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Physics-Based Modeling, Analysis and Animation

Abstract

The idea of using physics-based models has received considerable interest in computer graphics and
computer vision research the last ten years. The interest arises from the fact that simple geometric
primitives cannot accurately represent natural objects. In computer graphics physics-based models are
used to generate and visualize constrained shapes, motions of rigid and nonrigid objects and object
interactions with the environment for the purposes of animation. On the other hand, in computer vision,
the method applies to complex 3-D shape representation, shape reconstruction and motion estimation. In
this paper we review two models that have been used in computer graphics and two models that apply to
both areas. In the area of computer graphics, Miller [48] uses a mass-spring model to animate three
forms of locomotion of snakes and worms. To overcome the problem of the multitude of degrees of
freedom associated with the mass-spring lattices, Witkin and Welch [87] present a geometric method to
model global deformations. To achieve the same result Pentland and Horowitz in [54] delineate the object
motion into rigid and nonrigid deformation modes. To overcome problems of these two last approaches,
Metaxas and Terzopoulos in [45] successfully combine local deformations with global ones. Modeling
based on physical principles is a potent technique for computer graphics and computer vision. It is a rich
and fruitful area for research in terms of both theory and applications. It is important, though, to develop
concepts, methodologies, and techniques which will be widely applicable to many types of applications.
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Physics-Based
Modeling, Analysis and Animation

loannis A. Kakadiaris

Abstract

The idea of using physics-based models has received considerable interest in computer
graphics and computer vision research the last ten years. The interest arises from the fact
that simple geometric primitives cannot accurately represent natural objects. In computer
graphics physics-based models are used to generate and visualize constrained shapes, mo-
tions of rigid and nonrigid objects and object interactions with the environment for the pur-
poses of animation. On the other hand, in computer vision, the method applies to complex
3-D shape representation, shape recorn- struction and motion estimation.

In this paper we review two models that have been used in computer graphics and two
models that apply to both areas. In the area of cornputer graphics, Mill- er [48] uses a mass-
spring model to animate three forms of locomo- tion of snakes and worms. To overcome
the problem of the multi- tude of degrees of freedom associated with the mass-spring lat-
tices, Witkin and Welch [87] present a geometric method to model global deformations.
To achieve the same result Pentland and Horowitz in [54] delineate the object motion into
rigid and nonri- gid deformation modes. To overcome problems of these two last approaches,
Metaxas and Terzopoulos in [45] successfully combine local deformations with global ones.

Modeling based on physical principles is a potent technique for computer graphics and
computer vision. It is a rich and fruitful area for research in terms of both theory and
applications. It is important, though, to develop concepts, methodologies, and techniques
which will be widely applicable to many types of applications.
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1 Introduction

Physics-based modeling is an exciting paradigm which made its debut in computer graphics
less than ten years ago. Existing geometric modeling techniques are not able to model
the shape of natural shapes, like clouds and waves, and are not successful in generating
aesthetically pleasing animations of their motion. The ultimate challenge for geometric
methods is the animation of human movement. The human body is formed from a wide
variety of complex shapes and performs an amazing number of complex motions as the
result of the articulated skeleton and skin deformations.

Machine vision researchers also have recognized the importance of developing algo-
rithms based on increasingly sophisticated physical models. Previous attempts at shape
representation have met only with partial success in satisfying the often conflicting require-
ments of shape reconstruction and recognition. In addition the results from the previous
studies of rigid motion cannot be extended to the analysis of nonrigid motion. We need new
models that can accommodate deformation, non-convexity, non-planarity, inexact symmetry
and local irregularities.

The new paradigm of physics-based modeling has become of special imnportance due to
the advent of non-destructive sensing equipment (e.g LRF, C'T; MRI and PET) that gen-
erates numerical sampling of real three-dimensional ohjects. This ability has been proven
essential in numerous fields. It allows for the inspection of mechanical parts without dam-
aging the product and the examination of a patient’s organs without invasive surgery. Com-
puter systems used by radiologists and physicians can incorporate model fitting methods to
segment, analyze and visualize 3-D medical images. An example of such an application is
the analysis of the nonrigid motion and the estimation of the motion parameters involved
in the deformation of the heart, for the purpose of determining the fitness of an athlete. In
applications such as teleconferencing, model-based image compression significantly reduces
the size of information bandwidth when compared to the traditional statistical approaches.
The wide range of applications using physics-based modeling that have heen proposed and
explored include range scanning, vehicle guidance, design automation and manufacturing
automation, surveillance and remote sensing. Currently, research is also heing conducted
in the following areas: modeling and analysis of the motion of the heart. human face/head
motion analysis and synthesis for model-based image compression, and evolution of coherent
structures in fluid motions.

Several research questions arise. What computational methods allow us to represent
objects which are more complex and which require greater representational accuracy than
the ones we can provide today? What are the models suitable for modeling the motion of
an object and what are the relevant mathematics? To what extent will the physics-based

paradigm and solutions created for computer graphics and cowmputer vision be useful for
modeling efforts in other fields?

The principles and techniques reviewed in this paper represent efforts towards achieving
the preceding research goals and questions. The goal of the paper is to present some of the
physics-based methods applied in computer graphics and computer vision and evaluate their
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potential. Emphasis is placed on describing a strategy for designing and managing the com-
plexity of physics-based models in order to increase understanding, generality, reusability
and communication of the models.

The paper is organized as follows: In section 2, I expatiate on the term physics-based
modeling and define its meaning on computer graphics and computer vision. In the area of
computer vision, the term is used in two different contexts. I distinguish between the case
in which exact physical models are taken into account to link the physics of image formation
to the perceived image, and the case in which the principles of physics are used to drive the
processes of both analysis and synthesis of an object’s shape and motion. The problems of
representing nonrigid articulated objects and animating their interaction with the rest of
the world is discussed in section 3. Section 4 refers to the representation and reconstruction
from noisy image data of complex nonrigid shapes and the estimation of their motion
parameters. | review four papers from the areas of computer graphics and/or computer
vision in section 5. These papers can be broadly classified into two categories. Miller
and Witkin et al. present techniques applicable only to computer graphics, whereas the
techniques proposed by Pentland et al. and by Metaxas et al. find applications in computer
vision as well. Section 6 discusses the implications of using a mass-spring model versus a
continuous medium to model a nonrigid object. I conclude in section 7 by summarizing the
presented papers and my critique of them, and by exploring possible future applications of
the paradigm both in computer graphics and computer vision.

2 Physics-Based Models

Physics-based modeling is a cross-disciplinary field, including elements of applied math-
ematics, numerical analysis, computational physics, computer graphics, computer vision,
and software engineering. It has different ends than its parent fields, physics and applied
mathematics, and it is somewhat different from its sibling fields, such as computational
physics and classical computer graphics. Its long term goal is to develop methods enabling
us to specify, design, build and control computational models of heterogeneous physical
systems of objects.

The term physics-based modeling (or physically-based modeling) has become a catch-all
term for a variety of techniques that all share the approach of defining physical principles
of behavior of their models. A physics-based model is a mathematical representation of an
object (or its behavior) which incorporates physical characteristics such as forces, torques
and energies into the model, allowing numerical simulation of its behavior. In computer
graphics, common elements are classical dynamics (motion based on forces, mass, inertia,
etc.) with rigid or flexible bodies, inter-body interaction and constrained-based control.

In computer vision the prefix physics-based has been used to denote two approaches.
In the first approach, the physics of image formation is taken into consideration to link
the 3-D real world to the images which are the input to a vision system. Progress has
been made in modeling the properties of surfaces [14. 68]. illuminants [10]. and sensors



to exploit phenomena such as color {62, 29, 37], shading [31], highlights {41], polarization
[89], and inter-reflection [42] for image interpretation. The physical models have led to new
algorithms for segmenting images [6] and recovering properties of surfaces such as shape,
spectral reflectance [49], and material. The second approach uses the principles of physics
to form an abstraction of the world. The surface of the model is composed from simulated
elastic materials that deform in response to applied forces. Constraints, whether derived
from the image or specified by a human operator who builds the model, generate forces that
mold the model to the desired form. The way in which the model responds to the applied
forces depends on the desired properties of the object modelled. For example, the dynamic
evolution of the model through time can be described in the form of differential equations,
which can be solved numerically to estimate the shape and motion parameters of a moving
object.

This new paradigm aims to create abstractions and rathematical representations of
objects which move and their shape changes with time. Geometric constraint properties,
mechanical properties of objects, the parameters representing the shape of an ohject, and
the control of its motion are incorporated into the same conceptual framework.

3 Computer Graphics

As the computer graphics field matures, there is an increasing demand for complex, physics-
based models. Previous models have often been ad hoc, special purpose, obscure and/or
hard to extend. Little attention has been given to design methodologies. In addition,
researchers want to be able to:

¢ Model nonrigid objects and their interaction with the physical world.

¢ Realistically animate the motion of articulated objects with possibly deformable parts.

In this section, we review work on nonrigid object modeling and anination, prior to the
use of physics-based models, and mention some of the approaches that emerged from this
framework.

Nonrigid object modeling: The major issues involved in object modeling include the ef-
fectiveness in modeling the desired properties, the implementation complexity of the model
and its computational cost. Mathematical representations of solid objects are abundant
in the computer graphics literature. Although these representations are particularly useful
for modeling stationary, rigid objects whose shapes do not change over tiine. they are of-
ten inconvenient for modeling object motion and, moreover, the shape of natural objects.
Even when spline patches [8, 26] are used to represent free form shapes, they have been
treated as purely geometric entities deemphasizing their physical underpinnings. For exam-
ple, McPheeters in [90] proposes animating soft objects as iso-surfaces in a 3-D scalar field
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enveloping control points. Since the control-point dynamics do not accurately describe the
dynamics of the deformable materials, animations look contrived. Several researchers have
used physics-based models [56, 61) to model waves [51], turbulence [91], clouds [59], terrain
[36], cloths [81], skin {75], and deformable curves, surfaces and solid primitives [70], with
elastic or inelastic behavior {71].

