

searches [2, 6] only begin at mlow = 1M⊙, with the exception of one that looked for black hole
binaries of primordial origin [7], in which the lower end of the search was 0.2M⊙.

Inclusion of spins is only important when one or both of the components is rapidly spin-
ning [38, 95]. Spins effects are unimportant for neutron star binaries, for which the dimension-
less spin parameter q, that is the ratio of its spin magnitude to the square of its mass, is tiny:
q = JNS/M

2
NS ≪ 1. For ground-based detectors, even after including spins, the computational

costs, while high, are not formidable and it should be possible to carry out the search on large
computational clusters in real time [95]. Recently, the LSC has successfully carried out such a
search [15].

5.1.3.2 Searching for Continuous Wave Signals. In the case of continuous waves (CWs),
the signal shape is pretty trivial: a sinusoidal oscillation with small corrections to take account
of the slow spin-down of the neutron star/pulsar to account for the loss of angular momentum to
gravitational waves and other radiation/particles. However, what leads to an enormous computa-
tional cost here is the Doppler modulation of the signal caused by Earth’s rotation, the motion of
the Earth around the solar system barycenter and the moon. The number of independent patches
that we have to observe so as not to lose appreciable amounts of SNR can be worked out in the
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following manner. The baseline of a gravitational wave detector for CW sources is essentially
L = 2× 1AU ≃ 3× 1011 m. For a source that emits gravitational waves at 100 Hz, the wavelength
of the radiation is λ = 3 × 106 m, and the angular resolution ∆θ of the antenna at an SNR of 1
is ∆θ ≃ λ/L = 10−5, or a solid angle of ∆Ω ≃ (∆θ)2 = 10−10. In other words, the number of
patches one should search for is Npatches ∼ 4π/∆Ω ≃ 1011. Moreover, for an observation that lasts
for about a year (T ≃ 3 × 107 s) the frequency resolution is ∆f = 1/T ≃ 3 × 10−8. Searching
over a frequency band of 300 Hz, around the best sensitivity of the detector, gives the number
of frequency bins to be about 1010. Thus, it is necessary to search over roughly 1011 patches in
the sky for each of the 1010 frequency bins. This is a formidable task and one can only perform
a matched filter search over a short period (days/weeks) of the data or over a restricted region in
the sky, or just perform targeted searches for known objects such as pulsars, the galactic center,
etc. [90].

The severe computational burden faced in the case of CW searches has led to the development
of specialized searches that look for signals from known pulsars [5, 10, 12] using an efficient search
algorithm that makes use of the known parameters [115, 150] and hierarchical algorithms that add
power incoherently with the minimum possible loss in signal visibility [225, 4, 339, 11]. The most
ambitious project in this regard is the Einstein@Home project [369]. The goal here is to carry
out coherent searches for CW signals using wasted CPUs on idle computers at homes, offices and
university departments around the world. The project has been successful in attracting a large
number of subscriptions and provides the largest computational infrastructure to the LSC for the
specific search of CW signals and the first scientific results from such are now being published by
the LSC [13].

5.1.3.3 χ2 veto. Towards the end of Section 4.8 we discuss a powerful way of rejecting trig-
gers, whose root cause is not gravitational wave signals but false alarms due to instrumental and
environmental artifacts. In this section we will further quantify the χ2 veto [28] by using the scalar
product introduced in the context of matched filtering.

The main problem with real data is that it can be glitchy in the form of high amplitude transients
that might look like damped sinusoids. An inspiral signal and a template employed to detect it
are both broadband signals. Therefore, the matched-filter SNR for such signals has contributions
from a wide range of frequencies. However, the statistic of matched filtering, namely the SNR, is
an integral over frequency and it is not sensitive to contributions from different frequency regions.
Imagine dividing the frequency range of integration into a finite number of bins fk ≤ f < fk+1,
k = 1, . . . , p, such that their union spans the entire frequency band, f1 = 0 and fp+1 = ∞, and
further that the contribution to the SNR from each frequency bin is the same, namely,

4

∫ fk+1

fk

|h̃(f)|2
Sh(f)

df =
4

p

∫ ∞

0

|h̃(f)|2
Sh(f)

df. (86)

Now, define the contribution to the matched filtering statistic coming from the k-th bin by [28]

zk ≡ 〈q, x〉k ≡ 2

∫ fk+1

fk

[q̃∗(f)x̃(f) + q̃(f)x̃∗(f)]
df

Sh(f)
, (87)

where, as before, x̃(f) and q̃(f) are the Fourier transforms of the detector output and the template,
respectively. Note that the sum z =

∑

k zk gives the full matched filtering statistic [28]:

z = 〈q, x〉 ≡ 2

∫ ∞

0

[q̃∗(f)x̃(f) + q̃(f)x̃∗(f)]
df

Sh(f)
. (88)

Having chosen the bins and quantities zk as above, one can construct a statistic based on the
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measured SNR in each bin as compared to the expected value, namely

χ2 = p

p
∑

k=1

(

zk − z

p

)2

. (89)

When the background noise is stationary and Gaussian, the quantity χ2 obeys the well-known
chi-square distribution with p − 1 degrees of freedom. Therefore, the statistical properties of the
χ2 statistic are known. Imagine two triggers with identical SNRs, but one caused by a true signal
and the other caused by a glitch that has power only in a small frequency range. It is easy to see
that the two triggers will have very different χ2 values; in the first case the statistic will be far
smaller than in the second case. This statistic has served as a very powerful veto in the search
for signals from coalescing compact binaries and it has been instrumental in cleaning up the data
(see, e.g., [2, 6]).

5.2 Suboptimal filtering methods

It is not always possible to compute the shape of the signal from a source. For instance, there is
no computation, numerical or analytical, that reliably gives us the highly relativistic and nonlinear
dynamics of gravitational collapse, the supernova that follows it and the emitted gravitational
signal. The biggest problem here is the unknown physical state of the pre-supernova star and the
complex physics that is involved in the collapse and explosion. Thus, matched filtering cannot be
used to detect signals from supernovae.

Even when the waveform is known, the great variety in the shape of the emitted signals might
render matched filtering ineffective. In binaries, in which one of the component masses is much
smaller than the other, the smaller body will evolve on a highly precessing and in some cases
eccentric orbit, due to strong spin-orbit coupling. Moreover, the radiation backreaction effects,
which in the case of equal mass binaries are computed in an approximate way by averaging over an
orbital time scale, should be computed much more accurately. The resulting motion of the small
body in the Kerr spacetime of the larger body is extremely complicated, leading to a waveform
that is rather complex and matched filtering would not be a practical approach.

Suboptimal methods can be used in such cases and they have a twofold advantage: they are
less sensitive to the shape of the signal and are computationally significantly cheaper than matched
filtering. Of course, the price is a loss in the SNR. The best suboptimal methods are sensitive to
signal amplitudes a factor of two to three larger than that required by matched filtering and a
factor of 10 to 30 in volume.

Most suboptimal techniques are one form of time-frequency transform or the other. They
determine the presence or absence of a signal by comparing the power over a small volume in the
time-frequency plane in a given segment of data to the average power in the same volume over a
large segment of data. The time-frequency transform q(τ, f) of data x(t) using a window w(t) is
defined as

q(τ, f) =

∫ ∞

−∞

w(t− τ)x(t)e2πift dt. (90)

The window function w(t − τ) is centered at t = τ , and one obtains a time-frequency map by
moving the window from one end of a data segment to the other. The window is not unique and
the effectiveness of a window depends on the signal one is looking for. Once the time-frequency
map is constructed, one can look for excess power (compared to average) in different regions [33],
or look for certain patterns.

The method followed depends on the signal one is looking for. For instance, when looking for
unknown signals, all that can be done is to look for a departure from averaged behavior in different
regions of the map [33]. However, when some knowledge of the spectral and temporal content of
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the signal is known, it is possible to tune the algorithm to improve efficiency. The wavelet-based
waveburst algorithm is one such example [217] that has been applied to search for unstructured
bursts in LIGO data [9].

One can employ strategies that improve detection efficiency over a simple search for excess
power. For example, chirping signals will leave a characteristic track in the time-frequency plane,
with increasing frequency and power as a function of time. Time frequency map of a chirp signal
buried in noisy data is shown in Figure 7. An algorithm that optimizes the search for specific
shapes in the time-frequency plane is discussed in [187]. These and other methods have been
applied to understand how to analyze LISA data [172, 389].

Figure 7: Time-frequency maps showing the track left by the inspiral of a small black hole falling into
an SMBH as expected in LISA data. The left panel is for a central black hole without spin and the right
panel is for a central black hole whose dimensionless spin parameter is q = 0.9.

More recently, there has been a lot of progress in extending burst search algorithms for a
network of detectors [113, 218], as well as exploring new Bayesian-based methods to search for
unknown transients [335].

5.3 Measurement of parameters and source reconstruction

We have so far focused on the problem of detection and have not discussed parameter estimation in
any concrete way. In principle, parameter estimation should not be considered to be distinct from
detection. From a practical point of view, however, certain methods might be computationally
efficient in detecting a signal but not necessarily the best for parameter estimation, while the
best parameter estimation methods might not be computationally efficient. Thus, the problem of
parameter estimation is often treated separately from detection.

The first thing to realize is that we can never be absolutely certain that a signal is present in
a data train [159, 161]; we can only give confidence levels about its presence, which could be close
to 100% for high values of the SNR. The next thing to realize is that, whatever the SNR may be,
we cannot be absolutely certain about the true parameters of the signal: at best we can make an
estimate and these estimates are given in a certain range. The width of the range depends on the
confidence level required, being larger for higher confidence levels [159].
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Maximum likelihood estimates have long been used to measure the parameters of a known
signal buried in noisy data. The method consists in maximizing the likelihood ratio – the ratio
of the probability that a given signal is present in the data to the probability that the signal is
absent [186, 159]. Maximum likelihood estimates are not always minimum uncertainty estimates,
as has been particularly demonstrated in the case of binary inspiral signals by Balasubramanian,
et al. [64, 65]. However, until recently, this is the method that has been very widely followed in the
gravitational wave literature. But what is important to note is that maximum likelihood estimates
are unbiased when the SNR is large3, and the mean of the distribution of measured values of the
parameters will be centered around the true parameter values. This is an important quality that
will be useful in our discussion below.

Bayesian estimates, which take into account any prior knowledge that may be available about
the distribution of the source parameters, often give much better estimates and do not rely on the
availability of an ensemble of detector outputs [340, 274]. However, they are computationally a lot
more expensive than maximum likelihood estimates.

In any one measurement, any estimated parameters, however efficient, robust and accurate, are
unlikely to be the actual parameters of the signal, since, at any finite SNR, noise alters the input
signal. In the geometric language, the signal vector is being altered by the noise vector and our
matched filtering aims at computing the projection of this altered vector onto the signal space. The
true parameters are expected to lie within an ellipsoid of p dimensions at a certain confidence level
– the volume of the ellipsoid increasing with the confidence level at a given SNR but decreasing
with the SNR at a given confidence level.

5.3.1 Ambiguity function

The ambiguity function, well known in the statistical theory of signal detection [186], is a very
powerful tool in signal analysis: it helps one to assess the number of templates required to span the
parameter space of the signal [321], to make estimates of variances and covariances involved in the
measurement of various parameters, to compute biases introduced in using a family of templates
whose shape is not the same as that of a family of signals intended to be detected, etc. We will
see below how the ambiguity function can be used to compute the required number of templates.
Towards the end of this section we will use the ambiguity function for the estimation of parameters.

The ambiguity function is defined (see Equation (91) below) as the scalar product of two
normalized waveforms maximized over the initial phase of the waveform, in other words, the

absolute value of the scalar product4. A waveform e is said to be normalized if 〈e, e〉1/2
= 1, where

the inner product is inversely weighted by the PSD, as in Equation (79). Among other things,
normalized waveforms help in defining signal strengths: a signal is said to be of strength h0 if

h = h0e. Note that the optimal SNR for such a signal of strength h0 is, 〈h, h〉1/2
= h0.

Let e(t;α), where α = {αi|i = 0, . . . , p} is the parameter vector comprised of p+ 1 parameters,
denote a normalized waveform. It is conventional to choose the parameter α0 to be the lag τ , which
simply corresponds to a coordinate time when an event occurs and is therefore called an extrinsic
parameter, while the rest of the p parameters are called the intrinsic parameters and characterize
the gravitational wave source.

Given two normalized waveforms e(t;α) and e(t;β), whose parameter vectors are not necessarily

3How large the SNR should be to presume that there is no bias in the estimation of parameters depends on the
number of parameter-space dimensions and strictly speaking the statement is true only in the limit as SNR → ∞.

4Working with analytic signals h(t) = a(t)eφ(t)+iφ0 , where a(t) and φ(t) are the time-varying amplitude and
phase of the signal, respectively, we see that the initial phase φ0 of the signal simply factors out as a constant phase
in the Fourier domain and we can maximize over this initial phase by simply taking the absolute value of the scalar
product of a template with a signal.
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the same, the ambiguity A is defined as

A(α, β) ≡ |〈e(α), e(β)〉| . (91)

Since the waveforms are normalized, A(α, α) = 1 and A(α, β) < 1, if α 6= β. Here, α can be
thought of as the parameters of a (normalized) template while β those of a signal. With the
template parameters α fixed, the ambiguity function is a function of p signal parameters βi, giving
the SNR obtained by the template for different signals. The region in the signal parameter space
for which a template obtains SNRs larger than a chosen value (called the minimal match [277])
is the span of that template. Template families should be chosen so that altogether they span
the entire signal parameter space of interest with the least overlap of one other’s spans. One can
equally well interpret the ambiguity function as the SNR obtained for a given signal by filters of
different parameter values.

It is clear that the ambiguity function is a local maximum at the “correct” set of parameters,
β = α. Search methods that vary β to find the best fit to the parameter values make use of this
property in one way or another. But the ambiguity function will usually have secondary maxima
as a function of β with fixed α. If these secondaries are only slightly smaller than the primary
maximum, then noise can lead to confusion: it can, at random, sometimes elevate a secondary
and suppress a primary. These can lead to false measurements of the parameters. Search methods
need to be designed carefully to avoid this as much as possible. One way would be to fit the known
properties of the ambiguity function to an ensemble of maxima. This would effectively average
over the noise on individual peaks and point more reliably to the correct one.

It is important to note that in the definition of the ambiguity function there is no need for the
functional forms of the template and signal to be the same; the definition holds true for any signal-
template pair of waveforms. Moreover, the number of template parameters need not be identical
(and usually aren’t) to the number of parameters characterizing the signal. For instance, a binary
can be characterized by a large number of parameters, such as the masses, spins, eccentricity
of the orbit, etc., while we may take as a model waveform the one involving only the masses.
In the context of inspiral waves, e(t;β) is the exact general relativistic waveform emitted by a
binary, whose form we do not know, while the template family is a post-Newtonian, or some other,
approximation to it, that will be used to detect the true waveform. Another example would be
signals emitted by spinning neutron stars, isolated or in binaries, whose time evolution is unknown,
either because we cannot anticipate all the physical effects that affect their spin, or because the
parameter space is so large that we cannot possibly take into account all of them in a realistic
search.

Of course, in such cases we cannot compute the ambiguity function, since one of the arguments
to the ambiguity function is unknown. These are, indeed, issues where substantial work is called
for. What are all the physical effects to be considered so as not to miss out a waveform from our
search? How to make a choice of templates when the functional form of templates is different from
those of signals? For this review it suffices to assume that the signal and template waveforms are
of identical shape and the number of parameters in the two cases is the same.

5.3.2 Metric on the space of waveforms

The computational cost of a search and the estimation of parameters of a signal afford a lucid geo-
metrical picture developed by Balasubramanian et al. [65] and Owen [277]. Much of the discussion
below is borrowed from their work.

Let xk, k = 1, 2, . . . , N , denote the discretely sampled output of a detector. The set of all
possible detector outputs satisfy the usual axioms of a vector space. Therefore, xk can be thought
of as an N -dimensional vector. It is more convenient to work in the continuum limit, in which case
we have infinite dimensional vectors and the corresponding vector space. However, all the results
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are applicable to the realistic case in which detector outputs are treated as finite dimensional
vectors.

Amongst all vectors, of particular interest are those corresponding to gravitational waves from
a given astronomical source. While every signal can be thought of as a vector in the infinite-
dimensional vector space of the detector outputs, the set of all such signal vectors do not, by
themselves, form a vector space. However, the set of all normed signal vectors (i.e., signal vectors
of unit norm) form a manifold, the parameters of the signal serving as a coordinate system [64, 65,
277, 279]. Thus, each class of an astronomical source forms an n-dimensional manifold Sn, where
n is the number of independent parameters characterizing the source. For instance, the set of all
signals from a binary on a quasi-circular orbit inclined to the line of sight at an angle ι, consisting
of nonspinning black holes of masses m1, and m2, located a distance D from the Earth5 initially in
the direction (θ, ϕ) and expected to merge at a time tC with the phase of the signal at merger ϕC ,
forms a nine-dimensional manifold with coordinates {D, θ, ϕ, m1, m2, tC , ϕC , ι, ψ}, where ψ is
the polarization angle of the signal. In the general case of a signal characterized by n parameters
we shall denote the parameters by pα, where α = 1, . . . , n.

The manifold Sn can be endowed with a metric gαβ that is induced by the scalar product
defined in Equation (79). The components of the metric in a coordinate system pα are defined by6

gαβ ≡
〈

∂αĥ, ∂βĥ
〉

, ∂αĥ ≡ ∂ĥ

∂pα
. (92)

The metric can then be used on the signal manifold as a measure of the proper distance dℓ between
nearby signals with coordinates pα and pα + dpα, that is signals ĥ(pα) and ĥ(pα + dpα),

dℓ2 = gαβdpαdpβ . (93)

Now, by Taylor expanding ĥ(pα + dpα) around pα, and keeping only terms to second order
in dpα, it is straightforward to see that the overlap O of two infinitesimally close signals can be
computed using the metric:

O(dpα; pα) ≡
〈

ĥ(pα), ĥ(pα + dpα)
〉

= 1 − 1
2gαβdpαdpβ . (94)

The metric on the signal manifold is nothing but the well-known Fisher information matrix
usually denoted Γαβ , (see, e.g., [186, 283]) but scaled down by the square of the SNR, i.e., gαβ =
ρ−2Γαβ . The information matrix is itself the inverse of the covariance matrix Cαβ and is a very
useful quantity in signal analysis.

5.3.3 Covariance matrix

Having defined the metric, we next consider the application of the geometric formalism in the
estimation of statistical errors involved in the measurement of the parameters. We closely follow
the notation of Finn and Chernoff [159, 161, 114].

Let us suppose a signal of known shape with parameters pα is buried in background noise that
is Gaussian and stationary. Since the signal shape is known, one can use matched filtering to dig
the signal out of the noise. The measured parameters pα will, in general, differ from the true

5Even though we deal with normed signals (which amounts to fixing D), astrophysical gravitational wave signals
are characterized by this additional parameter.

6We have followed the definition of the metric as is conventional in parameter estimation theory (see, e.g.,
[159, 161, 114, 65]), which differs from that used in template placement algorithms (see, e.g., [277]) by a factor of
two. This difference will impact the relationship between the metric and the match, as will be apparent in what
follows.
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parameters of the signal7. Geometrically speaking, the noise vector displaces the signal vector and
the process of matched filtering projects the (noise + signal) vector back on to the signal manifold.
Thus, any nonzero noise will make it impossible to measure the true parameters of the signal. The
best one can hope for is a proper statistical estimation of the influence of noise.

The posterior probability density function P of the parameters pα is given by a multivariate
Gaussian distribution8:

P(∆pα) dn∆p =
dn∆p

(2π)n/2
√
C

exp

[

−1

2
C−1

αβ ∆pα∆ pβ

]

, (95)

where n is the number of parameters, ∆pα = pα − pα, and Cαβ is the covariance matrix, C being
its determinant. Noting that C−1

αβ = ρ2gαβ , we can rewrite the above distribution as

P(∆pα) dn∆p =
ρn √

g dn∆p

(2π)n/2
exp

[

−ρ
2

2
gαβ ∆pα∆ pβ

]

, (96)

where we have used the fact that C = 1/(ρ2n g), g being the determinant of the metric gαβ . Note
that if we define new parameters p′α = ρpα, then we have exactly the same distribution function
for all SNRs, except that the deviations ∆pα are scaled by ρ.

Let us first specialize to one dimension to illustrate the region of the parameter space with
which one should associate an event at a given confidence level. In one dimension the distribution
of the deviation from the mean of the measured value of the parameter p is given by

P(∆p)d∆p =
d∆p√
2πσ

exp

(

−∆p2

2σ2

)

=
ρ
√
gppd∆p√

2π
exp

(

−ρ
2

2
gpp∆p

2

)

, (97)

where, analogous to the n-dimensional case, we have used σ2 = 1/(ρ2gpp). Now, at a given SNR,
what is the volume VP in the parameter space, such that the probability of finding the measured
parameters p inside this volume is P? This volume is defined by

P =

∫

∆p∈VP

P(∆p)d∆p. (98)

Although VP is not unique, it is customary to choose it to be centered around ∆p = 0:

P =

∫

(∆p/σ)2≤r2(P )

d∆p√
2πσ

exp

(

−∆p2

2σ2

)

=

∫

ρ2gpp∆p2≤r2(P )

ρ
√
gppd∆p√

2π
exp

(

−ρ
2 gpp∆p

2

2

)

, (99)

where, given P , the above equation can be used to solve for r(P ) and it determines the range of inte-
gration: −rσ ≤ ∆p ≤ rσ. For instance, the volumes VP corresponding to P ≃ 0.683, 0.954, 0.997, . . .,
are the familiar intervals [−σ, σ], [−2σ, 2σ], [−3σ, 3σ], . . ., and the corresponding values of r are
1, 2, 3. Since σ = 1/

√

ρ2gpp, we see that in terms of gpp the above intervals translate to

1

ρ

[

− 1
√
gpp

,
1

√
gpp

]

,
1

ρ

[

− 2
√
gpp

,
2

√
gpp

]

,
1

ρ

[

− 3
√
gpp

,
3

√
gpp

]

, . . . . (100)

Thus, for a given probability P , the volume VP shrinks as 1/ρ. The maximum distance dmax

within which we can expect to find “triggers” at a given P depends inversely on the SNR ρ:
dℓ =

√

gpp∆p2 = r/ρ. Therefore, for P ≃ 0.954, r = 2 and at an SNR of 5 the maximum distance

7In what follows we shall use an over-line to distinguish the measured parameters from the true parameters pα.
8A Bayesian interpretation of P(∆pα) is the probability of having the true signal parameters lie somewhere inside

the ellipsoidal volume centered at the Maximum Likelihood point pα.
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is 0.4, which corresponds to a match of ǫ = 1− 1
2dℓ

2 = 0.92. In other words, in one dimension 95%
of the time we expect our triggers to come from templates that have an overlap greater than or
equal to 0.92 with the buried signal when the SNR is five. This interpretation in terms of the match
is a good approximation as long as dℓ ≪ 1, which will be true for large SNR events. However,
for weaker signals and/or greater values of P we can’t interpret the results in terms of the match,
although Equation (98) can be used to determine r(P ). As an example, at P ≃ 0.997, r = 3 and
at an SNR of ρ = 4, the maximum distance is dℓ = 0.75 and the match is ǫ = 23/32 ≃ 0.72, which
is significantly smaller than one and the quadratic approximation is not good enough to compute
the match.

