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Abstract

Proteins can specifically bind to curved membranes through curvature-
induced hydrophobic lipid packing defects. The chemical diversity
among such curvature ‘sensors’ challenges our understanding of how
they differ from general membrane ‘binders’, that bind without cur-
vature selectivity. Here, we combine an evolutionary algorithm with
coarse-grained molecular dynamics simulations (Evo-MD) to – for the
first time – resolve the peptide sequences that optimally recognize
the curvature of lipid membranes. We subsequently demonstrate how
a synergy between Evo-MD and neural networks (NN) can enhance
the identification and discovery of curvature sensing peptides and
proteins. To this aim, we benchmark a physics-trained NN model
against experimental data and show that we can correctly identify
known ‘sensors’ and ‘binders’. We illustrate that sensing and binding
are in fact phenomena that lie on the same thermodynamic contin-
uum, with only subtle but explainable differences in membrane binding
free energy, consistent with the serendipitous discovery of sensors.
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2 Generative model of curvature sensing peptides

Teaser

AI-based design helps explain curvature-selective membrane binding behavior.

1 Introduction

The recognition of curved regions of lipid bilayer membranes by proteins plays
a key role in many biological processes, such as vesicular transport, fusion, and
fission [1, 2]. This preferred binding to curved membranes is called curvature
sensing and is driven by the outer leaflet of the curved bilayer membrane being
stretched, which causes defects in the packing of the polar lipid head groups.
Apolar amino acids of proteins can complement the now exposed hydrophobic
tails within these lipid packing defects, negating their energetic penalty and
resulting in a thermodynamic driving force (Fig. 1A).

Besides fundamental biological importance, curvature selectivity has been
proposed as a potential avenue for the development of broad-spectrum antivi-
ral peptides that leverage the difference in curvature between the membranes
of small enveloped viruses and the essentially flat host cell membrane [3–6].
However, the extremely serendipitous discovery and resulting rarity of curva-
ture selective peptides obstructs the utilization of state-of-the-art data-science
driven generative models, like the recent work by IBM on the discovery of new
antimicrobial peptides [7]. Consequently, an efficient computational strategy
for accelerating the discovery of new curvature sensing peptides is still lacking.

Many natural curvature sensing proteins feature an amphipathic helix
(AH). AHs have a polar face that interacts with the solvent and the lipid
head groups and an apolar face that interacts with the hydrophobic lipid tails.
Beyond this shared structural amphipathicity, the chemical composition of
AHs is highly diverse. For example, the contrasting compositions of the amphi-
pathic lipid packing sensing (ALPS) motif of the ArfGAP1 protein [8] and
the AH of α-synuclein [9] (Fig. 1B-C) suggest that curvature sensing results
from a delicate balance between the amino acid content on the apolar and
polar sides of the helices [10, 11]. Moreover, and important to note, some AHs
(like α-synuclein) have a positive net charge, providing additional selectivity
for anionic liposomes specifically [12]. Taken together, the structural diversity
among curvature sensors complicates reliable prediction of a given peptide’s
sensing ability simply from sequence-based physicochemical descriptors, like
mean hydrophobicity ⟨H⟩, hydrophobic moment µH [13], and net charge z.

Molecular dynamics (MD) simulations are a valuable asset in expanding
our understanding of curvature sensing, since they can access the necessary
molecular resolution that many experimental methods lack [14–16]. To reduce
system size and, consequently, reduce the computational cost, curved mem-
branes are often represented as stretched flat membranes in MD simulations
[17, 18] (Fig. 1A), such that the lipid packing defects on the surface are similar
and the consequent relative binding free energies correlate [19]. This approxi-
mation is valid since biologically relevant bilayer curvatures are negligible on
the length scale of peptides (≈5 nm).
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Generative model of curvature sensing peptides 3

Fig. 1 A) A peptide (in black) can have an enhanced affinity (thicker arrows) toward a
curved or stretched membrane (in red) as apposed to a flat tensionless membrane (in green),
due to hydrophobic lipid packing defects between the lipid head groups. B-C) Helical wheel
representations [20] of ALPS1 from ArfGAP1 [8] and α-synuclein [9].