Motion animation: One of the most challenging aspects in computer animation is the
control of object parameters like position, orientation and motion path. As the parame-
ters change over time, the corresponding attributes of the object change to produce the
animation. Animation techniques currently in use include [3]: keyframing, parametric in-
terpolation, kinematics, inverse kinematics, dynamic animation, constraints, simulation and
scripting systems.

A well-known method for specifying motion of a geometric object for computer ani-
mation is keyframing [18]. The keyframe technique is an extension of how traditional cell
animation is done. In cell animation, the most talented artists draw the figures at key
positions and other animators fill in the inbetween pasitions. The two-dimensional drawing
of an object’s boundary is transformed over time by interpolating points on the drawing
between specified positions of key points in a sequence of kevlrames. Whereas keyframing
may be appropriate to model motions that are not too complex or need not bear too much
resemblance to reality, it turns out that a very skillful animator is needed cven to program
reasonably realistic movements of nontrivial objects, let alone human or animal motion.

In parametric interpolation [63, 65], the user interactively specifies the values of object’s
parameters at certain instances of time. Next, using some interpolation rule, the object’s
shape and position are computed for the intermediate instances. Motion of an object along a
given path, for example, can be achieved using parametric interpolation. Since the number
of the required parameters can easily escalate to hundreds, the interaction between the
parameters may become unmanageable.

Rather than specify key positions to be interpolated, the animator can specify a starting
position and a function of time that specifies the change of the parameters. This method is
called kinematics [76] since the motion of the object is controlled by functions of position,
velocity or acceleration.

Inverse kinematics [4, 39] is used to handle the complexity of motion of humans and
animals. Inverse kinematics refers to the positioning of a joined structure by defining the
goal position for the end effector and computing the positions and orientations for the
intermediate joints of the linkage.

To relief the burden of the animator, several researcliers [82, 9, 70] advocate an al-
ternative way of describing motion, namely dynoamic enimation based on Newton’s laws.
This approach uses time-dependent forces and moments to drive the motion of the center
of gravity of the object and the motion of its components in order to produce physically
correct motion.



While physics-based modeling has improved the realism of the animated objects, there
remains much to be done with respect to controlling not only low level motion, but also
the high level interactions of complex systems. Constraints [58, 50, 86, 84], in the form
of relationships, boundary conditions, potential functions or springs, have been used to
describe the structure of complex physical systems and to specify the goals of motion.
Motion is the result of time-dependent constraint forces. These forces operate on hinge
points between the components of the object in order to keep the components assembled. For
example, the different parts of an articulated object are constrained not to separate. Force-
based constraint methods enforce the constraints by adding external forces and impulses to
physical systems (9, 73, 83]. [See Appendix A for a review of the methods used for control
of the animation.]

Given a description of a process involving object interactions or parameter relationships
that cannot pre-computed, a simulation approach is needed. The dynamic nature of the
simulation [92] allows very general simulations to be modeled and animated.

A scripting system is a programming language where arbitrary changes to program
variables can be invoked. The parameter changes are given times or temporal relationships
and then posted to the event list for a simulation-style execution.

In summary, physics-based modeling facilitates the creation of complex shapes and
realistic motions — once the sole province of highly trained modelers and animators. In
addition, it adds new levels of representation of objects; embodies physical laws which
make them responsive to one another and the simulated physical world; and synthesizes
complex motions automatically, to produce the desired animation.

4 Computer Vision

In computer vision, the need for physics-based models stems from the desire to:

e Represent complex nonrigid shapes
¢ Reconstruct them from noisy image data.

e Estimate and track the motion of nonrigid multi-part objects.

Shape representation and reconstruction: The visual processing system must recover
the complete three-dimensional description of objects in space, {rom the intensity changes
occurring on a two-dimensional image. Although humans can understand and communicate

a wide variety of shapes almost effortlessly, finding a useful and general method for machine
representation of shape has proven difficult.

First, the chosen shape must satisfy the often conflicting requirements of shape recon-
struction and shape recognition. A representation scheme should alford cnough flexibility
to describe complex curved objects, and yet provide compact object descriptions capable
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of supporting recognition. Most existing techniques are limited to rigid objects with simple
shapes; natural shapes cannot be represented accurately. There is a need for new mod-
els that can accommodate deformation, nonconvexity, nonplanarity, inexact symmetry and
local irregularities.

Several different approaches have been used to bridge the gap between raw data and
high level representations. Binford [13] introduced the generalized cylinders that represent
a volume by sweeping a 2-D closed contour along a 3-D space curve which forms the axis
of a cylinder. They are suitable for axisymmetric objects, where the axis is clear but they
are not suitable for blob-like objects with no obvious axis of symmetry. Since some amount
of asymmetry is evident in many synthetic and most natural objects, the use of generalized
cylinders may result in the loss of crucial information.

Kass, Witkin and Terzopoulos [35] have developed snakes which model the contours
of an image by minimizing the energy associated with a spline. The energy of a snake
configuration is based upon the image and its first and second derivative, the curvature of
the components in the image, and the first and second derivative of the spline. Terzopoulos
at al. [74] extended the concept of snakes into symmetry-seeking models that derive a three
dimensional shape {rom a two dimensional image by employing an axisymmetric elastic skin
spread over a flexible spline. Although the model is capable of representing natural objects
with asymmetries and fine detail, the generalized spline components of the model do not
explicitly provide a representation with few paraineters. Currently. a priori information
about the configuration and orientation of the object being modeled is required.

Solina et al. [64] have used superquadric models with global deformations as volumetric
primitives to segment dense range data from complex 3-D scenes into their constituent parts.
They define an energy or cost function whose value depends on the distance of object points
from the model’s surface and on the overall size of the model. Model recovery is formulated
as a least squares minimization of the cost function for all range points belonging to the
same part. For the case of objects with more than one part, the model can actively search
for a better fit by compressing or expanding itself. Gupta [28] has developed an integrated
framework for the recovery of structured descriptions of complex objects without a priori
domain knowledge. To recover shape descriptions he uses bi-quadric models for surface
representation and superquadric models for volumetric representation.

Solid modeling systems could use geometric models created automatically by a vision
system. The design time would be reduced, especially when designing sculptured free-form
surfaces, because such task is a very time consurming process and typically requires extensive
knowledge about the modeling primitives, for instance, spline functions. Since there is
no single representation that would be the most appropriate in all situations, Koivunen
[38] employs multiple representations, e.g., NURBS surfaces and superellipsoids, to build
procedural CAD models from range data. Procedural models can represent overall geometric
properties useful in analysis and process planning in addition to low level geometric data.

Visual reconstruction as a data fitting problem has received considerable interest in the
context of the surface reconstruction problem [15]. Surface recoustruction techniques based
on generalized splines [60] have attracted interest in the vision community for several years



[69, 15, 17, 66, 67] (see also the survey [16]). Despite the large body of work on 3-D surface
reconstruction, the ability to extract accurate, quantitative shape models has not kept up
with the ability to produce the actual images. A promising approach that can be applied
to surface reconstruction problems is the use of physics-motivated deformable models. The
dynamic model fitting approach is being pursued by several researchers [72, 53, 54], For
example, Wang [78] presents a 3D surface reconstruction technique that is based on elastic,
deformable models. The basic structure used is an imaginary elastic grid which is made of a
membranal, thin plate type material. Shape reconstruction is guided by a set of imaginary
springs, derived from the image data, that enforce consistency in the position, orientation,
and curvature measurements of the elastic grid and the desired shape. The dynamics of the
reconstruction is guided by the principle of least action.

Nonrigid motion Estimation: Motion analysis, the process of inferencing the 3-D motion
parameters of an object based on 2-D images of the object taken during two or more time
instances, has been an important research topic for several decades. Most of this work has
focused on rigid motion, that is, the motion of objects whose shape does not change over
time. The results of this work, in general, cannot be extended to the analysis of nonrigid
motion. In addition, in previous approaches, motion was conceptualized as being mostly
unstructured. What one could say is how a point or a patch is moving, which requires
three unknowns per point, and as consequence the problem becomnes under-constrained. In
that spirit, Ullman’s incremental rigidity scheme [77] finds the structure and motion of an
object that are most consistent with the given noisy data by assnming a sinall change in the
rigidity of this object between frames. It works best for rubbery objects which are almost
rigid.

Recently, there has been an increasing trend towards research in nonrigid motion anal-
ysis [79, 24, 22, 30, 34] due to its potential applications, which include: remote sensing,
range scanning, medical scanning, vehicle guidance, surveillance. design automation and
manufacturing automation. Nonrigid motion analysis has proven a rich and fruitful area
for research. Applications of the analysis of nonrigid motion include the tracking of cloud
movement for weather studies [1], tracking cell mobility [43] and quantifying the motion of
the heart [19, 23].

Analysis of the restricted motions of articulated objects has heen done by nurerous
researchers [58, 80, 2, 12]. For example, Webb and Aggarwal [30] studied the case in which
the rotation axis can be assumed to be fixed in direction throughout the observed sequence.
Chen and Penna in {21, 20] carried out a more general investigation of elastic motion and
proposed several approaches. However, motion parameters can be obtained. only under
restricted assumptions such as isometry - an isometric motion preserves lengths of curves
and angles between intersecting curves. Goldgof and Huang in {27] used 3-D curvature to
analyze nonrigid motion. Specifically, they used the mean and the Gaussian curvature to
segment out rigid parts of an articulated object, and to distinguish among rigid, isometric,
homothetic, conformal and general nonrigid motions. In another deformable matching
technique, Bajcsy and Kovaci¢ [5] used a multiresolution approach to elastically deform a
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known brain atlas to match the image of a scanned brain. This approach decreases the
resolution of the data set, then deforms the brain atlas so that the outer edge and ventricles
match the data. The resolution is then increased and the deformation process is repeated.
The drawback in using an atlas to fit an object is that a sufficiently precise atlas is required
for every object to be modeled.