These results generalize to n dimensions. In n-dimensions the volume VP is defined by

P =

∫

∆pα∈VP

P(∆pα) dn∆p. (101)

Again, VP is not unique but it is customary to center the volume around the point ∆pα = 0:

P =

∫

ρ2gαβ ∆pα∆ pβ≤r2(P,n)

ρn √
g dn∆p

(2π)n/2
exp

[

−ρ
2

2
gαβ ∆pα∆ pβ

]

. (102)

Given P and the parameter space dimension n, one can iteratively solve the above equation for
r(P, n). The volume VP is the surface defined by the equation

gαβ∆pα∆pβ =

(

r

ρ

)2

. (103)

This is the equation of an n-dimensional ellipsoid whose size is defined by r/ρ. For a given r (which
determines the confidence level), the size of the ellipsoid is inversely proportional to the SNR, the
volume decreasing as ρn. However, the size is not small enough for all combinations of P and ρ
to interpret the distance from the center of the ellipsoid to its surface, in terms of the overlap or
match of the signals at the two locations, except when the distance is close to zero. This is because
the expression for the match in terms of the metric is based on the quadratic approximation, which
breaks down when the matches are small. However, the region defined by Equation (103) always
corresponds to the probability P and there is no approximation here (except that the detector
noise is Gaussian).

When the SNR ρ is large and 1 − P is not close to zero, the triggers are found from the signal

with matches greater than or equal to 1− r2(P,n)
2ρ2 . Table 2 lists the value of r for several values of

P in one, two and three-dimensions and the minimum match ǫMM for SNRs 5, 10 and 20.
Table 2 should be interpreted in light of the fact that triggers come from an analysis pipeline in

which the templates are laid out with a certain minimal match and one cannot, therefore, expect
the triggers from different detectors to be matched better than the minimal match.

From Table 2, we see that, when the SNR is large (say greater than about 10), the dependence
of the match ǫMM on n is very weak; in other words, irrespective of the number of dimensions, we
expect the match between the trigger and the true signal (and for our purposes the match between
triggers from different instruments) to be pretty close to 1, and mostly larger than a minimal
match of about 0.95 that is typically used in a search. Even when the SNR is in the region of 5,
for low P again there is a weak dependence of ǫMM on the number of parameters. For large P and
low SNR, however, the dependence of ǫMM on the number of dimensions becomes important. At
an SNR of 5 and P ≃ 0.997, ǫMM = 0.91, 0.87, 0.85 for n = 1, 2, 3 dimensions, respectively.

Bounds on the estimation computed using the covariance matrix are called Cramér–Rao bounds.
Cramér–Rao bounds are based on local analysis and do not take into consideration the effect
of distant points in the parameter space on the errors computed at a given point, such as the

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

http://www.livingreviews.org/lrr-2009-2


64 B.S. Sathyaprakash and Bernard F. Schutz

Table 2: The value of the (squared) distance dℓ2 = r2/ρ2 for several values of P and the corresponding
smallest match that can be expected between templates and the signal at different values of the SNR.

P = 0.683 P = 0.954 P = 0.997

ρ dℓ2 ǫMM dℓ2 ǫMM dℓ2 ǫMM

n = 1

5 0.04 0.9899 0.16 0.9592 0.36 0.9055
10 0.01 0.9975 0.04 0.9899 0.09 0.9772
20 0.0025 0.9994 0.01 0.9975 0.0225 0.9944

n = 2

5 0.092 0.9767 0.2470 0.9362 0.4800 0.8718
10 0.023 0.9942 0.0618 0.9844 0.1200 0.9695
20 0.00575 0.9986 0.0154 0.9961 0.0300 0.9925

n = 3

5 0.1412 0.9641 0.32 0.9165 0.568 0.8462
10 0.0353 0.9911 0.08 0.9798 0.142 0.9638
20 0.00883 0.9978 0.02 0.9950 0.0355 0.9911

secondary maxima in the likelihood. Though the Cramér–Rao bounds are in disagreement with
maximum likelihood estimates, global analysis, taking the effect of distant points on the estimation
of parameters, does indeed give results in agreement with maximum likelihood estimation as shown
by Balasubramanian and Dhurandhar [63].

5.3.4 Bayesian inference

A good example of an efficient detection algorithm that is not a reliable estimator is the time-
frequency transform of a chirp. For signals that are loud enough, a time-frequency transform
of the data would be a very effective way of detecting the signal, but the transform contains
hardly any information about the masses, spins and other information about the source. This is
because the time-frequency transform of a chirp is a mapping from the multi-dimensional (17 in the
most general case) space of chirps to just the two-dimensional space of time and frequency. Even
matched filtering, which would use templates that are defined on the full parameter space of the
signal, would not give the parameters at the expected accuracy. This is because the templates are
defined only at a certain minimal match and might not resolve the signal well enough, especially
for signals that have a high SNR.

In recent times Bayesian inference techniques have been applied with success in many areas in
astronomy and cosmology. These techniques are probably the most sensible way of estimating the
parameters, and the associated errors, but cannot be used to efficiently search for signals. Bayesian
inference is among the simplest of statistical measures to state, but is not easy to compute and is
often subject to controversies. Here we shall only discuss the basic tenets of the method and refer
the reader for details to an excellent treatise on the subject (see, e.g., Sivia [340]).

To understand the chief ideas behind Bayesian inference, let us begin with some basic concepts
in probability theory. Given two hypothesis or statements A and B about an observation, let
P (A,B) denote the joint probability of A and B being true. For the sake of clarity, let A denote
a statement about the universe and B some observation that has been made. Now, the joint
probability can be expressed in terms of the individual probability densities P (A) and P (B) and
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conditional probability densities P (A|B) and P (B|A) as follows:

P (A,B) = P (A)P (B|A) or P (A,B) = P (B)P (A|B). (104)

The first of these equations says the joint probability of A and B both being true is the probability
that A is true times the probability that B is true given that A is true and similarly the second.
We can use the above equations to arrive at Bayes theorem:

P (B)P (A|B) = P (A)P (B|A) or P (A|B) =
P (A)P (B|A)

P (B)
. (105)

The left-hand side of the above equation can be interpreted as a statement about A (the universe)
given B (the data). This is the posterior probability density. The right-hand side contains P (B|A),
which is the probability that B is obtained given that A is true and is called the likelihood, P (A),
which is the probability of A, called the prior probability of A, and P (B) (the prior of B), which
is simply a normalizing constant often ignored in Bayesian analysis.

For instance, if A denotes the statement it is going to rain and B the amount of humidity in the
air then the above equation gives us the posterior probability that it rains when the air contains
a certain amount of humidity. Clearly, the posterior depends on what is the likelihood of the air
having a certain humidity when it rains and the prior probability of rain on a given day. If the
prior is very small (as it would be in a desert, for example) then you would need a rather large
likelihood for the posterior to be large. Even when the prior is not so small, say a 50% chance
of rain on any given day (as it would be if you are in Wales), the likelihood has to be large for
posterior probability to say something about the relationship between the level of humidity and
the chance of rain.

As another example, and more relevant to the subject of this review, let s be the statement
the data contains a chirp (signal), n the statement the data contains an instrumental transient,
(noise), and let t be a test that is performed to infer which of the two statements above are true.
Let us suppose t is a very good test, in that it discriminates between s and n very well, and say
the detection probability is as high as P (t|s) = 0.95 with a low false alarm rate P (t|n) = 0.05
(note that P (t|s) and P (t|n) need not necessarily add up to 1). Also, the expected event rate of a
chirp during our observation is low, P (s) = 10−5, but the chance of an instrumental transient is
relatively large, P (n) = 0.01. We are interested in knowing what the posterior probability of the
data containing a chirp is, given that the test has been passed. By Bayes theorem this is

P (s|t) =
P (t|s)P (s)

P (t)
=

P (t|s)P (s)

P (t|s)P (s) + P (t|n)P (n)
, (106)

where P (t) (the probability of the test being positive) is taken to result from either the chirp or
the instrumental transient. Substituting for various quantities in the above equation we find

P (s|t) =
0.95 × 10−5

0.95 × 10−5 + 0.05 × 0.01
≃ 0.02. (107)

There is only a 2% chance that the data really contains a chirp when the test was taken. On the
contrary, for the same data we find that the chance of an instrumental transient for a positive test
result is P (n|t) ∼ 98%. Thus, though there is a high (low) probability for the test to be positive
in the presence of a signal (noise) when the test is indeed positive, we cannot necessarily conclude
that a signal is present. This is not surprising since the prior probability of the signal being present
is very low. The situation can be remedied by designing a test that gives a far lower probability
for the test to give a positive result in the case of an instrumental transient (i.e., a very low false
alarm rate).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

http://www.livingreviews.org/lrr-2009-2


66 B.S. Sathyaprakash and Bernard F. Schutz

Thus, Bayesian inference neatly folds the prior knowledge about sources in the estimation
process. One might worry that the outcome of a measurement process would be seriously biased
by our preconception of the prior. To understand this better, let us rewrite Equation (106) as
follows:

P (s|t) =
1

1 + P (t|n)P (n)/P (t|s)P (s)
=

1

1 + LNSpSN
, (108)

where LNS = P (t|n)/P (t|s) is the ratio of the two likelihoods and pSN = P (s)/P (n) is the ratio of
the priors. The latter is not in the hands of a data analyst; it is determined by the nature of the
source being searched for and the property of the instrument. The only way an analyst can make
the posterior probability large is by choosing a test that gives a small value for the ratio of the
two likelihoods. When LNS ≪ pSN (i.e., the likelihood of the test being positive when the signal
is present is far larger, depending on the priors, than when the transient is present) the posterior
will be close to unity.

The above example tells us why we have to work with unusually-small false-alarm probability in
the case of gravitational wave searches. For instance, to search for binary coalescences in ground-
based detectors we use a (power) SNR threshold of about 30 to 50. This is because the expected
event rate is about 0.04 per year.

Computing the posterior involves multi-dimensional integrals and these are highly expensive
computationally, when the number of parameters involved is large. This is why it is often not
possible to apply Bayesian techniques to continuously streaming data; it would be sensible to
reserve the application of Bayesian inference only for candidate events that are selected from
inexpensive analysis techniques. Thus, although Bayesian analysis is not used in current detection
pipelines, there has been a lot of effort in evaluating its ability to search for [115, 348, 122, 120]
and measure the parameters of [116, 121, 377] a signal and in follow-up analysis [378].
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6 Physics with Gravitational Waves

Classical general relativity has passed all possible experimental and observational tests so far. The
theory is elegant, self-consistent and mathematically complete (i.e., its equations are, in principle,
solvable). However, theorists are uncomfortable with general relativity because it has so far eluded
all efforts of quantization, making it a unique modern theory, whose quantum mechanical analogue
is unknown. Although general relativity arises as a by-product in certain string theories, the
physical relevance of such theories is unclear. Therefore, it has been proposed that general relativity
is a low-energy limit of a more general theory, which in itself is amenable to both quantization
and unification. There are also other theoretical motivations to look for modifications of general
relativity or new theories of gravity. While there are some alternative candidates (including the
Brans–Dicke theory), none has predictions that contradict general relativistic predictions in linear
and mildly nonlinear gravitational fields. More precisely, the extra parameters of these other
theories of gravity are constrained by the present experimental and astronomical observations,
however, they are expected to significantly deviate from general relativistic predictions under
conditions of strong gravitational fields.

Gravitational wave observations provide a unique opportunity to test strongly nonlinear and
highly relativistic gravity and hence provide an unprecedented testbed for confronting different
theories of gravity. Every nonlinear gravitational effect in general relativity will have a counterpart
in alternative theories and therefore a measurement of such an effect would provide an opportunity
to compare the performance of general relativity with its competitors. Indeed, a single measurement
of the full polarization of an incident gravitational wave can potentially rule out general relativity.
This is a field that would benefit from an in-depth study. What we are lacking is a systematic
study of higher-order post-Newtonian effects in alternative theories of gravity. For instance, we do
not know how tails of gravitational waves or tails of tails would appear in any theory other than
general relativity.

In what follows we present strong field tests of general relativity afforded by future gravitational
wave observations. We will begin with observations of single black holes followed by black hole
binaries (more generally, coalescing binaries of compact objects).

6.1 Speed of gravitational waves

Association of a gravitational wave event with an electromagnetic event, such as the observation
of a gamma or X-ray burst coincidentally with a gravitational wave event, would help to deduce
the speed of gravitational waves to a phenomenal accuracy. The best candidate sources for the
simultaneous observations of both are the well-known extra-galactic gamma-ray bursts (GRBs).
Depending on the model that produces the GRB, the delay between the emission of a GRB and
gravitational waves might be either a fraction of a second (as in GRBs generated by internal shocks
in a fireball [306]) or 100’s of seconds (as in GRBs generated when the fireball is incident on an
external medium [256]). It is unlikely that high-redshift gamma-ray observations will be visible
in the gravitational wave band, since the amplitude of gravitational waves might be rather low.
However, advanced detectors might see occasional low-redshift events, especially if the GRB is
caused by black-hole–neutron-star mergers. Third generation detectors would be sensitive to such
events up to z = 2. A single unambiguous association can verify the speed of gravitational waves
relative to light to a fantastic precision.

For instance, even a day’s delay in the arrival times of gravitational and electromagnetic ra-
diation from a source at a distance of one giga light year (distance to a low-redshift GRB de-
tectable by advanced detectors) would determine the relative speeds to better than one part in 1011

(1 day/109 yr ∼ 3 × 10−12). Coincident detection of GRBs and gravitational waves would require
good timing accuracy to determine the direction of the source so that astronomical observations
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of associated gamma rays (and afterglows in other spectral bands) can be made. Consequently,
gravitational wave antennas around the globe will have to make a coincident detection of the event.

If the speed of gravitational waves is less than that of light, then this could indicate that the
graviton has an effective nonzero mass.

This would have other observable effects, in particular dispersion; different frequencies should
move at different speeds. Will [393] pointed out that LISA’s observations of coalescences of SMBHs
at high redshifts will place extremely tight constraints on dispersion, and may, therefore, indirectly
set the best available limits on the speed of gravitational waves. This and other bounds on the
graviton mass are discussed in Section 6.6.1.

6.2 Polarization of gravitational waves

As noted in Section 2, in Einstein’s theory gravitational waves have two independent polarizations,
usually denoted h+ and h× [259]. A general wave will be a linear combination of both. Rotating
sources typically emit both polarizations with a phase delay between them, leading to elliptical
polarization patterns. Depending on the nature of the source such polarizations can be detected
either with a single detector (in the case of continuous wave sources) or with a network of detectors
(in the case of burst sources).

While Einstein’s general relativity predicts only two independent polarizations, there are other
theories of gravitation in which there are additional states of polarization. For instance, in Fierze–
Jordan–Brans–Dicke theory [394] there are four polarization degrees of freedom more than in
Einstein’s theory. Therefore, an unambiguous determination of the polarization of the waves will
be of fundamental importance.

In the case of a burst source, to determine two polarization states, source direction and am-
plitude requires three detectors, observing other polarizations would require the use of more than
three detectors (see, for example, Will [394]). The scalar polarization mode of Brans–Dicke, for
example, expands a transverse ring of test particles without changing its shape. This is the breath-
ing mode, or monopole polarization. If such a wave is incident from above on an interferometer, it
will not register at all. But if it comes in along one of the arms, then, since it acts transversely,
it will affect only the other arm and leave a signal. If the wave is seen with enough detectors,
then it is possible to determine that it has scalar polarization. Note that a measurement such as
this can make a qualitative change in physics: a single measurement could put general relativity in
jeopardy.

Polarization measurements have an important application in astronomy. The polarization of
the waves contains orientation information. For example, a binary system emits purely circular
polarization along the angular momentum axis, but purely linear polarization in its equatorial
plane. By measuring the polarization of waves from a binary (or from a spinning neutron star)
one can determine the orientation and inclination of its spin axis. This is a piece of information
that is usually very hard to extract from optical observations. We will return to this discussion in
Section 7.1.1.

6.3 Gravitational radiation reaction

In 1974, Hulse and Taylor discovered the first double neutron star binary PSR B1913+16, a sys-
tem in which the emission of gravitational radiation has an observable effect [200, 356]. General
relativity predicts that the loss of energy and angular momentum due to the emission of gravita-
tional waves should cause the period of the system to decrease and, by carefully monitoring the
orbital period of the binary, that it would be possible to measure the rate at which the period
changes. The rate at which the period decays can be computed using the quadrupole formula for
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the luminosity of the emitted radiation combined with the energy-balance equation; namely that
the energy carried away by the waves comes at the expense of the binding energy of the system.

For a binary consisting of stars of masses m1 and m2, in an orbit of eccentricity e and period
Pb, the period decay is given by the generalization of Equation (32) [290]:

Ṗb = −192π

5

(

2πM
Pb

)5/3(

1 +
73

24
e2 +

37

96
e4
)

(

1 − e2
)−7/2

, (109)

where we recall that

M = (m1m2)
3/5

(m1 +m2)
−1/5

= µ3/5M2/5 (110)

is the chirpmass of the binary that we defined in Equation (31). (In the third expression here,
µ is the reduced mass of the binary and M its total mass.) Since the masses of the binary and
the eccentricity of the orbit can be measured by other means, one can use these parameters in the
above equation to infer the rate at which the period is predicted to decrease according to general
relativity. For the Hulse–Taylor binary the relevant values are: m1 = 1.4414M⊙, m2 = 1.3867M⊙,

e = 0.6171338, Pb = 2.790698× 104 s. The predicted value Ṗb
GR

= −(2.40242± 0.00002)× 10−12,
while the observed period decay (after subtracting the apparent decay due to the acceleration

of the pulsar in the gravitational field of our galaxy, as described in Section 3.4.3) is Ṗb
Obs

=
−(2.4056± 0.0051)× 10−12 and the two are in agreement to better than a tenth of a percent [394].

Observation of the decay of the orbital period in PSR B1913+16 is an unambiguous direct
observation of the effect of gravitational radiation backreaction on the dynamics of the system.
PSR B1913+16 was the first system in which the effect of gravitational radiation reaction force
was measured. In 2004, a new binary pulsar PSR J0737-3039 was discovered [101, 247]. J0737 is
in a tighter orbit than PSR B1913+16; with an orbital period of only 2.4 hrs, the orbit is shrinking
by about 7 mm each day in good agreement with the general relativistic prediction. Several other
systems are also known [242]. In Sections 6.5, 6.5.2 and 6.5.3 we will discuss in some detail the
dynamics of relativistic binaries and the radiation reaction as predicted by post-Newtonian theory
and numerical relativity simulations.

6.4 Black hole spectroscopy

An important question relating to the structure of a black hole is its stability. Studies that began in
the 1970s [307, 381, 382, 398, 296, 357, 358, 297] showed that a black hole is stable under external
perturbation. A formalism was developed to study how a black hole responds to generic external
perturbations, which has come to be known as black hole perturbation theory [112]. What we now
know is that a distorted Kerr black hole relaxes to its axisymmetric state by partially emitting
the energy in the distortion as gravitational radiation. The radiation consists of a superposition
of QNMs, whose frequency and damping time depend uniquely on the mass M and spin angular
momentum J of the parent black hole and not on the nature of the external perturbation. The
amplitudes and damping times of different modes, however, are determined by the details of the
perturbation and are not easy to calculate, except in some simple cases.

The uniqueness of the QNMs is related to the “no-hair” theorem of general relativity according
to which a black hole is completely specified by its mass and spin9. Thus, observing QNMs
would not only confirm the source to be a black hole, but would be an unambiguous proof of the
uniqueness theorem of general relativity.

The end state of a black hole binary will lead to the formation of a single black hole, which
is initially highly distorted. Therefore, one can expect coalescing black holes to end their lives

9A black hole can, in principle, carry an electric charge in addition to mass and spin angular momentum. However,
astrophysical black holes are believed to be electrically neutral
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with the emission of QNM radiation, often called ringdown radiation. It was realized quite early
on [164] that the energy emitted during the ringdown phase of a black-hole–binary coalescence
could be pretty large. Although, the initial quantitative estimates [164] have proven to be rather
high, the qualitative nature of the prediction has proven to be correct. Indeed, numerical relativity
simulations show that about 1–2% of a binary’s total mass would be emitted in QNMs [298]. The
effective one-body (EOB) model [96, 97], the only analytical treatment of the merger dynamics,
gives the energy in the ringdown radiation to be about 0.7% of the total mass, consistent with
numerical results. Thus, it is safe to expect that the ringdown will be as luminous an event as the
inspiral and the merger phases. The fact that QNMs can be used to test the no-hair theorem puts
a great emphasis on understanding their properties, especially the frequencies, damping times and
relative amplitudes of the different modes that will be excited during the merger of a black hole
binary and how accurately they can be measured.
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Figure 8: Normal mode frequencies (left) and corresponding quality factors (right) of fundamental modes
with l = 2, 3, 4, as a function of the dimensionless black hole spin j, for different values ofm = l, . . . , 0, . . .−l
(for each l, different line styles from top to bottom correspond to decreasing values of m). Figure reprinted
with permission from [76]. c© The American Physical Society.