Recently, we developed a highly efficient method that can quantify the
relative free energy (∆∆F ) of curvature sensing by surface peptides [19]. By
redefining ∆∆F as a mechanical property, we realized that differential binding
can be reinterpreted as the reduction of work required to stretch a mem-
brane leaflet when the peptide is bound to it. In other words: a peptide that
senses leaflet tension/curvature will also tend to induce leaflet tension/curva-
ture and, therefore, those properties are two sides of the same coin. In line
with this notion, many AHs have been shown to bind to flat membranes and
then actively generate positive membrane curvature (e.g. Epsin [21] and the
N-BAR domain [22]).

A still unresolved key question is what physical characteristics differentiate
AHs that specifically bind to curved membranes (‘sensors’) from AHs that bind
without curvature specificity (‘binders’). To date, this question has mostly been
addressed by making strategically chosen point mutations in specific exam-
ple cases [9, 11, 23–25], but a fundamental thermodynamic understanding on
how to distinguish ‘sensors’ from ‘binders’ among multiple chemically diverse
classes of AHs is – to the best of our knowledge – still lacking.

Here, we combine an evolutionary algorithm with coarse-grained molecular
dynamics simulations (Evo-MD) to – for the first time – design alpha-helical
peptides that optimally recognize the curvature of lipid membranes, completely
from scratch. Our main goal is to demonstrate how the unique synergy between
Evo-MD and neural networks can enable the identification of the two major
curvature sensing protein families (ALPS and α-synuclein) as well as their
known mutants without utilizing any of the available experimental input data,
i.e. our approach is purely physics-based. Furthermore, we will illustrate that
sensing and binding are in fact phenomena that lie on the same thermodynamic
continuum, with only subtle but explainable differences in membrane binding
free energy, consistent with the serendipitous discovery of curvature sensors.
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4 Generative model of curvature sensing peptides

2 Results & Discussion

2.1 Designing the optimal curvature sensor

Evolutionary molecular dynamics (Evo-MD) is a physics-based inverse design
method that embeds molecular dynamics (MD) simulations in a genetic algo-
rithm (GA) framework [26]. GAs are inspired by Darwinian evolution and
can serve as a powerful tool for optimization problems in large discrete search
spaces, like the 20L possible peptide sequences (for 20 natural amino acids and
peptide length L). Starting from a, in our case random, initial subset (‘pop-
ulation’), a GA iteratively (1) evaluates the desired property (‘fitness’) of the
candidate solutions in the population, (2) selects the best candidates as the
‘parents’ for the next generation, and then (3) performs genetic operations, like
cross-over recombination and random point mutations to (4) generate the next
population (Fig. 2A). While evolution proceeds, the population’s average fit-
ness will increase until it converges to an optimum. To date, GAs have mainly
been applied to peptide optimization problems that involve protein-peptide
interactions and use fitness functions based on physicochemical descriptors or
information from databases [20, 27–29]. In contrast, the fitness calculation in
Evo-MD is based on ensemble averaging from (coarse-grained) MD simulation
trajectories and is therefore completely data-independent. In this physics-
based approach, experimental data contributes to solving the optimization
problem via the parametrization of the force-field that is used in the simula-
tions, the Martini model [30] in this study. Therefore, the main advantage is
that Evo-MD will generate curvature sensing peptides without requiring any
knowledge of existing curvature sensing peptides, of which too few examples
exist to properly train a data-informed model. Additionally, as apposed to
data-trained models, physics-based inverse design does not tend to generate
molecules that are (too) similar to the input data [31]. In contrast, Evo-MD
will search for a pre-defined thermodynamic optimum of sensing and generate
‘optimal sequences’ that actually may differ from the biological optimum due
to additional evolutionary constraints imposed by nature’s complexity (e.g.
solubility, protein-protein interactions, trafficking).