Jasinchi and Yuille in [33] study the problem of recovering the structure from the motion
of figures that are permitted to perform a controlled (motion that preserves the Gaussian
curvature) nonrigid motion. They use Regge calculus to approximate a general surface by a
net of triangles. The nonrigid flexing motion that they examine corresponds to the triangles
remaining rigid and the bending occurring only at the joints between the triangles. The
depth information of the vertices of the triangles can be obtained using a modified version
of the incremental rigidity scheme. In cases in which the motion of the figure displays
fundamentally different views at each frame presentation. the algorithin works well, not
only for strictly rigid motion but also for a limited amount of bending deformation. The
results obtained in the case of two triangles performing rigid global rotation followed by a
local bending deformation (along the common edge of the faces) shows that the algorithm
performs well when the axis of global rotation is close to the parallel position with respect
to the image plane, and when the angle of rotation lies in the range between 30 and 60
degrees. The bending angle also has to be small.

5 Critical review

In the following, I elaborate on the physics-hased modeling paradigin by reviewing four rel-
evant papers. I have structured my review of the physical models to have {our sections: The
conceptual model, the mathematical model, the addressed problems and the implementation.
These sections can be thought as answers to the following questions:

1. What is the model trying to do? The conceptual model is a description of
the properties, features and characteristics of the entity being modeled. This abstract
description rarely captures all the aspects of the entity; instead it focuses on those
aspects that are relevant to one’s purpose in creating the model and excludes those
that are irrelevant. For example, it may contain information such as mass or mo-
mentum that enter into the mathematical description of motion. or surface color and
specularity that are useful for the rendering in the case of computer graphics.

2. What are the underlying equations? The mathematical model is a collection of
mathematical equations that describe the behavior of the model. These mathematical
equations state the relationships between the entities in the model and are complete
without the definition of the conceptual model; they are context {ree.

3. What are the knowns and unknowns? The third step of a physics-based
modeling, once we have defined the conceptual and the mathematical model, is the
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collection of the mathematical problems, which are the statements of the concep-
tual tasks pursued. In other words, in the addressed problems section we examine
which of the terms of the mathematical model have known values and which terms
are unknown. In addition, we determine the order in which the equations from the
mathematical model come into play.

4. What are the solution techniques? Sometimes the mathematical problems
may be solved analytically, but, in the case of physics-based models, the problems
are solved numerically. The implementation section contains details such as which
numerical solvers are used for the specific problem, and which numerical parameter
settings produce acceptable results.

For the rest of the paper, | will use this division to understand, analyze, and present
the reviewed techniques. Additionally, posing and answering these questions during the
modeling and development phase can help us build models that will be robust, reliable and
extensible.

5.1 The Motion Dynamics of Snakes and Worms

Miller in [48] addresses the question of modeling biological forms for the purposes of ani-
mation. Animating three specific modes of locomotion of legless creatures, such as snakes
and worms, is attained by using mass-spring models.

Conceptual model Animals can be classified into two categories based on their structure.
Animals that have rigid skeletons and parts connected together by joints and animals such
as worms and snakes that can be thought as a tube which can be beud and stretched. The
complex topology of the skeleton of animals with arms and legs requires the consideration
of the dynamics of hierarchical rigid structures. The authors argue that the kinematic
and dynamic models that have been presented in the literature for the modeling of legless
figures [32], although successful at animating the skeletal structure, have not addressed
problems concerning the skin and muscles. Modeling the skin and the muscles is not the
only challenge: worms and snakes change shape during the locomotion. They move on the
ground in a way that depends on their grip to it. Also, they deform elastically when they
come into contact with other creatures or objects in their environment.

The author is not trying to model accurately snakes and worms. but rather to contrive
a dynamic model to meet his goal for realistic animation of locomotion. Worms are modeled
as tubes formed from elastically deformable materials. Although snakes do have a skeleton,
their shape was approximated as a tube as well. Each segment of the creature is modeled as
a cube with its mass m distributed at the vertex points having springs of length L along each
edge and across the diagonals of each face. The edge and diagonal springs together control
the Young’s modulus and the diagonal springs affect the shear and twisting moduli. To make
the model realistic (since in reality the muscles of worms bulge out during contraction) the
circumferential spring lengths are increased as a function of the axial compression. To keep
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the total volume constant, the springs around the circumference of the worm are scaled
using the scale factor 1/L.

To achieve locomotion, the author incorporates to the model forces, that act on the
environment in a direction opposite to the motion. He draws the analogy from walking
systems that use isotropic friction to propel themselves forward hy alternating pressure
from one foot to the other. However, since snakes and worms are constantly in touch with
the ground, they utilize different mechanisms. The interaction forces can be categorized
into macroscopic friction and microscopic friction. Macroscopic friction occurs when an
object such as a snake interacts with large objects, pushing against them by reconfiguring
its body shape. Microscopic friction occurs when the surface micro structure of the object
interacts with the small scale features of the surface.

y=ys

— /

Directlion of Movement Bl
Figure 1: (a) A two mass, one spring worm. (b) Point-planc constraint intersection.

Scientists have observed three basic patterns of locomotion in snakes and worms. In
horizantal undulatory progression the snake moves forward by throwing out lateral undula-
tions of the body and pushing them against any irregularity in the surface. On surfaces with
no macroscopic features to push on, snakes move forward by scuting forward and backward
over their ribs. This movement where the snake moves so that every part of its body follows
approximately a straight-line path is called rectilincar progression, When a body segment
moves forward, the scales slide relatively easily over the ground with minimal friction. On
the contrary, when the body segment slides bhackward the scales dig in and the frictional
forces are large. Fig. (1a) shows a geometric model of this form of microscopic directional
friction. When the spring expands, scale B will slide over the ground and scale A will grip.
When the spring contracts, scale B will dig and scale A will slide. A third form of snake
locomotion, used on smooth or yielding surfaces, is sidewinding. In cases of poor surface
grip, such as sand, one way to increase the frictional force is by reducing the contact area
with the surface resulting on an increase of the effective pressure. In essence, the snake
anchors a portion of the body in the substratum and lifts the rest out laterally to a new
position. When the lifted part in anchored again, the portions of the body left behind
are lifted to a new position. By constantly lifting and anchoring alternate parts the snake
moves in a lateral direction.

Mathematical model The author calculates the forces exerted at the ends ol the spring
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at each time interval. The force f along the spring direction is given by the formula:

al

=k(L-1)- D+

f=KL-0)- DS

where k is the spring constant, L is the minimum energy spring length, [ is the current

length of the spring and D is the damping constant. The total force, including the force

of gravity and forces imposed to the system externally is divided by the mass to give the

acceleration. By integrating the acceleration twice with respect to time, the new position

Xp of point p is computed as x, = m%, [ [ fidt dt, where m, is the mass of the point and f;
is the total force acting on the point.

The effects of the directional friction were studied using a geometric model. The local

forward spine unit vector s was computed from the center of the next and last segments:

_ _Fpt1 — Xp
1%p+1 = Xp-1|

The velocity v was then modified as follows: if (s-v < 0.0) v = v—s(s-v), which results
in preventing any backward sliding of the creature.

As a point mass moves from one point to another, collision with another point mass
or surface is possible. For computer animations, two specific issues are at hand, collision
detection and collision response. Detection is primarily a kinernatic problem, which involves
the relative positions of two objects, while response is a dynamic problem which involves
predicting behavior according to laws of physics. The author presents a geometric method
to detect if the motion of a point intersects with a surface described by a constraint equation
y = y, and compute the coordinates of the new position in the case of collision. For a point
mass traveling from P; to P,y (Fig. 1b) the intersection position (&, y;) will be given by

yi =ys and &; = x,401 + (ys — y]+1)%j:—;]1—;‘11—)). The new position (2/,41,9",,,) is given by:
Yim = vitra(vi—y,41) and 2’y = x4+ 7(2 — 7,41), where 1, is the coefficient of normal

reflection, and r, is the coefficient of tangent reflection, assuining an inelastic collision.

Addressed Problems Using the above mathematical model, the author seeks to ani-
mate the three natural modes of locomotion. To achieve horizontal undulatory progression
external forces are applied as waves that are send down to the mass-spring system. To
achieve the effect of bending the snake the springs on the left hand side are 180 degrees
out of phase with those on the right hand side. Rectilinear progression is attained by os-
cillating the spring length as a function of time. The function chosen is a sine wave, since
using a compression square wave results in peculiar distortions of the shape of the worm,
due to the coarse nature of the mass-spring approximation. For the sidewinding motion a
vertical sinusoidal flexing of the snake, which is 90 degrees out of phase with respect to the
horizontal undulations, is used.

Implementation Notes To compute the position x and the velocity v of each point-mass
the Euler integration method was employed:
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x(t+) = x(O) 4 v 51 4 %a(t) 612 and vt — (1) 4 40 gy where
a(®) is the acceleration of a point at time ¢. The author chose the Euler integration, although
it is slower to converge than higher order methods such as the Runge-Kutta [10]. The reason
is that the higher order methods are based on the assumption that the forces vary smoothly
as a function of time, which does not hold in the present model which has similar behavior
as if collision detection was implemented as impulse based forces - infinite forces applied
instantaneously.

