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Physics-based analysis of the hydrodynamic stress
in a fluid-particle system

Quan Zhanga� and Andrea Prosperettib�

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA

�Received 12 February 2009; accepted 7 December 2009; published online 25 March 2010�

The paper begins by showing how standard results on the average hydrodynamic stress in a uniform

fluid-particle system follow from a direct, elementary application of Cauchy’s stress principle. The

same principle applied to the angular momentum balance proves the emergence, at the mesoscale,

of an antisymmetric component of the volume-averaged hydrodynamic stress irrespective of the

particle Reynolds number. Several arguments are presented to show the physical origin of this result

and to explain how the averaging process causes its appearance at the mesoscale in spite of the

symmetry of the microscale stress. Examples are given for zero and finite Reynolds number, and for

potential flow. For this last case, the antisymmetric stress component vanishes, but the Cauchy

principle proves nevertheless useful to derive in a straightforward way known results and to clarify

their physical nature. © 2010 American Institute of Physics. �doi:10.1063/1.3365950�

I. INTRODUCTION

Due to their complexity, the theoretical description of

most disperse multiphase flows of practical significance—

sediment transport, dust storms, fluidized beds, pneumatic

conveying, slurries, suspensions, and many others—must

rely necessarily on average-equations models. The closure of

the equations obtained by formal averaging procedures has

proven particularly intractable in the case of disperse flows

due to a variety of factors such as nonlinearity of the equa-

tions, long-range particle-particle interactions, absence of a

clear separation between micro- and macroscales, and others.

In envisaging a disperse fluid system as a complex con-

tinuum, one recognizes that the particle-fluid forces are in-

ternal to the mixture and therefore cancel in formulating a

combined momentum equation for the two phases. The inho-

mogeneities affect convective momentum transport via

Reynolds-like stresses and nonconvective transport via a

mixture stress of hydrodynamic origin. We focus on the latter

quantity and, in particular, on the particle contribution to it.

According to the stress principle of Cauchy, “upon any

imagined closed surface S there exists a distribution of stress

vectors t whose resultant and moment are equivalent to those

of the actual forces of material continuity exerted by the

material outside S upon that inside.”
1,2

Standard arguments

�see, e.g., Refs. 2 and 3� then show that the stress vector is a

linear function of the local normal, which leads to the intro-

duction of the stress tensor.

In this paper we give an elementary and direct applica-

tion of this principle, first, to the linear momentum balance

for a disperse particle-fluid system treated as a continuum

and show how it permits to recover the classic results for

spatially uniform systems �Sec. III�.

A second application of the principle to the angular mo-

mentum balance leads to the identification of an antisymmet-

ric contribution of hydrodynamic origin to the particle stress

�Secs. IV and V�. The nontrivial result here is that the

volume-averaged hydrodynamic stress fails to be symmetric

also when no external couples are exerted on the particles,

provided spatial nonuniformities exist, e.g., of the particle

volume fraction, the particle-mixture relative velocity or

others.

This statement is to be interpreted in as follows. Let s�x�
denote the microscopic ensemble-averaged hydrodynamic

stress at a geometric point x which is, of course, symmetric

in the absence of body couples. Consider a mesoscopic vol-

ume �V large on the microscopic scale, but small on the

macroscopic one. We wish to represent the integrated effect

of s in �V in terms of an effective stress � by writing

1

�V
�

�V

� · sd��V� = � · � , �1�

1

�V
�

�V

x � �� · s�d��V� = X � �� · �� , �2�

where X is the center of �V. It is this effective stress tensor

� which is not symmetric because, in a nonuniform system,

the point of application of the resultant of the microscopic

forces � ·s does not coincide with the center of the volume.

In other words, nonuniformities confer to the system quali-

ties analogous to those of a structured continuum. As a con-

sequence, the mesoscopic properties of the system are not

reducible to simple ensemble averages at a point.

Although our method appears to be general, we focus

specifically on the case of equal spherical particles. Our deri-

vation applies equally well to Newtonian and non-Newtonian

suspending fluids and arbitrary particle Reynolds numbers.

Some of these results have already been derived by

ensemble-averaging techniques in earlier work.
4,5

The

main contribution of the present paper consists in its direct
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physical approach which gives a deeper insight into these

matters addressing, among others, the question of how the

averaging process results in a nonsymmetric stress in spite of

the symmetry prevailing at the microscopic level �Secs. VI

and X; in particular, the relation with the earlier ensemble-

average derivation is discussed at the end of Sec. X�.
Furthermore, we provide several new examples: Stokes flow,

potential flow, and dilute systems of particles at finite

Reynolds numbers. The quantitative importance of the new

effects that we discuss is demonstrated numerically by study-

ing the sedimentation of a suspension “blob” in otherwise

clear fluid �Sec. VIII�. The specific closure that we use for

this purpose is meant as an example only as our focus is the

stress of hydrodynamic origin and not the formulation of a

complete closed theory of balance laws and constitutive

equations.

II. LITERATURE REVIEW

Previous studies of the average stress in a disperse fluid-

particle system have not made a direct use of Cauchy’s prin-

ciple. Einstein’s treatment of dilute viscous suspensions was

based on a dissipation argument �see, e.g., Ref. 6�. In his

classic paper “The stress system in a suspension of force-free

particles,” Batchelor
7

used ensemble averaging which he

quickly converted to volume averaging by assuming spatial

uniformity. He gave the particle contribution to the mixture

stress in the form

1

V
� �

v

�Pdv , �3�

where the integral is over the particle volume v and the sum-

mation is extended to all the particles contained in the aver-

aging volume V. Brenner
8

used a combination of multiple

scales and cell averaging to connect fluid mechanical prin-

ciples to suspension mechanics. None of these approaches

directly addresses the concept of stress as force transmitted

across a surface. This point is only alluded to on p. 552 of

Batchelor’s paper
7

without elaboration.

Almog and Brenner
9

mention Cauchy’s principle in their

title for the special case in which the particle rotation is

caused by a nonuniform weight distribution in its interior.

However, the reference is to Cauchy’s balance of angular

momentum �see Eq. �24� below�, rather than to the force

transmitted through surface elements as here.

A different approach to the calculation of the stress ten-

sor in a viscous suspension was taken in several papers by

Felderhof and co-workers �see, e.g., Refs. 10 and 11� and

Bedeaux, Beenakker and co-workers �e.g., Refs. 12 and 13;

see also the review in Refs. 14 and 15�. In their approach the

average stress is identified with the argument of a divergence

operator appearing in the mixture momentum equation. The

divergence theorem connects this quantity to a surface trac-

tion, but leaves open the question of possible divergence-free

contributions to the stress, as noted below at the end of

Sec. V.

The vast majority of past work has dealt with statisti-

cally uniform systems of force- and couple-free particles. As

we show below, in these conditions the stress is symmetric

unless the particles are subject to an external couple as found

by many authors �see, e.g., Refs. 7 and 8�. Leal,
16

and espe-

cially Brenner and co-workers, have devoted a considerable

attention to this couple-induced antisymmetry.
8,17–19

The literature on the stress tensor in the presence of sig-

nificant inertial effects is much less plentiful. To some extent,

the close connection between fundamental theory and math-

ematical model that has been achieved in the Stokes flow

case is found in the potential flow regime �see, e.g., Refs.

20–27�. In this context the words “particle stress” have been

used in a sense which is not quite in keeping with the

Cauchy point of view. This issue is addressed in Sec. IX.

III. STRESS IN A UNIFORM SYSTEM

In terms of the exact fields in the two phases, the overall

momentum balance for a macroscopic control volume V

bounded by a surface S is

�
V

��1 − ���FaF + ��PaP�dV

= �
S

��1 − ���F + ��P� · NdS

+ �
V

��1 − ���F + ��P�gdV . �4�

Here � is the density, a the acceleration, g the body force per

unit mass �assumed equal for the two phases� and � the

stress tensor. Superscripts F and P refer to the fluid and

particle phases, respectively, � is the characteristic, or indi-

cator, function of the particle phase and N is the unit outward

normal. We wish to express the stress transmitted across the

surface S in terms of an average stress � defined by

� = ��1 − ���F	 + ���P	 = �1 − ����F	 + ���P	 , �5�

in which �= ��	 is the volume fraction �equal to the area

fraction, see, e.g., Refs. 28 and 29� of the disperse phase and

��F	, ��P	 are the average contributions of each phase over a

mesoscale surface element �S.