The direction of simulated evolution by GAs is governed by the definition
of the fitness function (the desired property). For the optimization of curvature
sensing peptides, we aim to maximize the curvature sensing free energy ∆∆F
that we can efficiently quantify using aforementioned mechanical free-energy
method [19]. Our fitness function is the product of the ∆∆F value and a scal-
ing factor c that equals 1 when located on the membrane surface and goes
to 0 for transmembrane or soluble configurations (see SI). We emphasize that
∆∆F characterizes the relative affinity for lipid packing defects or equivalently
positive leaflet curvature, analogous to the curvature-dependent binding con-
stants (free energy of partitioning) measured in experimental model liposome
assays [11, 23–25, 32–36] as well as measured differences in the concentration of
peripheral membrane proteins due to curvature-driven sorting in micropipette
aspiration assays [37, 38].
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Generative model of curvature sensing peptides 5

Since membrane-surface peptides are in most cases α-helical and the Mar-
tini force-field is unable to model protein folding events, we assume and fix
helical secondary structure when generating the starting conformations for our
peptides. To this end, and to reduce the search space, we excluded 10 amino
acids with low α-helical propensities [39] (P, G, D, R, C, T, N, H, V, and I),
whilst ensuring that every chemical subtype is represented in our final subset
(comprising A, L, M, K, Q, E, W, S, Y, and F). We chose a fixed peptide length
of 24 residues, which is in the typical range for curvature sensing peptides.
Consequently, our search space contains 1024 peptide sequences.

Fig. 2 A) Schematic representation of the Evo-MD process. Figure adapted from previous
work [19].B) Three independent replica Evo-MD runs show convergence within 25 iterations,
as evident by the population best (solid lines) and population average (dashed lines). For
comparison, the ∆∆F values for two known curvature sensing motifs (ALPS1 of ArfGAP1
[8] and α-synuclein [9]) are shown in green. C-E) Consensus sequence logos [40] for the best
36 sequences of the final population. F-H) The respective helical wheel representations [20]
of the consensus sequences shown in C-E. I) Simulation snapshot of a consensus peptide
(Fig. 2C, F) bound to a tensionless POPC membrane. Hydrophobic residues (F, W, L) are
shown in yellow; E is shown in red. Phosphate (PO4) and choline (NC3) beads are shown
in orange and blue, respectively. dmem is the z-component of the center-of-mass distance
between the membrane and the peptide. dPO4 is the z-component of the center-of-mass
distance between the PO4 groups and the peptide.

In the three independent Evo-MD runs we performed (see SI for method-
ological details), we observed convergence within 25 iterations with the best
candidates having a ∆∆F of around -32 kJ mol−1 (Fig. 2B). The consensus
sequence logos [41] of the final generations show a strong enrichment of bulky
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6 Generative model of curvature sensing peptides

hydrophobic residues, mainly F and W (Fig. 2C-E and supplementary movies).
We can understand this result by returning to our earlier statement that “a
peptide that senses tension/curvature will also tend to induce tension/curva-
ture”. Such induction of tension and concomitant membrane curvature in a
membrane leaflet occurs via shallow insertions within the hydrophobic interior
of the lipid membrane, i.e. the region directly below the head groups. Indeed,
we observe that the optimal sequences – the point of maximum leaflet ten-
sion generation with respect to the helix’ central axis – is characterized by an
insertion of 1.69± 0.05 nm from the bilayer center in a tensionless membrane
(dmem in Fig. 2I), or alternatively 0.24±0.05 nm below the average position of
the phosphate groups (dPO4 in Fig. 2I). This is in quantitative agreement with
predictions from membrane elastic theory, which suggest an optimal insertion
of about 1.7 nm from the membrane center plane [42]. Furthermore, the bulkier
the peptide is, and thus the larger its excluded volume and effective helical
radius, the more pronounced the induced leaflet tension will be.

Besides the abundant hydrophobic residues, we observed that the solutions
of all three Evo-MD runs feature two charged residues (E or K, see Fig. 2C-
E). This numerical conservation of two charged amino acids suggests that this
is the bare minimum of polar content that is necessary to maintain a surface
orientation for such hydrophobic peptides (i.e. scaling factor c → 1). The sign
of the charge appears to be irrelevant for the zwitterionic POPC membranes
we used here. Also, the exact position of these residues seems arbitrary, as long
as the two charged residues end up on the same side of the helix in the folded
conformation (Fig. 2F-H).

The fact that all three randomly initiated Evo-MD runs produced peptide
sequences with identical physical characteristics within the same number of
iterations strongly suggests that this is indeed the global and not a local opti-
mum. To probe the effect of only using the 10 most helix-prone amino acids,
we performed an additional Evo-MD run with all 20 natural residues included.
This, again, yielded peptides with the same physical characteristics, but show-
ing slower convergence (40 iterations) and higher diversity due to the vastly
increased search space (see SI).