Comments The use of a mass-spring model, introduces excessive implementation de-
tail at the conceptual level and results to discretization artifacts hardwired to the model.
Specifically, the disadvantages are the following;:

e Changing the solution parameters requires modifying the higher level model.

e The interaction with other objects is restricted to occur at the grid points of the
model. In collision detection for example, tests must be performed in order for small
objects not to penetrate through the empty space between the rmasses.

o The user needs to select initially the number of point-masses suitable for the simula-
tion.

The primary source of complexity at the given model is the number of the point-masses.
Since we are only considering one snake, the conceptual model is simple. The mathematical
model, on the other hand, is presented collections of equations that describe the individual
components of the model but there is no mathematical expression for the model as a whole.
In that respect the presentation of the mathematical model is not complete. There is no
indication of the amount of mass assigned to each segment neither are the dimensions of
the springs specified, nor the coordinate system is presented. In additiou, the choice of the
model parameters are arbitrary and based on trial and error.

The geometric model for collision detection of the snake with a surface has the following
advantages:

o It is easy to compute.

o It is done in the static coordinate frame of the constraint equation that describes the
surface so that we can into account the movement of the surface.

¢ The constraint is always met, and therefore the points are guaranteed not to penetrate
the surface.

Nevertheless, in case of surfaces with sharp discountinuities, extensive collision detection
tests have to be performed, which increase the computational load of the algorithm.

One possible extension would be to consider environmental obstacles also to use a steer-
to-avoid algorithm. Reynolds in [57] presents a detailed steer-to-avoid algorithm based on
a perception model of simulated vision.
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After a collision is detected the issue of collision response comes into play. In the
current scheme there is no efficient method for response that would account for the stress
distributions due to deformations across the surface. Moreover, the current model permits
the snakes to inter-penetrate themselves when they coil up.

A more realistic model will involve more than one snakes or worms moving at an
environment with static and dynamic obstacles. This would require to direct the snakes
to specific actions giving the creatures goals and path planning abilities. Having different
goals though, implies being able to mingle various behavior modes into a single model,
whose overall behavior will change as a function of time.

5.2 Fast Animation and Control of Nonrigid Structures

Systems that use mass-spring lattices possess many local degrees of [reedoin, and they tend
to lead to stiff equations which are expensive to solve. To overcome these problems, Witkin
and Welch present in [87] a fast method for approximating the shape of objects composed
from nonrigid components, and for controlling their motion during simulation. The goals
of the model include the ability to:

¢ Represent nonrigid objects.

Simulate nonrigid behavior in a rapid way.

e Produce animation by directly specifying the goals, and by dynamically calculating
the motion required to satisfy them.

Develop a vocabulary of simple goal-directed behaviors that can be chained to produce
complex actions.

Conceptual model In order to create simplified dynamic models, Witkin and Welch
model nonrigid objects using global deformations, with relatively few degrees of freedom. A
global deformation is a mathematical function that maps space to itself by assigning new,
deformed coordinates to each point of the undeformed space. They have augmented global
deformations in two ways. First, mass is embedded in the space where the deformation acts;
second, an energy term is added, inducing either elastic or volume preserving hehavior.

Mathematical model Global deformations that are linear functions of the state of the
system can be written as ¥, = R;;p,, where x is a world-space point. the components
of matrix R are the generalized coordinates, and p is a function of the coordinates of the
undeformed point, but not of R or of time. The index ¢ denotes the (21,29, 23) coordinates of
a point. Notice that while deformations of this form are linear in the state R, p may depend
nonlinearly on the undeformed coordinates, as in p(x,y, 2) = (1,0, y. 2,0y . 02,y2, 2%, y%, 2%)
which is second order.
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A particularly simple linear deformation that can describe the deformation of a body
that undergoes affine transformations - translation, rotation, stretch and shear - has p(z,y, 2)
[z,y,2,1]T and

ni1 Mz iz b4
R = | na nop no3 i

n3y N3z N3z i3

The 3 x 3 submatrix N is an ordinary 3-D transformation matrix, and T is a translation
vector. If we imagine a cloud of a fixed points, each one with mass m, all subjected to global
deformation, changing the deformation parameters will result in movement of the deformed
points. Thus, we can associate a mass displacement (change in the kinetic energy) with a
parameter change. Given the velocity of a point z; = R;;p,, the kinetic energy of the model
is
.. | R
T = §m:1:,;ati = §R1_]RikM_7k

where M is a constant symmetric matrix defined by! M;r = mp,px.

To attain elastic behavior, we define an energy function V. = K |n,; "1'/\-“6;/'/\~’2~ where K,
is a stiffness constant, whose minimumn lies at the undeformed state and the 8's are Kronecker
deltas, defined by é&;, = 1 if ¢ = 5 and zero otherwise. The validity of the statement can
be verified by the following observations. The squared magnitude ol a transforined vector
T; is n;n;T, T, which is equal to the squared magnitude of x for all & exactly when
N is orthogonal. An affine deformable body is in its undeformed state exactly when the
submatrix N is an orthogonal matrix, that is n,;nir = ;.

In order to attain volume-preserving behavior, in which when a body is stretched along
one dimension, should squash along the others, the authors define the energy function
V. = K|det(N) — 1}2, where K. is a stiffness constant. This is true because an affine
transformation is volume-preserving exactly when det(IN) = 1. The forces associated with
these energy terms are given by the gradients of the defined functions.

The authors omit the potential energy V, noting that the force due to V is —(%—‘;),
which may be subsumed in the generalized force @, therefore the Lagrangian £ = 7. The
generalized coordinates that describe the geometric degrees of {reedom of the system are
the components of the matrix R. To obtain the Lagrange equations of motion we observe
that

ar 1 . .

8R - §(ézréstik + 611'6ksRu )Aiﬂ\
Using the identity a;;0;; = a, and also the symmetry of M, we obtain -ﬁ— = R,A/Wks from
which it follows that % (8?2/: ) = H,A M., and also that 3‘ = 0. Combining the above, the

equations that govern the change in the value of the genemlued coordinates as a result of
the application of the external forces are: R,JA/[7A Qi = 0 and since M is constant its

'In the paper is erroneously stated as: M,x = > (mp,pr) with summation performed over all the mass
points in the body.
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inverse W may be precomputed giving:

Rij = QixWy; (1)

where the generalized force Q due to a force f applied at a world-space point x is Qi =

fr 2R = fr6ribiep; = fipk.

Equation (1) refers to the entire system. In a system consisting of more that one
objects, the global state vector is formed by concatenating the state vectors of each object.
In the case of objects with parts, the joints are abstracted using attachment constraints
according to the method described in [85], which is related to [9] and [55]. Given a physical
system whose state is described by the vector q, we can implicitly impose a holonomic
constraint, where we define as states consistent with the constraint the ones that satisfy
the equation c¢(q,t) = 0. If multiple constraints are to be met simultaneously then c is a
vector of constraints The basic assumption is that if the system begins in a legal state with
c(q,t) = 0, and ¢(q,t) = 0 then requiring ¢{q,t) = 0 suffices, at least in principle, to hold
the constraints in force. The differential equations governing motion of the constrained
system are:

G, = Wir(Fr + Q) (2)

where Q is the known applied force and F is the constrained force. Because q depends on
the force, the problem is to calculate a constrained force F' that projects the acceleration into
the legal subspace. The authors’ method is similar to the constraint stabilization method.

First, they express the vector ¢ as a function of q as

de; dé, &%,
where g—% = -%g;—krjk. The constraint force should not add or remove energy [rom the

system therefore according to the principle of the virtual work 7, = /\,g—?}-, where A's are

known as Lagrange multipliers. Substituting (2) in (3) requiring ¢ = 0, we obtain

de; de, de; Jé; . d%e,
N —Wip—1 A, = — WO — —_— 4
[8% Jkaqj} dq, wQe dg, " * o (4)

The constraints are enforced by solving (4) for A and then using A to compute F. In
practice, ¥ plus an additional feedback term, are added to the applied forces to compute
dc,

the legal accelerations. The feedback term (wc, + ﬁéi)W’ where o and 3 are constants,
]

inhibits drift and brings the system initially to a legal state.

To handle collisions the authors allow the prescribed velocity of a point to undergo a
discontinuous change, using impulses 7. Impulse is the product of the average value of a
force with the time during which it acts and equal to the change in mowmentum produced
by the force in this time interval. For discontinuities at the velocity, due to very large
forces that act for a very shart period of time, researchers treat the duration of the event
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as zero and describe the behavior of the system in terms of the integral over the short
time interval. The equation §; = W;;Q,; becomes Ag; = W;;Z; where Aq is the change in
velocity. Assuming that impulse forces are a linear combination of the constraint gradients
the discontinuity at the velocity appears in the direct derivative of the constraint with
respect to time.

} Ay :A%

dc; de,
i [_—W at

[ der
dq; 7" dq;

Once A is obtained, the constrained impulse is 7, = /\i%.

Addressed Problems To achieve their first goal, being able to represent complex nonrigid
objects, the authors used point-to-point constraints. The joint between the parts, around
which the bodies may move freely, are abstracted as a point-to-point constraint which
requires that two points (one from each object) to coincide in space.

Their mathematical model provides the machinery required to animate a collection of
objects, by moving arbitrary points of the object as a function of time. The user can select
points on arbitrary frames and specify the trajectories that they are allowed to follow. Given
the position and the velocity at the beginning of the frame, the model is able to accurately
and stably follow any piecewise twice differentiable trajectory, specified by a point-to-path
constraint of the form R;;p, — w;(t) = 0 (w(?) is a twice-differentiable [unction of time), at
interactive speed. As the control points move along the specified path. the rest of the body
points move with passive dynamics. The real advantage of this method is that fewer degrees
of control than degrees of freedom are employed since the rest of the inotion is determined
by the laws of physics.