To calculate the average particle contribution ���P	
from Cauchy’s principle, we consider the average force

transmitted through the particles cut across by the surface

element �S, which we take planar for simplicity. As pointed

out by Batchelor,
7

this surface element must be such that it

“makes an unbiased sample of the suspension and �has� lin-

ear dimensions large compared with the average particle

spacing. In the particular case of the stress, an average over a

plane surface �which cuts through both ambient fluid and

particles�… has obvious appeal as a way of defining average

stress” �see also Ref. 9�. Invoking a surface element with

these properties is a standard procedure in spatial averaging

and has been used, among others, by O’Brien
28 �see also,

e.g., Refs. 30 and 31�.
The centers of the particles contributing to ���P	 ·N��S

are contained in a cylinder C based on �S and protruding by

amounts equal to the particle radius a on each side of it

�Fig. 1� so that
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��S��P	 · N =
�
j�C

�
Scut

j

�P · NdScut
j � . �6�

The summation is extended to all the particles which inter-

sect �S and the integrals are over the portion of �S cutting

across the jth particle denoted by Scut
j .

If the use of spatial averaging is justified and the hypoth-

esis of separation of scales is satisfied, the number of par-

ticles with center in a “slice” of the cylinder of volume �Sdz

can be taken to be n�Sdz, where n is the particle number

density. In these conditions we can replace the summation in

Eq. �6� by an integral over the volume of the cylinder C:


�
j�C

�
Scut

j

�P · NdScut
j �

= �S
�
−a

a

dzn�
Scut

�P · NdScut� . �7�

Here the coordinate z is parallel to N with z=0 on �S �Fig.

1�. For a locally uniform system n is a constant and we

therefore find

��S��P	 = n�S
�
−a

a

dz�
Scut

�PdScut� . �8�

This expression has been derived by keeping �S fixed and

averaging over all the particles that straddle it. But, because

of uniformity, the stress distribution inside each particle is

statistically the same. Thus, instead of considering the vari-

ous contributions Scutdz, each from a different particle, we

may equivalently sum the contributions from a single par-

ticle �for an alternative interpretation, see Fig. 2�. With this

remark, then, we may write


�
−a

a

dz�
Scut

�PdScut� =
�
v

�Pdv� , �9�

where the integral is now over the volume v of a particle and

the angle brackets average over all the particles in the cylin-

der C. We have thus found the result

���P	 = n
�
v

�Pdv� , �10�

which is essentially Eq. �3� and Eq. �4.1� in Batchelor.
7

In a

volume-averaging context this relation is rather obvious and

could be written down intuitively with no need for a proof.

Nevertheless, our simple argument shows that it is consistent

with Cauchy’s principle �which, as we have seen, essentially

involves a surface averaging procedure� and it will be useful

in the less obvious case of the couple transmitted across �S

taken up in the next section.

IV. ANGULAR MOMENTUM

The force transmitted by the particles across the bound-

ary S of a macroscopic control volume V contributes not

only to the linear momentum of the mixture inside the con-

trol volume, but also to its angular momentum according to

�
S

��1 − ���x � �F	 + ��x � �P	� · NdS , �11�

where x is the exact position vector of each microscopic

surface element, not necessarily equal to X, which is the

position vector of the surface element �S �Fig. 3�. Note that

x depends on how the particle is intersected by S and is,

therefore, a statistical quantity so that �x��P	�X� ��P	.
Similarly to Eq. �7�, the second term gives contributions

0

a

z N

−a

FIG. 1. Averaging volume for the calculation of the particle stress by

Cauchy’s stress principle.

FIG. 2. Heuristic argument for an alternative derivation of Eq. �9�. Instead

of keeping �S fixed and averaging over all the particles that straddle it, we

can consider a fixed particle and all the possible �S’s cutting through it.

Since �P is only a function of the distance of the particle center from Scut, it

is immaterial whether one thinks of executing the integration by moving Scut

or the particle center.

�

\

S

X

N

(a)

X
y

r x

(b)

FIG. 3. �a� A control volume in the fluid-particle mixture. �b� Geometry for

the derivation of Eq. �13�.
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��S�x � �P	 · N

= �S
�
−a

a

ndz�
Scut

x � ��P · N�dScut� . �12�

We write x=r+y, where r=x−y is the position vector of the

integration point on Scut with respect to the particle center at

y �Fig. 3�b��. Substituting into Eq. �12�, we find

��S�x � �P	 · N

= �S
�
−a

a

ndz�
Scut

r � ��P · N�dScut�
+ �SX �
�

−a

a

ndz�
Scut

��P · N�dScut�
= �S
�

−a

a

ndz�
Scut

r � ��P · N�dScut�
+ �S�X � ��P · N	 . �13�

In the first step, we have replaced the average of

y� ��P ·N� by X� ��P	 ·N, which is legitimate, as there is a

statistically equal number of particles with centers above and

below �S and to the left and to the right of the center X of

�S. By Eq. �8�, the resulting integral is just the average

surface traction. The first term in Eq. �13� can now be evalu-

ated as before with the result


�
−a

a

ndz�
Scut

r � ��P · N�dScut�
= n
�

v

r � ��P · N�dv� . �14�

The arguments that follow show that this term is equivalent

to a nonconvective couple flux due to the action of the par-

ticle material outside the control volume on that inside. The

physical origin of the effect is discussed in Secs. VI and X.

To develop this term further, we follow a standard

procedure
6,7

using the divergence theorem, the continuity of

the stress at the particle surface and the identity

�ijkr j�kl
P = �ijk� �

�rm

�r jrl�km
P � − r jrl

��km
P

�rm

 , �15�

which relies on the symmetry of �P �Ref. 32� to write

�
v

r � ��P · N�dv

=� �N · r�r � ��F · n�dS

− �
v

�N · r�r � �� · �P�dv , �16�

where the first integral in the right-hand side is over the

particle surface, with unit outward normal n. The last term

can be further manipulated by using the momentum equation

for the particle material with the result

�
v

�N · r�r � �� · �P�dv = �
v

�P�N · r�r � �aP − g�dv ,

�17�

in which, as before, �P and aP are the local particle-material

density and acceleration and g is the body force. The case of

an essentially rigid, homogeneous particle is of particular

interest as then we have

�P�
v

�N · r�r � �aP − g�dv =
1

5
a2mPN � �ẇ − g� , �18�

in which mP=�P
v is the particle mass and ẇ the acceleration

of its center of mass. From the particle equation of motion

this expression must be proportional to the hydrodynamic

force on the particle so that

�
v

�N · r�r � �� · �P�dv =
1

5
a2N �� �F · ndS . �19�

The average of Eq. �16� may then be written as

n
�
v

r � ��P · N�dv� = C · N , �20�

where the couple flux tensor C is given by

Cij = n�ikl
� r jrk��
F · n�ldS −

1

5
a2	 jk� ��F · n�ldS� .

�21�

This agrees with the result found by a different method in

Ref. 5. In the above derivation we have not included the

effect of interparticle forces. This aspect is taken up in

Appendix A. In particular, when these forces are uniformly

distributed in the particle, their contribution to the couple

flux tensor is found to vanish.