QNMs are characterized by a complex frequency ω that is determined by three “quantum”
numbers, (l, m, n) (see, e.g., [76]). Here (l, m) are indices that are similar to those for standard
spherical harmonics. For each pair of (l, m) there are an infinitely large number of resonant
modes characterized by another integer n. The time dependence of the oscillations is given by
exp(iωt), where ω is a complex frequency, its real part determining the mode frequency and
the imaginary part (which is always positive) giving the damping time: ω = ωlmn + i/τlmn,
ωlmn = 2πflmn defining the angular frequency and τlmn the damping time. The ringdown wave
will appear in a detector as the linear combination h(t) of the two polarizations h+ and h×, that is
h(t) = F+h+ +F×h×, F+ and F× being the antenna pattern functions as defined in Equation (57).
The polarization amplitudes for a given mode are given by

h+ =
A(flmn, Qlmn, ǫrd)

r
(1 + cos2 ι) exp

(−πflmnt

Qlmn

)

cos (2πflmnt+ ϕlmn) ,

h× =
A(flmn, Qlmn, ǫrd)

r
2 cos ι exp

(−πflmnt

Qlmn

)

sin (2πflmnt+ ϕlmn) , (111)

where ι is the angle between the black hole’s spin axis and the observer’s line of sight and ϕlmn is an
unknown constant phase. The quality factor Qlmn of a mode is defined as Qlmn = ωlmnτlmn/2 and
gives roughly the number of oscillations that are observable before the mode dies out. Figure 8 [76]
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plots frequencies and quality factors for the first few QNMs as a function of the dimensionless spin
parameter j = J/M2. The mode of a Schwarzschild black hole corresponding to l = 2, m = n = 0,
is given by

f200 = ±1.207 × 103 10M⊙

M
Hz, τ200 = 5.537 × 10−4 M

10M⊙

s. (112)

For stellar-mass–black-hole coalescences expected to be observed in ground-based detectors the
ringdown signal is a transient that lasts for a very short time. However, for space-based LISA
the signal would last several minutes for a black hole of M = 107M⊙. In the latter case, the
ringdown waves could carry the energy equivalent of 105M⊙ converted to gravitational waves –
a phenomenal amount of energy compared even to the brightest quasars and gamma ray bursts.
Thus, LISA should be able to see QNMs from black hole coalescences anywhere in the universe,
provided the final (redshifted) mass of the black hole is larger than about 106M⊙, as otherwise
the signal lasts for far too short a time for the detector to accumulate the SNR.

Berti et al. [76] have carried out an exhaustive study, in which they find that the LISA obser-
vations of SMBH binary mergers could be an excellent testbed for the no-hair theorem. Figure 9
(left panel) plots the fractional energy ǫrd that must be deposited in the ringdown mode so that
the event is observable at a distance of 3 Gpc. Black holes at 3 Gpc with mass M in the range
of 106 – 108M⊙ would be observable (i.e., will have an SNR of 10 or more) even if a fraction
ǫrd ≃ 10−7M of energy is in the ringdown phase. Numerical relativity predicts that as much as 1%
of the energy could be emitted as QNMs, when two black holes merge, implying that the ringdown
phase could be observed with an SNR of 100 or greater all the way up to z ∼ 10, provided their
mass lies in the appropriate range10. Furthermore, they find that at this redshift it should be
possible to resolve the fundamental l = 2, m = 2 mode. Since black holes forming from primordial
gas clouds at z = 10 – 15 could well be the seeds of galaxy formation and large-scale structure,
LISA could indeed witness their formation through out the cosmic history of the universe.
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Figure 9: The smallest fraction of black hole mass in ringdown waveforms that is needed to observe the
fundamental mode at a distance of 3 Gpc (left) for three values of the black hole spin, j = 0 (solid line)
j = 0.80 (dashed line) and j = 0.98 (dot-dashed line) and the error in the measurement of the various
parameters as a function of the black hole spin for the same mode (right). Figure reprinted with permission
from [76]. c© The American Physical Society.

Figure 9 (right panel) shows SNR-normalized errors (i.e., one-sigma deviations multiplied by

10Note that a black hole of physical mass M at a redshift of z will appear as a black hole of mass Mz = (1+ z)M .
This shifts the frequency of the QNM to the lower end of the spectrum. Assuming a frequency cutoff of 10−4 Hz for
LISA, this means that only black holes of intrinsic mass M < 1.2× 108 M⊙/(1 + z) can be observed at a redshift z.
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the SNR) in the measurement of the various QNM parameters (the mass of the hole M , its spin
j, the QNM amplitude A and phase ϕ) for the fundamental l = m = 2 mode. We see that, for
expected ringdown efficiencies of ǫrd ≃ 10−2M into the fundamental mode of an a-million–solar-
mass black hole with spin j = 0.8 at 3 Gpc (ρ ∼ 2000), the mass and spin of the black hole can
measured to an accuracy of a tenth of a percent.

By observing a mode’s frequency and damping time, one can deduce the (redshifted) mass
and spin of the black hole. However, this is not enough to test the no-hair theorem. It would be
necessary, although by no means sufficient, to observe at least one other mode (whose damping
time and frequency can again be used to find the black hole’s mass and spin) to see if the two are
consistent with each other. Berti et al [76] find that such a measurement should be possible if the
event occurs within a redshift of z ∼ 0.5.

6.5 The two-body problem in general relativity

The largest effort in gravitational radiation theory in recent years has been to study the two-body
problem using various approximations. The reason is that gravitationally bound binary systems
are likely to be important gravitational wave sources, and until the evolution of such a system is
thoroughly understood, it will not be possible to extract the maximum possible information from
the observations.

From Figure 2, we see that ground-based detectors will be sensitive to compact binaries with
mass in the range of [1, 104]M⊙ while LISA will be sensitive to the mass range [104, 108]M⊙. As
we have seen in Section 3, most classes of binary sources will follow orbits that evolve strongly
due to gravitational radiation reaction. In the case of ground-based detectors, they will all merge
within a year of entering the observation band. In the case of LISA, we might observe sources
(both stellar mass binaries as well as SMBH binaries), whose frequency hardly changes.

In contrast to Newtonian gravity, modeling a bound binary in general relativity is complicated
by the existence of gravitational radiation and the nonlinearity of Einstein’s equations. It must
therefore be done approximately. The three most important approximation methods for solving
gravitational wave problems are:

• The post-Newtonian scheme. This is a combination of a low-velocity expansion (v/c
small) and a weak-field expansion (M/R small), in which the two small parameters are
linked because a gravitationally-bound binary satisfies the virial relation v2 ∼ M/R, even
in relativity. The zero-order solution is the Newtonian binary system. The post-Newtonian
(PN) approximation has now been developed to a very high order in v/c because the velocities
in late-stage binaries, just before coalescence, are very high.

• Perturbation theory. This is an expansion in which the small parameter is the mass-
ratio of the binary components. The zero-order solution is the field of the more massive
component, and linear field corrections due to the second component determine the binary’s
orbital motion and the emitted radiation. This approximation is fully relativistic at all orders.
It is being used to study the signals emitted by compact stars and stellar-mass black holes
as they fall into SMBHs, an important source for LISA.

• Numerical approaches. With numerical relativity one can in principle simulate any desired
relativistic system, no matter how strong the fields or high the velocities. It is being used to
study the final stage of the evolution of binaries, including their coalescence, after the PN
approximation breaks down. Although it deals with fully relativistic and nonlinear general
relativity, the method needs to be regarded as an approximate one, since spacetime is not
resolved to infinite precision. The accuracy of a numerical simulation is normally judged by
performing convergence tests, that is by doing the simulation at a variety of resolutions and
showing that there are no unexpected differences between them.
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We will review the physics that can be learned from models using each of these approximation
schemes. But first we treat a subject that is common to all binaries that evolve due to radiation
reaction, which is that one can estimate their distance from a gravitational wave observation.

6.5.1 Binaries as standard candles: distance estimation

Astronomers refer to systems as standard candles if their intrinsic luminosity is known, so that
when the apparent luminosity of a particular system is measured, then its distance can be deduced.
As mentioned in Section 3.4.2, radiating binaries have this property, if one can measure the effects
of radiation reaction on their orbits [329]. Because of the one-dimensional nature of gravitational
wave data, some scientists have begun calling these standard sirens [195]. Over cosmological
distances, the distance measured from the observation is the luminosity distance. We discuss in
Section 8 below how this can be used to determine the Hubble constant and even the acceleration
of the universe in methods independent of any cosmic distance ladder.

6.5.2 Numerical approaches to the two-body problem

From the point of view of relativity, the simplest two-body problem is that of two black holes. There
are no matter fields and no point particles, just pure gravity. Therefore, the physics is entirely
governed by Einstein’s equations, which are highly nonlinear and rather difficult to solve. A number
of teams have worked for over three decades towards developing accurate numerical solutions for
the coalescence of two black holes, using fully three-dimensional numerical simulations.

A breakthrough came in early 2005 with Pretorius [298] announcing the results from the first
stable simulation ever, followed by further breakthroughs by two other groups [104, 61] with suc-
cessful simulations. The main results from numerical simulations of nonspinning black holes are
rather simple. Indeed, just as the EOB had predicted, and probably contrary to what many people
had expected, the final merger is just a continuation of the adiabatic inspiral, leading on smoothly
to merger and ringdown. In Figure 10 we show the results from one of the numerical simulations
(right panel) and that of the EOB (left panel), both for the same initial conditions. There is also
good agreement in the prediction of the total energy emitted by the system, being 5.0% (± 0.4%)
(for a review see [299]) and 3.1% [97], by numerical simulations and EOB, respectively, as well as
the spin of the final black hole (respectively, 0.69 and 0.8) that results from the merger.

The total energy emitted and the spin angular momentum of the black hole both depend on
the spin angular momenta of the parent black holes and how they are aligned with respect to the
orbital angular momentum. In the test-mass limit, it is well known that the last stable orbit of a
test particle in prograde orbit will be closer to, and that of a retrograde orbit will be farther from,
the black hole as compared to the Schwarzschild case. Thus, prograde orbits last longer and radiate
more compared to retrograde orbits. The same is true even in the case of spinning black holes of
comparable masses; the emitted energy will be greater when the spins are aligned with the orbital
angular momentum and least when they are anti-aligned. For instance, for two equal mass black
holes, each with its spin angular momentum equal to 0.76, the total energy radiated in the aligned
(anti-aligned) case is 6.7% (2.2%) and the spin of the final black hole is 0.89 (0.44) [105, 294].
Heuristically, in the aligned case the black holes experience a repulsive force, deferring the merger
of the two bodies to a much later time than in the anti-aligned case, where they experience an
attractive force, accelerating the merger.

Detailed comparisons [137, 284, 88] show that we should be able to deploy the analytical
templates from EOB [100, 135, 138, 139] (and other approximants [22]) that better fit the numerical
data in our searches. With the availability of merger waveforms from numerical simulations and
analytical templates, it will now be possible to search for compact binary coalescences with a greater
sensitivity. The visibility of the signal improves significantly for binaries with their component
masses in the range [10, 100]M⊙. Currently, an effort is underway to evaluate how to make use of
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numerical relativity simulations in gravitational wave searches [352], which should help to increase
the distance reach of interferometric detectors by a factor of two and correspondingly nearly an
order-of-magnitude increase in event rate.
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Figure 10: Comparison of waveforms from the analytical EOB approach (left) and numerical relativity
simulations (right) for the same initial conditions. The two approaches predict very similar values for the
total energy emitted in gravitational waves and the final spin of the black hole. Figure from [94].

Numerical relativity simulations have now greatly matured, allowing a variety of different stud-
ies. Some are studying the effect of the spin orientations of the component black holes on the linear
momentum carried away by the final black hole, fancifully called kicks [188, 92, 62, 105, 180, 294];
some have focused on the dependence of the emitted waveform phase and energy on the mass ratio;
and yet others have strived to evolve the system with high accuracy and for a greater number of
cycles so as to push the techniques of numerical relativity to the limit [89, 88].

Of particular interest are the numerical values of black hole kicks that have been obtained for
certain special configurations of the component spins. Velocities as large as 4000 km s−1 have
been reported by several groups, but such velocities are only achieved when both black holes have
large11 spins. Such velocities are in excess of escape velocities typical of normal galaxies and
are, therefore, of great astronomical significance. These high velocities, however, are not seen for
generic geometries of the initial spin orientations; therefore, their astronomical significance is not
yet clear.

What is the physics behind kicks? Beamed emission of radiation from a binary could result in
imparting a net linear momentum to the final black hole. The radiation could be beamed either
because the masses of the two black holes are not the same (resulting in asymmetric emission in
the orbital plane) or because of the precession of the orbital plane arising from spin-orbit and
spin-spin interactions, or both. In the case of black holes with unequal masses, the largest kick one
can get is around 170 km s−1, corresponding to a mass ratio of about 3:1. It was really with the
advent of numerical simulations that superkicks begin to be realized, but only when black holes
had large spins. The spin-orbit configurations that produce large kicks are rather unusual and at
first sight unexpected. When the component black holes are both of the same mass and have equal
but opposite spin angular momenta that lie in the orbital plane, frame dragging can lead to tilting
and oscillation of the orbital plane, which, in the final phases of the evolution, could result in a
rather large kick [299]. SMBHs are suspected to have large spins and, therefore, the effect of spin

11By large spins we mean values that are close to the maximum value allowed by general relativity. If J is the
magnitude of the spin angular momentum then general relativity requires that |J| ≤ M2
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on the evolution of a binary and the final spin and kick velocity could be of astrophysical interest
too.

Curiously, a recent optical observation of a distant quasar, SDSS J0927 12.65+294344.0, could
well be the first identification of a superkick, causing the SMBH to escape from the parent
galaxy [222]. From a fundamental physics point of view, kicks offer a new way of testing frame
dragging in the vicinity of black holes, but much work is needed in this direction.

More recently, there has been an effort to understand and predict [98, 309, 136] the spin of the
final black hole, which should help in further exploring interesting regions of the spin parameter
space. In the relatively simple case of two black holes with equal and aligned spins of magnitude
a, but unequal masses, with the symmetric mass ratio being ν = m1m2/(m1 +m2)

2, Rezzolla et
al. [309] have obtained an excellent fit for the final spin afin of the black hole by enforcing basic
constraints from the test-mass limit:

afin = a+ (2
√

3 + t0a+ s4a
2)ν + (s5a+ t2)ν

2 + t3ν
3,

where t0 = −2.686 ± 0.065, t2 = −3.454 ± 0.132, t3 = 2.353 ± 0.548, s4 = −0.129 ± 0.012, and
s5 = −0.384 ± 0.261. The top and middle panels of Figure 11 compare as functions of black hole
spin and the symmetric mass ratio the goodness of their fit (blue short-dashed line, top panels)
with the predictions of numerical simulations (circles and stars) from different groups (AEI [311],
FAU–Jena [251], Jena [75] and Goddard [100]). Their residuals (red dotted lines, bottom panels)
are less than a percent over the entire parameter space observed. These figures also show the fits
obtained for the equal-mass but variable-spin case (green long-dashed line, left panel) [98] and for
the nonspinning but unequal-mass case (green long-dashed line, middle panel) [136].

For the simple case of two equal mass black holes with aligned spins, the above analytical
formula predicts that minimal and maximal final spin values of afin = 0.35 ± 0.03 and afin =
0.96 ± 0.03, respectively [309]. More interestingly, one can now ask what initial configurations
of the mass ratios and spins would lead to the formation of a Schwarzschild black hole (i.e.,
afin(a, ν) = 0) [199], which defines the boundary of the region on one side of which lie systems for
which the spin of the final black hole flips relative to the initial total angular momentum (bottom
panel in Figure 11).

Finally, the evolution of binaries composed of nonspinning bodies is characterized by a single
parameter, namely the ratio of the masses of the two black holes. The study of systems with
different mass ratios has allowed relativists to fit numerical waveforms with phenomenological
waveforms [22]. The advantage of the latter waveforms is that one is able to more readily carry
out data analysis in any part of the parameter space without needing the numerical data over the
entire signal manifold.

Numerical relativity is still in its infancy and the parameter space is quite large. In the coming
years more accurate simulations should become available, allowing the computation of waveforms
with more cycles and less systematic errors. However, the challenge remains to systematically
explore the effect of different spin orientations, mass ratios and eccentricity. One area that has
not been explored using perturbative methods or post-Newtonian theory is that of intermediate–
mass-ratio inspirals. These are systems with moderate mass ratios of order 100:1, where neither
black-hole perturbation theory nor post-Newtonian approximation might be adequate. Yet, the
prospect for detecting such systems in ground and space-based detectors is rather high. Numerical
relativity simulations might be the only way to set up effectual search templates for such systems.

6.5.3 Post-Newtonian approximation to the two-body problem

For the interpretation of observations of neutron-star–binary coalescences, which might be detected
within five years by upgraded detectors that are now taking data, it is necessary to understand
their orbital evolution to a high order in the PN expansion. The first effects of radiation reaction
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Figure 11: The final spin of a black hole that results from the merger of two equal mass black holes of
aligned spins (top panel) and nonspinning unequal mass black holes (middle panel). The bottom panel
shows the region in the parameter space that results in an overall flip in the spin-orbit orientation of the
system. Figure reprinted with permission from [310]. See text for details. c© The American Astronomical
Society.
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are seen at 2.5 PN order (i.e., at order (v/c)5 beyond Newtonian gravity), but we probably have
to have control in the equations of motion over the expansion at least to 3.5 PN order beyond
the first radiation reaction (i.e., to order (v/c)12 beyond Newtonian dynamics). There are many
approaches to this, and we can not do justice here to the enormous effort that has gone into this
field in recent years and refer the reader to the Living Reviews by Blanchet [79] and by Futamase
& Itoh [169].

Most work on this problem so far has treated a binary system as if it were composed of two
point masses. This is, strictly speaking, inconsistent in general relativity, since the masses should
form black holes of finite size. Blanchet, Damour, Iyer, and collaborators [78] have avoided this
problem by a method that involves generalized functions. They first expand in the nonlinearity
parameter, and, when they have reached sufficiently high order, they obtain the velocity expansion
of each order. By ordering terms in the post-Newtonian manner they have developed step-by-step
the approximations up to 3.5 PN order.

A different team, led by Will, works with a different method of regularizing the point-particle
singularity and compares its results with those of Blanchet et al. at each order [82]. There is no
guarantee that either method can be continued successfully to any particular order, but so far they
have worked well and are in agreement. Their results form the basis of the templates that are
being designed to search for binary coalescences.

An interesting way of extending the validity of the expansion that is known to any order is
to use Padé approximants [133, 134] (rational polynomials) of the fundamental quantities in the
theory, namely the orbital energy and the gravitational wave luminosity. This has worked rather
well in improving the convergence of PN theory. Buonanno and Damour [96, 97] have proposed an
EOB approach to two-body dynamics, which makes it possible to compute the orbit of the binary
and hence the phasing of the gravitational waves emitted beyond the last stable orbit into the
merger and ringdown phases in the evolution of the black hole binary. This analytical approach
has been remarkably successful and gained a lot of ground after the recent success in numerical
relativity (see Section 6.5.2).

Other methods have been applied to this problem. Futamase [168] introduced a limit that
combines the nonlinearity and velocity expansions in different ways in different regions of space,
so that the orbiting bodies themselves have a regular (finite relativistic self-gravity) limit, while
their orbital motion is treated in a Newtonian limit. This should not fail at any order [169], and
has demonstrated its robustness by arriving at the same results as the other approaches, at least
through 3 PN order. But it has a degree of arbitrariness in choosing initial data (see [327]) that
could cause problems for gravitational wave search templates that integrate orbits for a long period
of time.

Linear calculations of point particles around black holes are of interest in themselves and also for
checking results of the full two-body calculations. These are well-developed for certain situations,
e.g., [354, 258]. But the general equation of motion for such a body, taking into account all
nongeodesic effects, has not yet been cast into a form suitable for practical calculations [106, 301].
This field is reviewed by two separate Living Reviews [292, 319].

Matched filtering, discussed in Section 5.1, is a plausible method of testing the validity of
different approaches to computing the inspiral and merger waveforms from binary systems. Though
a single observation is not likely to settle the question as to which methods are correct, a catalogue
of events will help to evaluate the accuracy of different approaches by studying the statistics of the
SNRs they measure.

6.5.3.1 Post-Newtonian expansions of energy and luminosity. Post-Newtonian calcu-
lations yield the expansion of the gravitational binding energy E and the gravitational wave lu-
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minosity F as a function of the post-Newtonian expansion parameter12 v. This is related to the
frequency fgw of the dominant component of gravitational waves emitted by the binary system by

v3 = πMfgw,

where M is the total mass of the system. The expansions for a circular binary are [80, 81, 79]

E = −νMv2
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where γ = 0.577 . . . is Euler’s constant.