One important aspect of their technique for controlling the animation is the ability to
freely turn constraints on and off during the animation. Turning a constraint off is easy;
it involves eliminating the relevant blocks from the constraint matrix g;; W]kg—;i thus elim-
inating the restoring forces. On the contrary, turning on a constraint, during an ongoing
motion, raises several technical issues. The reason being that, when the constraint is ini-
tiated the position and the velocity of the control point, which up to that point were in
accordance with the specified splined trajectory, may not initially fulfill the constraint. To
handle this problem the authors propose the method of constraint preroll. To bring the
point smoothly from the uncontrolled state to the required initial state, they compute a
spline segment that joins the the two states and is activated shortly before the nominal
activation of the constraint.

The authors have placed emphasis on the development of a vocabulary of goal-directed
behaviors that can be combined to attain complex behavior. One example of atomic be-
havior is to move a body point to a specified position and velocity, over a determined time
interval. Specifying point trajectories has the disadvantage that it cannot account for the
dynamic changes in the environment. For example, in the case of the computation of the
motion required for a hand to grasp an object, if the object’s position is changed “the
hand will happily grab the empty space where the object used to be” [p. 249]. To solve
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this problem they directly specify the goals of the actions, and dynamically calculate the
motion required to satisfy them. In the case of the atomic behavior of chasing a target, if
the target is stationary, a spline segment is constructed where the chaser’s initial position
and velacity are the initial conditions, and the velocity and position at the target are the
final conditions. If the target is moving, its position and velocity at the time of contact are
calculated based on the current values and a spline to the estimated point is constructed
and updated only when things change.

An additional feature of the proposed method for the control of an animation refers
to the ability to provide a graceful way to start and stop animation using impulses. The
authors not only use an impulse to install the initial control point velocities and start an
animation but also to bring the control points to a well-behaved halt.

Comments The use of global deformations offers the advantage of reducing the dimension-
ality of the equations and eliminating the high-frequency components that lead to stiffness.
For deformations that are linear functions of state, the matrix M is constant which in a
true dynamic system is not constant. Pre-inverting this matrix yields considerable benefits
of performance and allows reasonably complex systems to be manipulated at interactive
speed.

The constrained matrix remains constant except when constraints are added or deleted,
therefore interactive speed is attained. If X is a point on a linearly delormable body, then
aaﬁr‘s = 3(3RR+]12;) = ;rps, which is a constant. Since each constraint is a linear function of
one or more points, the derivative of any constraint with respect to a point x is constant
as well. Their technique for constraint satisfaction offers the additional advantage, over the
constraint stabilization technique, that it can handle contradictory constraints with grace.
If there are any contradictory constraint forces in the system. they cancel out through the
Lagrange multiplier method. The relative strengths of the feedback term determine the
relative importance of each constraint and therefore the final state of the system. However,
since these feedback terms interact, it is difficult to control the exact motion towards the
constraints.

Being able to freely turn control points off and on during the aniination is important,
since we need not control the movement of all control points at all times. If, for example,
they wanted to animate walking it would not be necessary to control heel, toe and knees,
all at the same time. The heel position must be accurately controlled before and during the
support phase, but during the swing it can just follow the toe.

One important aspect of the authors’ research is the development of a vocabulary of
goal-directed behaviors that can be combined to attain complex behavior. Specifying goals
of the actions for the animation and dynamically calculating the motion required to satisfy
them has the advantage that dynamic changes in the environment are taken into account
during the animation.

On the other hand, representing only global deformations that are linear in state, they
give up the ability to represent a number of natural objects. The individual components of
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the mathematical model are described as collections of equations, having no mathematical
description of the relationships between these collections. Therefore, the presentation of
the mathematical model is incomplete.

5.3 Recovery of Nonrigid Motion and Structure

Pentland and Horowitz [54] take advantage of the constraints that real materials impose
on the types of nonrigid motion, to allow over-constrained estimates of 3-D nonrigid motion
from optical flow data. Their method is inspired by modal analysis, a technique for analyzing
the vibrations of linear mechanical systems under periodic forcing conditions, and they
discard high frequency modes, to reduce the dimensionality and the stiffness of the models.

Conceptual model The authors use the force-and-process metaphor of modeling clay:
the shape of the an object is considered to be the result of pushing, pinching and pulling on a
lump of elastic material such as clay. For the representation, they employ parametric solid
models described as implicit functions. To stress the irnportance of global deformations
they mention the following quote from Grimson *An elastic motion, including that of a
walking man with his gestures and facial expressions, could be analyzed into a set of rigid
motions of elementary particles if one wished to do so, but it is better thought of in terms
of components like bending, flexing, stretching, skewing, expanding and bulging”[p. 730].

Mathematical model The authors’ intention being to use deformable models, they use
formulations for relating the forces on the surface and within the body to its deformations.
Finite Element Method (FEM), which is one of the numerical procedures for solving systems
of differential equations for engineering analysis, provides a very efficient formulation for
this kind of application. The primary steps of the FEM [10] are to:

Idealize the system into a form that can be analyzed - discretize.

Formulate the governing equilibrium equations of the idealized system.
e Solve these equilibrium equations.

e Interpret the results to the entire system - utilize continuum of elcients to obtain
solutions for the whole system.

The formulation of the displacement-based FEM is based on the fact that when a part of
an object is allowed to be displaced, it is possible to calculate the applied forces on it.
First, we idealize the structure as an assemblage of elements that are interconnected, and
identify the unknown displacements, which are the result of the applied forces. For the
equilibrium of the body it is required that for any compatible, small virtual displacements,
which satisfy the essential boundary conditions imposed on the body, the total virtual work
is equal to the total external virtual work. Energy equations are formulated in terms of
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the displacements of the nodes of the elements along with the forces corresponding to the
unknown node displacements. The equations governing the linear dynamic response of the
system of finite elements are?:

MU+ CU+KU=R (5)

where U is a 3n x 1 vector of the (Az, Ay, Az) displacements of the n nodal points relative
to the object’s center of mass, M, C and K are the 3n X 3n matrices describing the mass,
damping and material stiffness between each point within the body and R is a 3n x 1 vector
describing the (z,y, z) components of the forces acting on the nodes. Equation (5) is a
system of linear differential equations of second order. The solution can be obtained by
standard methods for solving differential equations. However, these methods are computa-
tionally expensive; hence a few effective techniques are required to reduce the computational
cost. Two of these techniques are discussed below.

Direct integration methods: In direct integration the equation is integrated using an
iterative technique. By direct, it is meant that prior to numerical integration, the equation
need not be transformed. These techniques are aimed at satisfving the equation only at
discrete time intervals A¢ apart, rather than at any timne. The variations in displacement,
velocities and accelerations within a time step are assuined and it is this assumption that
determines the accuracy, stability and cost efficiency of the solution. Therefore, direct
integration techniques are good for simulations with short duration.

Change of basis to generalized displacements:  To reduce the computational cost,
we can transform the original coordinate system for nodal displacements to one whose
basis vectors are the columns of a matrix P for which U = PU, where P is a square
transformation matrix and U(t) is a time-dependent vector of generalized displacements. By
substituting this transformation into equation (5) and pre-multiplying by P T, the governing
equation is transformed into the equation:

MU+ CU+ KU =R (6)

(where M = PTMP, C=P'CP, K=P'KP and R = PTRP) for the coordinate
system defined by the basis P. The new mass, stiffness and damping matrices have smaller
bandwidth than the ones of the original system. The optimal basis & to diagonalize the
system of equations, which uncouples the degrees of freedoni and provides the ability to find
closed form solutions, has as columns the eigenvectors of M~'K [10]. These eigenvectors
are called the free vibration modes. Using this transformation matrix we get

U+8"CcoU+ Q20 = oTR(Y)

where Q2 has as diagonal elements the eigenvalues of M~'K.

2In the paper the equation is erroneously stated as: MU + CU + KU = R
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Note that the eigenvector ¢;, which is called the ith mode’s shape vector, describes how
the coordinates of each nodal point (z;,v;, 2;)| change as a function of ,, the ith mode’s
amplitude:
diEl dyl le dl‘n dyn dzn T
@ d da T a4

¢ = (

Letting V = (&1, 91, 215« +» Tny Un, ;L'n)T be the 3-D velocity of each node, we then have
V = <I>"l-dtt—I = 80U, and given the 3-D motions of each node, the modal velocities can be
computed as follows: U=2&"1V.

Addressed Problems For shape estimation, which is described in [54], sensor measure-
ments are used to define virtual forces which deform an object to fit the data points. The
authors solve the equilibrium equation KU = R to obtain the displacements U. To over-
come the difficulty posed by the large dimensionality of the matrix K and to obtain a closed
form solution, this equation is converted to the modal coordinate system: ®TK®U = & R.

In the case of motion estimation, the problem is to “find the rigid and nonrigid 3-D
motions dd—ltj that best account for the observed 2-D image velocities”[p. 733]. The major
difficulty in finding a solution for this case is that there are 3n unknown degrees of freedom
in the model and at most 2n degrees of {freedom in the observations. To reduce the number
of unknowns, the authors discard the high frequency modes. Therefore the problem in the
modal coordinate system becomes to “find the set of 3-D modec vclocitics % that best
account for the observed 2-D image velocities”[p. 733]. By choosing the m {m < 2n)
lowest frequency modes, the problem can always be made over-constrained. o estimate
the nonrigid 3-D deformation at each subsequent time ¢ given noisy estiinates of 2-D optical
flow data at m image points, they first allocate each of the optic flow vectors to the nodal
point whose image projection is closer to the flow’s vector position. This produces estimates
of the projected 2-D nodal velocities V. The authors construct matrix ¢, by removing the
rows of @ that correspond to z-axis displacements, the rows that correspond to the x and y
displacement of nodes without nearby optical flow, along with the columns that correspond
to modes that cannot be observed under orthographic projection, like translation, scaling
and shearing along z-axis. Corresponding rows and coluins are removed from the matrix
U also, yielding '[:Tp. To over-constrain the problem, they also discard a sufficient number of
the low-amplitude high frequency modes. Therefore. the estimate of the object’s 3-D shape
ﬁﬁf) based on the optic flow data is: 3

TT(t) -1 t
UM =@, 'viiay

Whenever the 3-D velocities of the individual nodes are required, we can convert fJ,, back
to the original space coordinates by multiplying by ®,,.