We thus conclude that the angular momentum imparted

by the surface stresses to the mixture material inside the

control volume is, from Eqs. �11�, �13�, and �20�,

�
S

��1 − ���x � �F	 + ��x � �P	� · NdS

= �
S

��1 − ��X � ��F	 + �X � ��P	 + C� · NdS

= �
V

�X � � · ��1 − ����F	 + ���P	�

− �� · ��P	 + � · C�dV , �22�

in writing which we have used the fact that the average fluid

stress ��F	 is symmetric.
33

This expression must equal the

rate of change of the angular momentum of the mixture ma-

terial in V, minus a total external applied couple which might

act on the particles. If the average velocities are defined by

averaging the microscopic velocities uF and uP, the mixture

has no intrinsic angular momentum. In this case, the first

term in the right-hand side of Eq. �22� exactly balances the

rate of change of the angular momentum and the couple due
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to the body force �Appendix B�. The remaining terms,

namely, the antisymmetric part of the stress, the divergence

of the couple flux, and the external body couple L must

balance each other and we recover the well-known balance

equation �see, e.g., Ref. 3, pp. 103–104�

��ijk��
P	 jk =

�Cij

�x j

+ nLi. �23�

For a nonpolar fluid, the fluid stress gives no contribution to

the antisymmetric part of the mesoscopic average stress, and

we may equally well write this equation in the form

�ijk� jk =
�Cij

�x j

+ nLi. �24�

�The easiest way to see that the fluid stress gives no contri-

bution to the antisymmetric part of the mesoscopic average

stress is to note that the fluid may be thought of as consti-

tuted of “particles” with a vanishingly small size. The same

argument used for the real particles would then lead to a

result such as Eq. �21� with the integral extended to a van-

ishingly small volume.�
In an ordinary unstructured continuum C vanishes and

L=0 in the absence of external body couples. This equation

embodies then the familiar argument used to prove the sym-

metry of the stress tensor �see, e.g., Ref. 3�. Our result shows

that in a fluid-particle system, even in the absence of external

couples, the antisymmetric part of the mesoscopic stress only

vanishes if � ·C=0, e.g., in a uniform system �in which,

however, C may well be nonzero�. Since, according to Eq.

�24�, the antisymmetric component is exactly balanced by

the divergence of the couple flux, it is not a source of angular

momentum for the mixture, although it is a source of linear

momentum through its contribution to � ·�.

In a micropolar fluid the couple flux C arises from the

presence of couple stresses �see, e.g., Ref. 3�. In our case no

such stresses are present at the microscopic level. Here, as

explained in qualitative terms in Sec. X, the couple flux is a

consequence of nonuniformities in the hydrodynamic

stresses exerted by the fluid on the particles.

From Eq. �23� we have the antisymmetric part of ��P	

���P	pq
A �

1

2
����P	pq − ��P	qp�

=
1

2

�

�x j

�ipqCij +
1

2
n�ipqLi, �25�

which �up to smaller terms, see Appendix C� can be written

as

���P	pq
A = �pqi� 1

2nLi� − �pqi�� � V�i +
1

2�k��pkq − �qkp� ,

�26�

where

V = −
1

10
na2
� �I − nn� · ��F · n�dS� , �27�

�pkq =
1

3
�Tqpk − Tkpq�

+
1

15
�	pq�Tk − 4T j jk� − 	pk�Tq − 4T j jq�� , �28�

with

Tk = na2
� ��F · n�kdS�,

�29�

Tkpq = na2
� ��F · n�knpnqdS� .

In this and the previous section, we have assumed local uni-

formity in the neighborhood of the surface element. A differ-

ent derivation for a slightly inhomogeneous system is given

in Appendix C.

V. THE ANTISYMMETRIC STRESS

As given by Eq. �26�, the complete antisymmetric stress

consists of three contributions, each one with a different

physical origin. The first contribution, already known from

the work of Batchelor
7

and Brenner,
8

arises from the external

couple applied to the particles and will not be discussed fur-

ther �see also Ref. 5�.
The second contribution is the curl of the vector V de-

fined in Eq. �27�, which may be rewritten as

V = −
1

10
na2
� �I − nn� · �� · n�dS�

=
1

10
na2
� n � �n � �� · n��dS� , �30�

where �=�F− �1 /3��Tr �F�I is the deviatoric part of the

fluid stress. In an incompressible Newtonian fluid, this would

be the viscous stress, and it would therefore vanish in a per-

fect fluid. If the order of magnitude of �� ·n� is estimated as


Urel /	, in which Urel is a measure of the relative particle-

fluid velocity and 	 a boundary layer thickness, we find, in

order of magnitude,

V � 
�
a

	
Urel. �31�

For Stokes flow 	�a while, at sufficiently large Reynolds

number, a /	��Re, with Re the Reynolds number of the

relative motion. In this latter case

V � 
��ReUrel. �32�

By making specific assumptions on the nature of the flow

and the particle distribution we can derive more specific

results.
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As a first example, we consider the dilute limit at finite

Reynolds number with negligible ambient shear. In this limit,

V can be calculated by considering an isolated particle and

the result has the form

V = 
V�w − �uF	� , �33�

where 
V is a new viscosity parameter and w is the average

particle translational velocity. �Here and in the following, the

overline denotes the average calculated over all the particles

the center of which is inside the averaging volume.� The

viscosity parameter 
V is proportional to � and, from

Oseen’s solution we find, correct to first order in Re,


V



=

3

10
��1 +

3

8
Re , �34�

with Re=2a�F�w− �uF	� /
. At larger values of Re, a numeri-

cal calculation carried out using the PHYSALIS numerical

method
34

gives the results shown in Table I and in Fig. 4.

The line is a fit 
V / ��
�=3 /10+0.08�Re. Although this

relatively crude fit does not capture the Oseen term, the an-

ticipated scaling �32� is approximately verified.

At finite particle concentration the relevant ambient ve-

locity is the mixture volumetric flux um defined by

um = �1 − ���uF	 + �P�uP	 , �35�

so that �assuming isotropy�

V = 
V�w − um� . �36�

A numerical investigation of the dependence of the param-

eter 
V on the particle volume fraction � carried out on the

assumption that the particles are distributed according to the

hard-sphere distribution function �which does not include

flow-dependent features�, gives, for Re=0,
5


V



=

��3 − ������

10H���
. �37�

Here H��� is the hindrance function for sedimentation and

��3.5 has a weak dependence on �; the two quantities are

well represented by the fits

� � 3.54�1 − 0.214�2�, H � �1 − ��6.55−3.34�. �38�

Numerical values for � and 
V /
 are provided in Table II.

The determining effect of a force F applied to the particles in

generating a nonzero V is evident from the fact that, by

definition of the hindrance function, �w−um� /H is propor-

tional to it. An interesting point to be made concerning the

expression �37� for 
V /
 is that, provided � is kept constant,

this quantity remains finite in the continuum limit in which

the particle size becomes infinitesimally small compared

with the macroscopic length.

The third contribution to the antisymmetric stress in Eq.

�26�, �1 /2��k��pkq−�qkp�, when combined with a corre-

sponding one from the symmetric stress, gives �k�pkq which,

as is clear from the definition �28� of �pkq, has a zero double

divergence and, therefore, does not contribute to the linear

momentum of the mixture �see Ref. 5�. For this reason this

term was neglected in our earlier study. However, its omis-

sion would be incorrect if one were to consider, for example,

a condition of continuity of the stress across an interface

separating two disperse flows. �This is an example of the

possible shortcomings associated with the identification of

the stress with the argument of the divergence operator in the

TABLE I. Numerically computed 
V /
 to first order in the particle volume

fraction for different particle Reynolds numbers.


V / ��
� 
V / ��
�Re�

Re=0 0.3 ¯

Re=5 0.457 0.204

Re=10 0.535 0.169

Re=20 0.649 0.145

Re=25 0.694 0.139

Re=30 0.734 0.134

Re=40 0.803 0.127

Re=50 0.861 0.122

FIG. 4. The polar viscosity parameter 
V normalized by �
 as a function of

the particle Reynolds number for a dilute system. The line is the fit


V / ��
�=3 /10+0.08�Re. The circles are the numerical values given in

Table I.

