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Physics-Based Learned Design: Optimized
Coded-Illumination for Quantitative Phase Imaging

Michael R. Kellman

Abstract—Coded illumination can enable quantitative phase
microscopy of transparent samples with minimal hardware re-
quirements. Intensity images are captured with different source
patterns, then a nonlinear phase retrieval optimization recon-
structs the image. The nonlinear nature of the processing makes
optimizing the illumination pattern designs complicated. The
traditional techniques for the experimental design (e.g., condition
number optimization, and spectral analysis) consider only linear
measurement formation models and linear reconstructions. Deep
neural networks (DNNs) can efficiently represent the nonlinear pro-
cess and can be optimized over via training in an end-to-end frame-
work. However, DNNs typically require a large amount of training
examples and parameters to properly learn the phase retrieval pro-
cess, without making use of the known physical models. In this
paper, we aim to use both our knowledge of the physics and the
power of machine learning together. We propose a new data-driven
approach for optimizing coded-illumination patterns for an LED
array microscope for a given phase reconstruction algorithm. Our
method incorporates both the physics of the measurement scheme
and the nonlinearity of the reconstruction algorithm into the design
problem. This enables efficient parameterization, which allows us
to use only a small number of training examples to learn designs
that generalize well in the experimental setting without retrain-
ing. We show experimental results for both a well-characterized
phase target and mouse fibroblast cells, using coded-illumination
patterns optimized for a sparsity-based phase reconstruction
algorithm. Our learned design results using two measurements
demonstrate similar accuracy to Fourier ptychography with
69 measurements.

Index Terms—Phase imaging, unrolled network, physics-based,
experimental design, illumination design.
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I. INTRODUCTION

UANTITATIVE Phase Imaging (QPI) enables stain-
free and label-free microscopy of transparent biological

samples in vitro [1], [2]. Compared with coherent methods [3],
[4], QPI techniques that use partially coherent light achieve
higher spatial resolution, more light throughput, and reduced
speckle artifacts. Phase contrast can be generated by inter-
ference [5], [6] or defocus [7]-[9]. More recently, coded-
illumination microscopy [10]-[15] has been demonstrated as
an accurate and inexpensive QPI scheme. To realize coded-
illumination, we replace a commercial microscope’s illumina-
tion unit with a light-emitting diode (LED) domed array (see
Fig. 1) [16]. This flexible hardware platform has been used for
various QPI applications including super-resolution [10], [11],
[13], multi-contrast [12], [17], and 3D imaging [14], [15].

Coded-illumination microscopy uses intensity measurements
with asymmetric source patterns [18] to retrieve 2D phase in-
formation. Quantitative Differential Phase Contrast [19]—[22]
(gDPC) typically captures four measurements with rotated half-
circle source patterns, from which the phase is computationally
recovered using a partially coherent model. The performance of
qDPC is predominantly determined by how the phase informa-
tion is encoded in (via coded-illumination) and decoded from
(via phase recovery) the intensity measurements.

The half-circle illumination designs of gDPC were derived
analytically based on a Weak Object Approximation [20], [21],
[23], [24] which linearizes the physics in order to make the
inverse problem mathematically convenient. This linearized
model enables one to derive a phase transfer function and analyze
the spatial frequency coverage of any given source pattern [21],
[22], [25], [26]. However, the non-linearity of the actual system
makes it impossible to predict an optimal source design without
knowing the sample’s phase a priori. In addition, these types
of analysis are inherently restricted to linear reconstruction al-
gorithms and will not necessarily result in improved accuracy
when the phase is retrieved via non-linear iterative methods.

Motivated by the success of deep learning [27] for image re-
construction problems [28]-[33], data-driven approaches have
been adopted for learning coded-illumination patterns. For in-
stance, researchers have used machine learning to maximize the
phase contrast of each coded-illumination measurement [34],
to improve accuracy on classification tasks [35], and to re-
construct phase [36]. All of these techniques learn the input-
output relationship with a deep convolutional neural network
(CNN) using training data. It is not straightforward to include the
well-characterized system physics; hence, the CNN is required
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Learning coded-illumination designs for quantitative phase imaging: (a) The LED-array microscope captures multiple intensity measurements with

different coded-illumination source patterns. (b) The measurements are used to computationally reconstruct the sample’s complex-field using an iterative phase
recovery algorithm. (c) An optimization procedure for learning optimal coded-illumination patterns updates the illumination design.

to learn both the physical measurement formation and the phase
reconstruction process. This task requires training of 10 s to
100 s of thousands of parameters and an immense number of
training examples.