6.5.3.2 Evolution equation for the orbital phase. Starting from these expressions, one
requires that gravitational radiation comes at the expense of the binding energy of the system
(see, e.g., [134]):

F = −dE
dt
, (115)

the energy balance equation. This can then be used to compute the (adiabatic) evolution of the
various quantities as a function of time. For instance, the rate of change of the orbital velocity
ω(t) = v3/M (M being the total mass) can be computed using:

dω(t)

dt
=
dω

dv

dv

dE

dE

dt
=

3v2

M

F(v)

E′(v)
,

dv

dt
=

dv

dE

dE

dt
=

−F(v)

E′(v)
, (116)

where E′(v) = dE/dv. Supplemented with a differential equation for t,

dt =
dt

dE

dE

dv
= −E

′(v)

F , (117)

one can solve for the evolution of the system’s orbital velocity. Similarly, the evolution of the
orbital phase ϕ(t) can be computed using

dϕ(t)

dt
=
v3

M
,

dv

dt
=

−F(v)

E′(v)
. (118)

12In Newton’s theory a two-body problem can be reduced to a one-body problem, in which a body of reduced
mass µ moves in an effective potential. The parameter v is the velocity of the reduced mass, if the orbit is circular.
In the extreme mass ratio limit ν → 0, v is the velocity of the smaller mass.
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6.5.3.3 Phasing formulas. The foregoing evolution equations for the orbital phase can be
solved in several equivalent ways [134], each correct to the required post-Newtonian order, but
numerically different from one another. For instance, one can retain the rational polynomial
F(v)/E(v) in Equation (118) and solve the two differential equations numerically, thereby obtaining
the time evolution of ϕ(t). Alternatively, one might re-expand the rational function F(v)/E(v)
as a polynomial in v, truncate it to order vn (where n is the order to which the luminosity is
given), thereby obtaining a parametric representation of the phasing formula in terms of polynomial
expressions in v:

ϕ(v) = ϕref +
n
∑

k=0

ϕkv
k, t(v) = tref +

n
∑

k=0

tkv
k, (119)

where ϕref and tref are a reference phase and time, respectively. The standard post-Newtonian
phasing formula goes one step further and inverts the second of the relations above to express v as
a polynomial in t (again truncated to appropriate order), which is then substituted in the first of
the expressions above to obtain a phasing formula as an explicit function of time:
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v2 =
τ2

4

{

1 +

(

743

4032
+

11

48
ν

)

τ2 − π

5
τ3 +

(

19583

254016
+

24401

193536
ν +

31

288
ν2

)

τ4

+

(

−11891

53760
+

109

1920
ν

)

πτ5 +

[

−10052469856691

6008596070400
+
π2

6
+

107

420
(γ + ln 2τ)

+

(

3147553127

780337152
− 451

3072
π2

)

ν − 15211

442368
ν2 +

25565

331776
ν3

]

τ6

+

(

−113868647

433520640
− 31821

143360
ν +

294941

3870720
ν2

)

πτ7

}

. (121)

In the above formulas v = πMfgw and τ = [ν(tC − t)/(5M)]−1/8, tC being the time at which the
two stars merge together and the gravitational wave frequency fgw formally diverges.

6.5.3.4 Waveform polarizations. The post-Newtonian formalism also gives the two polar-
izations h+ and h× as multipole expansions in powers of the parameter v. To lowest order, the two
polarizations of the radiation from a binary with a circular orbit, located at a distance D, with
total mass M and symmetric mass ratio ν = m1m2/M

2, are given by

h+ =
2νM

D
v2(1 + cos2 ι) cos[2ϕ(t)], h× =

4νM

D
v2 cos ι sin[2ϕ(t)], (122)

where ι is the inclination of the orbital plane with the line of sight and v is the velocity parameter
introduced earlier.

An interferometer will record a certain combination of the two polarizations given by

h(t) = F+h+ + F×h×, (123)
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where the beam pattern functions F+ and F× are those discussed in Section 4.2.1. In the case
of ground-based instruments, the signal duration is pretty small, at most 15 min for neutron star
binaries and smaller for heavier systems. Consequently, one can assume the source direction to be
unchanging during the course of observation and the above combination produces essentially the
same functional form of the waveforms as in Equation (122). Indeed, it is quite straightforward to
show that

h(t) = 4νM
C
D
v2 cos[2ϕ(t) + 2ϕ0], (124)

where

C =
√

A2 +B2, A =
1

2
(1 + cos2 ι)F+, B = cos ι F×, tan 2ϕ0 =

B

A
. (125)

The factor C is a function of the various angles and lies in the range [0, 1] with an RMS value of
2/5 (see Section 4.2.1, especially the discussion following Equation (62)).

These waveforms form the basis for evaluating the science that can be extracted from future
observations of neutron star and black hole binaries. We will discuss the astrophysical and cosmo-
logical measurements that are made possible with such high precision waveforms in several sections
that follow (6.5.5 and 8.3). It is clear from the expressions for the waveform polarizations that,
at the lowest order, the radiation from a binary is predominantly emitted at twice the orbital
frequency. However, even in the case of quasi-circular orbits the waves come off at other harmonics
of the orbital frequency. As we shall see below, these harmonics are very important for estimating
the parameters of a binary, although they do not seem to contribute much to the SNR of the
system.

6.5.4 Measuring the parameters of an inspiraling binary
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Figure 12: One-sigma errors in the time of coalescence, chirpmass and symmetric mass ratio for sources
with a fixed SNR (left panels) and at a fixed distance (right panels). The errors in the time of coalescence
are given in ms, while in the case of chirpmass and symmetric mass ratio they are fractional errors. These
plots are for nonspinning black hole binaries; the errors reduce greatly when dynamical evolution of spins
are included in the computation of the covariance matrix. Slightly modified figure from [49].
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The issue of parameter estimation in the context of black hole binaries has received a lot of
attention [114, 128, 165, 64, 293, 65, 44]. Most authors have used the covariance matrix for this
purpose, although Markov Chain Monte Carlo (MCMC) techniques have also been used occa-
sionally [116, 316, 315, 120], especially in the context of LISA [364, 121, 122, 123, 125]. Covari-
ance matrix is often the preferred method, as one can explore a large parameter space without
having to do expensive Monte Carlo simulations. However, when the parameter space is large,
covariance matrix is not a reliable method for estimating parameter accuracies, especially at low
SNRs [63, 64, 372]; but at high SNRs, as in the case of SMBH binaries in LISA, the problem might
be that our waveforms are not accurate enough to facilitate a reliable extraction of the source pa-
rameters [129]. Although MCMC methods can give more reliable estimates, they suffer from being
computationally extremely expensive. However, they are important in ascertaining the validity
of results based on the covariance matrix, at least in a small subset of the parameter space, and
should probably be employed in assessing parameter accuracies of candidate gravitational wave
events.

In what follows we shall summarize the most recent work on parameter estimation in ground
and space-based detectors for binaries with and without spin and the improvements brought about
by including higher harmonics.

6.5.4.1 Ground-based detectors – nonspinning components. In Figure 12 we have plot-
ted the one-sigma uncertainty in the measurement of the time of coalescence, chirpmass and sym-
metric mass ratio for initial and advanced LIGO and VIRGO [44]. The plots show errors for sources
all producing a fixed SNR of 10 (left panels) or all at a fixed distance of 300 Mpc (right panels).
The fractional error in chirpmass, even at a modest SNR of 10, can be as low as a few parts in ten
thousand for stellar mass binaries, but the error stays around 1%, even for heavier systems that
have only a few cycles in a detector’s sensitivity band. Error in the mass ratio is not as small,
increasing to 100% at the higher end of the mass range explored. Thus, although the chirpmass
can be measured to a good accuracy, poor estimation of the mass ratio means that the individual
masses of the binary cannot be measured very well. Note also that the time of coalescence of the
signal is determined pretty well, which means that we would be able to measure the location of
the system in the sky quite well.

At a given SNR the accuracy is better in the case of low-mass binaries, since they spend a
longer duration and a greater number of cycles in the detector band and the chirpmass can be
determined better than the mass ratio, since to first order the frequency evolution of a binary is
determined only by the chirpmass.

6.5.4.2 Measuring the parameters of supermassive black hole binaries in LISA. In
the case of LISA, the merger of SMBHs produces events with extremely large SNRs, even at a
redshift of z = 1 (100s to several thousands depending on the chirpmass of the source). Therefore,
one expects to measure the parameters of a merger event in LISA to a phenomenal accuracy.
Figure 13 depicts the distribution of the errors for a binary consisting of two SMBHs of masses
(106, 3 × 105)M⊙ at a redshift of z = 1 [232]. The distribution was obtained for ten thousand
samples of the system corresponding to random orientations of the binary at random sky locations
with the starting frequency greater than 3 × 10−5 Hz and the ending frequency corresponding to
the last stable orbit.

Each plot in Figure 13 shows the results of computations for binaries consisting of black holes
with and without spins. Even in the absence of spin-induced modulations in the waveform, the
parameter accuracies are pretty good. Note that spin-induced modulations in the waveform enable
a far better estimation of parameters, chirpmass accuracy improving by more than an order of
magnitude and reduced mass accuracy by two orders of magnitude. It is because of such accurate
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Figure 13: Distribution of measurement accuracy for a binary merger consisting of two black holes of
masses m1 = 106M⊙ and m2 = 3 × 105M⊙, based on 10,000 samples of the system in which the sky
location and orientation of the binary are chosen randomly. Dashed lines are for nonspinning systems
and solid lines are for systems with spin. Figure reprinted with permission from [231]. c© The American
Physical Society.
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measurements that it will be possible to use SMBH mergers to test general relativity in the strong
field regime of the theory (see below).

Although Figure 13 corresponds to a binary with specific masses, the trends shown are found to
be true more generically for other systems too, the actual parameter accuracies and improvements
due to spin both depending on the specific system studied.

6.5.5 Improvement from higher harmonics
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Figure 14: The SNR integrand of a restricted (left panel) and full waveform (right panel) as seen in
initial LIGO. We have shown three systems, in which the smaller body’s mass is the same, to illustrate
the effect of the mass ratio. In all cases the system is at 100 Mpc and the binary’s orbit is oriented at 45◦

with respect to the line of sight.

The results discussed so far use the restricted post-Newtonian approximation in which the wave-
form polarizations contain only twice the orbital frequency, neglecting all higher-order corrections
(including those to the second harmonic). The full waveform is a post-Newtonian expansion of the
two polarizations as a power-series in v/c and consists of terms that have not only the dominant
harmonic at twice the orbital frequency, but also other harmonics of the waveform. Schematically,
the full waveform can be written as [79, 374]

h(t) =
4Mη

DL

7
∑

k=1

5
∑

n=0

A(k,n/2)v
n+2(t) cos

[

kϕ(t) + ϕ(k,n/2)

]

, (126)

where ν = m1m2/M
2 is the symmetric mass ratio, the first sum (index k) is over the different

harmonics of the waveform and the second sum (index n) is over the different post-Newtonian
orders. Note that post-Newtonian order weighs down the importance of higher-order amplitude
corrections by an appropriate factor of the small parameter v. In the restricted post-Newtonian
approximation one keeps only the lowest-order term. Since A1,0 happens to be zero, the dominant
term corresponds to k = 2 and n = 0, containing twice the orbital frequency.

The various signal harmonics, and the associated additional structure in the waveform, can
potentially enhance our ability to measure the parameters of a binary to a greater accuracy. The
reason we can expect to do so can be seen by looking at the spectra of gravitational waves with
and without these harmonics. For a binary that is oriented face on with respect to a detector only
the second harmonic is seen, while for any other orientation the radiation is emitted at all other
harmonics, the influence of the harmonics becoming more pronounced as the inclination angle
changes from 0 to π/2. Figure 14 compares, in the frequency band of ground-based detectors, the
spectrum of a source using the restricted post-Newtonian approximation (left panel) to the full
waveform. In both cases the source is inclined to the line of sight at 45 degrees.
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Following is a list of improvements brought about by higher harmonics. In the case of ground-
based detectors Van Den Broeck and Sengupta [374, 375] found that, when harmonics are included,
the SNR hardly changes, but is always smaller, relative to a restricted waveform. However, the
presence of frequencies higher than twice the orbital frequency means that it will be possible to
observe heavier systems, increasing the mass reach of ground-based detectors by a factor of 2 to
3 in advanced LIGO and third generation detectors [374, 375]. The same effect was found in
the case of LISA too, allowing LISA to observe SMBH masses up to a few × 108M⊙ [47]. More
than the increased mass reach, the harmonics reduce the error in the estimation of the chirpmass,
symmetric mass ratio and the time of arrival by more than an order of magnitude for stellar-mass
black hole binaries. The same is true to a greater extent in the case of SMBH binaries, allowing
as well a far greater accuracy in the measurement of the luminosity distance and sky resolution
in LISA’s observation of these sources [48, 361]. For instance, Figure 15 [361] shows the gain in
LISA’s angular resolution for two massive black-hole–binary mergers as a consequence of using
higher harmonics for a specific orientation of the binary. Improvements of order 10 to 100 can be
seen over large regions of the sky. This improved performance of LISA makes it a good probe of
dark energy [48] (see Section 8.3).

A word of caution is in order with regard to the improvements brought about by higher har-
monics. If the sensitivity of a detector has an abrupt lower frequency cutoff, or falls off rapidly
below a certain frequency, then the harmonics bring about a more dramatic improvement than
when the sensitivity falls off gently. Higher harmonics, nevertheless, always help in reducing the
random errors associated with the measurement of parameters of a coalescing black-hole binary.

6.6 Tests of general relativity

Gravitational wave measurements of black holes automatically test general relativity in its strong-
field regime. Observations of the mergers of comparable-mass black holes will be rich in details
of their strong-field interactions. If measurements can determine the masses and spins of the
initial black holes, as well as the eccentricity and orientation of their inspiral orbit, then one would
hope to compare the actual observed waveform with the output of a numerical simulation of the
same system. If measurements can also determine the final mass and spin (say from the ringdown
radiation) then one can test the Hawking area theorem (the final area must exceed the sum of the
areas of the initial holes) and the Penrose cosmic censorship conjecture (the final black hole should
have J/M2 < 1).

Observations of stellar mass black holes inspiraling into SMBHs, the extreme mass ratio inspirals
(EMRIs), have an even greater potential for testing general relativity. The stellar mass black hole
spends thousands of precessing (both of periastron and the orbital plane) orbits along highly-
eccentric trajectories and slowly inspirals into the larger black hole. The emitted gravitational
radiation literally carries the signature of the spacetime geometry around the central object. So
fitting the orbit to theoretical templates could reveal small deviations of this geometry from that
of Kerr. For example, if we know (from fitting the waveform) the mass and spin of the central
black hole, then all its higher multipole moments are determined. If we can measure some of these
and they deviate from Kerr, then that would indicate that either the central object is not a black
hole or that general relativity needs to be corrected [177, 68].

6.6.1 Testing the post-Newtonian approximation

Current tests of general relativity rely on experiments in the solar system (using the sun’s gravita-
tional field) and observations of binary pulsars. In dimensionless units, the gravitational potential
on the surface of the sun is about one part in a million and even in a binary pulsar the potential
that each neutron star experiences due to its companion is no more than one part in ten thou-
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Figure 15: Sky map of the gain in angular resolution for LISA observations of the final year of inspirals
using full waveforms with harmonics versus restricted post-Newtonian waveforms with only the dominant
harmonic, corresponding to the equal mass case (m1 = m2 = 107M⊙, top) and a system with mass ratio
of 10 (m1 = 107M⊙, m2 = 106M⊙, bottom). The sources are all at z = 1, have the same orientation
(cos θL = 0.2, φL = 3) and zero spins β = σ = 0. Figure reprinted with permission from [361]. c© The
American Physical Society.
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sand. These are mildly relativistic fields, with the corresponding escape velocity being as large as
a thousandth and a hundredth that of light, respectively.

Thus, gravitational fields in the solar system or in a binary pulsar are still weak by comparison
to the largest possible values. Indeed, close to the event horizon of a black hole, gravitational
fields can get as strong as they can ever get, with the dimensionless potential being of order unity
and the escape velocity equal to that of the speed of light. Although general relativity has been
found to be consistent with experiments in the solar system and observations of binary pulsars,
phenomena close to the event horizons of black holes would be a great challenge to the theory. It
would be very exciting to test Einstein’s gravity under such circumstances.

The large SNR that is expected from SMBH binaries makes it possible to test Einstein’s theory
under extreme conditions of gravity [45, 46]. To see how one might test the post-Newtonian
structure of Einstein’s theory, let us consider the waveform from a binary in the frequency domain.
Since an inspiral wave’s frequency changes rather slowly (adiabatic evolution) it is possible to apply
a stationary phase approximation to compute the Fourier transform H(f) of the waveform given
in Equation (124):

H(f) = A f−7/6 exp
[

iΨ(f) + i
π

4

]

, (127)

with the Fourier amplitude A and phase Ψ(f) given by

A =
C

Dπ2/3

√

5ν

24
M5/6, Ψ(f) = 2πftC + ΦC +

3

128 ν

∑

k

αk (πMf)
(k−5)/3

. (128)

Here ν is the symmetric mass ratio defined before (see Equation 31), C is a function of the various
angles, as in Equation (124), and tC and ΦC are the fiducial epoch of merger and the phase of the
signal at that epoch, respectively. The coefficients in the PN expansion of the Fourier phase are
given by
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These are the PN coefficients in Einstein’s theory; in an alternative theory of gravity they will
be different. In Einstein’s theory the coefficients depend only on the two mass parameters, the
total mass M and symmetric mass ratio ν. One of the tests we will discuss below concerns the
consistency of the various coefficients. Note, in particular, that in Einstein’s gravity the 0.5 PN
term is absent, i.e., the coefficient of the term v is zero. Even with the very first observations of
inspiral events, it should be possible to test if this is really so.

Figure 16 shows one such test that is possible with SMBH binaries [45, 46]. The observation
of these systems in LISA makes it possible to measure the parameters associated with different
physical effects. For example, the rate at which a signal chirps (i.e., the rate at which its frequency
changes) depends on the binary’s chirpmass. Given the chirpmass, the length of the signal depends
on the system’s symmetric mass ratio (the ratio of reduced mass to total mass). Another example
would be the scattering of gravitational waves off the curved spacetime geometry of the binary,
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producing the tail effect in the emitted signal, which is determined principally by the system’s
total mass [85, 84]. Similarly, spin-orbit interaction, spin-spin coupling, etc. depend on other
combinations of the masses.

The binary will be seen with a high SNR, which means that we can measure the mass parameters
associated with many of these physical effects. If each parameter is known precisely, we can draw a
curve corresponding to it in the space of masses. However, our observations are inevitably subject
to statistical (and possibly systematic) errors. Therefore, each parameter corresponds to a region
in the parameter space (shown in Figure 16 for the statistical errors only). If Einstein’s theory
of gravitation is correct, the regions corresponding to the different parameters must all have at
least one common region, a region that contains the true parameters of the binary. This is because
Einstein’s theory, or an alternative, has to be used to project the observed data onto the space
of masses. If the region corresponding to one or more of these parameters does not overlap with
the common region of the rest of the parameters, then Einstein’s theory, or its alternative, is in
trouble.

In Brans–Dicke theory the system is expected to emit dipole radiation and the PN series would
begin an order v−2 earlier than in Einstein’s theory. In the notation introduced above we would
have an α−2 term, which has the form [73, 74]

α−2 = − 5S2

84ωBD
. (130)

Here S is the the difference in the scalar charges of the two bodies and ωBD is the Brans–Dicke
parameter. Although this term is formally two orders lower than the lowest-order quadrupole term
of Einstein’s gravity (i.e., it is O(v−2) order smaller), numerically its effect will be far smaller than
the quadrupole term because of the rather large bound on ωBD ≫ 1. Nevertheless, its importance
lies in the fact that there is now a new parameter on which the phase depends. Berti, Buonanno
and Will conclude that LISA observations of massive black-hole binaries will enable scientists to
set limits on ωBD ∼ 104 – 105.

A massive graviton theory would also alter the phase. The dominant effect is at 1 PN order
and would change the coefficient α2 to

α2 → α2 −
128ν

3

π2DM

λ2
g(1 + z)

, (131)

where ν is the symmetric mass ratio. This term alters the time of arrival of waves of different
frequencies, causing a dispersion, and a corresponding modulation, in the wave’s phase, depending
on the Compton wavelength λg and the distance D to the binary. Hence, by tracking the phase
of the inspiral waves, one can bound the graviton’s mass. Will [393] finds that one can bound the
mass to 1.7×1013 km using ground-based detectors and 1.7×1017 km using space-based detectors,
as also confirmed by more recent and exhaustive calculations [73]. These limits might improve if
one takes into account the modulation of the waveform due to spin-orbit and spin-spin coupling,
but the latter authors [73] looked at spinning, but nonprecessing, systems only.

6.6.2 Uniqueness of Kerr geometry

In Section 3 we pointed out that LISA should be able to see many hundreds of signals emitted
by compact objects – black holes, neutron stars, even white dwarfs – orbiting around and being
captured by massive black holes in the centers of galaxies. But for LISA to reach its full potential,
we must model the orbits and their emitted radiation accurately. Since the wave trains may
be many hundreds or thousands of cycles long in the LISA band, the challenge of constructing
template waveforms that remain accurate to within about one radian over the whole evolution is
significant.
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Figure 16: By fitting the Fourier transform of an observed signal to a post-Newtonian expansion, one
can measure the various post-Newtonian coefficients ψk(m1,m2), k = 0, 2, 3, 4, 6, 7 and coefficients of
log-terms ψ5l(m1,m2) and ψ6l(m1,m2). In Einstein’s theory, all the coefficients depend only on the two
masses of the component black holes. By treating them as independent parameters one affords a test of
the post-Newtonian theory. Given a measured value of a coefficient, one can draw a curve in the m1–
m2 plane. If Einstein’s theory is correct, then the different curves must all intersect at one point within
the allowed errors. These plots show what might be possible with LISA’s observation of the merger of
a binary consisting of a pair of 106M⊙ black holes. In the right-hand plot all known post-Newtonian
parameters are treated as independent, while in the left-hand plot only three parameters ψ0, ψ2 and one of
the remainingpost-Newtonian parameter are treated as independent and the procedure is repeated for each
of the remaining parameters. The large SNR in LISA for SMBH binaries makes it possible to test various
post-Newtonian effects, such as the tails of gravitational waves, tails of tails, the presence of log-terms,
etc., associated with these parameters. Left-hand figure adapted from [46], right-hand figure reprinted
with permission from [45]. c© The American Physical Society.
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The range of mass ratios is also wide. LISA’s central black holes might have masses between 103

and 107M⊙. Inspiraling neutron stars and white dwarfs might have masses between 0.5 and 2M⊙.
Inspiraling stellar-population black holes might be in the range of 7 – 50M⊙, while intermediate-
mass black holes formed by the first generation of stars (Population III stars) might have masses
around 300M⊙ or even 1000M⊙. So the mass ratios might be anything in the range 10−7 to 1.

The techniques that must be used to compute these signals depend on the mass ratio. Ratios
near one are treated by post-Newtonian methods until the objects are so close that only numerical
relativity can follow their subsequent evolution. For ratios below 10−4 (a dividing line that is rather
very uncertain and that depends on the bandwidth being used to observe the system, i.e., on how
long the approximation must be valid for), systems are treated by fully-relativistic perturbation
theory, expanding in the mass ratio. Intermediate mass ratios have not been studied in much detail
yet; they can probably be treated by post-Newtonian methods up to a certain point, but it is not
yet clear whether their final stages can be computed accurately by either numerical relativity or
perturbation theory.