What this simulated evolution shows is that the GA has successfully
selected a key aspect in curvature sensing, insertion of hydrophobic residues
[23, 36], which is then maximally amplified and exploited until the fitness con-
verges. To such extent even, that the optimal ‘sensor’ is so hydrophobic that it
would likely stick to any membrane, regardless of curvature, thus being clas-
sified as a ‘binder’ instead. What is immediately clear is that our optimized
peptides strongly differ from the naturally evolved optima (e.g. the ALPS
motif and α-synuclein), both in terms of ∆∆F (Fig. 2B) and in their chemi-
cal compositions (Fig. 1B-C and Fig. 2F-H). Thus, our physics-based inverse
design indicates that the distinction between curvature sensors and membrane
binders can be considered as a continuum with a soft, subtle threshold at a
relative binding free energy that is much lower than the theoretical optimum.
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Generative model of curvature sensing peptides 7

Biologically, the differences between the simulated optimum and naturally
evolved peptides can be explained by considering the many boundary condi-
tions imposed by the complex environment of in vivo systems. One of the most
obvious and fundamental requirements is that proteins should be soluble in
physiological buffer. The extremely hydrophobic GA-generated optima clearly
fail this criterion and will readily aggregate and precipitate out of the solution.
Also, since curvature sensing implies tension generation, peptides with a high
∆∆F could harm the integrity of the membranes they adhere to. Therefore,
an evolutionary pressure to limit this potency must exist.

2.2 A neural network model to predict curvature sensing

As a valuable byproduct of the iterative optimization process by Evo-MD,
we obtained a large database of ≈54,000 unique sequences (all 24 residues
long) and their respective sensing free energies (∆∆F ) as calculated by MD
simulations. With this wealth of data, we set out to train a convolutional neural
network (CNN) that is able to predict curvature sensing ability from peptide
sequence information only.

To enable the model to handle peptides shorter than 24 amino acids as
well, we split the sequences in the original data set at a random position, such
that the resulting two fragments were at least 7 residues long. Next, since
∆∆F depends linearly on length (see SI), we interpolated the ∆∆F values for
the split sequences, hereby tripling the data set to ≈138,000 sequences (after
discarding duplicate fragments). We refrained from extrapolating to sequences
longer than 24 residues, since this would require additional assumptions on
amino acid composition and – potentially – involve more complex tertiary
structures that are inaccurately modeled by the Martini force-field. A detailed
description of the final training data is included in the SI.

As described previously in the context of activity prediction of helical
antimicrobial peptides [43], we used one-hot encoded and zero-padded rep-
resentations for the input sequences. These are then fed to two consecutive
convolutional layers with max pooling, followed by a fully connected layer and
a single output neuron to translate the connection weights into a float value:
the predicted ∆∆F (Fig. 3A, see SI for details on the optimization of the
architecture and hyperparameters).

During the CNN training, minimization of the mean squared error (MSE)
converged after 18 epochs (see SI) to a MSE of 1.84 for the validation set
(25% random sample from the full data). For this validation set, we achieved
excellent correlation (R2 = 0.97) between the predicted and MD-calculated
∆∆F ’s (Fig. 3B). However, because sequences from the late iterations of the
same Evo-MD run can be highly similar, the validation and training sets are
arguably not fully independent. Therefore, to ultimately test our model, we
predicted the ∆∆F for 1,000 randomly generated sequences (between 7 and
24 residues long) that were not part of the training data and obtained a MSE
of 2.92 and an R2-value of 0.66 when comparing the predicted values to the
∆∆F calculated by MD simulations (Fig. 3C).
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8 Generative model of curvature sensing peptides

Fig. 3 A) Architecture of the CNN model. B-C) Correlation between the CNN-predicted
and MD-calculated ∆∆F values for the validation set after the final training (B) and for a
random test set (C).