TABLE II. Numerically computed � defined in Eq. �38� and 
V /
 vs par-

ticle volume fraction � for Stokes flow.

�
�%� � 
V /


1 3.56 0.0032

2 3.55 0.0067

3 3.53 0.0106

5 3.55 0.0196

10 3.54 0.0509

15 3.53 0.0990

20 3.53 0.1705

25 3.50 0.2750

30 3.46 0.4258

35 3.94 0.5762

40 3.37 0.9480

45 3.36 1.3684
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momentum equation mentioned in Sec. II.� In Stokes flow

this term can be evaluated with the result

�ijk = − �
�ika� 8

5�ajl�ul − wl� + a2� j�� � u�a� . �39�

Here u and ul denote the part of the fluid velocity regular at

the center of the particle which, at lowest order in the vol-

ume fraction, can be taken equal to the average volumetric

flux um.

VI. PHYSICAL INTERPRETATION

The physical origin of the antisymmetric contribution to

the mixture stress tensor can be clarified by considering the

mesoscopic volume element shown in Fig. 5. Let us focus on

particles such as A and B straddling the surface and let F be

the resultant of the external body forces acting on particle

material; for simplicity we draw this and other forces parallel

to the face of the volume element. With the neglect of inertia,

for each particle, this force is balanced by a hydrodynamic

force f. We divide this total hydrodynamic force in two parts,

f1 and f2, the resultants of the tractions acting, respectively,

on the portion of the particle surface inside and outside the

volume element. These forces are uniquely and unambigu-

ously defined, and so are their points of application �which,

in general, will not be at the particle center�. In keeping with

Cauchy’s stress principle, we are interested in the force and

couple acting across the dashed line which demarcates the

boundary of the control volume. For this purpose, according

to a well-known statics theorem, the action of forces F and f2

for particle A and force f2 for particle B can be replaced by

forces F− f2 and f2, respectively, acting as shown in the low-

est part of the figure, plus suitable couples c �which are of

course balanced by equal couples due to f1 for particle A and

to F and f1 for particle B�. As indicated in the figure, the two

couples act in the same sense.

The sum of all the forces F− f2 for particles such as A

and f2 for particles such as B is the particle contribution to

the mixture stress. Likewise, the sum of all the couples leads

to C ·N, the dot product of the couple flux �30� into the local

normal. For a uniform system, the total couple flux, i.e., the

integral of C ·N over the surface of the mesoscopic volume

element, vanishes as the effects of the couples acting on

opposite pairs of faces balance. It is only if there is an im-

balance in the strength of these couples—caused, e.g., by a

different number of particles or by the action of different

external forces—that a net effect would survive.

Pursuing this idea, it is seen, e.g., from Eq. �26�, that the

contribution of the vector V to the antisymmetric stress

through its curl is equivalent to the presence of “effective”

couples �−�1 /2�nL�eff acting on the volume element of the

mixture. The way in which this equivalence arises is

sketched in Fig. 6 in which the central tile represents the

mesoscopic volume element shown at the top of the previous

figure. If the particles are not homogeneous, as in the situa-

tion considered in Ref. 9, couples similar to c above also

arise but through a very different physical mechanism.

Our derivation has been based on considering a surface

cutting through the particles. In this connection the reader

may refer to Batchelor’s paper,
7

and in particular, to the text

surrounding the quotation given shortly after Eq. �5� above

�see also Refs. 28, 30, and 31�. The point here is that a

consistent mental picture of the homogenized system must

be based on an “average” effective continuum, rather than on

a single realization of the original disperse system. This “av-

erage” effective continuum must be such that the same frac-

tion of any macroscopically small volume or surface element

is occupied by the disperse phase. This requirement is widely

appreciated in the literature and has given rise �see, e.g.,

Refs. 35 and 36� to the standard notion of representative

elementary volume of volume averaging.
37
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f
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1

f2
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1
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f2

f1

c

F

f2

f1

B

F

(b)

(a)

(c)

FIG. 5. Qualitative explanation of the physical origin of the antisymmetric

stress. Consider particles such as A and B subjected to an external force F

and straddling the surface of a volume element, and neglect inertia for

simplicity. The force F is resisted by hydrodynamic forces f1 and f2 arising

from the part of the particle surface inside and outside the control volume.

For a particle such as A �lower left�, the dynamical effect of the external

portion of the particle on the internal one can be represented by a resultant

force F− f2
A and a couple cA. For a particle such as B, the corresponding

force is f2
B and the couple cB, in the same sense as cA because now the only

contribution to the couple comes from f2
B.

FIG. 6. The central tile represents the volume element at the top of the

previous figure. The imbalance in the strength of the couples transmitted

across the particles straddling the surfaces bounding the volume element is

equivalent to the couple denoted by the bold vector.
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VII. SYMMETRIC STRESS

The previous considerations suggest that spatial nonuni-

formity could also affect the symmetric part of the stress,

which is responsible for the deformation of the volume ele-

ment. Indeed, suppose that the external forces or the number

of particles straddling the upper surface are greater than for

the lower surface �Fig. 7�. It is intuitively clear that, in this

case, the deformation of the volume element will be aided or,

in other words, that a smaller average shear stress needs to

be applied to the faces of the volume element to obtain a

given deformation.

For the case of Stokes flow, the analysis summarized in

Appendix D leads to the conclusion that, in pure shear, the

deviatoric part ��xy	
S of the symmetric mixture stress has the

form

��xy	
S � 
eff

�um

�y
− 
�

�

�y
�w̄ − um� − 
��w̄ − um�

��

�y
.

�40�

Here 
eff is the usual effective viscosity of the suspension,

while 
� and 
� are new �positive� viscosity parameters.

The minus signs account for the decrease in the shear force

��xy	
S necessary to overcome the viscous resistance


eff��um /�y� to the deformation. The relative velocity

w̄−um might arise due to the action of an external force

acting on the particles, inertia, or to other causes, such as

spatial nonuniformities of the flow or of the particle distri-

bution.

The importance of terms proportional to �� and

��w̄−um� for the stability of fluidized beds has been stressed,

among others, by Batchelor in Ref. 38. Our analysis points to

the existence of one possible mechanism giving rise to such

terms.

In a nonuniform Stokes mixture, in tensor form, the de-

viatoric part of the viscous stress �40� is

��	S = 2
effEm − 2
�E� − 2
�E�, �41�

in which Em is the rate of deformation of the mixture volu-

metric flux, E� is the analogous quantity for the relative

velocity w−um:

2E� = ��w − um� + ��w − um�T −
2

3 �� · �w − um��I �42�

and

2E� = �w − um� � � + �����w − um�

−
2

3 ����� · �w − um��I , �43�

in which I is the identity two-tensor; the viscosity parameters


� and 
� can be represented as


�



=

2.7�2

�1 − �/���1.57+1.80� , �44�


�



=

7.5�

�1 − �/���3.77−1.28� , �45�

with ��=0.78. These relations are graphed in Figs. 8 and 9.

The conventional effective viscosity may be represented in

the form �see, e.g., Ref. 39�


eff/
 = �1 − �/���−2. �46�

N
Σ N.

N

y

x

FIG. 7. Qualitative explanation of the physical origin of the new contribu-

tions to the symmetric stress shown in Eq. �40�. Let, e.g., the external force

on the particles straddling the upper surface be greater than that on the

particles in the lower surface. The deformation of the volume element will

be aided or, in other words, a smaller average shear stress needs to be

applied to the faces of the volume element to obtain a given deformation.

The same conclusion would be reached if the number of particles straddling

the upper surface were greater than for the lower surface.

FIG. 8. Volume fraction dependence of the dimensionless viscosity param-

eter 
� /
 appearing in Eq. �41�. The solid line is the fit �44� and the

symbols the numerical results found as described in Appendix D.