Post-Newtonian methods have been extensively discussed above. The basics of perturbation
theory underlying this problem are treated in two Living Reviews [292, 319]. Once one has suf-
ficiently good waveform templates, there remain the challenge of finding weak signals in LISA’s
noise. This depends on a number of factors, including the rates of sources. A recent study by
a number of specialists [170] has concluded that the event rate is high enough and the detection
methods robust enough for us to be very optimistic that LISA will detect hundreds of these sources.
In fact, the opposite problem might materialize: LISA might find it has a confusion problem for
the detection of these sources, as for the galactic binaries. Recent estimates of the magnitude of
the problem [66] suggest that LISA’s noise may at worst be raised effectively by a factor of two,
but in return one gets a large number of sources of this kind.

6.6.3 Quantum gravity

It seems inevitable that general relativity’s description of nature will one day yield to a quantum-
based description, involving uncertainties in geometry and probabilities in the outcome of gravita-
tional observations. This is one of the most active areas of research in fundamental physics today,
and there are many speculations about how quantum effects might show up in gravitational wave
observations.

The simplest idea might be to try to find evidence for “gravitons” directly in gravitational waves,
by analogy with the way that astronomers count individual photons from astronomical sources.
But this seems doomed to failure. The waves that we can observe have very low frequency, so the
energy of each graviton is extremely small. And the total energy flux of the waves is, as we have
seen, enormous. So the number of gravitons in a detectable gravitational wave is far more than
the number of photons in the light from a distant quasar.

Quantum gravity might involve new gravity-like fields, whose effects might be seen indirectly
in the inspiral signals of black holes or neutron stars, as we have noted above. String theory might
lead to the production of cosmic strings, which might be observed through their gravitational wave
emission [142]. If our universe is just a 4-dimensional subspace of a large-scale 10 or 11-dimensional
space, then dynamics in the larger space might produce gravitational effects in our space, and in
particular gravitational waves [304].

It might be possible to observe the quantum indeterminacy of geometry directly using grav-
itational wave detectors, if Hogan’s principle of holographic indeterminacy is valid [193]. Hogan
speculates that quantum geometry might be manifested by an uncertainty in the position of a
beam splitter, and that this could be the explanation for an unexpectedly large amount of noise
at low frequencies in the GEO600 detector. In this connection it is interesting to construct, from
fundamental constants alone, a quantity with the dimensions of amplitude spectral noise density
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(Sh)1/2. This has units of s1/2, so one can define the “Planck noise power” SPl = tPl = (G~/c5)1/2.

Then the amplitude noise is S
1/2
Pl = (G~/c5)1/4 = 2.3 × 10−22 Hz−1/2. This is comparable to or

larger than the instrumental noise in current interferometric gravitational wave detectors, as shown
in Figure 5. This in itself does not mean that Planckian noise will show up in gravitational wave
detectors, but Hogan argues that the particular design of GEO600 might indeed make it subject
to this noise more strongly than other large interferometers.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

http://www.livingreviews.org/lrr-2009-2


Physics, Astrophysics and Cosmology with Gravitational Waves 91

7 Astrophysics with Gravitational Waves

Gravitational radiation plays an observable role in the dynamics of many known astronomical
systems. In some, such as cataclysmic variables [157] and neutron-star–binary systems [355], the
role of gravitational radiation has been understood for years. In others, such as young neutron
stars [34] and low-mass X-ray binaries [77], the potential importance of gravitational radiation
has been understood only recently. As further observations, particularly at X-ray wavelengths,
become available, the usefulness of gravitational radiation as a tool for modelling astronomical
systems should increase [385].

At this point in the progress of gravitational wave detection, the greatest emphasis in cal-
culations of sources is on prediction: trying to anticipate what might be seen. Not only is this
important in motivating the construction of detectors, but it also guides details of their design and,
very importantly, the design of data analysis methods. Historically, many predictions of emission
strengths and the capability of detectors to extract information from signals have relied on esti-
mates using the quadrupole formula. This was justifiable because, given the uncertainties in our
astrophysical understanding of potential sources, more accurate calculations would be unjustified
in most cases.

But these rough estimates are now being replaced by more and more detailed source models
where possible. This applies particularly in two cases. One is binary orbits, where the point-
mass approximation is good over a large range of observable frequencies, so that fully relativistic
calculations (using the post-Newtonian methods described above) are not only possible, but are
necessary for the construction of sensitive search templates in the data analysis. The second
exception is the numerical simulations of the merger of black holes and neutron stars, where the
dynamics is so complex that none of our analytic approximations offers us reliable guidance. In
fact, these two methods are currently being joined to produce uniform models of signal evolution
over as long an observation time as the signal allows. From these models we not only improve
detection algorithms, but we also learn much more about the kinds of information that detections
will extract from the signals.

Once gravitational waves have been observed, there will of course be a welcome shift of emphasis
to include interpretation. The emphasis will be on extracting observable parameters (waveforms,
polarizations, source location, etc.) from noisy data or data where (in the case of LISA) there is
source confusion. These issues need considerably more attention than they have so far received.

7.1 Interacting compact binaries

The first example of the use of gravitational radiation in modelling an observed astronomical
system was the explanation by Faulkner [157] of how the activity of cataclysmic binary systems
is regulated. Such systems, which include many novae, involve accretion by a white dwarf from
a companion star. Unlike accretion onto neutron stars, where the accreted hydrogen is normally
processed quickly into heavier elements, on a white dwarf the unprocessed material can build up
until there is a nuclear chain reaction, which results in an outburst of visible radiation from the
system.

Now, in a circular binary system that conserves total mass and angular momentum, a transfer
of mass from a more massive to a less massive star will make the orbit shrink, while a transfer in
the opposite direction makes the orbit grow. If accretion onto a white dwarf begins with the dwarf
as the less massive star, then the stars will draw together, and the accretion will get stronger.
This runaway process stops when the stars are of equal mass, and then accretion begins to drive
them apart again. Astronomers observed that in this phase accretion in certain very close binaries
continued at a more or less steady rate, instead of shutting off as the stars separated more and
more. Faulkner pointed out that gravitational radiation from the orbital motion would carry
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away angular momentum and drive the stars together. The two effects together result in steady
accretion at a rate that can be predicted from the quadrupole formula and simple Newtonian
orbital dynamics, and which is in good accord with observations in a number of systems.

Binaries consisting of two white dwarfs in very tight orbits will be direct LISA sources: we won’t
have to infer their radiation indirectly, but will actually be able to detect it. Some of them will
also be close enough to tidally interact with one another, leading in some cases to mass transfer.
Others will be relatively clean systems in which the dominant effect will be gravitational radiation
reaction.

Observations during the last decade have identified a number of such systems with enough
confidence to predict that LISA should see their gravitational waves. These are called verification
binaries: if LISA does not see them then either the instrument is not working properly or general
relativity is wrong! For a review of verification binaries, see [349].

7.1.1 Resolving the mass-inclination degeneracy

Gravitational-wave–polarization measurements can be very helpful in resolving the degeneracy
that occurs in the measurement of the mass and inclination of a binary system. As is well known,
astronomical observations of binaries cannot yield the total mass but only the combination m sin ι,
where ι is the inclination of the binary’s orbit to the line of sight. However, measurement of polar-
ization can determine the angle ι since the polarization state depends on the binary’s inclination
with the line of sight.

For instance, consider a circular binary system with total mass M at a distance D. Suppose its
orbital angular momentum vector makes an angle ι with the line of sight (the standard definition
of the inclination of a binary orbit). The two observed polarizations are given in the quadrupole
approximation by Equation (122). We can eliminate the distance R between the stars that is
implicit in the velocity v = Rω (where ω is the instantaneous angular velocity of the orbit, the
derivative of the orbital phase function ϕ(t)) by using the Newtonian orbital dynamics equation
ω2 = M/R3. Then we find

h+ =
2νM

D
[πMf(t)]2/3(1 + cos2 ι) cos[2ϕ(t)], h× =

4νM

D
[πMf(t)]2/3 cos ι sin[2ϕ(t)], (132)

where M is the total mass of the binary and, as before, ν is the symmetric mass ratio m1m2/M
2.

The frequency f = ω/π is the gravitational wave frequency, twice the orbital frequency. Notice
that, consistent with Equation (30), the masses of the stars enter these equations only in the
combination M = ν3/5M .

It is clear that the ratio of the two polarization amplitudes determines the angle ι. In this
connection it is interesting to relate the polarization to the orientation. When the binary is
viewed from a point in its orbital plane, so that ι = π/2, then h× = 0; the radiation has pure
+ polarization. From the observer’s point of view, the motion of the binary stars projected onto
the sky is purely linear; the two stars simply go back and forth across the line of sight. This linear
projected motion results in linearly polarized waves. At the other extreme, consider viewing the
system down its orbital rotation axis, where ι = 0. The stars execute a circular motion in the
sky, and the polarization components h+ and h× have equal amplitude and are out of phase by
π/2. This is circularly polarized gravitational radiation. So, when the radiation is produced in
the quadrupole approximation, the polarization has a very direct relationship to the motions of
the masses when projected on the observer’s sky plane. If the radiation is produced by higher
multipoles it becomes more complex to make these relations, but it can be done. For example,
see [333] for the case of current quadrupole radiation, which is emitted by the r-mode instability
discussed in Section 7.3.4.2 below.

While a single detector is linearly polarized, it can still measure the two polarizations if the
signal has a long enough duration for the detector to turn (due to the motion of the Earth) and
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change the polarization component it measures. Alternatively, a network of three detectors can
determine the polarization and location of the source even over short observation times.

Such a measurement would lead to a potentially very interesting interplay between gravitational
and electromagnetic observations, with applications in the observations of isolated neutrons stars,
binary systems, etc. And would lead to synergies, for example, between the LISA and Gaia [289]
missions.

7.2 Black hole astrophysics

Black holes are the most relativistic systems possible. Observing gravitational waves from them,
individually or in binaries, helps to test some of the predictions of general relativity in the strongly
nonlinear regime, such as the tails of gravitational waves, spin-orbit coupling induced precession,
nonlinear amplitude terms, hereditary effects, etc [360, 84, 83, 322]. They are also good test beds
to constrain other theories of gravity. Gravitational waves – emitted either during the inspiral and
merger of rotating SMBHs or when a stellar-mass compact object falls into a SMBH – can be used
to map the structure of spacetime and test uniqueness theorems on rotating black holes [360]. LISA

will be able to see the formation of massive black holes at cosmological distances by detecting the
waves emitted in the process [360]. We give below a brief discussion of the physics that will follow
from the observation of gravitational waves from black holes.

7.2.1 Gravitational waves from stellar-mass black holes

Astronomers now recognize that there is an abundance of black holes in the universe. Observations
across the electromagnetic spectrum have located black holes in X-ray binary systems in our galaxy
in the centers of star clusters, and in the centers of galaxies.

These three classes of black holes have very different masses. Stellar black holes typically have
masses of around 10M⊙, and are thought to have been formed by the gravitational collapse of
the center of a large, evolved red giant star, perhaps in a supernova explosion. Black holes in
clusters have been found in the range of 104M⊙, and are called intermediate-mass black holes.
Black holes in galactic centers have masses between 106 and 1010M⊙, and are called SMBHs. The
higher masses are found in the centers of active galaxies and quasars. The history and method of
formation of intermediate-mass and supermassive black holes are not yet well understood.

All three kinds of black hole can radiate gravitational waves. According to Figure 2, stellar
black-hole radiation will be in the ground-based frequency range, while galactic holes are detectable
only from space. Intermediate-mass black holes may lie at the upper end of the LISA band
or between LISA and ground-based detectors. The radiation from an excited black hole itself
is strongly damped, lasting only a few cycles at its natural frequency [see Equation (12) with
R = 2M ]:

fBH ∼ 1000

(

M

10M⊙

)−1

Hz

.

7.2.2 Stellar-mass black-hole binaries

Radiation from stellar-mass black holes is expected mainly from coalescing binary systems, when
one or both of the components is a black hole. Although black holes are formed more rarely than
neutron stars, the spatial abundance of binary systems consisting of neutron stars with black holes,
or of two black holes, is amplified relative to neutron-star binaries because binary systems are much
more easily broken up when a neutron star forms than when a black hole forms. When a neutron
star forms, most of the progenitor star’s mass (6M⊙ or more) must be expelled from the system
rapidly. This typically unbinds the binary: the companion star has the same speed as before but
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is held to the neutron star by only a fraction of the original gravitational attraction. Observed
neutron-star binaries are thought to have survived because the neutron star was coincidentally given
a kick against its orbital velocity when it formed. When a black hole forms, most of the original
mass may simply go down into the hole, and the binary will have a higher survival probability.
However, this argument may not lead to observable black hole binaries; there is a possibility that
systems that would form black holes close enough to coalesce in a Hubble time do not become
binaries, but rather the two progenitor stars are so close that they merge before forming black
holes.

On the other hand, double black-hole binaries may in fact be formed abundantly by capture
processes in globular clusters, which appear to be efficient factories for black-hole binaries [295].
Being more massive than the average star in a globular cluster, black holes sink towards the center,
where three-body interactions can lead to the formation of binaries. The key point is that these
binaries are not strongly bound to the cluster, so they can easily be expelled by later encounters.
From that point on they evolve in isolation, and typically have a lifetime shorter than 1010 yrs.

The larger mass of stellar black-hole systems makes them visible from a greater distance than
neutron-star binaries. If the abundance of binaries with black holes is comparable to that of
neutron-star binaries, black hole events will be detected much more frequently than those involving
neutron stars. They may even be seen by first-generation detectors in the S5 science run of the
LSC (see Section 4.3.1), although that is still not very probable, even with optimistic estimates of
the black-hole binary population. It seems very possible, however, that the first observations of
binaries by interferometers will eventually be of black holes.

More speculatively, black hole binaries may even be part of the dark matter of the universe.
Observations of Massive Compact Halo Objects (MACHOs) – microlensing of distant stars by
compact objects in the halo of our galaxy – have indicated that up to half of the galactic halo
could be made up of dark compact objects of 0.5M⊙ [25, 351]. This is difficult to understand in
terms of stellar evolution, as we understand it today: neutron stars and black holes should be more
massive than this, and white dwarfs of this mass should be bright enough to have been identified
as the lensing objects. One speculative possibility is that the objects were formed primordially,
when conditions may have allowed black holes of this mass to form. If so, there should also be
a population of binaries among them, and occasional coalescences should, therefore, be expected.
In fact, the abundance would be so high that the coalescence rate might be as large as one every
20 years in each galaxy, which is higher than the supernova rate. Since binaries are maximally
non-axisymmetric, these systems could be easily detected by first-generation interferometers out
to the distance of the Virgo Cluster [265].

The estimates used here of detectability of black hole systems depend mainly on the radiation
emitted as the orbit decays, during which the point-particle post-Newtonian approximation should
be adequate. But the inspiral phase will, of course, be followed by a burst of gravitational radiation
from the merger of the black holes that will depend in detail on the masses and spins of the objects.
Numerical simulations of such events will be used to interpret this signal and to provide templates
for the detection of black holes too massive for their inspiral signals to be seen. There is an
abundance of information in these signals: population studies of the masses and spins of black
holes, studies of typical kick velocities for realistic mergers, tests of general relativity.

7.2.3 Intermediate-mass black holes

Intermediate-mass black holes, with masses between 100M⊙ and 104M⊙, are expected on general
evolutionary grounds, but have proved hard to identify because of their weaker effect on surrounding
stellar motions. Very recently [275] strong evidence has been found for such a black hole in the
star cluster Omega Centauri. If such black holes are reasonably abundant, then they may be LISA
sources when they capture a stellar-mass black hole or a neutron star from the surrounding cluster.
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For these merger events the mass ratio is not as extreme as for EMRIs, and so these are accordingly
called IMRIs: Intermediate Mass-Ratio Inspirals.

The problem of modelling the signals from these systems has not yet been fully studied. If
these signals can be detected, they will tell us how important black holes were in the early stellar
population, and whether these black holes have anything to do with the central black holes in the
same galaxies.

7.2.4 Supermassive black holes

Gravitational radiation is expected from SMBHs in two ways. In one scenario, two massive black
holes spiral together in a much more powerful version of the coalescence we have just discussed.
The frequency is much lower, in inverse proportion to their masses, and the amplitude is higher.
Equation (128) implies that the effective signal amplitude (which is what appears in the expression
for the SNR) is almost linear in the masses of the black holes, so that a signal from two 106M⊙

black holes will have an amplitude 105 times bigger than the signal from two 10M⊙ holes at the
same distance. Even allowing for differences in technology, this indicates why space-based detectors
will be able to study such events with a very high SNR, no matter where in the universe they occur.
Observations of coalescing massive black-hole binaries will therefore provide unique insight into
the behavior of strong gravitational fields in general relativity.

The event rate for such coalescences is not easy to predict, but is likely to be large. It seems
that the central core of most galaxies may contain a black hole of at least 106M⊙. This is known to
be true for our galaxy [151] and for a very large proportion of other galaxies that are near enough
to be studied in sufficient detail [312]. SMBHs (up to a few times 109M⊙) are believed to power
quasars and active galaxies, and there is a good correlation between the mass of the central black
hole and the velocity dispersion of stars in the core of the host galaxy [174].

If black holes are formed with their galaxies, in a single spherical gravitational collapse event,
and if nothing happens to them after that, then coalescences will never be seen. But this is unlikely
for two reasons. First, it is believed that galaxies may have formed through the merger of smaller
units, sub-galaxies of masses upwards of 106M⊙. If these units had their own black holes, then
the mergers would have resulted in the coalescences of many of the black holes on a timescale
shorter than the present age of the universe. This would give an event rate of several mergers
per year in the universe, most of which would be observable by LISA, if the more massive black
hole is not larger than about 107M⊙. If the 106M⊙ black holes were formed from smaller black
holes in a hierarchical merger scenario, then the event rate could be hundreds or thousands per
year. The second reason is that we see large galaxies merging frequently. Interacting galaxies are
common, and if galaxies come together in such a way that their central black holes both remain in
the central core, then dynamical friction with other stars will bring them close enough together to
allow gravitational radiation to bring about a merger on a timescale of less than 1010 yrs. There is
considerable evidence for black hole binaries in a number of external galaxies [255]. There is even
a recent report of an SMBH having been ejected from a galaxy, possibly by the kick following a
merger [222] and of an SMBH binary that will coalesce in about 10,000 yrs [373]!

Besides mergers of holes with comparable masses, the capture of a small compact object by a
massive black hole can also result in observable radiation. The tidal disruption of main-sequence
or giant stars that stray too close to the black hole is thought to provide the gas that powers the
quasar phenomenon. These disruptions are not expected to produce observable radiation. But the
clusters will also contain a good number of neutron stars and stellar-mass black holes. They are
too compact to be disrupted by the black hole, even if they fall directly into it.

Such captures, therefore, emit a gravitational wave signal that will be well approximated as
that from a point mass near the black hole. This will again be a chirp of radiation, but in this
case the orbit may be highly eccentric. The details of the waveform encode information about the
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geometry of spacetime near the black hole. In particular, it may be possible to measure the mass
and spin of the black hole and thereby to test the uniqueness theorem for black holes. The event
rate is not very dependent on the details of galaxy formation, and is probably high enough for
many detections per year from a space-based detector [32], provided that theoretical calculations
give data analysts accurate predictions of the motion of these point particles over many hundreds
of thousands of orbits. These Extreme Mass-Ratio Inspiral sources (EMRIs) are a primary goal of
the LISA detector. By observing them, LISA will provide information about the stellar population
near central black holes. When combined with modelling and spectroscopic observations, this will
facilitate a deep view of the centers of galaxies and their evolution.

7.3 Neutron star astrophysics

7.3.1 Gravitational collapse and the formation of neutron stars

The event that forms most neutron stars is the gravitational collapse that results in a supernova.
It is difficult to predict the waveform or amplitude expected from this event. Although detecting
this radiation has been a goal of detector development for decades, little more is known about
what to expect than 30 years ago. The burst might be at any frequency between 100 Hz and
1 kHz, and it might be a regular chirp (from a rotating deformed core) or a more chaotic signal
(from convective motions in the core). Considerable energy is released by a collapse, and on simple
energetic grounds this source could produce strong radiation: if the emitted energy is more than
about 0.01M⊙, then second-generation detectors would have no trouble seeing events that occur
in the Virgo Cluster. This energetic consideration drove the early development of bar detectors.

But numerical simulations tell a different story, and it seems very likely that radiation am-
plitudes will be much smaller, as described in Section 3. Such signals might be detectable by
second-generation detectors from a supernova in our galaxy, but not from much greater distances.
When they are finally detected, the gravitational waves will be extremely interesting, providing our
only information about the dynamics inside the collapse, and helping to determine the equation of
state of hot nuclear matter.

If gravitational collapse forms a neutron star spinning very rapidly, then it may be followed
by a relatively long period (perhaps a year) of emission of nearly monochromatic gravitational
radiation, as the r-mode instability (Section 7.3.4) forces the star to spin down to speeds of about
100 – 200 Hz [278]. If as few as 10% of all the neutron stars formed since star formation began
(at a redshift of perhaps four) went through such a spindown, then they may have produced a
detectable random background of gravitational radiation at frequencies down to 20 Hz [324].

7.3.2 Neutron-star–binary mergers

When two neutron stars merge, they will almost certainly have too much mass to remain as a star,
and will eventually collapse to a black hole, unless they can somehow expel a significant amount
of mass. The collision heats up the nuclear matter to a point where, at least initially, thermal
pressure becomes significant. Numerical simulations can use theoretical equations of state (such
as that of Lattimer and Swesty [233]) to predict the merger radiation, and observations will then
test the nuclear physics assumptions that go into the equation of state. Simulations show that the
choice of equation of state makes a big difference to the emitted waveform, as do the masses of the
stars: there is no mass scaling as there is for black holes [60].

When a neutron star encounters a black hole in a stellar compact binary merger, the star may
not be heated very much by the tidal forces, and the dynamics may be governed by the cold nuclear-
matter equation of state, about which there is great uncertainty. Again, comparing observed with
predicted waveforms may provide some insight into this equation of state. Simulations suggest
that these systems may give rise to many of the observed short, hard gamma-ray bursts [155, 336].

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

http://www.livingreviews.org/lrr-2009-2


Physics, Astrophysics and Cosmology with Gravitational Waves 97

Simultaneous gravitational wave and gamma ray detections would settle the issue and open the
way to more detailed modeling of these systems.