The trained neural network and all data sets are accessible at
github.com/nvanhilten/CNN curvature sensing. Please note that the
model should only be used for sequences between 7 and 24 amino acids long,
and that it assumes α-helical folding (as we did in the training data). Based
on the performance of our model on the randomly generated test set, the
root-mean-square error (RMSE) of its predictions is

√
MSE = 1.71 kJ mol−1,

which is comparable to the typical errors obtained when calculating ∆∆F by
MD simulation (e.g. compare the error bars of Fig. 4A and 4B).

2.3 Distinguishing sensing from binding

Now, with the MD quantification and CNN tools in hand, we can return to the
key question posed in the introduction, namely: which, if any, characteristics
can help us distinguish curvature sensors from binders, and what can rela-
tive binding free energies, like ∆∆F , teach us in this regard? To address this
question, we composed a benchmark set of natural curvature sensing peptides
(see SI), also including mutated variants that were empirically categorized as
‘non-binders’ (i.e. no affinity for any membrane) or ‘binders’ (i.e. binding to
membranes without curvature specificity). We should acknowledge the expert
help of Prof. Bruno Antonny and Dr. Romain Gautier in composing this list.
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Generative model of curvature sensing peptides 9

To fairly compare the sequences, we propose two correction factors to
obtain an adjusted relative binding free energy ∆∆Fadj . First, we linearly
extrapolate the ∆∆F values of shorter peptides to their corresponding free
energies if they were 24 residues long (∆∆FL=24, see SI). Second, we realized
that many of the peptides are cationic to improve interaction with (curved)
anionic membranes that are abundant in nature. Since our MD simulations
were performed with neutral POPC membranes, we hypothesized that the rel-
ative binding free energies would in these cases be underestimated and thus
require a correction term czz to account for this:

∆∆Fadj = ∆∆FL=24 + czz (1)

To determine the magnitude of cz (the relative free energy contribution per
unit charge z), we performed additional MD simulations with anionic mem-
branes (75% POPC, 25% POPG) and indeed found elevated relative binding
free energies, especially for the cationic peptides (see SI). From the average dif-
ference between the ∆∆F ’s calculated on the different membranes, we obtained
cz = −0.93± 0.89 kJ mol−1 per unit charge.

We calculated this ∆∆Fadj for our peptides of interest with the CNN model
(Fig. 4A) and MD simulations (Fig. 4B). When ranking the peptides accord-
ingly, we find that we can roughly reproduce the empirical qualification of
‘non-binders’ at the lower end and ‘binders’ at the higher end of the ranking,
and ‘sensors’ in the middle. Notably, the differences between the values for
subsequently ranked peptides are rather small, often below 1 kJ mol−1. These
findings are in line with our hypothesis that the thermodynamics of binding
and sensing are subtle energetic transitions on a continuous scale.

Interestingly, we find that the CNN-predicted ranking is in better agree-
ment with the experimental trends than the results from MD simulations
(Fig. 4A-B). We speculate that this is likely due to a smoothening effect,
i.e. predictions of the MD simulations for individual peptide sequences are
fully independent whereas the CNN introduces effective correlations between
sequences. Because the CNN is trained on the ensemble averaged values
from many thousands of independent MD trajectories for different peptide
sequences, we argue that disturbances (‘noise’) in chemical space (point
mutations) and in the molecular dynamics itself (limited sampling) are there-
fore smoothened out to such extent that the experimental trends are more
robustly reproduced. Hence, we use the CNN-predicted ∆∆Fadj values for the
remainder of this paper.

2.4 Thermodynamic model of the sensing→binding
transition

Along the lines of our current definitions, every peptide undergoing hydropho-
bically driven membrane binding is able to sense positive membrane curvature
due to the increase in surface hydrophobicity upon bending. In other words,
positive curvature enhances hydrophobically driven membrane binding. Empir-
ically, however, a peptide is only classified as a curvature sensor if it only
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10 Generative model of curvature sensing peptides

significantly binds to membranes characterized by a high positive curvature.
In this section, we will argue that the empirical classification of sensors ver-
sus binders can be intuitively understood from the population statistics of a
two-state partition function.