FIG. 9. Volume fraction dependence of the dimensionless viscosity param-

eter 
� /
 appearing in Eq. �41�. The solid line is the fit �45� and the

symbols the numerical results found as described in Appendix D.
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VIII. NUMERICAL EXAMPLE

In order to show the quantitative importance of the

present results for the stress, we carried out numerical simu-

lations based on a simple mixture model with negligible in-

ertia forces. If both phases are incompressible, the volumet-

ric flux is divergenceless:

� · um = 0. �47�

The linearized total mixture momentum equation takes the

form
40

�m

�um

�t
= − �pm + � · ��	S − � � � � V + �mg , �48�

in which ��	S is the deviatoric part of the symmetric stress

and �m is the mean mixture density. We have retained the

time derivative, even if small, in order to be able to adopt a

straightforward numerical method.
41

After multiplication by

the particle volume, the relation expressing the conservation

of the particle number becomes

��

�t
+ � · ��w� = 0. �49�

Shear-induced diffusion is not included in this equation as

the only models available are for parallel flow. In any event,

our purpose here is only to demonstrate the differences due

to the various mixture stress models. The average particle

velocity w follows from the quasistatic balance of forces and

may be written as

w = um + H���ws, �50�

in which ws is the �constant� settling velocity of a single

particle.

In general, the issue of boundary conditions in simula-

tions of this type is a nontrivial one �for a related problem

see, e.g., Ref. 42�. We use no-slip on both um and w, which

is equivalent to no-slip on the pure fluid velocity field as the

particles never reach the wall in the present simulation.

We apply the previous model to the two-dimensional

gravitational settling of an initially cylindrical mixture

“blob” in a container of width L and height 8L filled with

pure fluid. We nondimensionalize the equations in terms of

�F, g, and L and take �P
/�F=3, a /L=0.07 �with a the par-

ticle radius� and �ws� /�gL=0.2178, F
/�L3g=0.1, in which

F is the fluid kinematic viscosity. The Reynolds number

estimated as �1 /2�L�ws� /F equals 1.09; the actual value is

however smaller in view of the hindrance effect of the par-

ticles and the wall, which decreases the velocity.

The numerical method is a simple adaptation of the stan-

dard first-order projection procedure. We define

u� = un +
�t

�m

�� · ��	S − � � � � V�n + �tg , �51�

where the superscript n denotes values at time level tn and �t

is the time step. The condition �47� of global mixture incom-

pressibility gives

� · � 1

�m
n

� pm
n+1� =

� · u�

�t
, �52�

which is solved by iteration and determines pm
n+1. The new

velocity field is then obtained from

um
n+1 = u� −

�t

�m

� pm
n+1. �53�

Once um is known, w can be calculated from Eq. �50� as

wn+1 = um
n+1 + H��n�ws, �54�

and the particle volume fraction updated from Eq. �49� ac-

cording to

�n+1 = �n − �t � · ��nwn+1� . �55�

The spatial operators were approximated by central differ-

ences on a staggered grid, except in the volume fraction

equation �55� which was discretized with the so-called Su-

perbee flux limiter �see, e.g., Ref. 43�. A standard grid refine-

ment test showed that a mesh length equal to L /32 gave

converged results.

We ran several simulations of the same basic process

changing the form used for the symmetric part of the viscous

stress ��	S. Figure 10 shows the evolution of the system at

different times together with the instantaneous streamlines

when the conventional form ��	S=
eff��um+�um
T � is used.

The gray scale �color online� indicates the particle volume

fraction. The particles near the downward-facing edge of the

blob fall gradually faster as the local concentration de-

creases. This process causes a depletion of the outer layers

and, by conservation of mass, an inwardly directed flow,

which compresses the blob laterally. The result is an elonga-

tion of the structure and an apparent diffusive behavior

around its edges. The falling blob gives rise to a recirculating

flow which, in its turn, generates countervortices near the top

and bottom walls.

The effect of the new terms added to the viscous stress is

illustrated for this case in Fig. 11. The leftmost panel is the

result of the conventional stress model from the previous

figure. The second panel is the result of our new model. The

blob is seen to fall faster and the isolines of constant � are

also deformed. The next three panels show the individual

effects of the new terms in the stress added to the conven-

tional model. In the order in which they appear in the figure,

they are the antisymmetric component, the term proportional

to 
� and the term proportional to 
� in Eq. �41�. The anti-

symmetric stress by itself is seen to slightly retard the fall as

does, if to a somewhat smaller extent, the 
� term. In this

particular example, the strongest effect is found for the 
�

term which contains the relatively large volume fraction gra-

dients. It may also be noted that, due to the decrease in the

hindrance function with �, �� and ��w−um� have opposite

signs and therefore tend to oppose each other. The difference

between the models accumulates with time and would be

greater than in this simple example in situations such as, e.g.,

longer falls, stronger gradients, different initial particle dis-

tribution, and others.

033306-9 Physics-based analysis of the hydrodynamic stress in a fluid-particle system Phys. Fluids 22, 033306 �2010�

Downloaded 18 Jan 2012 to 130.89.112.86. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



The literature contains several studies of sedimenting

particle clouds in unbounded fluids �see, e.g., Refs. 44–46�,
which, however, differ from the present situation due to the

dimensionality �two versus three dimensions� and the domi-

nant effect of the lateral boundaries. Vortical structures on

the two sides of the blob are also found in those studies but,

here, their center is pushed outward due to the large viscosity

at its core dense with particles. The lateral walls elongate

these structures so that the upper stagnation point on the axis

is removed and, with it, the leakage of particles from the

back of the blob.

IX. POTENTIAL FLOW

In the case of potential flow the vector V vanishes, as is

evident from Eq. �30�. Omitting the contribution of the ex-

ternal couples, the antisymmetric component of the stress

reduces to the two � terms. In this particular case it is readily

found that

�pkq =
1

5
na2�	pq
� pnkdS� − 	pk
� pnqdS�� . �56�

Up to a sign, the integrals equal the hydrodynamic force on

the particle. As noted before in Sec. V, this term has no

dynamical consequences as far as the average momentum

equation is concerned and we will not consider it further.

By using Batchelor’s result �4.5� for the integral in Eq.

�10�, we find

�1 − ����F	 + ���P	 = − �1 − ���p	I − na
� pnndS� .

�57�

Since repeated averaging has no effect on an averaged quan-

tity, this expression can also be written as

�1 − ����F	 + ���P	

= − �p	I − na
� �p − �p	�nndS� . �58�

Upon taking the divergence to form the momentum equation,

the first term is just the gradient of the mean pressure. The

second term is an additional contribution to the stress which

has been identified by several authors, if in slightly different

though equivalent form. If we write


� �p − �p	�nndS�
= 
� p�nn −

1

3
I�dS� +

1

3

� �p − �p	�dS�I , �59�

we recover the form given in Ref. 24. In the same reference

it is shown that this result coincides with that of Ref. 21 and

can also be reconciled with that proposed on heuristic

grounds in Ref. 20. To the first order in �, it is shown in

Ref. 24 that

0.45
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0.35

0.3

0.25

0.2

0.15

0.1

0.05

FIG. 10. �Color online� Volume fraction distribution �gray scale, from 0.05 to 0.45� at different instants in the two-dimensional gravitational settling of a

mixture “blob” with the standard purely symmetric stress expressed in terms of an effective viscosity. The lines are the instantaneous streamlines. The panels

shown are at times t�g /L=0, 40, 80, 120, 160, 200, 240, 280, 320, and 360.
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na
� �p − �p	�nndS�
=

1

5
��F�2�um − w�2I −

9

4
�um − w��um − w� , �60�

up to terms containing the particle Reynolds stress.

It is interesting to compare Eq. �59� with another form

for the particle stress that appears in the literature.
21,26

In

Ref. 26, it is found that the average momentum equation for

the particles may be written as

n�mPẇ + J̇� = � · ���1 − ��MF	 + n
� rMF · ndS� .