7.3.3 Neutron-star normal mode oscillations

Gravitational wave observations at high frequencies of neutron-star vibrations may also constrain
the cold-matter equation of state. In Figure 2 there is a dot for the typical neutron star. The
corresponding frequency is the fundamental vibrational frequency of such an object. In fact,
neutron stars have a rich spectrum of nonradial normal modes, which fall into several families: f,
g, p, w, and r-modes have all been studied. These have been reviewed by Andersson and Comer [35].
If their gravitational wave emissions can be detected, then the details of their spectra would be a
sensitive probe of their structure and of the equation of state of neutron stars, in much the same
way that helioseismology probes the interior of the sun. Even knowing accurately the frequency
and decay time of just the fundamental ℓ = 2 f-mode would be enough to eliminate most current
equations of state [36].

This is a challenge to ground-based interferometers, which have so far focussed their efforts on
frequencies below 1 kHz. But Advanced LIGO and the upgraded GEO-HF detector (Section 4.3.1)
may have the capability to perform narrow-banding and enhance their sensitivity considerably at
frequencies up to perhaps 2 kHz, which could put the f-modes of neutron stars into range.

The f-modes of neutron stars, which could be excited by glitches or by the nuclear explosions
on accreting neutron stars that are thought to produce X-ray flares and soft gamma-ray repeater
events. The rise-time of X-ray emission can be as short as a few milliseconds [173], which might
be impulsive enough to excite acoustic vibrations. If the rise time of the explosion matches the
period of the mode well enough, then a substantial fraction of the energy released could go into
mechanical vibration, and almost all of this fraction would be carried away by gravitational waves,
since other mode-damping mechanisms inside neutron stars are much less efficient.

Radio-pulsar glitches seem to release energies of order 1035 J, and X-ray and gamma ray events
can be much more energetic. Using Equation (20), we can estimate that the release of that much
energy into gravitational waves at 2 kHz at a distance of 1 kpc would create a wave of effective
amplitude around 3× 10−22. (The effective amplitude assumes we can do matched filtering, which
in this case is not very difficult.) This kind of amplitude should be within the reach of Advanced
LIGO (Figure 5) and perhaps GEO-HF, provided they implement narrowbanding. This will not be
easy, either scientifically or operationally, but the payoff in terms of our understanding of neutron
star physics could be very substantial.

Observations of these modes would immediately constrain the cold-matter nuclear equation of
state in significant ways [36, 35].

In fact, modes of neutron stars may have already been observed in X-rays [386]. But these
are likely to be crustal modes, whose restoring force is the shear strength of the crust. While the
physics of the crust is interesting in itself, such observations provide only weak constraints on the
interior physics of the neutron star.

7.3.4 Stellar instabilities

7.3.4.1 The CFS instability. In 1971 Chandrasekhar [111] applied the quadrupole formula to
calculate the corrections to the eignefrequencies of the normal mode vibrations of rotating stars, and
he found to his surprise that some modes were made unstable, i.e., that coupling to gravitational
radiation could destabilize a rotating star. Subsequent work by Friedman and Schutz [166] showed
that there was a key signature for the mode of a Newtonian star that would be unstable in general
relativity. This was the pattern speed of the mode, i.e., the angular velocity at which the crests of
the pattern rotated about the rotation axis of the star. If this speed was in the same sense as the
rotation of the star, but slower than the star, then the mode would be unstable in a perfect-fluid

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

http://www.livingreviews.org/lrr-2009-2


98 B.S. Sathyaprakash and Bernard F. Schutz

star. This instability has come to be known as the CFS instability, after the three authors who
explained it.

The basic theory was developed for perfect-fluid stars. However, Lindblom and Detweiler [238]
showed that the effect of viscosity ran counter to that of radiation reaction, so that the instability
was strongest in modes with the longest wavelengths, i.e., in the quadrupolar modes. Full numerical
calculations on Newtonian stellar models with realistic viscosity models showed [239] that the
standard fundamental and acoustic modes of rotating neutron stars were not vulnerable to this
instability. Subsequent work on fully relativistic models [347] has hinted that the instability may
be stronger than the Newtonian models indicate, but it is still at the margins of astrophysical
interest.

7.3.4.2 The r-mode instability. The situation changed in 1997 when Andersson [34] pointed
out that there is another class of modes of Newtonian stars that should be unstable in the same
way, but which had not been studied in this context before, the Rossby or r-modes. These
are momentum-dominated modes, where the gravitational radiation comes from the current-
quadrupole terms, rather than from the mass quadrupole. Investigations by a number of au-
thors [241, 37, 278] have shown that this instability could be very strong in hot, rapidly-rotating
stars. This is particularly relevant to young neutron stars, which may well be formed with rapid
spin and which will certainly be hot. For their first year, stars spinning faster than about 100 Hz
could spin down to about 100 Hz by losing angular momentum to gravitational radiation. The
instability might also operate in old accreting neutron stars, such as those in LMXB X-ray binaries
(see the next section).

However, the instability is, like other CFS instabilities, sensitive to viscosity, and there is great
uncertainty about the amount of viscosity inside neutron stars [240, 228, 35].

7.3.5 Low-mass X-ray binaries

Observations by the Rossi satellite (RXTE) have given evidence that the class of X-ray sources
called Low-Mass X-ray Binaries (LMXB’s) contains neutron stars with a remarkably narrow range
of spins, between perhaps 250 Hz and 320 Hz [376]. These are systems in which it is believed that
neutron stars are spun up from the low angular velocities they have after their lifetime as normal
pulsars to the high spins that millisecond pulsars have. One would expect, therefore, that the spins
of neutron stars in such systems would be spread over a wide range. The fact that they are not
requires an explanation.

The most viable explanation offered so far is the suggestion of Bildsten [77] that gravitational
radiation limits the rotation rate. The proposed mechanism is that anisotropic accretion onto the
star creates a temperature gradient in the crust of the neutron star, which in turn creates a gradient
in the mass of the nucleus that is in local equilibrium, and this in turn creates a density gradient
that leads, via the rotation of the star, to the emission of gravitational radiation. This radiation
carries away angular momentum, balancing that which is accreted, so that the star remains at an
approximately constant speed.

According to the model, the gravitational wave luminosity of the star is proportional to the
measured flux of X-rays, since the X-ray flux is itself proportional to the accreted angular mo-
mentum that has to be carried away by the gravitational waves. If this model is correct, then
the X-ray source Sco X-1 might be marginally detectable by advanced interferometers, and other
similar systems could also be candidates [385].

7.3.6 Galactic population of neutron stars

Neutron stars are known to astronomy through the pulsar phenomenon. As radio surveys improve,
the number of known pulsars is pushing up toward 2000. There is a public catalogue on the
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web [55]. But the galactic population of neutron stars is orders of magnitude larger, perhaps as
many as 108. Most are much older than typical pulsars, which seem to stop emitting after a few
million years. X-ray surveys reveal a number of unidentified point sources, which might be hot
neutron stars, but older neutron stars are probably not even hot enough to show up in such surveys.

Gravitational wave observations have the potential to discover more neutron stars, but in the
foreseeable future the numbers will not be large. Spinning neutron stars can be found in searches
for continuous-wave signals, but there is no a priori reason to expect significant deformations that
would lead to large gravitational wave amplitudes. One mechanism, proposed by Cutler [127], is
that a large buried toroidal magnetic field could, by pulling in the waist of a spinning star, turn it
into a prolate spheroid. This is classically unstable and would tip over and spin about a short axis,
emitting gravitational waves. Millisecond pulsars could, in principle, be spinning down through
the emission of gravitational waves in this way. Only deep observations by Advanced LIGO could
begin to probe this possibility.

In fact, strong emission of gravitational waves is in some sense counterproductive, since it causes
a neutron star to spin down and move out of the observing band quickly. This places important
limits on the likely distribution of observable continuous-wave amplitudes from neutron stars [219].
This is important input into the blind searches for such signals being conducted by the LSC.

Radio observations of pulsars have, of course, revealed a fascinating population of binary sys-
tems containing neutron stars, including the original Hulse–Taylor pulsar [201] and the double
pulsar PSR J0737-3039 [246]. But radio surveys only cover a small fraction of our galaxy, so there
may be many more interesting and exotic systems waiting to be discovered, including neutron stars
orbiting black holes. In fact, not all neutron stars are pulsars, so there are likely to be nearby
binary systems containing neutron stars that are not known as pulsars at all.

LISA has enough sensitivity to detect all such binaries in the galaxy whose gravitational wave
emission is above 1 mHz, i.e., with orbital periods shorter than half an hour. Below that frequency,
systems may just blend into the confusion noise of the white-dwarf background, unless they are
particularly close. The Hulse–Taylor system is a bit below the LISA band, and even its higher
harmonics are likely to be masked by the dense confusion noise of white-dwarf galaxies at low
frequencies. Double pulsars should be detectable by LISA with low SNR (around five in five years)
above the confusion background at a frequency of 0.2 mHz [210]. In all, LISA might detect several
tens or even hundreds of double neutron-star systems, and potentially even a handful of double
black hole binaries.

Neutron stars are the fossils of massive stars, and so a population census of binaries can help
normalize our galaxy’s star-formation rate in the past. The mass distribution of such systems will
also be of interest: do all neutron-star binaries have stars whose masses are near 1.4M⊙, or is this
only true of systems that become pulsars? LISA observations are likely to illuminate many puzzles
of stellar evolution.

Finally, it is possible to search for gravitational waves from individual spinning neutron stars
in binary systems. Although more rare than isolated neutron stars, these systems might have a
different history and a different distribution of amplitudes. Searches are planned by the LSC, but
they are difficult to do, since the parameter space is even larger than for isolated pulsars.

7.4 Multimessenger gravitational-wave astronomy

Multimessenger gravitational-wave astronomy refers to coordinated observations using different
kinds of radiation and information carriers: electromagnetic, neutrino, cosmic ray, and gravitational
wave. Joint coordinated observing has much to offer gravitational wave detection, by allowing it
to target known interesting sources or locations, thereby reducing the parameter space that must
be searched and improving the confidence of a detection. Even more importantly, the information
obtained from gravitational wave observations is typically complementary to that which one can get
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from electromagnetic astronomy, and so there are big science gains to be realized from coordinated
observations.

One can distinguish three broad classes of coordinated observations: triggered gravitational-
wave searches, follow-up electromagnetic observations, and parameter refinement.

• Triggered searches use transient electromagnetic events, such as gamma-ray bursts, to narrow
down the window of time for a search in the gravitational-wave data stream, and possibly
also to restrict the ranges of various parameters. Since gravitational-wave–signal data is
recorded, it is no problem to go back to data at the time of the triggering event and search
it. This helps to lower the detection threshold, since gravitational wave events need, in this
case, to be significant over a time scale of a few minutes rather than, say, an entire year.

• Follow-up searches use a, possibly tentative, gravitational-wave detection to mark an area in
the sky and a timeframe for an electromagnetic search. A very interesting example of this
will occur with LISA, which will be able to predict the location and time of the coalescence
of two SMBHs with reasonable accuracy at least a week in advance. This will allow sufficient
time for telescopes in all the electromagnetic wavelengths to prepare to observe the event.

• Parameter refinement refers to the use of electromagnetic obeservations of potential grav-
itational wave sources to improve the values of the parameters that must be used in the
gravitational wave search. This has already been used in LSC searches, for example in trying
to detect radiation from known radio pulsars: radio observations during the gravitational-
wave observation period were used to track the changing frequency of the pulsar [11].

Finding electromagnetic counterparts to gravitational wave observations is important, of course,
for learning about the nature of the events. But it has a more subtle benefit: it generally improves
significantly the accuracy with which parameters can be estimated from the gravitational wave
observation. The reason is that one of the biggest sources of parameter uncertainty is the sky loca-
tion of a gravitational wave source. Interferometers have broad antenna patterns, which is helpful
in that they can monitor essentially the entire sky continuously, but which means that directional
information for transient events can come only from time delay information among different detec-
tors. The simple Rayleigh limit λgw/D for ground-based interferometers gives angular accuracies
on the order of several degrees, divided by the amplitude SNR (never smaller than 5 for any reason-
able detection). The covariance of angular errors with uncertainties in other parameters (distance,
polarization, stellar masses, etc) is usually significant. Therefore, if a follow-up electromagnetic
observation can provide a more accurate position, this can also improve the determination of all
the other parameters measured gravitationally.

Triggered searches are already being performed by the LSC for gravitational waves associated
with gamma-ray bursts [14]. The nondetection of any gravitational waves associated with the
gamma-ray burst GRB 070201 showed that it was not created by the merger of neutron stars
in the nearby galaxy M31, despite its positional coincidence on the sky [16]. In addition, the
gravitational wave detectors are monitoring the triggers provided by both high-energy and low-
energy neutrino detectors in order to get instant warning of a supernova in our galaxy or of some
more exotic event further away. As we have noted above, X-ray flares from neutron stars may
signal normal-mode radiation from acoustic vibrations.

Triggers may also allow the first detection of gravitational waves from the normal modes of
neutron stars, which as mentioned in Section 7.3.3, would provide our first “view” inside these
exotic objects. These triggers could be radio-pulsar glitches, X-ray flares, or even the formation
and subsequent ringdown of a neutron star.

Follow-up observations of neutron-star–binary coalescence events are likely to be particularly
informative. It is possible that these events are associated with short gamma-ray bursts, in which
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case most events are missed because of the narrow beaming of the gamma rays. Gravitational
waves, by contrast, are emitted nearly isotropically, so that they will pick out essentially all such
events within the range of the detectors, and astronomers can subsequently search for afterglows
and prompt X- and gamma-ray emission. The ability to study such events from all aspect angles
will help model them reliably. Even if coalescences are not associated with gamma-ray bursts, it is
difficult to imagine that they will not produce visible afterglows or other transient electromagnetic
events that would presumably not have been recognized before. The same considerations apply to
coalescences of neutron stars and black holes.

Gravitational wave events may also provide our first notice of a gravitational collapse event, if
the event is a strong radiator and is too far away for neutrino detectors to see it. While supernova
simulations generally suggest that the amplitude of emitted gravitational waves is small [147],
numerical simulations of the aftermath of neutron-star coalescence suggest the possibility of very
powerful gravitational-wave emission [60]. While this event seems to lead inevitably to a black
hole, because the total mass is too large for a single neutron star, neutron stars might occasionally
be formed in this way by mergers of white dwarfs, again with strong rotation and the possibility
of the emission of strong gravitational radiation. In this connection the suggestion of Arons [43]
that at least some magnetars are formed in events of some kind that involve strong magnetic field
braking but also strong gravitational wave emission, and that these events are the source of the
ultra-high–energy cosmic rays whose source, is so far unexplained [384].

LISA offers particularly interesting opportunities for follow-up observations with electromag-
netic waves, beyond the direct monitoring of the merger events for SMBHs mentioned above.
Because SMBHs often carry accretion disks, the merger event may be followed by the turning on
of accretion after a delay of, perhaps, a year or so [257]. The merger may also cause a prompt
shock in surrounding gas, due to the essentially instantaneous loss of several percent of the gravity
of the central mass. These or similar effects may make it possible to identify the galaxies that host
LISA mergers, which in turn will allow one to associate a redshift with the luminosity distance that
the gravitational wave event provides. This will be important for LISA’s cosmographic capabilities
(next section).

LISA will look for close white-dwarf binaries in our galaxy and will probably see thousands
of them. White-dwarf binaries never reach the last stable orbit, which would occur at roughly
1.5 kHz for these masses. Instead they undergo a tidal interaction and can either disrupt at much
lower frequency or end up as AM CVns (see, for instance, [341, 271]). In the latter case, we have a
close white-dwarf binary with orbital periods of minutes or hours, wherein the smaller of the two
stars transfers mass to the more massive one. This mass loss leads to an increase in the orbital
period as a result of redistribution of the angular momentum. So far only a handful of AM CVn
systems are known. LISA could potential discover a lot more of these as their orbital periods are
right in the heart of LISA’s sensitivity band and simultaneous observation of these systems in the
gravitational and electromagnetic window has huge impacts on the science we can learn about
these end products of stellar evolution and their eventual fate.

For each resolved white-dwarf binary LISA can determine the orbital period and the spatial
orientation of the orbit, and it can give a relatively crude position. If the orbit is seen to decay
during the observation, LISA can determine the distance to the binary. If the binary is known
from optical or X-ray observations, then this can be very valuable additional information about
the system, again complementary to that which is normally available from the electromagnetic
observation. Even for systems that have not been identified, LISA’s census of white-dwarf binaries
will provide important statistics (on the mass function, distribution of separations, etc) that should
lead to a better understanding of white-dwarf and binary evolution.

In the near term, one of the most practical applications of multimessenger astronomy is to use
electromagnetic observations to refine the values of key search parameters for the gravitational
wave data analysis. This has been extensively discussed for possible observations of low-mass
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X-ray binaries, as described in Section 7.3.5. Watts et al. [385] surveyed the known ranges of
parameters, such as spin rates and orbital parameters, and concluded that they need to be narrowed
considerably if a practical search were to be possible, not just because of the computer power
required, but more importantly because of the loss of significance if too large a parameter space
has to be searched.
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8 Cosmology with Gravitational Wave Observations

Gravitational wave observations may inform us about cosmology in at least two ways: by studies
of individual sources at cosmological distances that give information about cosmography (the
structure and kinematics of the universe) and about early structure formation, and by direct
observation of a stochastic background of gravitational waves of cosmological origin. In turn, a
stochastic background could either be astrophysical in origin (generated by any of a myriad of
astrophysical systems that have arisen since cosmological structure formation began, as described
in Section 8.2.2), or it could come from the Big Bang itself (generated by quantum processes
associated with inflation or with spontaneous symmetry breaking in the extremely early universe,
as described in Section 8.2.1). The observation of a cosmic gravitational wave background (CGWB)
is probably the most fundamentally important observation that gravitational wave detectors can
make. But the astrophysical gravitational wave background (AGWB) also contains important
information and may mask the CGWB over much of the accessible spectrum.

The detection of discrete sources at cosmological distances will require high sensitivity. Ad-
vanced ground-based detectors should be able to see a few individual sources (mainly stellar-mass
black hole binaries) at redshifts approaching 1, with which they may be able to make a good de-
termination of the Hubble constant. But LISA’s observations of the coalescences of massive black
hole binaries at all redshifts should make LISA a significant tool for cosmography. We examine
cosmography measurements in Section 8.3. These high-z observations may also contain interesting
information about early structure formation, such as the relationship between SMBH formation
and galaxy formation. We have mentioned this already in Section 7.2.4.

Both kinds of detectors will search for a stochastic background in their own wave band. As we
have seen earlier, LISA will almost certainly detect an AGWB from binary systems in our galaxy,
and both LISA and advanced ground-based detectors may see a CGWB, if the more optimistic
estimates of its strength are correct. But scientists are already sketching designs for a mission
to follow LISA with much higher sensitivity, dedicated to observing the CGWB from inflation.
Stochastic searches are described in Section 8.1.2.

Other detection methods are also being used to probe the spectrum of the background radiation
at longer wavelengths. Pulsar timing observations (Section 8.1.3) are already being used to set
limits on the background at periods of a few years, and they will reach much greater sensitivity
when coherent antenna arrays (like the Square Kilometer Array [224, 107]) are available. And ob-
servations of the temperature fluctuations of the cosmic microwave background (Section 8.1.4) have
the potential to reveal the gravitational wave content of the universe at the redshift of decoupling,
which means at wavelength scales comparable to the size of the universe [300, 214].

Before examining the details of detection, we begin by examining the statistics of a random
gravitational wave background. A good introduction to the theory of the CGWB is the set of
lectures by Bruce Allen at the 1996 Les Houches summer school [27]. The first paper of the LSC
on searches for a stochastic background [1] also contains a brief introduction.

8.1 Detecting a stochastic gravitational wave background

8.1.1 Describing a random gravitational wave field

By definition, a stochastic background of gravitational waves is a superposition of waves arriving
at random times and from random directions, overlapping so much that individual waves are
not identifiable. We assume that there are so many sources (either astrophysical sources or the
quantum fluctuations that create the CGWB) that individual ones are not distinguishable. Such
a gravitational wave field will appear in detectors as a time-series noise, which by the central
limit theorem should have a Gaussian-normal distribution function if there are enough overlapping
sources. This kind of background will compete with instrumental noise. It will be detectable by
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a single detector, if it is stronger than instrumental noise, but a weaker background could still
be detected by using a pair of detectors and looking for a correlated component of their “noise”
output, on the assumption that their instrumental noise is not correlated.

As a random phenomenon, the gravitational wave fields at two different locations are uncor-
related, because gravitational waves arrive from all directions and at all frequencies. It might,
therefore, be thought that two detectors’ responses would be correlated only if they were located
at the same position. But if one considers one component of the wave field with a single frequency,
then it is clear that there will be strong correlations between points if they are separated along the
wave’s propagation direction by much less than a wavelength. We shall see that these frequency-
dependent correlations allow one to detect a background by cross-correlating the output of two
separated detectors, albeit with less sensitivity than if they were co-located. We shall consider
cross-correlation as a detection method in Section 8.1.2.

Random gravitational waves are conventionally described in terms of their energy density spec-
trum ρgw(f), rather than their mean amplitude. It is convenient to normalize this energy density
to the critical density ρc required to close the universe, which is given in terms of the Hubble
constant H0 as

ρc = 3H2
0/8πG.

We then define

Ωgw :=
dρgw/ρc

d ln f
. (133)

This can be interpreted as the fraction of the closure energy density that is in random gravitational
waves between the frequency f and e × f . If the source of radiation is scale-free (which means
that there is no preferred length or time scale in the process), then it will produce a power-law
spectrum, i.e., one in which Ωgw(f) depends on a power of f . Inflation, as we describe below,
predicts a flat energy spectrum, one in which Ωgw is essentially independent of frequency [27].