Here, we introduce a new data-driven approach to optimizing
the source pattern design for coded-illumination phase retrieval
by directly including both the system physics and the non-linear
nature of a reconstruction algorithm in the learning process. Our
approach unrolls the iterations of a generic non-linear recon-
struction algorithm to construct an unrolled network [37]-[43].
Similar to CNNSs, our unrolled network consists of several layers
(one for each iteration); however, in our case each layer consists
of well-specified operations to incorporate measurement forma-
tion and sparse regularization, instead of standard operations
such as generic convolutions. The key benefits of our approach
are:

® incorporation of the system physics and reconstruction

non-linearities in the illumination design process.

o efficient parameterization of the unrolled network.

® incorporation of practical constraints.

¢ reduced number of training examples required.

We deploy our data-driven approach to learn improved coded-
illumination patterns for phase reconstruction. Each layer of
the unrolled network is parameterized by only a few variables
(LED brightness values), enabling an efficient use of training
data (<100 simulated training examples). We compare the QPI
performance of our learned designs to previous work and demon-
strate that our designs generalize well to the experimental setting
with biological samples.

II. QUANTITATIVE PHASE IMAGING

gDPC recovers a sample’s complex transmittance function
from several coded-illumination measurements. The phase re-
covery optimization algorithm aims to minimize the Euclidean
norm of the error between the measurements and the expected
measurements formed with the current phase estimate. Using

a gradient-based procedure, the phase estimate is iteratively
updated until convergence. For a partially coherent source, the
phase can be recovered with resolution up to twice the coherent
diffraction limit. In this section, we describe the measurement
formation process and phase recovery optimization.

A. System Modeling

A thin sample’s transmission function can be approximated
as a 2D complex function, o(r) = e/¢()~#(r) characterized by
its absorption, £i(r), and phase, ¢(r) = 2ZAn(r)d(r), where r
are 2D spatial coordinates, A is the wavelength of the illumina-
tion, d(r) is the physical thickness of the sample, and An(r) is
the change in refractive index from the background. Intensity
measurements, y(r), of the sample are a non-linear function of
o(r), mathematically described by,

y(r) = |p(r) * (s(r) © o(r)) %, (M

where | - |* denotes squared absolute value, * denotes convo-
lution, ® denotes elementwise multiplication, s(r) is the il-
lumination’s complex-field at the sample plane and p(r) is
the point spread function (PSF) of the microscope. The il-
lumination from each LED is approximated as a tilted plane

‘ 2

wave, s(r) = et Ufost , with tilt angle, u,,s, determined by the
physical position of the LED relative the microscope [44].
Because the measured image in Eq. 1 is non-linear with re-
spect to the sample’s transmission function, recovering phase
generally requires non-convex optimization. However, biologi-
cal samples in closely index-matched fluid have a small scatter-
scatter term. This means that a weak object approximation can
be made; linearizing the measurement formation model such
that phase recovery requires only a linear deconvolution of the
measurements with their respective weak object transfer func-
tions (WOTFs) [20]-[24]. Further, unstained biological samples
are predominantly phase objects since they are only weakly ab-
sorbing (i.e. (r) is small). With these approximations, we can
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express each intensity measurement as a linear system with con-
tributions from the background and phase contrast. In Fourier
space,

j(u) ~ Bi(u) + ih(w)é(u), 2

where ~ denotes Fourier transform, u are 2D spatial-frequency
coordinates, B is the measurement’s background energy con-
centrated at the DC and h(u) is the phase WOTF. The phase
WOTFs are a function of the source and the pupil distributions
of the microscope [21]. For a single LED the WOTF is:

R(single) (w) = i(p(u) * 5(u) — 5(u) * p(u)), 3)

where * is the correlation operator, defined as (z1 * z2)(r) =
J z1(F)ab (T — r)dr for r in the domain of p and 5.

In [21], multiple LEDs are turned on simultaneously to in-
crease signal-to-noise (SNR) and improve phase contrast. Be-
cause the fields generated by each LED’s illumination are
spatially incoherent with each other, the measurement from mul-
tiple LEDs will simply be the weighted sum of each LED’s
individual measurement, where the weights correspond to the
LEDs’ brightness values. The phase WOTF for illumination by
multiple LEDs will also be the weighted sum of the single-LED
phase WOTFs. Mathematically,

Flmaltd) (g Z o919 (u) @)
weWw

h(multl) Z Co h(smgle) (), (5)
wew

where WV is the set of LEDs turned on and ¢,, > 0 are the LEDs’
brightness values.