Herein, we define the following two states; (1) state m: the peptide is bound
to the membrane, (2) state s: the peptide is in solution. We define the parti-
tioning free energy difference between the two states as ∆Fsm: the free energy
of membrane binding minus the free energy of solvation with respect to the
peptide in the gas phase. We calculated ∆Fsm by thermodynamic integration
(see SI) for a non-binder, a sensor, a binder, and the extremely hydrophobic
Evo-MD optimum (Fig. 2D, F), and found that it linearly relates to ∆∆Fadj

(Fig. 4C). The reason for this strong linear correlation is that both membrane
binding (∆Fsm) and curvature sensing (∆∆Fadj) are driven by hydrophobic
interactions.

At thermal equilibrium, the relative probability for a peptide to bind to a
membrane Pm is Boltzmann distributed. Consequently, Pm is given by:

Pm =
1

1 + Vs

Am
e∆Fsm

(2)

Eq. 2 resembles the so-called Fermi-Dirac function, in which Vs represents
the normalized volume of accessible solvent (proportional to the number of
realizations in solution) and Am represents the normalized membrane area
(proportional to the number of membrane binding realizations). If Vs

Am
= 1,

this function features a sharp but continuous transition at ∆Fsm = 0 (dashed
curve in Fig. 4E), i.e. the point where membrane binding and peptide solubil-
ity are precisely in balance (Pm = 0.5). However, the number of realizations
in solution is expected to be much larger than the number of realizations
associated with membrane binding, Vs

Am
≫ 1, at typical lipid concentrations.

Consequently, the transition point shifts to the right, i.e. peptide-membrane
binding is significantly favoured over peptide solvation at the transition point
Pm = 0.5. The steep nature of this ‘switch function’ strikingly explains why
empirically classified sensing behavior switches to binding behavior based on
only subtle differences in (relative) membrane binding free energy, like we
observed in this work (Fig. 4A).

To finalize our model, we estimate the prefactor Vs

Am
. The accessible mem-

brane area in one liter of solution is A = 1
2cNavAlip, with c being the lipid

concentration, Nav the Avogadro constant, and Alip the area per lipid. The
characteristic surface area of a helical peptide is roughly Ap = 5× 1 nm2 and
equivalently its volume in solution is Vp = 5 × 1 × 1 nm3. Taking c = 2 mM
(a typical value in the middle of the concentration range used in experiments

[11, 23–25, 32–36]) and Alip = 0.64 nm2 we obtain Vs

Am
=

V/Vp

A/Ap
= 2.6 · 103.

When we plug this number into eq. 2, we find that the free energy of mem-
brane binding outperforms the free energy of solvation by -19.5 kJ mol−1 at the
transition point Pm = 0.5 (Fig. 4E), i.e. the transition point is associated with
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Generative model of curvature sensing peptides 11

Fig. 4 A-B) Length- and charge-adjusted relative binding free energy (∆∆Fadj , see eq.
1) for 19 curvature sensors or derivatives (see SI) predicted with the CNN model (A) and
calculated from MD simulations (B). Non-binders are shown in blue. Sensors are shown in
green. Binders are shown in red. C) Linear correlation between CNN-predicted ∆∆Fadj

and the membrane binding free energy (∆Fsm). Circles indicate peptides for which ∆Fsm

was calculated by thermodynamic integration (see SI). The Evo-MD optimum (black) is the
sequence in Fig. 2D. For the remaining peptides (crosses), ∆Fsm was derived from the linear
fit ∆Fsm = 3.83 ·∆∆Fadj +12.27. D) Highlighted CNN-predicted ∆∆Fadj values for ALPS
GMAP-210 variants. E) The probability of a peptide to bind a membrane Pm as a function

of the membrane binding free energy ∆Fsm (eq. 2). The dashed curve is for Vs
Am

= 1, which

is shifted to the solid curve for Vs
Am

= 2.6 ·103, as derived in the main text. In C-E, the green

area indicates the likely regime (0.05 ≤ Pm ≤ 0.95) where peptides are empirically classified
as sensors. The orange line indicates the curvature specific antiviral peptide HCV AH.

favourable but relatively weak membrane binding. Because of the sharp tran-
sition behavior, ‘sensors’ are envisioned as peptides with a ∆Fsm value near
the transition point (0.05 ≤ Pm ≤ 0.95, the green area in Fig. 4E). According
to our model, a peptide with Pm < 0.05 would be classified as a ‘non-binder’,
and a peptide with Pm > 0.95 would be deemed a ‘binder’. When overlay-
ing the values for the 19 benchmark peptides we introduced earlier (vertical
lines in Fig. 4E, see SI), we find that 3/3 non-binders, 7/11 sensors, and 3/4
binders are classified correctly, i.e. in agreement with the original experiments.
Such categorization would have been impossible with crude physicochemical
descriptors like mean hydrophobicity ⟨H⟩ or hydrophobic moment µH despite
them (weakly) correlating with ∆Fsm (see SI).
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12 Generative model of curvature sensing peptides