The energy in the cosmological background is, of course, related to the spectral density of
the noise that the background would produce in a gravitational wave detector. Since we describe
the gravitational wave noise in terms of amplitude rather than energy, there are scaling factors
involving the frequency between the two. An isotropic gravitational wave background incident on
an interferometric detector will induce a strain spectral noise density equal to [359, 27]

Sgw(f) =
3H2

0

10π2
f−3 Ωgw(f). (134)

Note that the explicit dependence on frequency is f−3: two factors come from the relation of
energy and squared-strain, and one factor from the fact that Ωgw is an energy distribution per unit
logarithmic frequency. Note also that there are no explicit factors of c or G needed in this formula
if one wants to work in nongeometrized units.

If we scale H0 by h100 = H0/(100 km s−1 Mpc−1), and we note that 100 km s−1 Mpc−1 =
3.24 × 10−18 s−1, then this equation implies that the strain noise is

S1/2
gw = 5.6 × 10−22 Hz−1/2 Ω1/2

gw

(

f

100 Hz

)−3/2

h100. (135)

8.1.2 Observations with gravitational wave detectors

To be observed by a single gravitational wave detector, the gravitational wave noise must be larger
than the instrumental noise. This is a bolometric method of detection of the background, and it
requires great confidence in the understanding of the detector, in order to believe that the observed
noise is external. This is how the cosmic microwave background was originally discovered in a radio
telescope by Penzias and Wilson.
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If there are two detectors, then one may be able to get better sensitivity by cross-correlating
their output, as mentioned in Section 4.7.3 above. This works best when the two detectors are
close enough together to respond to the same random wave field. Even when they are separated,
however, they are correlated well at lower frequencies.

From Equation 135 and the discussion in Section 4.7.3 it is straightforward to deduce that two
co-located detectors, each with spectral noise density Sh and fully uncorrelated instrumental noise,
observing over a bandwidth f at frequency f for a time T , can detect a stochastic background
with energy density

Ω1/2
gw h100 =

(

S
1/2
h

3.1 × 10−18 Hz−1/2

)

(

f

10 Hz

)5/4(
T

3 yrs

)−1/4

. (136)

The two LIGO detectors (separated by about 10 ms in light-travel time) are reasonably well
placed for performing such correlations, particularly when upgrades push their lower frequency
limit to 20 Hz or less. Two co-located first-generation LIGO instruments operating at 100 Hz
could, in a one-year correlation, reach a sensitivity of Ωgw ∼ 1.7× 10−8. But the separation of the
actual detectors takes its toll at this frequency, so that they can actually only reach Ωgw ∼ 10−6.
Advanced LIGO may improved this by two or three orders of magnitude, going well below the
nucleosynthesis bound. The third-generation instrument ET, with instrumental noise as shown
in Figure 5, can go even deeper. Two co-located ETs, observing at 10 Hz for three years, could
reach Ωgw ∼ 10−12. At this frequency the detectors could be as far apart as 5000 km without a
substantial loss in correlation sensitivity. The numbers given here are reflected in the curves in
Figure 5.

Correlation searches are also possible between resonant detectors or between one resonant and
one interferometric detector [53]. This has been implemented with bar detectors [52] and between
LIGO and the ALLEGRO bar detector [391].

LISA does not gain by a simple correlation between any two of its independent interferometers,
since they share a common arm, which contributes common noise that competes with that of
the background. A gravitational wave background of Ωgw ∼ 10−10 would compete with LISA’s
expected instrumental noise. However, using all three interferometers together can improve things
for LISA at low frequencies, assuming that the LISA instrumental noise is well behaved [194]. This
might enable LISA to go below 10−11.

8.1.3 Observations with pulsar timing

Other less-direct methods are also being used to search for primordial gravitational waves. As we
saw in Section 4.4.2, pulsar timing can, in principle, detect gravitational-wave–induced fluctuations
in the arrival times of pulses. Millisecond pulsars are such stable clocks when averaged over years
of observations that they are being used to search for gravitational waves with periods longer than
one year. A single pulsar can set limits on a stochastic background by removing the slow spindown
and looking for random timing residuals. Although one would never have enough confidence
in the stability of a single pulsar to claim a detection, this sets upper limits in the important
frequency range below that accessible to man-made instruments. The best such limits are on pulsar
PSR B1855+09, with an upper limit (at 90% confidence) of Ωgw < 4.8×10−9 at f = 4.4 nHz [212].

Arrays of pulsars offer the possibility of cross-correlating their fluctuations, which makes it pos-
sible to distinguish between intrinsic variability and gravitational-wave–induced variability. Pulsars
are physically separated by much more than a wavelength of the gravitational waves even with
periods of 10 yrs, so that the correlated fluctuations come from the wave amplitudes at Earth. It
will soon be possible to monitor many pulsars simultaneously with multibeam instruments, as men-
tioned in Section 4.4.2. This method could push the limits on hc ≡ (fSgw)1/2 [cf. Equation (134)]
down to 10−16 at 10 nHz [223], which translates into a limit on Ωgw of around 10−12.
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8.1.4 Observations using the cosmic microwave background

Observations of the cosmic microwave background (CMB) may in fact make the first detections of
stochastic (or any other!) gravitational waves. The temperature fluctuations first detected by the
Cosmic Background Explorer (COBE) [342] and more recently measured with great precision by the
Wilkinson Microwave Anisotropy Probe (WMAP) [72] are produced by both density perturbations
and long-wavelength gravitational waves in the early universe (see the next Section 8.2.1). Inflation
suggests that the gravitational wave component may be almost as large as the density component,
but it can only be separated from the density perturbations by looking at the polarization of the
cosmic microwave background [215]. WMAP made the first measurements of polarization [280],
but it did not have the sensitivity to see the weak imprint of gravitational waves, which appears
in the B-component of the polarization, the part that is divergence-free on the whole sky. The
best limits on the B-component so far (early 2008) have been made by the QUaD13 detector [300],
a cryogenic detector that operated for three seasons in Antarctica. These have not yet shown
any evidence for gravitational waves. Results are expected soon from the Background Imaging of
Cosmic Extragalactic Polarization (BICEP) detector, also in Antarctica [214]. The next satellite
to study the microwave background will be Planck, due for launch by the European Space Agency
in 2009 [154].

The gravitational waves detectable in the CMB have wavelengths a good fraction of the horizon
size at the time of decoupling, and today they have been redshifted to much longer wavelengths.
They are, therefore, much lower frequency than the radiation that would be observed directly by
LISA or ground-based detectors, or even by pulsar timing.

8.2 Origin of a random background of gravitational waves

8.2.1 Gravitational waves from the Big Bang

Gravitational waves have traveled almost unimpeded through the universe since they were gener-
ated. The cosmic microwave background [72] is a picture of the universe at a time 3 × 105 yrs
after the Big Bang, and studies of nucleosynthesis [346] (how the primordial hydrogen, helium,
deuterium, and lithium were created) reveal conditions in the universe a few minutes after the
Big Bang. Gravitational waves, on the other hand, were produced at times earlier than 10−24 s
after the Big Bang. Observing this background would undoubtedly be one of the most important
measurements that gravitational wave astronomy could make. It would provide a test of inflation,
and it would have the potential to give information about the fundamental interactions of physics
at energies far higher than we can reach with accelerators.

The most well-defined predictions about the energy in the cosmological gravitational wave back-
ground come from inflationary models. Inflation is an attractive scenario for the early universe
because, among other things, it provides a natural mechanism for producing the initial density
perturbations that evolved into galaxies and galaxy clusters as the universe expands. These per-
turbations start out as quantum fluctuations in the (hypothetical) scalar inflaton field that is
responsible for the inflationary expansion of the universe. The fluctuations are parametrically
amplified by the expansion [182, 262, 27] and lead to fluctuations in the density of normal matter
after inflation ends.

Several strands of evidence – among them the statistical distribution of density perturbations
seen in the cosmic microwave background (most recently by WMAP [343]), the present distribution
of galaxies [229], and numerical simulations of structure formation in the early universe [286] – are
fully consistent with the now-standard model of a universe dominated by dark energy and whose

13QUaD stands for QUEST (Q and U Extragalactic Survey Telescope) at DASI (Degree Angular Scale Interfer-
ometer).
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matter density is dominated by some kind of cold (i.e., massive) dark matter particles [350] with
density perturbations consistent with those that inflation could have produced.

The scalar inflaton fluctuations are accompanied by tensor quantum fluctuations in the grav-
itational field that similarly get amplified by inflation and form a random background [26, 27].
Different models of inflation make different predictions about the relative strength of the scalar
and tensor components.

Although inflation is in excellent agreement with observation, other mechanisms in the early
universe may have led to the additional production of gravitational waves. Defects that arise
from symmetry breaking as the presumed early unified interactions separate from one another can
lead to cosmic strings [379], which can produce both a continuous observable gravitational wave
background [102] and characteristic isolated bursts of gravitational waves [140, 141, 142]. String
theory [93, 99] and brane theory [192, 248] may also provide mechanisms for generating observable
radiation.

The various models usually predict significantly different spectra for background radiation.
Standard inflationary models predict that the spectrum of Ωgw should be nearly flat, independent
of frequency, but variants exist that allow a spectrum that rises with frequency (positive spectral
index) or falls. Symmetry-breaking and brane model cosmologies can make very different predic-
tions, even leading to narrow spectral features. It is, therefore, important to measure the spectrum
at as many frequencies as possible. Limits on power at one frequency (such as at the very low-
frequency end in the cosmic microwave background) do not necessarily predict the power at other
frequencies (such as at ground-based frequencies, a factor 1020 times higher).

It is even possible that there will be a feature in the spectrum in the observing band of ground-
based or space-based detectors. In standard cosmologies, the radiation observable by LISA (1 mHz)
had a wavelength comparable to the (then) horizon size at around the time when the temperature
of the universe was equal to the electroweak symmetry-breaking energy. If electroweak symmetry
breaking led to a first-order phase transition, where density fluctuations occurred on the length
scale of the typical symmetry domain size, then it is likely that these density fluctuations produced
gravitational waves with wavelengths of the size of the horizon, which would be in the LISA band
today [253]. Detection of this radiation would have deep implications for fundamental physics.

The other expected phase transition is the GUTs (Grand Unified Theory) transition, whose
energy might have been 1013 times higher. Any gravitational radiation from this transition today
would then be at a frequency 1013 times that from the electroweak transition, i.e., at centimeter
wavelengths. This is one motivation for building microwave-based table-top detectors aimed at
high frequencies [126]. For this radiation to be observable by standard interferometers, the GUTs
transition would have to have an energy 107 times smaller than expected, i.e., around 109 GeV.
We shall have to wait for observations at these frequencies to tell us if it is there!

In addressing the possibility of new physics, observation of gravitational waves in the cosmic
microwave background would play a unique role. These waves originated long after nucleosynthesis,
at energies where physics is presumably well understood. They would, therefore, normalize the
amount of power in the initial tensor perturbations. Then observations at higher frequencies can
use this normalization to measure the excess energy due to any exotic effects due to string theory,
phase transitions, or other unknown physics [183, 99].

Pulsar timing arrays (see Section 8.1.3) will also be used to search for a CGWB at frequencies of
a few nanoHertz. As for the microwave background, the physics of the universe when gravitational
waves at these frequencies originated is well understood, so they could be used to normalize the
spectrum. If the power at pulsar frequencies and that in the microwave background are not
consistent, then this could indicate something about the conditions in the universe before inflation
began.

The predicted spectrum from inflation, strings, and symmetry breakings is highly nonthermal.
Any thermal radiation produced in the Big Bang (for example, if, hypothetically, there was some
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kind of equipartition between gravitational degrees of freedom and other fields in the initial data at
the singularity, whatever that might mean!) would have been redshifted away to unobservability by
the subsequent inflationary expansion. If inflation did not in fact occur, then this radiation today
would have a temperature only a little below that of the cosmological microwave background. So
far no instrument has been proposed that would be sensitive to this radiation, but its detection
would presumably be inconsistent with inflation.

8.2.2 Astrophysical sources of a stochastic background

After galaxy formation, it is possible that many systems arose that have been radiating gravita-
tional waves in the bands observable by pulsar timing, LISA, and ground-based detectors. There
are likely to be strong extra-galactic backgrounds in the LISA band from compact binary systems,
which would limit searches for a CGWB [325] by LISA, even if the sensitivity were better. At lower
frequencies, even down to pulsar timing frequencies, black hole binaries may make the strongest
background, while at frequencies above the LISA band (i.e., above 0.1 Hz) the universe should be
relatively free of serious backgrounds [158, 365].

In the LISA band our galaxy is a strong source of backgrounds [190]. This presents a serious
confusion noise in searching for other sources at frequencies below 1 mHz. It should be possible to
distinguish this from a CGWB by its intrinsic anisotropy [366].

8.3 Cosmography: gravitational wave measurements of cosmological pa-
rameters

Since inspiral signals are standard candles [329], as described in Section 6, observations of massive
black hole coalescences at cosmological distances by space-based detectors can facilitate an accurate
determination of the distance to the source. Our earlier expressions for the chirp waveform can be
generalized to the cosmological case (a source at redshift z) by multiplying all masses by 1+ z and
by replacing the physical distance D by the cosmological luminosity distance DL [226]. If the wave
amplitude, frequency, and chirp rate of the binary can be measured, then its luminosity distance
can be inferred. It is not, however, possible to infer the redshift z from the observed signal: the
scale-invariance of black hole solutions means that a signal with a redshift of two and a chirp mass
M looks identical to a signal with no redshift and a chirp mass of M/3. To use these distance
measures for cosmography, one has to obtain redshifts of the host galaxies.

Before considering how this might be done, we should ask about the accuracy with which the
distance can be measured. The relative error in the distance is dominated by the relative error
in the measurement of the intrinsic amplitude of the gravitational wave, because the masses will
normally be much more accurately measured (by fitting the evolving phase of the signal) than the
amplitude. Several factors contribute to the amplitude uncertainty:

• Signal-to-noise ratio. The intrinsic measurement uncertainty in the amplitude of the
detector’s response is simply the inverse of the SNR. Since LISA can have an SNR of several
thousand when it observes an SMBH coalescence at high redshift, LISA has great potential
for cosmography.

• Position error. From the detector response one must infer the intrinsic amplitude of the
wave, which means projecting it on the antenna pattern of the detectors. This requires a
knowledge of the source position, and this will be potentially a bigger source of uncertainty
because the sensitivity of LISA depends on the location of the source in its antenna pattern.
Recent work [232, 58] has shown that LISA may be able to achieve position accuracies
between one and ten arcminutes. At, say, three arcminutes error, the amplitude uncertainty
will be of order 0.1%. This error can be reduced to the SNR-limited error if the source can
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be identified. Although the coalescence of two SMBHs itself may not have an immediate
effect on the visible light from a galaxy, the host galaxy might be identifiable either because
it shows great irregularity (mergers of black holes follow from mergers of galaxies) or because
some years after the merger an X-ray source turns on (accretion will be disrupted by the
tidal forces of the orbiting black holes, but will start again after they merge) [257]. Other
effects that might lead to an identification include evidence that stars have been expelled
from the core of a galaxy, fossil radio jets going in more than two directions from a common
center, and evidence for accretion having stopped in the recent past.

• Microlensing. If the source is at a redshift larger than one, as we can expect for LISA,
then random microlensing can produce a magnification or demagnification on the order of a
few percent [195, 131]. The measured intrinsic amplitude then does not match the amplitude
that the signal would have in an ideal smooth cosmology.

The relatively small error boxes within which the LISA coalescences can be localized are promis-
ing for identifications, especially if the X-ray indicators mentioned above pick out the host in the
error box. These factors and their impact on cosmography measurements have been examined in
detail by Holz and Hughes [195], who coined the term “standard siren” for the chirp sources whose
distance can be determined by gravitational wave measurements. The potential for cosmographic
measurements by advanced ground-based detectors have been considered in a further paper by the
same authors and collaborators [131]. Nearby coalescences and IMRIs should provide an accurate
determination of the Hubble Constant [204, 250]. Perhaps the most interesting measurement will
be to characterize the evolution of the dark energy, which is usually characterized by inserting a
parameter w in the equation of state of dark energy, p = wρ. If w = −1, then the dark energy is
equivalent to a cosmological constant [108] and the energy density will be the same at all epochs.
If w > −1, the dark energy is an evolving field whose energy density diminishes in time. According
to [131], gravitational wave measurements have the potential to measure w to an accuracy better
than 10% (for advanced ground-based detectors) and around 4% (for LISA). The accuracy with
which parameters can be measured improves greatly when one includes in the computation of the
covariance matrix the harmonics of the binary inspiral signal that is normally neglected [374]. Arun
et al. [48] have shown that the source location in the sky can be greatly improved when the signal
harmonics (up to fifth harmonic) are included, which further helps in measuring the parameter w
even better.
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9 Conclusions and Future Directions

The development of gravitational wave detectors to their present capability has required patience,
ingenuity, and dedication by an entire generation of experimental physicists. No less dedication and
vision have been required by scientific funding organizations of a half-dozen nations and two major
space agencies. The initial data runs of the LIGO and VIRGO detectors at their first sensitivity
goals (bursts with amplitudes of 10−21) have not so far yielded any detections, but this is certainly
not surprising. The operation of these detectors at this sensitivity level has demonstrated that the
technology is understood, and the analysis of the data has provided important early experience and
the opportunity to organize the efforts into the LSC and VIRGO collaborations. As the detectors
are upgraded during the period 2008 – 2014, the first detection could occur at any time; if the
advanced detectors do not make early detections, then there will inevitably be serious questions
about general relativity. The field of gravitational wave detection has never before been at the
point where it could test the fundamental theory.

Once the first detection is made, there will be increasing emphasis on the fundamental physics
and astrophysics that will follow from further detections. As we have discussed in this review,
one can look forward soon thereafter to a detailed comparison of black hole mergers with theory,
to exploring the relationship between compact-object mergers and gamma-ray bursts, to using
this association to make a precise and calibration-free measurement of the Hubble constant, and
to population studies of neutron stars and black holes. In this early phase of gravitational wave
astronomy there are very exciting (but less certain) potential observations: an unexpectedly strong
cosmological background, which would revolutionize early-universe physics; the detection of mass
asymmetry or normal-mode oscillations of rotating neutron stars, either of which would for the
first time probe the interior physics of these complex objects and would help unravel the mystery
of the pulsar phenomenon; the first studies of the interior core dynamics of a supernova, if one
happens to occur nearby; the detection of populations of compact dark objects, like cosmic strings
or small black holes; the discovery of exceptionally-massive black holes, around 100M⊙; or the
association of gravitational wave events with transient phenomena other than gamma-ray bursts,
such as transient radio bursts.

When LISA is launched, the physics and astrophysics consequences become even richer. LISA
will study black hole mergers during the early phases of galaxy formation, exploring the myste-
rious link between the two. It will map in detail black hole spacetimes and verify the black-hole
uniqueness and area theorems of general relativity. It is likely to map the history of the expansion
of the universe through measuring the distances to massive black hole mergers, and from that look
for evidence that the dark energy has been evolving with time. It will discover every short-period
binary system in our galaxy, calibrating white-dwarf masses, mapping their mass distribution,
determining the population of neutron stars in binaries. As with ground-based detectors, LISA
might make other discoveries that are harder to predict, such as a cosmological background, cos-
mic strings, intermediate-mass black holes, even g-mode oscillations of the sun. LISA has enough
sensitivity to be able to make discoveries even of sources for which there are no signal models to
aid data analysis. And if LISA does not see its verification binary sources, that will be fatal for
general relativity.

Gravitational wave detections may also come from other technologies, such as pulsar timing
searches or observations of the cosmic microwave background. The spectrum of gravitational waves
is enormous, and present technologies can explore only a tiny fraction of it. Beyond the LISA
timeframe, say after 2020, new technologies may come into the field and make possible detectors
that extend the ground-based detection band to lower frequencies (such as the Einstein Telescope
project), observing in space in the 0.1 Hz band, going up to megaHertz frequencies.