Following common practice [45], we discretize the 2D spa-
tial distributions and format them as vectors (bold lower case)
(e.g. h represents the transfer function’s 2D spatial-frequency
distribution and ¢ represents the 2D spatial phase distribution).
The measurements' are described in Fourier space as y = Aa&
with system function A = diag(ﬁ).

Based on this model, we define Y € RM*5 as the Fourier
transform of S single LED measurements, y, along the columns.
Then, C € R%*X is defined as the S single-LED weights for
each of K measurements, and ¢, € R is the k*"* column of C.
The product ¥, = Yc;, simulates the k' multiple-LED mea-
surement. Similarly, we define H € RV*® as S single LED
phase WOTFs, h along the columns, such that the product
A\ = diag(Hcy) gives the corresponding multiple-LED phase
WOTEF for the k** measurement.

B. Phase Recovery

Phase recovery using the forward model in Section II-A can
be formulated as a regularized linear inverse problem,

P() (6)

~

¢* = R((Yk)k 1>

K
= argmin Z I9% — Axdll3 +P(@), (D
k:

'In practice, y typically refers to the so-called flattened image, where the
background energy in (2) is removed via background subtraction.

Algorithm 1: Accelerated Proximal Gradient Descent
(APGD) for Phase Recovery.

1:  procedure APGD((y)f |, N,a, P(+))

2 a(O) —o, ¢( 1) —0
3: fornE{l...N}do
I RN
5: z(")  g(n) —C‘Ek (—A
(¥ — Ays™)

6: 3)(“) <+ prox,p(z(™)
7 end for

~(N)
8: return ¢
9: end procedure

where ¢* is the recovered phase, K is the number of measure-
ments acquired, yi is the Fourier transform of the k'™ mea-
surement and P(-) is a user-chosen regularizer. We solve this
optimization problem efficiently using the accelerated proxi-
mal gradient descent (APGD) algorithm by iteratively applying
an acceleration update, a gradient update and a proximal up-
date [46], [47]. The algorithm is detailed in Algorithm 1, where
« is the gradient step size, [N is the number of iterations, s
and z are intermediate variables, ;(™ is the acceleration pa-

rameter derived by the recursion, u(”) = % [47],
and proxp(-) is the proximal operator corresponding to the
user-chosen regularizer P(-) [46].

III. PHYSICS-BASED LEARNED DESIGN

Given the phase recovery algorithm in Section II-B, we
now describe our main contribution of learning the coded-
illumination designs for a given reconstruction algorithm and
training set.

A. Unrolled Physics-Based Network

Traditionally, DNNs contain many layers of weighted lin-
ear mixtures and non-linear activation functions [27]. Here,
we consider specific linear functions which capture the system
physics of measurement formation and specific non-linear acti-
vation functions which promote sparsity [37], [38]. Starting from
Algorithm 1, we treat each iteration as a layer such that when un-
rolled they form a network of NV layers, denoted R (Fig. 2). Each
layer of R contains a module for each of the iterative algorithm’s
updates (i.e. an acceleration module, a gradient module (incor-
porates system physics), and a proximal module (incorporates
sparsity)). The regularization and step size parameters speci-
fied for Algorithm 1 are fixed. The network’s inputs comprise

(¥)X_, and the network’s output is aS(N). The design param-
eters of the network, which will be learned, govern the relative
brightness of the LEDs and are incorporated in the measurement
formation and the system WOTFs.

B. Learning Objective

Our learning objective is to minimize the phase reconstruc-
tion error of the training data over the space of possible LED
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Unrolled physics-based network: feed-forward schematic for the unrolled accelerated proximal gradient descent (APGD) network for IV iterations (dark

blue box). The network takes intensity measurements, y,, parameterized by the coded-illumination design, cg, as input and outputs the reconstructed phase, ¢*.
Finally, the output is compared with the ground truth phase, ¢/, using a user-chosen loss function, 7; (pink box). The inset into a single (n*") iteration (light blue
box) shows each iteration’s three steps: acceleration update, gradient update, and proximal update.

configurations, subject to constraints that enforce physical fea-
sibility and eliminate degenerate and trivial solutions:

C* = arg mci:n F(C) (8)
s.t. ¢ >0 (non-negativity) 9)
ekl =1 (scale) (10)
mpoc, =0 (geometric)
Vke{l...K}, (11)
where,
1L
F(C) = E;m@ (12)
1 o K 272
=37 Z [R((Yick)r=1) — ¢ill2- (13)
=1

Here, (Y}, ¢})£, are L training pairs for which Y is a matrix
of the Fourier transform of single-LED measurements for the
[t" sample with optical phase, ¢). ® is the elementwise product
operator, my, is a geometric constraint mask for the k" mea-
surement, and O is the null vector.