�61�

Here J is the hydrodynamic impulse defined by

J = − �F� �ndS , �62�

in which � is the velocity potential �see, e.g., Ref. 47�, � is

the characteristic function of the particle phase and the tensor

M is given by

MF =
1

2 �uF · uF�I − uFuF. �63�

Equation �61� can be interpreted as the average equation of

motion of fictitious particles with an apparent momentum

mPw+J. The last term bears a striking similarity to the quan-

tity �r��P ·n�dS arising in Batchelor’s analysis �Eq. �4.6� in

Ref. 7� and it is interesting to understand it from this point of

view. In so doing, we will also be led to a much simpler

derivation of the result �61�.
Let us consider a fictitious system governed, outside a

set of N equal spheres, by

� · MF = 0. �64�

This is formally the same as the momentum equation for an

inertia-less fluid. Inside the spheres, we assume

�mPẇ + J̇�	�x − y�� = � · MP �x − y�� � a, 1 � � � N ,

�65�

where the 	 function signifies that the inertia has been local-

ized at the particle center. On the surface of each sphere, we

impose continuity of the normal stress, �MF−MP� ·n=0. �As

stated the problem is insufficiently specified in a mathemati-

cal sense as there are more unknowns than equations. One

may imagine adding other constraints which have no conse-

quences for the purpose of this argument.� Due to this

condition, the average momentum equation for the entire

system is

n�mPẇ + J̇	 = n�mPẇ + J̇� = � · ��1 − ��MF + �MP	 ,

�66�

where the first step follows from the fact that the entire in-

ertia of each sphere is concentrated at its center. The left-

hand side has the appearance of a particle momentum equa-

tion although, since the fluid has negligible inertia, this is in

fact a momentum balance for the entire mixture. If the quan-

tity in the right-hand side is interpreted as a Cauchy stress,

the same argument used before to derive Eq. �10� leads to the

result

��MP	 = n
� MPdv� = n
� r�MF · n�dS� , �67�

from which Eq. �61� follows.

We conclude that, if the virtual mass contribution is left

as a piece of the hydrodynamic force, the particle contribu-

tion to the stress takes the form �−�prndS	 while, if it is

considered as a part of the apparent momentum of the par-

ticles, the particle contribution to the stress is ��r�MF ·n�dS	.
Earlier papers

21,26
refer to the quantity under the diver-

gence sign in Eq. �61� as the “particle stress,” which is seen

to be the stress that would arise in the fictitious medium

framework just discussed.

X. DISCUSSION

Our analysis, based on the Cauchy concept of stress, has

identified circumstances under which the mesoscale average

stress in a disperse system is not symmetric. In the first

place, this may happen in the presence of external couples
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FIG. 11. �Color online� Volume fraction distribution �gray scale, from 0.05

to 0.55� as predicted by the different models for the gravitational settling

problem of the previous figure at t�g /L=240. The leftmost panel is the

result of the conventional stress model from the previous figure. The second

panel is the result of our complete new model with antisymmetric stress and

augmented symmetric stress. The next three panels show the individual

effects of the new terms in the stress added to the conventional model. In

the order in which they appear in the figure, they are the antisymmetric

component, the term proportional to 
� and the term proportional to 
� in

Eq. �41�.
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applied to the particles, as found by Batchelor
7

and

Brenner.
17,48

But the average stress of hydrodynamic origin

may be nonsymmetric also in the presence of spatial nonuni-

formities of the particle number density or other particle

quantities.
4

The root of this effect in nonzero spatial gradi-

ents explains why it was not encountered in most of the

existing studies.

The mechanism by which the average of microscopically

symmetric stresses gives rise to a mesoscopic nonsymmetric

quantity can be illustrated with reference to Fig. 12. This

figure shows two macroscopic surface elements with or-

thogonal normals in a nonuniform mixture. There is no rea-

son to expect that, if the particles are subjected to an external

force, the net force in direction 2 transmitted through the

particles cut across by surface element 1 should equal the net

force in direction 1 transmitted through surface element 2. In

other words, N2 ·� ·N1�N1 ·� ·N2.

Of course, if one were to take the limit a→0 keeping the

number density constant, the effect would disappear. But if

the limit is taken keeping constant the particle volume frac-

tion, the number density grows indefinitely and the same

picture of Fig. 12 would apply independent of how small a is

made. This is the proper limit to take in an average equation

framework, just as in the case of a real gas or liquid de-

scribed as a continuum.

Mathematically, the operator that interchanges the two

indices of the macroscopic stress tensor interchanges also the

surface elements and is therefore different from the operator

that interchanges the two indices of the microscopic stress

tensor. In other words, averaging and index interchange do

not commute at the mesoscale �although, of course, they do

at the microscale: the ensemble average stress at a geometric

point is symmetric�. Thus, lack of symmetry is a feature

which emerges at the mesoscale. The situation has some

similarity with the loss of time reversibility encountered with

the Boltzmann equation, which describes the evolution of a

system at intermediate, “coarse-grained” time scales, longer

than molecular times �over which the evolution is time-

reversible�, but shorter than macroscopic times �over which

collisions are not even recognized�.
We can explain how the present results relate to the

equivalent ones obtained by ensemble averaging in the fol-

lowing way. The ensemble-averaged particle contribution to

the stress, sP, may be expanded in a multipole series �see,

e.g., Refs. 49 and 50�

s̄ij
P = n� r j�� · n�idS −

1

2
� · �n� r j�� · n�irdS

+
1

3!
� �:�n� r j�� · n�irrdS + . . . , �68�

where the overline denotes the ensemble average. The sym-

metric part of the first term scales like na3
�um=�
�um

multiplied by a function of �. The second term is the one

giving rise to the antisymmetric stress and has been shown in

Sec. V to be of the order of �
� � �w̄−um�. For dimensional

reasons, all the other terms in the multipole expansion must

be multiplied by a power of a sufficient to balance the in-

verse length of the gradient operators. Therefore, in order of

magnitude and aside from functions of � of order of one, the

expansion �68� is like

sP � �
 � um + �
 � � �w̄ − um�

+
a

L
��O�1� + O� a

L
� + O� a2

L2� + . . . . �69�

If all the terms of the series are retained, the result is the

exact microscopic ensemble average stress, which is sym-

metric. If, on the other hand, one takes the continuum limit

a /L→0 for constant � before summing the series, one is left

with an approximation to the stress, which can rightly be

labeled mesoscopic, which is not symmetric. This is the pro-

cedure followed in our earlier paper.
5

Bardet and Verdoulakis
51

have calculated the stress in a

granular medium by applying the principle of virtual work

and found it to have an antisymmetric component when the

forces on the particles have nonzero moment about their cen-

ters. This is similar to our result �20� and, in fact, their Eq.

�47� is quite analogous to our result �24�. �Their moments at

contact, mi
e, are analogous to our applied couples Li and, in

their situation, the couple r� ��P ·N� is only applied at the

particle surface.� The same authors however find a symmet-

ric stress if they calculate it via a volume average under

assumption of uniformity.

The recent homogenization analysis of Ref. 52 shows

that, when the applied loading on a dilute elastic composite

is nonuniform, effects which can be approximately ac-

counted for by a Cosserat �i.e., micropolar� model arise. The

appendix of this work presents an interesting and concise

overview of the controversies related to Cosserat effects in

elastic composites. However, the authors find that the

Cosserat model cannot reproduce the exact result of the ho-

mogenization, which suggests that it does not account pre-

cisely for the relevant physics. On the other hand, very recent

work
53

finds experimental evidence for such effects.

The results presented in Sec. III, in which the system is

assumed to be locally uniform, fail to predict an antisymmet-

ric component, while the analysis of Appendix C for a

weakly nonuniform system does lead to such a component

intimately connected to the lack of spatial homogeneity.