Until now, we have considered kinematic equations where velocity at only one instant is
taken into account. For time sequences however, we need to consider the dynamic properties

3In the paper is erroneously stated as: U = <I>;,—1V(,,”At,
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of the body and data measurements. The Kalman filter [25] is a standard technique for
obtaining estimates of the state vectors of dynamic models, and for predicting the state
vectors at some later time. The authors use a linear Kalman filter to estimate position and
velocity for the finite element modal parameters. Recall that, the state transition equation
is x = Fx + w, where F is the state transition matrix and w is the driving noise that
accounts for the possible inadequacies of the state space model; the mensurement equation
is z = Hx + v, where H is the measurement matrix that describes the linear combinations
of the state variables and v is the noise associated with the measurements z. Then, the
optimal estimate X of x is given by the following equation: % = Fx + K/(z - Fx), where
K; is the Kalman gain matrix. The authors choose as state variables the modal amplitudes

U and their velocities V = U. In state space notation, the system of equations is

U| [0 1]|U Lo
AR R IR r |
where o« is a noise vector due to nodal accelerations. The observed variable will the m x 1

vector of the 2-D nodal velocities?, V, = %tiﬁp + v, where v is the observation noise. The
Kalman filter is therefore:®:

0 Tt (2228, AV, - (8,T/A0)
(92,7 'ANV, ~ (2,0/A1)

<o

where v and « are the standard deviations of the modeling and measurement noise re-
spectively. Using these equations, we can formulate the displacement prediction at time

t 4+ At.

For the case of two objects attached to each other, the authors assuine a virtual spring
between a point on each object’s surface, which exerts equal and opposite attractive forces
on the two points of attachment. Given a priori knowledge of the constraints that the
spring imposes, the authors compensate for the contribution of that constraint to the state
equations and then estimate motion as previously. The Kalman state equation (7) becomes

U 0 11[T 0] ..
o= Loo]le] s T e

where R€ is a vector describing the load exerted on each nodal point by all active constraints.

*In the paper is erroneously stated as: V, = j{)—U +v

5In all Pentland’s papers the equation is erroneously stated as:
U | U+(3)2@,7alV, - 2,/A10)
vV (%)1 2@, VALV »— @,./4510)
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Implementation Notes Using either mode superposition or direct integration procedure
the solution is obtained by numerical integration. However, as the periods of vibration, T; =
%’i =1,2,...,n are known, in the numerical integration of equations (6) an appropriate
time step can be chosen that ensures a required level of accuracy. On the other hand, if
all the n equations are integrated using the same time step, then the mode superposition
is equivalent to direct integration. The essence of the mode superposition solution is that
frequently only a small fraction of the total number of decoupled equations need to be
considered, in order to attain a good approximation. That means that only p eigenvalues
and eigenvectors need to be found. The reason for only the lowest modes being considered
lies with the fact that when monotonic convergence conditions are not satisfied, the finite
element analysis approximates the lowest frequencies, and little or no accuracy can be
expected in approximating the higher frequencies.

Comments To solve the shape recovery problem in isolation from segmentation, the au-
thors assume that the object part segmentation is given in advance. Although segmentation
and shape representation appear to be distinct problems and are treated as such in most
computer systems, Bajcsy et al [7] have presented arguments that these two problems are
related and have to be treated simultaneously. If any of the two problems is solved first,
the other one becomes easier. For example, if the image is correctly divided into parts, the
subsequent shape description of those parts becomes easier. The opposite is also true: when
the shapes of parts are known, the partitioning of the image becomes simpler.

The modal representation provides a natural multi-scale representation for three dimen-
sional object shapes in much the same manner as Fourier transform provides a multi-scale
image representation for images. Although using deformation modes is efficient for the re-
covery of smooth, symmetrically deformed objects, there are cases [or simple objecis, such
as rods, for which the error increases severely. In these cases there is not enough data
to distinguish between various modes of deformation. For example, in the case of a rod,
rigid-body rotation cannot be distinguished from lengthwise contraction. To avoid these
problems, the authors limit inter-frame motions to small rotations (less than 10 degrees) and
deformations (less than 10% of the object size). In addition. global deformation modes lack
parameters with an obvious physical meaning. Such parameters would give more intuitive
ability in understanding the parameterized shape.

While the authors present the theory for finding the modes, in fact they do not find
the real modes of an object but they assume that the object’s shape is a linear combination
of different modes of vibration of an undeformed superquadric. Pentland in [52] states that
using only the low order modes to describe object deformations is valid since the low order
modes change very slowly as a function of object’s shape. Consequently, he assumes that
the same vibration modes can be used to describe the shape of a range of different. - but
similar - undeformed shapes without incurring substantial error. Since we know that when
the shape changes, the eigenvectors and eigenvalues change, a quantitative analysis should
be provided to back the assumption above. The autliors make the additional claim that
by describing the object behavior using a truncated series of vibration/deformation modes,



5.4 Constrained Deformable Superquadrics and Nonrigid Motion 23

one can obtain the best r.m.s. error description possible for a given number of parameters.
This claim, though, is not supported.

Moreover, their modeling primitives are not fully dynamic in that the underlying su-
perquadric parameters do not respond to forces and are not fitted to data through force
interactions. The authors point out that another limitation of the method arises from the
fact that the input is the optical flow rather than feature points. The use of optical flow
requires the integration of object motion over time in order to determine the object’s cur-
rent position and shape. There is no way to connect the estimates of position and shape to
current observations.

The notation at the development of the Kalman filter in the paper is problematic with
typographical errors, which we already have pointed out, and conceptual errors. Specifically,
by assuming that the velocity is constant their system is no longer dynarmic. In addition,
they assume that the observations are linear combinations of the generalized coordinates,
which is not true. Also, the assumption that the error covariance matrix is constant limits
the ability of an estimator to recover accurate parameters {rom the data.

The use of springs to model hard point-to-point constraints is problematic since springs
are appropriate for modeling weak constraints only. The reason is that springs do not cancel
the force components violating the constraints and stiffening of springs yields ill-conditioned
equations.

5.4 Constrained Deformable Superquadrics and Nonrigid Motion

To overcome the restrictions of the linearly deformable models in [87] and quadratically
deformable ones in [53], Metaxas and Terzopoulos in [45] successfully combine local de-
formations with global deformations. The authors present a physics-based framework for
shape and motion estimation with the following specific goals:

e Recovery and representation of closed surfaces with comnplex shapes.
o Estimation of nonrigid 3D motion.
s Fast computation of the point-to-point constraints.

o Tracking of articulated objects with deformable parts.

Conceptual model The authors use as models abstract viscoelastic solids and imbue
them with mass and damping densities to make them dynamic - the positions of material
points become a time-dependent function. Using Lagrangian dynamics. the energies yield
forces and when the forces equilibrate, the model hecomes static.

Mathematical model For the case of a solid whose material coordinates are u = (u, v, w),
the position of the points on the model can be written as x(u,t) = ¢(t)+R(t)p(u,t) where
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x gives the positions of points on the model with respect to the fixed reference frame
® and ¢ is the instantaneous position of the non-inertial model-centered lrame ¢, whose
orientation relative to ® is R. The positions p of points relative to ¢ can he expressed as
p(u,t) = s(u,t) +d(u,t) where s is the reference shape and d a displacement function.

Any geometric primitive described as a differentiable parameterized function of u -
e(u; a1,ay,...) - can be used as a reference shape. To gain additional modeling power
the authors extend the reference shape to include parameterized global deformations s =
T(e(u; a1,aq,...); by,be,...), where T is a sequence of primitive deformation functions (like
tapering, bending and shearing) with parameters b,. The global deformation parameters
form the vector q, = (a1, a9,...,b1,by,...)" .

To further enhance flexibility, local free-form deformations are incorporated directly
into the geometric primitive as finite element shape functions. The authors employ the
finite element method to discretize the deformable surface models into a set of connected
element domains. By collecting the displacement vectors q,, associated with each node
at the corners of each finite element, they construct the vector q; = (....q,....)". The
displacement which describes the local deformations is d = Sqq. where S is a shape matrix
whose entries are the finite element basis functions.

The velocity of a point is x = g—flq = Lq, where q is the vector of gencralized coor-

dinates for the dynamic model and L is the Jacohian that maps ¢-space to 3-space. The
generalized coordinates are the geometric parameters of the solid primitive. the global and
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local deformation parameters, and the six degrees of freedom of rigid body motion.

To make their models dynamic, the authors assume that the model has a mass distribu-
tion p(u), that the material is subject to frictional damping and that the material deforms
elastically or viscoelastically. The dynamic behavior of the model is governed by

M + D4 + Kq = g, + .

where M, D, K are the mass, damping and stiffness matrices respectively, g, are the gen-
eralized inertial forces arising from the dynamic coupling between local and global degrees
of freedom and f,(u,t) are the generalized external forces.