The non-negativity constraint (Eq. 9) prevents non-physical
solutions by enforcing the brightness of each LED to be greater
than or equal to zero. This is enforced by projecting the pa-
rameters onto the set of non-negative real numbers. The scale
constraint (Eq. 10) enforces that each coded-illumination design
must have weights with sum equal to 1, in order to eliminate
arbitrary scalings of the same design. This is enforced by scaling
the parameters for each measurement such that their sum is
one. The geometric constraint (Eq. 11) enforces that the coded-
illumination designs do not use conjugate-symmetric LED pairs
to illuminate the sample within the same measurement, since
these would also result in degenerate solutions (e.g. two sym-
metric LEDs produce opposite phase contrast measurements
that would cancel each other out). To prevent this, we force the
source patterns for each measurement to reside within only one
of the major semi-circle sets (e.g. top, bottom, left, right). This

Algorithm 2: Physics-Based Learned Design Algorithm.
1:  procedure PBLD((Y,, ¢~ ,C, 7, T)

2: fort € {0...T} do > Gradient descent
loop
3: for/e{1...L} do o> Training data
loop

-~/
4 = R((Yier)is,) — &
5: G, < BackPropagation(r;)
6: end for .
7 Cl+l)  B(CH — I35 Gy)
8 C+l) g Ct+l) 4 (1— sHYC®
9 end for
10: return C(7)
11: end procedure

constraint is enforced by setting the LED brightnesses outside
the allowed semi-circle to zero.

We solve Eq. 8 iteratively via accelerated projected gradient
descent (Algorithm 2). At each iteration, the coded-illumination
design for each measurement is updated with the analytical
gradient, projected onto the constraints (denoted by B(-)) and
updated again with a contribution from the previous iteration
(weighted by 5(*)). B(-) enforces the constraints in the follow-
ing order: non-negativity, geometric, and scale.

C. Gradient Update

The gradient of the loss function (Eq. 8) with respect to the de-
sign parameters has contributions at every layer of the unrolled
network through both the measurement terms, yy, and the phase
WOTF terms, Ay, for each measurement k € {1... K}. Here,
we outline our algorithm for updating the coded-illumination
design weights via a two-step procedure: backpropagating the
error from layer-to-layer and computing each layer’s gradient
contribution. For simplicity, we outline the gradient update for
only a single training example, [, as the gradient for all the train-
ing examples is the sum of their individual gradients.

Unlike pure gradient descent, where each iteration’s esti-
mate only depends on the previous’, accelerated methods like
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Algorithm 3: Gradient Update for Single Training Example.

1: procedure Backpropagation(BP)(r(N ))

2 forn € {N...0} do

3 b 28 p(n)

4: v (I — AN ATAL)DC

5: P01 )y 4 (1 W*”) (n+1)

6 QW « o Zk 1(8AkHYk 3A8,CHCAks(n71))
b

7: end for

8: return 0 Q™)

bl

end procedure

Algorithm 1 linearly combine the previous two iteration’s esti-
mates to improve convergence. As a consequence, backpropa-
gating error from layer-to-layer requires contributions from two
successive layers. Specifically, we compute the error at all N
layers with the recursive relation,

95 9z aa(")
~(n—-2) Hg(n)

OF

06" ? 03

A(n

" 99

Ds(=1) Pg(n=1) aqs(” Ry

~(n—-2) n—1) (n—1 ~(n—-1)"
where each partial gradient constitutes a single step in
Algorithm 1 (fully derived in the supplement).