We defined the sensing regime rather generously (0.05 ≤ Pm ≤ 0.95) to
accommodate for the fact that both the empirical classification and the posi-
tioning of the Fermi-Dirac curve are sensitive to the lipid concentration c,
which can differ significantly between experiments. Moreover, imperfect heli-
cal folding and differing lipid compositions, cell systems, and read-out types
can complicate the direct comparison between empirical classifications and
our computational models. In terms of membrane binding free energy ∆Fsm,
the lower and upper boundaries of sensing (0.05 ≤ Pm ≤ 0.95) correspond to
−12.2 and −26.8 kJ mol−1, respectively (green area in Fig. 4C, E). In other
words, when the work required to pull a peptide from a tensionless membrane
is between those values, it can be classified as a sensor. In terms of the length-
and charge-adjusted relative binding free energy (∆∆Fadj), i.e. the preference
for highly curved membranes (≈ 25 nm vesicles [19]), sensors fall between −6.4
and −10.2 kJ mol−1 (green area in Fig. 4C-D).

As an example, we highlighted four variants of ALPS GMAP-210 [24, 25]
for which the relative differences in experimental sensing/binding behavior
were correctly captured (Fig. 4D). This is a striking example because the
sequences are so similar: the only difference between the original sensor ALPS
GMAP-210 and the non-binding variant ALPS GMAP-210 (L12D) is a single
point mutation (L → D) that disturbs the peptide’s hydrophobic face. As can
be expected, and in line with the experimental findings, the inverse sequence
ALPS GMAP-210 (inv) scores the same as the original peptide and is thus
categorized as a sensor as well. Finally, the condensed version ALPS GMAP-
210 (cond) was correctly identified as a binder. With this highlighted example,
we demonstrate that our method and thermodynamic model can pick out
features as subtle as single point mutations, resolve the resulting differences in
relative free energy and correctly categorize the consequent sensing behavior.

Finally, we also included the antiviral peptide HCV AH, that specifically
ruptures vesicles with a high curvature (e.g. small enveloped viruses) [3, 4]
(orange line in Fig. 4E). To date, HCV AH is the only example of a clinically
relevant curvature selective antiviral peptide [5]. When we plug in the previ-
ously calculated free energy value [19] for HCV AH, we find that this peptide
falls into the ‘binder’ regime. This is consistent with evidence that the vesicle
size specificity of this peptide is due to curvature specific pore formation and
not to curvature specific binding (i.e. curvature sensing) [44]. After all, subtle
binding may not be optimal for pore formation, i.e. the subsequent induction
of tension should be sufficient to rupture the membrane.

Hence, we argue that the most promising range to find potent curvature
specific antiviral agents is therefore near the transition zone between sensing
and binding (i.e., Pm → 1), since these peptides (1) may still benefit from
some ‘curvature sensing’ (predominant binding to higher curvatures), (2) pack
a larger punch than biological sensors in terms of meeting the tension induc-
tion threshold necessary to deform/perforate viral membranes, but are (3) not
so potent that they also rupture the host cell membrane. The latter is helped
by the fact that the host membrane is likely more resilient to the disruptive
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actions of peptides than the viral membrane due to membrane stabilizing pro-
teins and active feedback mechanisms. This means that a considerable part
of the selectivity of membrane-targeting drugs is likely due to a difference in
drug resistance (membrane resilience) rather than actual differential binding.

3 Conclusions

We have illustrated a striking example of the utility of a physics-based
generative model (Evo-MD) to explore and simultaneously rationalize the
mechanisms of how peptides sense membrane curvature. Initially, we set out to
optimize curvature sensing by resolving the sequence that maximizes the rel-
ative affinity for lipid packing defects. Instead, we ended up with the optimal
‘binder’. This finding led to the important realization that curvature sensing
and membrane binding are phenomena that lie on the same thermodynamic
continuum (Fig. 4E).