Similarly, the antisymmetric component identified in Ref. 51

N
1N

2

S∆

1

S∆

2

FIG. 12. Illustration of the mechanism responsible for the loss of symmetry

of the average stress tensor. Symmetry would require that N2 · �� ·N1�
=N1 · �� ·N2�. In the presence of nonuniformities, e.g., in the particle con-

centration as sketched here, the total force transmitted across the surface

elements �S1 and �S2 will be different.
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only arises from the boundary of the medium, which is the

only region where a nonuniformity is present in their other-

wise uniform system. Lack of uniformity appears therefore

to be essential in causing the lack of symmetry of the mix-

ture stress. This remark might explain the conflicting results

found by various authors.

One of the specific examples we have presented in Secs.

V, VII, and VIII has been based on closure relations obtained

for the hard-sphere distribution function. It is well-known

that the particle distribution function is actually flow depen-

dent �see, e.g., Refs. 54–58� and, therefore, our results

should only be taken as an illustrative example. Furthermore,

the symmetric stress in our example does not contain other

non-Newtonian effects such as normal stress differences,

which are also due to flow-dependent particle distribution

�see, e.g., Refs. 56 and 59–61�. However, the physical argu-

ments that we have presented suggest that the mechanisms

giving rise to the effects that we have identified should be

present to some degree whatever the particle distribution

function.

XI. CONCLUSIONS

In this paper, we have shown how an elementary appli-

cation of Cauchy’s stress principle to the linear momentum

balance of a disperse fluid-particle mixture, coupled with

volume averaging, permits one to recover well-known ex-

pressions for the symmetric stress in a disperse system. The

novel aspect of the analysis is that the same argument ap-

plied to the angular momentum balance points to the possible

existence of a mesoscale antisymmetric component of the

stress of hydrodynamic origin in the presence of spatial non-

uniformities, e.g., in the particle concentration.

For purposes of illustration, we have applied the general

results to several situations with and without inertia. In the

former case, we have shown that the coefficient of the anti-

symmetric stress component increases proportionally to the

square root of the particle Reynolds number, at least up to

Re=50 �Fig. 4�.
In the absence of couples acting on the particles, the

antisymmetric stress component vanishes for a spatially uni-

form system. Similar conclusions have been derived in the

recent solid mechanics literature �e.g., Refs. 51 and 52�,
where the presence of so-called Cosserat effects has been a

contentious point for some time. Our results �and especially

those presented in Appendix A� suggest that such effects

only arise in the presence of inhomogeneities, which are not

incorporated in most analyses based on volume averaging.

ACKNOWLEDGMENTS

We are grateful to Dr. Hanneke Bluemink, Department

of Applied Sciences, University of Twente, The Netherlands,

for the calculation of the PHYSALIS results of Sec. V. The

derivation of Eq. �A5� in Appendix A is patterned after an

argument given in an unpublished note by Professor Leon

van Dommelen, FAMU-FSU College of Engineering

Tallahassee, Florida 32303, USA. The reviewers were very

helpful with their probing questions, constructive sugges-

tions and references to the solid mechanics literature.

This study was supported by NSF Grant Nos. CBET

0625138 and CBET 0754344.

APPENDIX A: INTERPARTICLE FORCES

One reviewer suggested that we examine how interpar-

ticle �and/or colloidal� forces would affect the results of this

paper. It is well-known that such forces give a contribution to

the stress given, in the present notation, by −n�by	, where b

is the interparticle force.
62–64

We can derive this result by the

same procedure used in Sec. III.

The total �direct� force per unit area �ip that particles

outside the surface element of Fig. 1 exert on the particles

inside is the interparticle contribution to the stress that we

need to calculate and it is given by

�S�ij
ipN j = �

��V

�
��V

bi
�→�. �A1�

In a uniform system this average is independent of the loca-

tion of �S in the direction of N and therefore, if we consider

NS surfaces �Sk uniformly distributed over a thickness equal

to the range R of the interparticle force, we find that also

�S�ij
ipN j =

1

NS
�

k

�
� below �Sk

�
� above �Sk

bi
�→�. �A2�

The distance between particles � and � is �y�−y�� ·N and if

the distance between surfaces is 	z, assumed much smaller

than R, there are �y�−y�� ·N /	z planes separating the two

particles. Furthermore, the restrictions that particle � be be-

low and particle � be above �Sk can be removed by consid-

ering both arrangements and dividing by 2. Thus, Eq. �A2�
becomes

�S�ij
ipN j =

1

2NS	z
�
�,�

�y� − y�� · Nbi
�→�. �A3�

Now, we recognize that NS	z�S=R�S=V, the averaging

volume �similar to the volume between dashed lines in Fig.

1, but with a thickness R rather than 2a� to find

�ij
ip =

1

2V
�
�,�

bi
�→��y j

� − y j
�� , �A4�

which, upon interchange of � and � noting that bi
�→�

=−bi
�→�, gives

�ij
ip = −

1

V
�
�,�

bi
�→�

y j
� = −

1

V
�
�

y j
��

�

bi
�→� = − n�biy j	 .

�A5�

In order to fully reconcile Eq. �10� with the results of Ref. 7

we use the identity

�
v

�Pdv = �
v

�� · �r�P� − r � · �P�dv

=� r��P · n�dS − �P�
v

r�aP − g�dv , �A6�

in which the last step follows from the momentum equation

for the particle material
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�PaP = � · �P + �Pg , �A7�

in which g is the body force. By using the continuity of

normal stress at the particle surface, �P can be replaced by

�, the stress in the fluid.
65

Batchelor
7

shows that the anti-

symmetric part of Eq. �A6� balances the external couple Li

acting on the particle

Li = �ijk� �� · n� jrkdS − �ijk�
P�

v

�a j
P − b j�rkdv , �A8�

so that, finally,

v��P	 =
1

2

� �r�� · n� + �� · n�r −

2

3
�r · � · n�IdS�

+
1

2
�P�
v

�r�g − aP� + �g − aP�r�dv�
+

1

2
� · �L	 +

1

3
I
� r · � · ndS� . �A9�

The first term is the average stresslet and the last one an

isotropic contribution.

We now turn to the angular momentum balance of Sec.

IV and in particular to the last term of Eq. �16� for which, in

place of Eq. �17�, we have

�
v

�N · r�r � �� · �P�dv = �P�
v

�N · r�r � �aP − g�dv .

�A10�

For an essentially rigid, homogeneous particle the accelera-

tion contribution can be evaluated as before finding, in place

of Eq. �18�,

�P�
v

�N · r�r � �aP − g�dv

=
1

5
a2mPN � ẇ − �P�

v

�N · r�r � gdv . �A11�

Again using the particle equation of motion �A10� then

becomes

�
v

�N · r�r � �� · �P�dv

=
1

5
a2N � �� �F · ndS + �P� gdv

− �P�
v

�N · r�r � gdv . �A12�

As a result, the expression �21� for the couple flux tensor C
is augmented by the term

Cij� = n�ikl
�P� �r jrk −
1

5
a2	 jk�gldv� . �A13�

In particular, if g is uniform, Cij� =0 and there is no contribu-

tion to the couple flux tensor and, therefore, to the antisym-

metric stress.

APPENDIX B: ANGULAR MOMENTUM BALANCE

It was stated in Sec. IV that the mixture has no intrinsic

angular momentum. If the particles can rotate, this assertion

appears to be at variance with statements often encountered

in the literature, and it is useful to clarify the situation here.

A deeper understanding of the issue requires ensemble aver-

aging, but the gist of the argument can also be described in

the present context of volume averaging.

There are two ways to define the particle contribution to

the average mixture velocity. In the first one, which is that

adopted here, the particles contribute to the average the ac-

tual velocity at every point in their interior. For example, for

rigid particles, we would write

�uP	 = �w + � � r	 , �B1�

where w and � are the translational and rotational velocities.

Alternatively, one might include only the translational veloc-

ity writing

��uP		 = �w	 . �B2�

The difference between �uP	 and ��uP		 may be interpreted

as the particle spin and considered as an intrinsic angular

momentum. It is evident that the right-hand side of the an-

gular momentum balance equation must be different accord-

ing as the total angular momentum is calculated with respect

to the average velocity �B1� or �B2�. As long as one remains

at a fundamental level, as we do in this paper, the definition

�B1� seems simpler, as will be seen shortly. However, the

second definition might be more useful, for example, if one

attempts to develop approximate closure relations for some

specific case.