With the backpropagated error at each layer, we compute the
gradient of the loss function with respect to C as,

a4

N
VeF(C) =) Q™ (15)
n=0
for which,
- (n)
o i (8Ak Ve 8AkHAkS(n1)) 0 OF
K & aC 920" 550
(16)

Here, (3;[)(”) /0z™)) backpropagates the error through the prox-
imal operator and other partials with respect to C relate the
backpropagated error at each layer to the changes in C. Deriva-
tions of these partial gradients are in the supplementary mate-
rial. In Algorithm 3, we unite these two steps to form a recur-
sive algorithm which efficiently computes the analytic gradi-
ent for a single training example. Alternatively, general purpose
auto-differentiation included in learning libraries (e.g. PyTorch,
TensorFlow) can be used to perform the gradient updates.

IV. RESULTS

Our proposed method learns the coded-illumination design
for a given reconstruction and training set (Fig. 3(b)), yet up
to this point we have not detailed specific parameters of our
phase reconstruction. In our results, we set the parameters of our
reconstruction algorithm (Algorithm 1) to have a fixed CPU time
by fixing the number of iterations at N = 40 and the step size

(a) Traditional gDPC

(b) Physics-based Learned Design

Fig.3. Coded-illumination designs and their corresponding phase weak object
transfer functions (WOTFs) for: (a) Traditional gDPC and (b) learned designs for
the case where 4, 3, or 2 measurements are allowed for each phase reconstruction.
The illumination source patterns are in the upper left corners, with gray semi-
circles denoting where the LEDs are constrained to be “off.”

to a = 0.2 (see supplement for parameter analysis). In addition,
the regularization term, P(¢), has been defined generally (e.g.
{4 penalty, total variation (TV) penalty [48], BM3D [49]). Here,
we choose to enforce TV-based sparsity:

®) = TZ 1Digbl|1,

where 7 = 1le™3 is set to trade off the TV cost with the data
consistency cost and D; is the first-order difference operator
along the i'" image dimension. We efficiently implement the
proximal operator of Eq. 17 in closed form via parallel proximal
method [43], [50], [51] (details in supplement).

a7

A. Learning

To train our coded-illumination design parameters using
Algorithm 2, we generate a dataset of 100 examples (90 for
training, 10 for testing). Each example contains ground truth
phase from a small region (95 x 95 pixels) of a larger im-
age and 69 simulated single LED measurements (using Eq. 1).
The LEDs are uniformly spaced within a circle such that each
single-LED intensity measurement is a brightfield measure-
ment. The physical system parameters used to generate the
phase WOTFs and simulate the training data measurements are
A =0.532 um, pixel pitch = 6.5 pm, magnification = 20X,
and N Ay = 0.25. To train, we use {5 cost between recon-
structed phase and ground truth phase as our loss function and
approximate the full gradient of Eq. 8 with a batch gradient from
random batches of 10% of the training pairs at each iteration.
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We use a learning rate of v = 1e~2 (training and testing conver-
gence curves are provided in the supplement). The training is
performed on a multi-core CPU (Dual-socket Intel Xeon ES Pro-
cessor @ 2.1 GHz with 64 cores and 504 GB of RAM) and batch
updates are computed in parallel with each training example on
a single core. Each batch update takes ~6 seconds. 200 updates
are performed, resulting in a total training time of 20 minutes.

B. Analysis

Traditional gDPC uses 4 measurements to adequately cover
frequency space. Our learned designs are more efficient and may
require fewer measurements; hence, we show learned designs
for the cases of 4, 3 and 2 measurements. The designs and their
corresponding phase WOTFs are shown in Fig. 3.

Comparing our learned designs with previous work, Fig. 4
shows the phase reconstruction for a single simulated test
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Phase reconstruction results using simulated measurements with different coded-illumination designs. We compare results from: traditional DPC (half-

circles), annular illumination, condition number optimization, A-optimal design, and our proposed physics-based learned designs. We show results for the cases of
(a) four, (b) three, and (c) two measurements allowed for each phase reconstruction. Absolute error maps are shown below each reconstruction.

example using 4, 3 and 2 measurements. The ground truth phase
is compared with the phase reconstructed using traditional gDPC
designs [21], annular illumination designs [21], condition num-
ber optimized designs [52], A-optimal designs [53], and our
physics-based learned designs. Table I reports the peak SNR
(PSNR) statistics (mean and standard deviation) for the phase
reconstructions from R evaluated on our set of testing examples.
Our learned designs give significant improvement over other de-
signs, recovering both the high and low frequencies more accu-
rately. The reduction in performance for learned design with 2
measurements (as compared to 3 and 4 measurements) is due to
reduced sensitivity to low frequencies.