The elastic properties of the model determine the stiffness matrix K. The energy
&, associated with each of the global parameters is assumed Hookean; therefore &£, =
%Ks|(qsi ~ Qs ), where Ky is the stiffness associated with the global parameter g and
qs,, is the natural rest value of this parameter. One of two models is used depending on the
desired continuity of the surface of the deformable model. The loaded membrane is suitable
for C? continuous surfaces and the thin plate under tension model is used for C! continuous
surfaces.

To connect these new dynamic primitives together, the authors use point-to-point con-
straints between two objects or parts of an object. They compute the generalized forces be-
tween the models, using a stabilized Lagrange multiplier technique which is based on Baum-
garte’s constraint stabilization technique [11]. Although the Lagrange multiplier method
is very general, it is potentially expensive for the deformable models. As an alternative, a
fast specialized method to compute the unknown generalized constraint forces f;, associ-
ated with the point-to-point constraints is proposed. For the case of a single point-to-point
constraint, let f. be the constraint force between the first and the second object or part of
an object. The constraint equation can be written as Nf.+v = 0, where the 3 x 3 matrix N
and the 3 x 1 vector v must be determined. After computing N and v, then f. = ~N-ly.
In the case of multiple point-to-point constraints, they define an ohject’s constraint force
vector f. = (£, ,f,,....f,), where f. is the constraint force for constraint 7, assemble a
system of equations Nf. + v = 0, where N is a 3k x 34 matrix, v a vector with length 3k
and solve it through LU decomposition of N.

Addressed Problems The physics-based framework that is described above can be used
in computer vision for both shape estimation and motion estimation. Dynamic fitting is
achieved by integrating Lagrangian equations of motion through time to adjust the defor-
mation degrees of freedom of the models. The objectives of the method are the following:
first, to fit the data as fast as possible and second the model to come to rest as soon as the
data dependent forces vanish. A more tractable subset of the Lagrange equations, while pre-
serving the useful dynamics, is attained by setting the mass deunsity to zero: Dq + Kq = f
(since M and g, vanish). Therefore, the model has no inertia and comes to rest as soon as
all the applied forces vanish or equilibrate. These applied forces are internal forces. which
describe elastic properties of the surface, and external forces which are produced from the
salient image features. External forces can subsequently bhe divided into short range and
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long range forces. The image I(z,y) is converted into a force field using the gradients of
image potentials P(z,y) =|| V(G, = I) ||, where G, denotes a Gaussian smoothing filter of
characteristic width o. The short range forces f = BV P act on the model, and deform it to
become consistent with the image data. On the other hand, the long range forces are based
on the distance between the data points and the model’s surface. The goal is to adjust the
translational, rotational and deformational degrees of freedom of the model to be consistent
with the data.

Background knowledge about the image formation and the shape of the objects can be
incorporated in the form of constraints. For example, these constraints can help to retain
the parts of an articulated object in the correct configuration. Constraints can also be
helpful in deriving the shape and motion of an occluded part.

In the case of moving objects, the authors have developed a nonlinear Kalman filter
for recursively estimating the shape and nonrigid motion. The nonlinear Kalman filter
employs as a model the motion equations and transforms the discrepancy between current
observations and the positions of the model into forces that attract the model. The Kalman
filter equations for the dynamic model take the form:

g=-D7'Kq+D!f, +w

z=H(q)+v

where H is the matrix that relates the time varying measurements z(t) to the model’s state
vector q(t), while w(?) and v(t) are modeling and measurement errors. The state estimation
equation is:

4=-D"K4q+D ', + G(z - Hq)

where G(t) is the Kalman gain matrix, which depends on the system’s dynamics and noise
processes, and q is the estimated state of the model.

Experimental results suggest that the model is useful for shape reconstruction of objects
or part of objects with irregular shape from regular or sparse data and for tracking the
motions of articulated objects consisting of rigid and nonrigid parts.

The authors have used the same framework to address challenges in computer graphics
and visualization also [46]. Asin [83, 9], constraints can be used to assemble complex objects
from initially mis-positioned parts. The framework is used to synthesize articulated objects
with deformable parts, nonrigid motions and object interactions with the physical world for
the purposes of animation. Animations depict flexible multibody objects in gravitational
fields, including elastic collisions with obstacles and friction effects.

Comments General purpose shape reconstruction requires models with the ability to
assume a wide range of shapes. The models must extract meaningful information from
noisy sensor data while, at the same time, making the weakest possible assumptions about
observed shapes. The proposed physics-based framework allows the systematic creation of
dynamic models from parameterized solid primitives, global geometric deformations and
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local deformations. Global deformations contribute to the efficiency and accuracy of esti-
mation by coarsely approximating the true shape of the object, which subsequently allows
accurate shape recovery by using local deformations. The coupling of rigid-body and de-
formation dynamics is similar to that described in [74], but the new formulation accom-
modates global deformations defined by fully nonlinear parametric equations. Therefore,
the proposed framework can potentially satisfy the often conflicting requirements of shape
reconstruction and shape recognition.

An important feature of the approach is that the method applies across all geometric
primitives and deformations. Depending on the application, the user can specify the geo-
metric model and the method automatically converts the geometric degrees of freedom of
the model to physical degrees of freedom through the Lagrange equations of motion. More-
over, the various geometric parameters assume well-defined physical imeanings in relation
to prescribed mass distributions, elasticities, and energy dissipation rates.

The models are dynamic and their behavior is governed by the Lagrange equations of
motion. The equations of motion make the models responsive to forces derived from the
image data or constraints. These forces cause the models to conform to the projected shape
of the object in the image space.

The authors address the challenges related to the application of constraints to con-
struction and control of articulated models by developing efficient computation methods for
the point-to-point constraints. The method involves the solution of a linear svstem whose
size is equal to the number of constraints, which is usually small.

To speedup computations, they do not assemble and factorize a finite element stiffness
matrix, as is comrmon practice in finite element analysis, but instead they compute Kqg
efficiently in an element-by-element fashion. The element-by-element computation makes
the model-fitting process easily parallelizable, which is cspecially useful for multi-processor
architectures.

In contrast to other papers in physics-based methods, the mathematical model is pre-
sented in a complete form. The systematic approach to Lagrangian dynamics and finite
element method adds to the clarity of presentation and effectiveness in the communication
of the model.

Despite the strengths of the framework, the goal being to solve the shape recovery prob-
lem in isolation from segmentation, knowledge of the object part segimentation is required in
advance. The problem of selecting an initial position for the model becomes simpler when
one considers a sequence of images. For example, in the case of tracking, only the very first
frame needs initialization, which can always be solved by permitting user interaction. For
the following frames, the model found in the preceding frame can be used as a good initial
position for the analysis of the current frame.

Many of the experiments use synthetic data. and several quantitative experiments are
presented along with an error analysis. The performance of the technique, though, should
be measured not only by the quality of the final fitted model hut also by the amount of
time required for the fit. Among the factors that influence these measures are the following:
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a priori information for the object, the magnitude and variation of local deformations, the
force gain parameters, and the time step used in the Euler method. The initial shape and
size (or location) does affect the fitting time, since the closer the initial models are to the
shape and size of the shape to be estimated, the less time is required. The performance
of the model is also greatly affected, by the values of the magnitude and variation of the
local deformations that control the internal forces, and by the weights of the external forces.
These weights have to be chosen such that the external forces have comparable magnitude
with the internal ones. If the internal forces are dominant, the model will not interpolate
the data and it becomes too smooth. On the contrary, if external forces are dominant, the
model tends to be insufficiently smooth and fits the noise. Currently, these values are set
manually on a trial and error basis. As for the time step, it must be chosen carefully, since
the Euler method, although simple and fast, has a limited range of stability. Small time
steps can slow down the computation while large time steps result in numerical instabilities.
From this discussion, it is clear that the model fitting process is greatly influenced by several
model parameters. Guidelines for setting these parameters, including parameter bounds,
need to be more fully developed. A next step would also be to develop an extensive error
analysis for real data.

The method, in the current stage of development, cannot deal with highlights and
texture. However, it can serve as an umbrella for the integration of different qualitative
and quantitative modalities. Addressing the problems of integration of segmentation and
physics-based fitting techniques to estimate shape of parameterized objects from noisy data
under orthographic, perspective and stereo projections is a topic of future research{47,
44]. In principle, using the same framework, researchers may be able also to determine
experimentally the stiffness of a material. Based on this information, we could classify the
material from which the object is made [52].

6 Discussion

This section contrasts the two approaches presented for modeling a deformable object. In
the first approach, Miller has refined the conceptual model to a mass-spring system from
which he directly obtained the discrete equations. On the contrary, in the second approach,
expressed by the last three papers, the conceptual model is a deformable object made {rom
a continuous medium and the mathematical representation is discretized to find a solution.
There are several disadvantages to the use of mass-point-spring model. as opposed to using
a continuous mediums:

e Changing the solution parameters requires modifying the higher level model. In the
second approach, since the method of solution is independent from the higher levels
of the model, the efficiency of various numerical solvers can be investigated without
affecting the higher level of the program.

e The interaction with other objects in the model is restricted to grid points. On the
contrary in the second approach, collision detection tests can be performed hetween
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surfaces without worrying if small objects can penetrate through the cracks.

¢ The user needs to select from the beginning a grid density suitable for the simulation.
In the second approach, the grid density can be chosen automatically by the numerical
solver, based on the specific domain or can vary as a function of time or as a function
of space.

The choice of the first approach for the modeling introduces excessive implementation detail
at the conceptual level and results to discretization artifacts hardwired to the model. This
approach is mostly used because it can be implemented on the top of rigid body simulation
systems and there are no partial differential equations involved.

The model in the second approach is clean and robust. Moreover, the use of adaptive
solvers will allow us to simulate more efficiently systems that require fine sampling for only
a few extreme configurations. In addition, the body can be rendered without regard to the
numerical discretization.