Naturally evolved curvature sensors, such as the ALPS motif and α-
synuclein, are chemically diverse but turn out to be remarkably similar in
terms of partitioning free energies, which explains their functional similarities.
In this work, we – for the first time – described the thermodynamic regime
that defines the curvature sensing behavior of peptides. Given how narrow this
energetic ‘sensing window’ is, it is unsurprising that the discovery and design
of curvature sensors has, to date, been rather serendipitous. Having identi-
fied this ‘window of opportunity’ in terms of relative binding free energy can
facilitate the discovery of novel curvature sensing peptides since we now know
where to look for them.

The existence of the here-resolved thermodynamic sensing regime can also
be intuitively understood from an evolutionary biological perspective. Hence,
curvature sensing motifs within naturally evolved proteins must fulfil the fol-
lowing two criteria: they should (1) predominantly bind to curved membranes
and (2) conserve the structural integrity of the membranes they adhere to.
The here-observed linear correlation between sensing and overall membrane
binding (see Fig. 4C) dictates that these criteria are only met in the weak
binding regime. These arguments are all in full agreement with the earlier
hypothesis that curvature sensing in nature is a subtle balance between over-
all membrane binding and specific curvature recognition [2]. Also, in this weak
binding regime, the small leaflet strain induced by peptides is able to facilitate
a largely inert and thus biologically functional sensing phenotype that does
not easily lead to membrane rupture/deformation.

Importantly, we demonstrated a fruitful synergy between a physics-based
generative model (Evo-MD) and a convolutional neural network, which not
only dramatically accelerated the high-throughput evaluation of peptide
sequences, but also improved the accuracy of prediction compared to the orig-
inal molecular simulations. It is important to stress the key role of Evo-MD,
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in that it yields sequences over the whole range of ∆∆F by gradually maxi-
mizing the relevant chemical property in a well spaced manner, in our example
even up to the thermodynamic optimum. Using such data to train a neural
network model has the important advantage that it encompasses the full ther-
modynamic range of possibilities over a vast search space of 2024 sequences,
whereas a data set of natural peptides (if available in the first place) would be
strongly constrained to a certain biologically feasible regime that only com-
prises peptides with highly similar physicochemical characteristics. We argue
that training data generated with Evo-MD can therefore substantially improve
both the applicability domain as well as the accuracy of neural network mod-
els, despite many of the generated sequences not being necessarily biologically
relevant. This principle is equivalent to the fitting of an unknown function
to data points that are well spaced over the whole range of the applicability
domain versus data points that are only clustered within a narrow window.
Particularly, precise knowledge of the maxima (and minima) of a function –
which a physics-based optimization resolves – will benefit the quality of a fit
or model, also within the biologically relevant domain of the search space.
We postulate that a subsequent restriction of the search space within or near
the here-resolved sensing regime can enhance the discovery of novel curvature
sensing motifs in natural proteins, as well as their de novo generation.

Finally, we envision an important potential application in the computa-
tional design of peptide sensors that recognize membranes with other aberrant
characteristics, such as a distinct lipid composition (e.g. bacteria and cancer
cells). Since (selective) membrane binding results in the generation of leaflet
tension, membrane binding peptides have an inherent membrane destabilizing
propensity as well as the ability to lower the energetic cost of the highly curved
interface of toroidal pores. This is particularly the case for the hydrophobically
driven membrane binding peptides we discussed in this work. The simultane-
ous encoding of selective membrane binding plus an active drug mode, such as
the induction of membrane lysis, is therefore a realistic avenue to explore fur-
ther. An important advantage of physics-based generative models over existing
data-science based generative models herein is their unique ability to systemat-
ically explore the drug therapeutic potential of distinct relative binding (∆∆F )
regimes by restricting the generation of peptide sequences within pre-defined
boundary values of ∆∆F , for example, via the straightforward introduction of
a bias/constraint to the fitness function. This can enable the targeted explo-
ration of different ‘windows of opportunity’ similar to aiming a gun at different
targets.

Supplementary information. Methodological details and additional anal-
yses are included in the supplementary information (SI). We also provide the
evolution of consensus sequences as supplementary movies.
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