Comparing varying depth networks, in Table II we report the
PSNR statistics for the phase reconstructions from R evaluated
on the set of testing examples using learned designs for networks
with 10, 40, and 100 unrolled iterations with fixed step size, o« =
0.2, and regularization parameter, 7 = 1e~3.Iftoo few iterations
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TABLE I

PSNR RESULTS: AVERAGE AND STANDARD DEVIATION PSNR (DB) OF PHASE RECONSTRUCTIONS FROM THE SIMULATED TESTING EXAMPLES USING DIFFERENT

ILLUMINATION SCHEMES AND DIFFERENT NUMBERS OF MEASUREMENTS FACTOR FORMAT: MEAN + STD

# Meas. Random Traditional Annular Cond. Number A-optimal Physics-based
illumination qDPC illumination optimization design learned design
4 12.30 + 2.12 | 15.67 + 2.19 | 20.40 + 2.09 20.37 + 2.41 17.94 + 2.54 28.46 + 2.50
3 1233 £ 2.12 | 1528 + 2.18 | 20.44 + 2.26 19.33 4+ 2.03 18.05 £+ 2.59 28.04 + 2.59
2 1225 £2.12 | 14.87 +2.23 | 20.21 £ 2.24 17.19 + 2.28 18.08 £+ 2.64 23.73 + 2.18
4 measurements 3 measurements 2 measurements
69 Measurements b Phase Error Phase Error Phase Error
(a) (b)
(9] © 1.0
Q c. B
s .9&_) R
g 5 |2
25 ke -
E= = | 0.0
s 3
E= ©
~ O o
8= 25
e =0
35 ®© O
b g0
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«» 05 0.5 0.5
5
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g
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20 40,60 80 20 40,60 80
—FP verification - - - ‘Traditional —=Learned
Fig. 5. USAF phase target reconstructions: Experimental comparison between phase results with (a) Fourier Ptychography (FP) using 69 images, (b) traditional

qDPC, and (c) learned designs, for the case of 4, 3, and 2 measurements. Error maps show the difference from the FP reconstruction. (d) Cross-sections show that
phase from our learned designs (long-dashed red) is closer to that of FP (solid blue) than traditional gDPC (short-dashed green).

TABLE 11
PSNR RESULTS: AVERAGE AND STANDARD DEVIATION PSNR (DB) OF PHASE
RECONSTRUCTIONS FROM THE SIMULATED TESTING EXAMPLES USING
LEARNED DESIGN FOR DIFFERENT NUMBERS OF UNROLLED ITERATIONS
FACTOR FORMAT: MEAN + STD

# of
unrolled iterations 10 40 100
Mean + Std. (dB) 22.53 £2.29 | 2848 £ 250 | 27.39 + 1.92

are unrolled, the network cannot fully reconstruct the phase,
resulting in lower mean PSNR. As more iterations are unrolled,
the regularization biases the solution and slightly reduces the
mean PSNR.

C. Experimental Validation

To demonstrate that our learned designs generalize well in
the experimental setting, we implement our method on an
LED array microscope. A commercial Nikon TE300 micro-
scope is equipped with a custom quasi-Dome [16] illumina-
tion system (581 programmable RGB LEDs: Lp = 625 nm,
Ac = 532nm, Ap = 450 nm) and a PCO.edge 5.5 monochrome
camera (2560 x 2160, 6.5 pm pixel pitch, 16 bit). We image two
samples: a USAF phase target (Benchmark Technologies) and
fixed 3T3 mouse fibroblast cells (prepared as detailed in the
supplement). In order to validate our method, we compare re-
sults against phase experimentally estimated via pupil-corrected
Fourier Ptychography (FP) [13], [44], [54] with equivalent

resolution. FP is expected to have good accuracy, since it
uses significantly more measurements (69 single-LED measure-
ments) and a non-linear reconstruction process.

Using the USAF target, we compare phase reconstructions
from FP with traditional gDPC and our learned design measure-
ments (Fig. 5). Traditional qDPC reconstructions consistently
under-estimate the phase values. However, phase reconstruc-
tions using our learned design measurements are similar to phase
estimated with FP. As the number of measurements is reduced,
the performance quality of the reconstruction using traditional
qDPC degrades, while the reconstruction using the learned de-
sign remains accurate.