The present review has attempted to give a good overview of the science that can be done with
gravitational waves, but it is certainly not complete. Future revisions are planned to add more
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on LISA, more on data analysis issues, and considerably more on detectors that might go beyond
Advanced LIGO and VIRGO. This is a field that is developing rapidly. For example, the launch of
LISA is 10 years away (at the time of writing, 2008), but already the scientific literature contains
many hundreds of refereed papers on LISA science and technology, and every second year there
is a major international symposium on the subject. This is probably unprecedented among space
missions. Living Reviews in Relativity is planning to release a suite of articles in the near future
on LISA, which will cover cosmology, tests of general relativity, galactic astrophysics, black hole
astrophysics, and observations of low-frequency gravitational wave sources with LISA. Until the
next revision, readers interested in keeping up with the field should also consult the proceedings
of the regular conferences on gravitational waves: the Amaldi meetings, GWDAW (Gravitational
Wave Data Analysis Workshops), GWADW (Gravitational Wave Advanced Detectors Workshops),
and the LISA Symposium.
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[180] Gonzalez, J.A., Sperhake, U., Brügmann, B., Hannam, M., and Husa, S., “Total recoil: the
maximum kick from nonspinning black-hole binary inspiral”, Phys. Rev. Lett., 98, 091101,
(2007). [DOI], [gr-qc/0610154]. 6.5.2

[181] Gottardi, L., de Waard, A., Usenko, A., Frossati, G., Podt, M., Flokstra, J., Bassan, M.,
Fafone, V., Minenkov, Y., and Rocchi, A., “Sensitivity of the spherical gravitational wave
detector MiniGRAIL operating at 5 K”, Phys. Rev. D, 76, 102005, (2007). [arXiv:0705.0122].
4.1

[182] Grishchuk, L.P., “Amplification of gravitational waves in an istropic universe”, Sov. Phys.
JETP, 40, 409–415, (1975). 8.2.1

[183] Grishchuk, L.P., “The implications of the microwave background anisotropies for laser-
interferometer-tested gravitational waves”, Class. Quantum Grav., 14, 1445–1454, (1997).
[DOI], [gr-qc/9609062]. 8.2.1

[184] Gürsel, Y., and Tinto, M., “Near optimal solution to the inverse problem for gravitational-
wave bursts”, Phys. Rev. D, 40, 3884–3938, (1989). 4.7.2

[185] Haehnelt, M.G., “Supermassive black holes as sources for LISA”, in Folkner, W.M., ed.,
Laser Interferometer Space Antenna (LISA), The Second International LISA Symposium
on the Detection and Observation of Gravitational Waves in Space, Pasadena, California,
July 1998, AIP Conference Proceedings, vol. 456, pp. 45–49, (American Institute of Physics,
Woodbury, NY, 1998). [DOI]. 3.4.5

[186] Helstrom, C.W., Statistical Theory of Signal Detection, International Series of Monographs
in Electronics and Instrumentation, vol. 9, (Pergamon Press, Oxford; New York, 1968), 2nd
edition. 5.1, 5.3, 5.3.1, 5.3.2

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

http://dx.doi.org/10.1126/science.1153465
http://arxiv.org/abs/arXiv:0802.1704
http://arxiv.org/abs/astro-ph/0006289
http://arxiv.org/abs/gr-qc/0509024
http://arxiv.org/abs/gr-qc/0510057
http://arxiv.org/abs/gr-qc/0205033
http://arxiv.org/abs/gr-qc/0203086
http://dx.doi.org/10.1103/PhysRevLett.98.091101
http://arxiv.org/abs/gr-qc/0610154
http://arxiv.org/abs/arXiv:0705.0122
http://dx.doi.org/10.1088/0264-9381/14/6/009
http://arxiv.org/abs/gr-qc/9609062
http://dx.doi.org/10.1063/1.57420
http://www.livingreviews.org/lrr-2009-2


Physics, Astrophysics and Cosmology with Gravitational Waves 127

[187] Heng, I.S., Balasubramanian, R., Sathyaprakash, B.S., and Schutz, B.F., “First steps towards
characterizing the hierarchical algorithm for curves and ridges pipeline”, Class. Quantum
Grav., 21, S821–S826, (2004). [DOI]. 5.2

[188] Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P., and Matzner, R.A., “Gravitational
recoil from spinning binary black hole mergers”, Astrophys. J., 661, 430–436, (2007). [DOI],
[gr-qc/0701143]. 6.5.2

[189] Hewish, A., Bell, S.J., Pilkington, J.D.H., Scott, P.F., and Collins, R.A., “Observation of a
Rapidly Pulsating Radio Source”, Nature, 217, 709–713, (1968). [DOI]. 1

[190] Hils, D., Bender, P.L., and Webbink, R.F., “Gravitational radiation from the Galaxy”, As-
trophys. J., 360, 75–94, (1990). [DOI]. 8.2.2

[191] Hjorth, J., Sollerman, J., Moller, P., Fynbo, J.P.U., Woosley, S.E., Kouveliotou, C., Tanvir,
N.R., Greiner, J., Andersen, M.I., Castro-Tirado, A.J., Castro Cerón, J.M., Fruchter, A.S.,
Gorosabel, J., Jakobsson, P., Kaper, L., Klose, S., Masetti, N., Pedersen, H., Pedersen, K.,
Pian, E., Palazzi, E., Rhoads, J.E., Rol, E., van den Heuvel, E.P.J., Vreeswijk, P.M., Watson,
D., and Wijers, R.A.M.J., “A very energetic supernova associated with the γ-ray burst of 29
March 2003”, Nature, 423, 847–850, (2003). [DOI], [astro-ph/0306347]. 3.2

[192] Hogan, C.J., “Cosmological Gravitational Wave Backgrounds”, in Folkner, W.M., ed., Laser
Interferometer Space Antenna (LISA), The Second International LISA Symposium on the
Detection and Observation of Gravitational Waves in Space, Pasadena, California, July 1998,
AIP Conference Proceedings, vol. 456, pp. 79–86, (American Institute of Physics, Woodbury,
NY, 1998). [DOI], [astro-ph/9809364]. 8.2.1

[193] Hogan, C.J., “Measurement of quantum fluctuations in geometry”, Phys. Rev. D, 77, 104031,
(2008). [DOI], [arXiv:0712.3419]. 6.6.3

[194] Hogan, C.J., and Bender, P.L., “Estimating stochastic gravitational wave backgrounds with
the Sagnac calibration”, Phys. Rev. D, 64, 062002, (2001). [astro-ph/0104266]. 8.1.2

[195] Holz, D.E., and Hughes, S.A., “Using gravitational-wave standard sirens”, Astrophys. J.,
629, 15–22, (2005). [astro-ph/0504616]. 3.4.2, 6.5.1, 8.3

[196] Hough, J., “LISA - Laser Interferometer Space Antenna for Gravitational Wave Measure-
ments”, in Coccia, E., Pizzella, G., and Ronga, F., eds., Gravitational Wave Experiments,
First Edoardo Amaldi Conference, Villa Tuscolana, Frascati, Rome, 14 – 17 June 1994, pp.
50–63, (World Scientific, Singapore; River Edge, NJ, 1995). 4.4.3

[197] Hough, J., and Rowan, S., “Gravitational Wave Detection by Interferometry (Ground and
Space)”, Living Rev. Relativity, 3, lrr-2000-3, (2000). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2000-3. 1, 4.2.1

[198] Hughes, S.A., “Gravitational waves from extreme mass ratio inspirals: Challenges in mapping
the spacetime of massive, compact objects”, Class. Quantum Grav., 18, 4067–4074, (2001).
[gr-qc/0008058]. 3.4.6

[199] Hughes, S.A., and Blandford, R.D., “Black hole mass and spin coevolution by mergers”,
Astrophys. J. Lett., 585, L101–L104, (2003). [astro-ph/0208484]. 6.5.2

[200] Hulse, R.A., “Nobel Lecture: The discovery of the binary pulsar”, Rev. Mod. Phys., 66,
699–710, (1994). [DOI]. Related online version (cited on 26 February 2009):
http://nobelprize.org/nobel prizes/physics/laureates/1993/hulse-lecture.html.
6.3

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

http://dx.doi.org/10.1088/0264-9381/21/5/065
http://dx.doi.org/10.1086/513603
http://arxiv.org/abs/gr-qc/0701143
http://dx.doi.org/10.1038/217709a0
http://dx.doi.org/10.1086/169098
http://dx.doi.org/doi:10.1038/nature01750
http://arxiv.org/abs/astro-ph/0306347
http://dx.doi.org/10.1063/1.57425
http://arxiv.org/abs/astro-ph/9809364
http://dx.doi.org/10.1103/PhysRevD.77.104031
http://arxiv.org/abs/arXiv:0712.3419
http://arxiv.org/abs/astro-ph/0104266
http://arxiv.org/abs/astro-ph/0504616
http://www.livingreviews.org/lrr-2000-3
http://arxiv.org/abs/gr-qc/0008058
http://arxiv.org/abs/astro-ph/0208484
http://dx.doi.org/10.1103/RevModPhys.66.699
http://nobelprize.org/nobel_prizes/physics/laureates/1993/hulse-lecture.html
http://www.livingreviews.org/lrr-2009-2


128 B.S. Sathyaprakash and Bernard F. Schutz

[201] Hulse, R.A., and Taylor, J.H., “Discovery of a pulsar in a binary system”, Astrophys. J.,
195, L51–L53, (1975). [ADS]. 7.3.6

[202] INFN, “IGEC: International Gravitational Event Collaboration”, project homepage. URL
(cited on 08 November 2007):
http://igec.lnl.infn.it/. 4.1

[203] INPE, Brasil, “Gravitational Waves - INPE”, project homepage. URL (cited on 08 November
2007):
http://www.das.inpe.br/graviton/english.html. 4.1

[204] Jackson, N., “The Hubble Constant”, Living Rev. Relativity, 10, lrr-2007-4, (2007). URL
(cited on 01 September 2008):
http://www.livingreviews.org/lrr-2007-4. 8.3

[205] Jaranowski, P., and Królak, A., “Optimal solution to the inverse problem for the gravitational
wave signal of a coalescing compact binary”, Phys. Rev. D, 49, 1723–1739, (1994). [DOI].
4.7.1

[206] Jaranowski, P., and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample
Applications: The Gaussian Case”, Living Rev. Relativity, 8, lrr-2005-3, (2005). URL (cited
on 03 September 2007):
http://www.livingreviews.org/lrr-2005-3. 5

[207] Jaranowski, P., Królak, A., Kokkotas, K. D., and Tsegas, G., “On the estimation of param-
eters of the gravitational-wave signal from a coalescing binary by a network of detectors”,
Class. Quantum Grav., 13, 1279–1307, (1996). [DOI]. 4.7.1

[208] Jenet, F.A., Hobbs, G.B., van Straten, W., Manchester, R.N., Bailes, M., Verbiest, J.P.W.,
Edwards, R.T., Hotan, A.W., Sarkissian, J.M., and Ord, S.M., “Upper bounds on the
low-frequency stochastic gravitational wave background from pulsar timing observations:
Current limits and future prospects”, Astrophys. J., 653, 1571–1576, (2006). [DOI], [astro-
ph/0609013]. 4.4.2

[209] Jenet, F.A., Lommen, A., Larson, S.L., and Wen, L., “Constraining the Properties of Super-
massive Black Hole Systems Using Pulsar Timing: Application to 3C 66B”, Astrophys. J.,
606, 799–803, (2004). [astro-ph/0310276]. 4.4.2

[210] Kalogera, V., Kim, C., and Lorimer, D.R., “The Strongly Relativistic Double Pulsar and
LISA (Galactic Double Neutron Stars for LISA)”, Invited talk at the 5th International
LISA Symposium, ESTEC, Noordwijk, The Netherlands, 12 – 15 July 2004, conference pa-
per, (2004). Related online version (cited on 17 December 2008):
http://www.astro.northwestern.edu/Vicky/TALKS/LISA 0737.ppt. 7.3.6

[211] Kalogera, V., Kim, C., Lorimer, D.R., Burgay, M., D’Amico, N., Possenti, A., Manchester,
R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., and Camilo,
F., “The Cosmic Coalescence Rates for Double Neutron Star Binaries”, Astrophys. J. Lett.,
601, L179–L182, (2004). [DOI], [astro-ph/0312101]. 3.4.1

[212] Kaspi, V.M., Taylor, J.H., and Ryba, M.F., “High-precision timing of millisecond pulsars.
III. Long-term monitoring of PSRs B1855+09 and B1937+21”, Astrophys. J., 428, 713–728,
(1994). [ADS]. 8.1.3

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

http://adsabs.harvard.edu/abs/1975ApJ...195L..51H
http://igec.lnl.infn.it/
http://www.das.inpe.br/graviton/english.html
http://www.livingreviews.org/lrr-2007-4
http://dx.doi.org/10.1103/PhysRevD.49.1723
http://www.livingreviews.org/lrr-2005-3
http://dx.doi.org/10.1088/0264-9381/13/6/004
http://dx.doi.org/10.1086/508702
http://arxiv.org/abs/astro-ph/0609013
http://arxiv.org/abs/astro-ph/0609013
http://arxiv.org/abs/astro-ph/0310276
http://www.astro.northwestern.edu/Vicky/TALKS/LISA_0737.ppt
http://dx.doi.org/10.1086/382155
http://arxiv.org/abs/astro-ph/0312101
http://adsabs.harvard.edu/abs/1994ApJ...428..713K
http://www.livingreviews.org/lrr-2009-2


Physics, Astrophysics and Cosmology with Gravitational Waves 129

[213] Kawamura, S., Nakamura, T., Ando, M., Seto, N., and Tsubono, K. et al., “The Japanese
space gravitational wave antenna–DECIGO”, Class. Quantum Grav., 23, S125–S131, (2006).
[DOI]. 4.4.3

[214] Keating, B.G., “An ‘Ultrasonic Image’ of the Embryonic Universe: CMB Polarization Tests
of the Inflationary Paradigm”, arXiv e-print, (2008). [arXiv:0806.1781]. 8, 8.1.4

[215] Keating, B.G., Polnarev, A.G., Miller, N.J., and Baskaran, D., “The Polarization of the
Cosmic Microwave Background Due to Primordial Gravitational Waves”, Int. J. Mod. Phys.
A, 21, 2459–2479, (2006). [astro-ph/0607208]. 8.1.4

[216] Klebesadel, R.W., Strong, I.B., and Olson, R.A., “Observations of Gamma-Ray Bursts of
Cosmic Origin”, Astrophys. J., 182, L85–L88, (1973). 1

[217] Klimenko, S., and Mitselmakher, G., “A wavelet method for detection of gravitational wave
bursts”, Class. Quantum Grav., 21, S1819–S1830, (2004). [DOI]. 5.2

[218] Klimenko, S., Yakushin, I., Mercer, A., and Mitselmakher, G., “Coherent method for de-
tection of gravitational wave bursts”, Class. Quantum Grav., 25, 114029, (2008). [DOI],
[arXiv:0802.3232]. 5.2

[219] Knispel, B., and Allen, B., “Blandford’s Argument: The Strongest Continuous Gravitational
Wave Signal”, Phys. Rev. D, 78, 044031, (2008). [arXiv:0804.3075]. 7.3.6

[220] Kokkotas, K.D., and Schmidt, B., “Quasi-Normal Modes of Stars and Black Holes”, Living
Rev. Relativity, 2, lrr-1999-2, (1999). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-1999-2. 3.5

[221] Komossa, S., Burwitz, V., Hasinger, G., Predehl, P., Kaastra, J.S., and Ikebe, Y., “Discovery
of a Binary Active Galactic Nucleus in the Ultraluminous Infrared Galaxy NGC 6240 Using
Chandra”, Astrophys. J. Lett., 582, L15–L19, (2003). [astro-ph/0212099]. 3.4.5

[222] Komossa, S., Zhou, H., and Lu, H., “A recoiling supermassive black hole in the
quasar SDSSJ092712.65+294344.0?”, Astrophys. J. Lett., 678, L81–L84, (2008). [DOI],
[arXiv:0804.4585]. 3.4.5, 6.5.2, 7.2.4

[223] Kramer, M., “Pulsars with the SKA”, in Kramer, M., and Rawlings, S., eds., The Scientific
Promise of the SKA, Proceedings of a workshop held at Oxford, 7 November 2002, pp. 85–92,
(2003). [astro-ph/0306456]. 8.1.3

[224] Kramer, M., “Fundamental Physics with the SKA: Strong-Field Tests of Gravity Using
Pulsars and Black Holes”, in Lobanov, A.P., Zensus, J.A., Cesarsyk, C., and Diamond,
P., eds., Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century,
Proceedings of the conference held in Berlin, Germany, 18 – 21 May 2004, ESO Astrophysics
Symposia, pp. 87–90, (Springer, Berlin; New York, 2006). [DOI], [astro-ph/0409020]. 8

[225] Krishnan, B., Sintes, A.M., Papa, M.A., Schutz, B.F., Frasca, S., and Palomba, C., “The
Hough transform search for continuous gravitational waves”, Phys. Rev. D, 70, 082001,
(2004). [DOI], [gr-qc/0407001]. 5.1.3.2

[226] Królak, A., and Schutz, B.F., “Coalescing binaries – Probe of the universe”, Gen. Relativ.
Gravit., 19, 1163–1171, (1987). [DOI]. 8.3

[227] Laboratori Nationali Legnaro, “AURIGA Bar Detector”, project homepage. URL (cited on
08 November 2007):
http://www.auriga.lnl.infn.it/. 1, 4.1

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

http://dx.doi.org/10.1088/0264-9381/23/8/S17F
http://arxiv.org/abs/arXiv:0806.1781
http://arxiv.org/abs/astro-ph/0607208
http://dx.doi.org/10.1088/0264-9381/21/20/025
http://dx.doi.org/10.1088/0264-9381/25/11/114029
http://arxiv.org/abs/arXiv:0802.3232
http://arxiv.org/abs/arXiv:0804.3075
http://www.livingreviews.org/lrr-1999-2
http://arxiv.org/abs/astro-ph/0212099
http://dx.doi.org/10.1086/588656
http://arxiv.org/abs/arXiv:0804.4585
http://arxiv.org/abs/astro-ph/0306456
http://dx.doi.org/10.1007/978-3-540-39756-4_27
http://arxiv.org/abs/astro-ph/0409020
http://dx.doi.org/10.1103/PhysRevD.70.082001
http://arxiv.org/abs/gr-qc/0407001
http://dx.doi.org/10.1007/BF00759095
http://www.auriga.lnl.infn.it/
http://www.livingreviews.org/lrr-2009-2


130 B.S. Sathyaprakash and Bernard F. Schutz

[228] Lackey, B.D., Nayyar, M., and Owen, B.J., “Observational constraints on hyperons in neu-
tron stars”, Phys. Rev. D, 73, 024021, (2006). [astro-ph/0507312]. 7.3.4.2

[229] Lahav, O., and Suto, Y., “Measuring our Universe from Galaxy Redshift Surveys”, Living
Rev. Relativity, 7, lrr-2004-8, (2004). URL (cited on 07 December 2004):
http://www.livingreviews.org/lrr-2004-8. 8.2.1

[230] Landgraf, M., Hechler, M., and Kemble, S., “Mission design for LISA Pathfinder”, Class.
Quantum Grav., 22, S487–S492, (2005). [gr-qc/0411071]. 4.4.3

[231] Lang, R.N., and Hughes, S.A., “Measuring coalescing massive binary black holes with grav-
itational waves: The impact of spin-induced precession”, Phys. Rev. D, 74, 122001, (2006).
[DOI], [gr-qc/0608062]. 13

[232] Lang, R.N., and Hughes, S.A., “Localizing coalescing massive black hole binaries with grav-
itational waves”, Astrophys. J., 677, 1184–1200, (2008). [arXiv:0710.3795]. 6.5.4.2, 8.3

[233] Lattimer, J.M., and Swesty, F.D., “A generalized equation of state for hot, dense matter”,
Nucl. Phys. A, 535, 331–376, (1991). [DOI]. 7.3.2

[234] Leiden University, “MiniGRAIL”, project homepage. URL (cited on 08 November 2007):
http://www.minigrail.nl/. 4.1

[235] LIGO Laboratory, “Advanced LIGO”, project homepage. URL (cited on 08 November 2007):
http://www.ligo.caltech.edu/advLIGO/scripts/summary.shtml. 4.3.1

[236] LIGO Laboratory, “LIGO Scientific Collaboration”, project homepage. URL (cited on 08
November 2007):
http://ligo.org/. 4.3.1

[237] LIGO Scientific Collaboration, “LSC Publications”, online resource. URL (cited on 08
November 2007):
http://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html. 4.3.1

[238] Lindblom, L., and Detweiler, S.L., “On the secular instabilities of the Maclaurin spheroids”,
Astrophys. J., 211, 565–567, (1977). [ADS]. 7.3.4.1

[239] Lindblom, L., and Mendell, G., “Does gravitational radiation limit the angular velocities of
superfluid neutron stars?”, Astrophys. J., 444, 804–809, (1995). [DOI], [ADS]. 7.3.4.1

[240] Lindblom, L., and Owen, B.J., “Effect of hyperon bulk viscosity on neutron-star r-modes”,
Phys. Rev. D, 65, 063006, (2002). [astro-ph/0110558]. 7.3.4.2

[241] Lindblom, L., Owen, B.J., and Morsink, S.M., “Gravitational radiation instability in hot
young neutron stars”, Phys. Rev. Lett., 80, 4843–4846, (1998). [DOI], [gr-qc/9803053]. 7.3.4.2

[242] Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 8, lrr-2005-7,
(2005). URL (cited on 03 September 2007):
http://www.livingreviews.org/lrr-2005-7. 3.4.1, 4.4.2, 6.3

[243] Louisiana State University, “ALLEGRO Bar Detector”, project homepage. URL (cited on
08 November 2007):
http://gravity.phys.lsu.edu/. 4.1

[244] Lück, H., “The GEO600 project”, Class. Quantum Grav., 14, 1471–1476, (1997). [DOI]. 1

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

http://arxiv.org/abs/astro-ph/0507312
http://www.livingreviews.org/lrr-2004-8
http://arxiv.org/abs/gr-qc/0411071
http://dx.doi.org/10.1103/PhysRevD.74.122001
http://arxiv.org/abs/gr-qc/0608062
http://arxiv.org/abs/arXiv:0710.3795
http://dx.doi.org/10.1016/0375-9474(91)90452-C
http://www.minigrail.nl/
http://www.ligo.caltech.edu/advLIGO/scripts/summary.shtml
http://ligo.org/
http://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html
http://adsabs.harvard.edu/abs/1977ApJ...211..565L
http://dx.doi.org/10.1086/175653
http://adsabs.harvard.edu/abs/1995ApJ...444..804L
http://arxiv.org/abs/astro-ph/0110558
http://dx.doi.org/10.1103/PhysRevLett.80.4843
http://arxiv.org/abs/gr-qc/9803053
http://www.livingreviews.org/lrr-2005-7
http://gravity.phys.lsu.edu/
http://dx.doi.org/10.1088/0264-9381/14/6/012
http://www.livingreviews.org/lrr-2009-2


Physics, Astrophysics and Cosmology with Gravitational Waves 131

[245] Lück, H. et al., “Status of the GEO600 detector”, Class. Quantum Grav., 23, S71–S78,
(2006). [DOI]. 1

[246] Lyne, A.G., Burgay, M., Kramer, M., Possenti, A., Manchester, R.N., Camilo, F., McLaugh-
lin, M.A., Lorimer, D.R., D’Amico, N., Joshi, B.C., Reynolds, J., and Freire, P.C.C., “A
Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics”,
Science, 303, 1153–1157, (2004). [DOI], [astro-ph/0401086]. 3.4.3, 7.3.6

[247] Lyne, A.G., Burgay, M., Kramer, M., Possenti, A., Manchester, R.N., Camilo, F., McLaugh-
lin, M.A., Lorimer, D.R., D’Amico, N., Joshi, B.C., Reynolds, J., and Freire, P.C.C., “A
Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics”,
Science, 303, 1153–1157, (2004). [astro-ph/0401086]. 6.3

[248] Maartens, R., “Brane-World Gravity”, Living Rev. Relativity, 7, lrr-2004-7, (2004). URL
(cited on 07 December 2004):
http://www.livingreviews.org/lrr-2004-7. 8.2.1

[249] MacFadyen, A.I., and Woosley, S.E., “Collapsars: Gamma-ray bursts and explosions in ‘failed
supernovae”’, Astrophys. J., 524, 262–289, (1999). [DOI], [astro-ph/9810274]. 3.2

[250] MacLeod, C.L., and Hogan, C.J., “Precision of Hubble constant derived using black hole
binary absolute distances and statistical redshift information”, Phys. Rev. D, 77, 043512,
(2008). [DOI], [arXiv:0712.0618]. 8.3
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