7 Future Open Problems and Conclusions

I have reviewed four papers from the emerging field of physics-hased methods for computer
graphics and/or computer vision. Although these methods are not by any means exhaustive
of the research done at the area, they give us an intuition about the physics-based methods
and a basis for a comparative study of the various approaches.

The papers were presented in such a way as to answer the following questions:

What is the model trying to do %

What are the underlying equations ?

What are the knowns and unknowns in these equations ¢

What are the solution techniques ¢

All these questions are important not only in analyzing and understanding a model but also
in developing reliable and extensible models.

In computer graphics the issues are object modeling and animation. Miller models bio-
logical forms using the mass-spring model. He demonstrates the animation of three specific
modes of locomotion of creatures like snakes and worms despite the inherent disadvantages
of the model. Specifically, the use of a mass-spring model introduces implementation detail
at the conceptual level and results in discretization artifacts hardwired to the model. The
geometric models of collision detection and response are not adequate to handle a wide
variety of cases. In a more demanding scenario of animation, which would require more ac-
curate interaction with the environment, the weaknesses of the model will become a limiting
factor.
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Witkin and Welch present a geometric model for linear global deformations, to over-
come the problem that the many degrees of freedom of mass-spring systems result in stiff
numerical equations. By representing only global deformations that are linear in state,
though, they give up the ability to represent a number of natural ohjects. However, one of
the strengths of their model is the ability to directly specify the goal of the animation and to
dynamically calculate the motion required to satisfy them. They can handle contradictory
constraints with grace, but it is difficult to control the exact motion towards the constraints.

In computer vision, the concern lies with shape and motion estimation. Pentland
and Horowitz parameterize whole-body motion using a linear combination of the different
modes of vibration of an undeformed superquadric. The formulation allows them to discard
the high-frequency low amplitude components without excessive error. Nevertheless, using
deformation modes is efficient only for the recovery of smooth, symmetrically deformed
objects. Using optic flow data they have been able to ohtain over-constrained estimates of
rigid and nonrigid motion and track the objects over time, only when they limit inter-frame
motion to small rotations and deformations.

Metaxas and Terzopoulos, by successfully combining local with global deformations,
overcome the problems of the previous approaches. The proposed framework applies across
all geometric primitives and deformations. Using a simulated force technique they are able
to fit their dynamic models to sparse, noise-corrupted 2-D and 3-D visual data and track
the motions of an object over time. Currently, though, a number of parameters must be set
manually on a trial and error basis for the experiments.

The two methods described above estimate shape and attempt to extract global proper-
ties - the parameters of the shape. For reliable parameter estimation, though, it is required
that all the points used for the estimation helong to the same object, the object for which
the parameters are estimated. However, these techniques assume that the 2-D or 3-D vision
data have been segmented in a preprocessing step. Segmenting data into different objects,
though, is a research problem on its own.

Physics-based models tend to require large amounts of computation. With the advent
of more powerful computers and the development of more efficient algorithins, this will tend
to be less and less of a problem.

The new paradigm of physics-based models opens new opportunities both in the areas
of computer graphics and computer vision. In computer graphics, we can build drawing
tools for shape description and develop visualization tools to attain pleasing animations. In
addition, we can more efficiently handle interactions between multibody systems and use
dynamics to simulate tasks such as riding a bicycle or skiing, which are considered hard
with the existing methods. By incorporating dynamics, we can determine the feasibility of
certain tasks by measuring forces and torques during simulation.

Physics-based modeling is also applicable, perhaps most importantly, to biomedical ap-
plications. Such applications will include modeling and simulation of the physical properties
of tissues and organs and shape reconstruction of internal organs or external parts.

Modeling based on physical principles is establishing itself as a potent technique in
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computer graphics and computer vision. It is a rich and fruitful area for research in terms of
both theory and applications. It is important, though, to develop concepts, methodologies,
and techniques which will be widely applicable to many types of applications. Physics-
based models, while computationally more complex than many traditional models, offer
unsurpassed realism in the modeling of natural phenomena.
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A Appendix: Constraint-Based Modeling

Several researchers have proposed physics-based constraint methods for controlling anima-
tions of rigid and non-rigid bodies. A powerful way to control models is to specify constraints
on the geometric configuration of the bodies. Barzel and Barr [9] have introduced three
types of constraints on the locations of body points: point-to-nail, point-to-path and point-
to-point. The point-to-nail constraint requires that a body point be in a constant location
in space. A point-to-path constraint requires that a body follows a pre-specified kinematic
path. For the assembly of complex objects a point-to-point constraint may be used where
two points are required to stay attached, although the bodies that they belong may move
freely. There are two outlooks for the physical interpretation of the constraints:

o Abstraction of the mechanical mechanisms: A point-to-point constraint can be
thought of as an idealized ball-and-socket joint. Although we don’t need to model
the exact details of the joint, the forces resulting from a point-to-point constraint
result in the same net force and torque that a frictionless physical joint would exert.

o FEzploration: Sometimes we don’t know the underlying physical mechanism. For
example, we assume the kinematic path that a body point would follow in order to
determine the dynamic response of the rest of the system.

I will describe three methods previously used to constrain physic-based models: the
penalty method, the constraint stabilization and the dynamic constraints method. The two
latter ones are examples of the generic Lagrangian constraints method.

Given a physical system whose state is described by the vector q, we can implicitly im-
pose a holonomic constraint, which defines as states consistent with the constraint the ones
that satisfy the equation C(¢,t) = 0. If multiple constraints are to be met simultaneously,
then C is a vector of constraints.

The Penalty method: Researchers [73, 83] have used this method extensively in the
past. This method converts a constrained problem to an unconstrained problem in which
deviation from the constraint is penalized. It is equivalent to adding a rubber band to the

mechanical system. The penalty force is Fpengiry = —2kC(q)%(1;. where & is the strength

of the rubber band and Fpenany, points toward the manifold C(q) = 0, when %—% i1s not
zero. The constraint force, as a function of the system state, causes the system to find a
particular state that balances the forces. This has the disadvantage that the constraint is
not guaranteed to be fulfilled. In addition, as penalty strengths increase, the equations of the
physical system become stiff, therefore the numerical differential equation solver takes very
small steps, consuming computing time without significant progress. The main attraction
of the method is that it offers a very simple way to convert a constrained problem into an
unconstrained one.

Lagrangian constraints: The penalty method involves a formulation of the problem in
which constraints are only approximately satisfied. A completely different viewpoint is
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taken when the constraints are to be fulfilled exactly. In Lagrangian constraints method,
forces that would cause the system to violate the constraint are cancelled independently of
the system state, and they are substituted by a force that gradually makes the system to
fulfill the constraints. There are two lagrangian constraint methods that have been used:
constraint stabilization and dynamic constraints.

Constraint stabilization: Constrained stabilization has been used by mechanical engi-
neers to correct numerical inaccuracies in systems that are initialized with the constraints
fulfilled. If the system begins in a legal state, with C(q,t) = 0 and C(q,t) = 0, then
requiring C(g,t) = 0 suffices in principle to hold the constraints in force. In practice an
additional feedback term must be added to inhibit drift and bring the system to a legal
state initially. Baumgarte in [11] suggested the damped second order differential equations

C+aC+BC=0 (8)

where a and § are stabilization factors, so that if a system departs from a constraint, it
will get pushed back.

To enforce the constraints exactly, forces are added to the mechanical system, which
are computed via the Lagrange multipliers. The augmented equations of motion take the
form:

Mi + Dq + Kq = g, + f, - 1, (9)

Lagrangian physics states that constraint forces must be in the direction of the gradient of
the constraint function, in order to obey the principle of the virtual work [88], therefore f; =
—C;r)\, where C;- is the transpose of the constraint Jacobian matrix and A = (AIT, e .AI )"
is the vector of Lagrange multipliers that must be determined. Combining (8) and (9) we

obtain:
M C(Tl q _ —Dc'l—Kg+gq+fq
Cq O A 7 —-aC - gC

Notice that the penalty method also creates forces that are in the gradient of the
function C(q) but approximates the lagrangian multipliers by —kC. The force becomes
zero when the constraint is fulfilled and any external force will pull the system out of the
constraint surface.

Constraint stabilization offers the following advantages:

e Regardless of the forces applied to the physical system all the constraints are fulfilled
exactly.

e If a physical system starts away from a constraint surface C(q) = 0. the system can
return to the constraint surface.

Using the parameters « and 3, we can control the rate by which the constraints are fulfilled.
Additionally, we can construct complex objects initially apart or enforce constraints in the
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middle of animation without sudden jumps. The price to pay for the above flexibility is
that the rates « and # are non-intuitive and the system may oscillate around the state in
which the constraints are fulfilled, which is unpleasant for the animation.

Dynamic constraints: Barzel and Barr [9] were among the first to use the idea of stabilized
constraints [55] for computer graphics modeling and animation with a variation of the
constraint stabilization method called dynamic constraints. Often the animation starts
with the constraints being violated. They assume that a physical system is always very
close to fulfilling the constraints. To control the speed of the constraint fulfillment they
have suggested using the parameters a = % and 8 = {17, t being the time constant for
the critically dumped motion and -f— being the speed of fulfillment. But they model their
constraint forces as Foonstraint = CrGix, where Cy is the strength and &1 is the direction
of the constraint force. Therefore it is possible to choose a direction for a constraint force
that it is not in the gradient direction, therefore violating the principle of virtual work.

In summary, constraints allow the animators to control the animation. Constraint
forces are applied in the direction of the gradient of the constraint violation functions. Using
constraint forces that are collinear with the gradient direction assures that the Lagrangian
physics is still obeyed. The magnitude of these constraint forces are computed so that the
physical simulation approaches the constraint surface with critically damped motion.
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