To demonstrate our method with live biological samples, we
repeated the experiments with 3T3 mouse fibroblast cells. Fig. 6
shows that phase reconstructions from traditional gDPC again
consistently under-estimate phase values, while phase recon-
structions using learned design measurements match the phase
estimated with FP well.

V. DISCUSSION

Our proposed experimental design method efficiently learns
the coded-illumination designs by incorporating both the
system physics and the non-linear nature of iterative phase recov-
ery. Learned designs with only 2 measurements can efficiently
reconstruct phase with quality similar to Fourier Ptychography
(69 measurements) and better than qDPC (4 measurements),
giving an improvement in temporal resolution by a factor of
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3T3 mouse fibroblast cells reconstructions: experimental comparison between phase results with (a) Fourier Ptychography (FP) using 69 measurements,

(b) traditional qDPC, and (c) learned designs, for the case of 4, 3, and 2 measurements. Error maps show the difference from the FP reconstruction. (d) Cross-sections
show that phase from our learned designs (long-dashed red) is closer to that of FP (solid blue) than traditional qDPC (short-dashed green).

2x over traditional gDPC and far fewer than FP. Additionally,
we demonstrate (Table I) that the performance of our designs
on a set of testing examples is superior to previously-proposed
coded-illumination designs. Visually, our learned design re-
constructions closely resemble the ground truth phase, with
both low-frequency and high-frequency information accurately
recovered.

By parameterizing our learning problem with only a few
weights per measurement, our method can efficiently learn an
experimental design with a small simulated dataset. This en-
ables fast training and reduces computing requirements signif-
icantly. Obtaining large experimental datasets for training may
be difficult in microscopy, so it is important that our method
can be trained on simulated data only. Experimental results in
Section IV-C show similar quality to simulated results, with both
using the designs learned from simulated data only.

Phase recovery with the learned designs’ measurements are
trained with a given number of reconstruction iterations (e.g.
determined by a CPU budget). This makes our method partic-
ularly well-suited for real-time processing. qDPC can also be
implemented in real-time, but limiting the compute time for the
inverse problem (by restricting the number of iterations) limits
convergence and causes low-frequency artifacts. Our learned de-
signs incorporate the number of iterations (and hence processing
time) into the design process, producing high-quality phase re-
constructions within a reasonable compute time. While one can
reduce the number of iterations, if too few iterations are unrolled
the accuracy of the model inversion decreases (Table II).

Finally, rather than use a fixed step size and regularization
parameter (as outlined in Section IV), these parameters can be
jointly learned with the illumination patterns to optimize the
whole system. For given noise statistics the regularization pa-
rameter could be learned; however, it would perform sub op-
timally for different noise statistics and would require retrain-
ing. Future systems should learn regularization parameters that
can be adapted post training to account for variable noise levels
similar to in [55].

VI. OUTLOOK

Our method is general to the problem of experimental design.
Similar to QPI, many fields (e.g. Magnetic resonance imaging
(MRI), fluorescence microscopy) use physics-based non-linear
iterative reconstruction techniques to achieve state-of-the-art
performance. With the correct model parameterization and
physically-relevant constraints, our method could be applied
to learn optimal design for these applications (e.g. undersam-
pling patterns for compressed sensing MRI [56], PSFs for
fluorescence microscopy [57]).

Requirements for applying our method are simple: the recon-
struction algorithm’s updates must be differentiable (e.g. gra-
dient update and proximal update) so that analytic gradients of
the learning loss can be computed with respect to the design
parameters. Of practical importance, the proximal operator of
the regularizer should be chosen so that it has a closed form.
While this is not a strict requirement, if the operator itself re-
quires an additional iterative optimization, error will have to be
backpropagated through an excessive number of iterations. Here,
we choose to penalize anisotropic TV, whose proximal opera-
tor can be approximated in closed form [51]. Further, including
an acceleration update improves the convergence of gradient-
based reconstructions. As a result, the unrolled network can
be constructed using fewer layers than its unaccelerated coun-
terpart. This will reduce both computation time and training
requirements.

VII. CONCLUSION

We have presented a general framework for incorporating the
non-linearities of regularized reconstruction and known sys-
tem physics to learn optimal experimental design. Here, we
have applied this method to learn coded-illumination source de-
signs for quantitative phase recovery. Our coded-illumination
designs can improve the temporal resolution of the acquisition
and enable real-time processing, while maintaining high accu-
racy. We demonstrated here that our learned designs achieve
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high-quality reconstructions experimentally without the need for
retraining.
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