With the definition �B1�, the average linear momentum

balance for the mixture can be written as

�

�t
��1 − ���F�uF	 + ��P�uP	� + � · ��1 − ���F�uFuF	

+ ��P�uPuP	� = � · ��1 − ����F	 + ���P	� + �mg ,

�B3�

in which we have assumed the particles to be homogeneous.

In this expression, uP is the local velocity of the particle

material and � ·�P is the internal force contributing to its

time variation. If uP were replaced by w so as to make the

other definition appear, evidently the right-hand side would

have to be modified.

On the basis of the result �22�, the average angular mo-

mentum balance statement for the mixture may be written as

�

�t
�X � ��1 − ���F�uF	 + ��P�uP	��

+ � · �X � ��1 − ���F�uFuF	 + ��P�uPuP	��

= � · �X � ��1 − ����F	 + ���P	� + C�

+ �mX � g + nL , �B4�

where, for simplicity, the external couples acting on the par-

ticles have been assumed to be equal and homogeneously

distributed over the particle volume. A simple calculation

gives
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X � � �

�t
��1 − ���F�uF	 + ��P�uP	�

+ � · ��1 − ���F�uFuF	 + ��P�uPuP	��
= X � � · ��1 − ����F	 + ���P	 + �mg�

+ � · C − �� · ��P	 + nL . �B5�

The terms multiplied by X cancel by virtue of the momen-

tum equations �B3� and �23� results.

In the previous argument we have assumed that the mass

distribution inside the particles is uniform. If this is not the

case, the term �mX�g in Eq. �B4� becomes more compli-

cated behaving similarly to a nonzero external couple as

shown by Almog and Brenner.
9

APPENDIX C: WEAKLY NONUNIFORM SYSTEM

Here we extend the analysis of Sec. III to a nonuniform

system and we show how the results of Secs. IV and VII can

be recovered in this way. We write �P=�P�x ,y ,z �X ,Y ,Z�
with the understanding that the particle center is located at

X ,Y ,Z while �x ,y ,z� are coordinates relative to this point.

Let z be the position of Scut and Z0 the Z-coordinate of the

surface element �S, so that Z=Z0+z �Fig. 3�. The integral

over Scut only concerns the variables x and y. Let us consider

the value of �P at �x ,y ,z� averaged over all the particles the

center of which is at the same level Z. The key remark is that

this quantity �which we still denote by �P to avoid encum-

bering the notation� depends strongly on the distance of the

integration surface Scut from the particle center �i.e., the vari-

able z�, while the dependence on Z, the position of the par-

ticle center itself, occurs over a much slower spatial scale if

the nonuniformity of the system is small. Thus we write

�P�x,y,z�X,Y,Z� = �P�x,y,z�X,Y,Z0� + z� ��P

�Z
�

Z0

+ . . . .

�C1�

The particle number density in Eq. �7� can be expanded in a

similar way. We substitute this expansion into Eq. �7� and

proceed as shown before in connecting the two sides of Eq.

�9� to find, after an obvious transformation to a frame-

invariant notation,


 �
j��Vm

�
Scut

j
��P�ijdScut� n�X�
�

v

�ij
Pdv�

−
�

�Xk
�n�X�
�

v

rk�ij
Pdv� . �C2�

We now decompose the last integral into a symmetric and an

antisymmetric part. The latter contributes nothing to the mix-

ture momentum equation which involves the divergence of

the stress, i.e., the double divergence over the indices j and k

of the quantity in brackets, and we disregard it here. By

using an identity similar to Eq. �15� and the particle momen-

tum equation, the remaining term becomes

1

2
�

v

�rk��
P�ij + r j��

P�ik�dv

=
1

2
� rkr j��

F · n�idS −
1

2
�

v

�Prkr j�a
P − g�dv , �C3�

where, as before, the integration in the first term in the right-

hand side is over the particle surface. This term can be ma-

nipulated to recover the antisymmetric stress and a correc-

tion to the symmetric stress as well. The first step is to

decompose it according to the representation theory of the

rotation group,
66

as shown in Refs. 4 and 5, to find an ex-

pression that can be recast as

Tijk = T̂ijk +
1

3�ijn��n�mT�mk + �k�mT�mn�

−
1

5�ijn�nk��T� − Tpp�� +
1

5	 jkTi +
2

5	ijTppk + �ijk,

�C4�

where the tensors Tijk and Ti are defined in Eq. �29�, T̂ijk is

the completely symmetric traceless part of Tijk, and �ijk is

defined in Eq. �28�. The first term is a contribution to the

symmetric stress arising from spatial nonuniformity, as men-

tioned in Sec. VII. The second group of terms, which vanish

in potential flow, is a contribution to the antisymmetric stress

due to a similar effect. Both terms vanish in Stokes flow as

shown in Ref. 5. The third term gives rise to the vector V

defined in Eq. �27�. The next to the last term is an isotropic

contribution which can be considered as a part of the mixture

pressure pm.

By retaining additional terms in the Taylor series expan-

sion �C1�, higher-order tensors Tijkl, etc., appear. A corre-

sponding analysis in an ensemble-average framework can be

found in Ref. 4. These additional terms, however, are found

to have the form of powers of the particle radius multiplied

by gradients of averaged quantities as in Eq. �69� and,

therefore, vanish in the continuum limit in which the macro-

scopic length scale becomes much larger than a. This cir-

cumstance suggests that their importance may be limited in

most situations.

APPENDIX D: SYMMETRIC STRESS

It has been shown in earlier work
4,67

that, in general, the

symmetric part of the stress has the form

��	S = 2
Em + n�S	 + � · �n�S�3�	 + � · �n�S�4�	 + . . .�� ,

�D1�

where S is the stresslet and S�3� ,S�4� , . . . are average sym-

metric multipoles of order higher than two. While the con-

tribution of these higher-order terms evidently vanishes in a

uniform system, it is not necessarily so in the presence of

nonuniformities. A relatively straightforward calculation ac-

curate to O��� suggests that, in the Stokes regime, Eq. �D1�
takes the form of Eq. �41�. The closure parameters 
eff, 
�,

and 
� can be calculated numerically in the same way de-

scribed in Refs. 5, 68, and 69.

For this purpose, for each value of the volume fraction,

we construct ensembles �each one consisting of between 256

and 2048 different configurations� consisting of N particles
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�with N ranging between 10 and 160� randomly arranged in a

periodic cubic cell of side L. Each configuration is generated

by subjecting the particles to a large number of random dis-

placements. Examples of the pair distribution function,

nearest-neighbor distribution, and static structure factor of

the ensembles that we use are given in the cited references

and show a satisfactory degree of randomness and statistical

uniformity. By considering, for each volume fraction, bigger

and bigger cells, we extrapolate the results to infinite system

size L /a→�.

We simulate two different physical situations in which

the particles are immersed in a viscous fluid with vanishing

inertial effects. For the first one, we use a uniform ensemble.

Each particle in each configuration is subjected to a position-

dependent force f�=6�
aw0 sin k ·y� where w0 is a con-

stant vector parallel to one of the three sides of the funda-

mental cell; k is taken in turn parallel to each side of the cell,

and �k�=2� /L. With the results of this simulation we are able

to calculate 
eff and 
�, but not 
� given that E�=0 for a

uniform ensemble. For the second simulation the particles

are subjected to a constant force, but we use a nonuniform

ensemble constructed, as described in Refs. 68 and 70, so

that ���0 and E��0 as well. These simulations enable us

to obtain 
� together with a second estimate of 
eff.

The many-body problem is solved by a multipole

method described in Ref. 71 and adapted as described in

Refs. 68 and 70. The multipole expansion included terms up

to the fifth order for ��40%; for �=40% and 45% one

more order was included. Further details on this work will be

presented in a future paper.
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