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Abstract Abstract 
The idea of using physics-based models has received considerable interest in computer graphics and 
computer vision research the last ten years. The interest arises from the fact that simple geometric 
primitives cannot accurately represent natural objects. In computer graphics physics-based models are 
used to generate and visualize constrained shapes, motions of rigid and nonrigid objects and object 
interactions with the environment for the purposes of animation. On the other hand, in computer vision, 
the method applies to complex 3-D shape representation, shape reconstruction and motion estimation. In 
this paper we review two models that have been used in computer graphics and two models that apply to 
both areas. In the area of computer graphics, Miller [48] uses a mass-spring model to animate three 
forms of locomotion of snakes and worms. To overcome the problem of the multitude of degrees of 
freedom associated with the mass-spring lattices, Witkin and Welch [87] present a geometric method to 
model global deformations. To achieve the same result Pentland and Horowitz in [54] delineate the object 
motion into rigid and nonrigid deformation modes. To overcome problems of these two last approaches, 
Metaxas and Terzopoulos in [45] successfully combine local deformations with global ones. Modeling 
based on physical principles is a potent technique for computer graphics and computer vision. It is a rich 
and fruitful area for research in terms of both theory and applications. It is important, though, to develop 
concepts, methodologies, and techniques which will be widely applicable to many types of applications. 
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Modeling, Analysis and Animation 

Ioannis A. I<altadiaris 

Abstract 

The idea of using physics-11a.sed rnodels 113,s receivetl considc~.a.ljlt~ int.el.es1. in comput.er 

graphics and coraput,er vision researcl-l t,he last t,en years. T l ~ e  i11tcl.est al.isns frorrl t.he fact. 

tha t  simple geomet,ric primitrives cannot accurat,ely represent natural 011ject.s. In comput.er 

graphics physics-based models are used to  generatme and visualizcl const.ra.ined shapes, mo- 

tions of rigid and nonrigid objects and object interact,ions wit11 the environnrent. for the pu.r- 

poses of animation. On the other hand, in computer vision, t,he method applies t,o complex 

3-D shape representation, shape recon- struction and motion estimation. 

In t,his paper we review t,wo models t,ha,t have been used in computer gra,phics and t,wo 

models that  apply t,o bot,h areas. In the area of corn put.^^. gra[>hics, Mill- el. [-Is] uses a. nra.ss- 

spring rnoclel t.o animate three forms of locorno- t,ion of snakes a.11d \Z:C)I.IILS. To ove~.cor~ie 

the problem of t,he mult,i- t,ude of degrees of fr,eetlorr~ a,ssocia,t,etl wit.h t lie m;t.ss-spring late- 

tices, Witkin and Welch [87] present a geornet.ric met.trod t,o nrotlel glohal deformations. 

To achieve the same result Pent.land and Horowit,~ in [53]  de1ineat.e t,hc object rnot,ion int,o 

rigid and nonri- gid deformation modes. To overcome problen~s of t,hese t.wo last approaches, 

Metaxas and Terzopoulos in [45] successfully con-rbine local defol,rr~at,ions wit,h global ones. 

Modeling based on physical principles is a potrent t,echnique for corr~put,er graphics and 

comput,er vision. It is a rich a.nd fruitful area for research in t.erms of 110th t,heory and 

applications. It is important,, t,hough, t.o develop  concept,^, methodologies, and techniques 

which will be widely applicable t,o niany types of applic. A t '  1011s. 
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1 Introduction 

Physics-based modeling is an exciting paradigm which made it,s debut in computer graphics 

less than ten years ago. Existing geometric modeling techniques are not able to  model 

the shape of natural shapes, like clouds and waves, and are not successful in generating 

aesthetically pleasing animations of their motion. The ultimate challenge for geometric 

methods is the animation of human movement,. The human body is formed from a wide 

variety of complex shapes and performs an amazing number of complex motions as the 

result of the art,iculated skeleton and skin deformations. 

Machine vision researchers also have recognized t,he import,ance of developing algo- 

rithms based on increasingly sophisticated physical n-~odels. Previous at,t.ernpt,s at. shape 

representation have met only with partial success in sat.isfying t,he often conflict,ing require- 

ments of shape reconstruction and recognition. In addit,ion t,he resrilt,~ from the previous 

studies of rigid motion cannot be ext,ended t,o t,lie analysis of nonrigid rnot,ion. We need new 

models that  can accommodat,e deforma.t,ion, non-convex it,^, non-planarit,y, inexact symmet,ry 

and local irregularities. 

The new paradigm of physics-based rr~otleling has I ) e c o ~ ~ ~ c  (.)f specia.l i111port ance due 1.0 

the advent of non-destructive sensing equipment (e.g LRF, Cl', M K I  and PET)  tha.t gen- 

erat,es numerical sampling of real t.hree-dimensiona.1 objects. This ability has been proven 

essential in numerous fields. It allows for t,he inspect.ion of r11cc11a.11ica.l ~>ijrts wit,hout dam- 

aging the product, and t,he exarnina.t,ion of a. pat.ient.'s organs wit [lout i~~vil.sivt> surgery. Corn- 

puter syst,erns used by  radiologist,^ ant1 physicia.ns can incorl)o~,a.te   nod el fit.t,ing met,hods t,o 

segment, analyze and visualize 3-D rnedical images. An exan~ple of sl~ch an application is 

the analysis of the nonrigid motioil and the e~t~irnation of t.he inot,ion par.arnet,ers involved 

in the deformation of t,he heart,, for the purpose of determining t,he fitness of an athlete. In 

applications such as t,eleconferencing, model-based irnage cornp~.ession significant,ly reduces 

the size of information bandwidt,h when compared to  the t.radit,ior~al st,atist,ical approaches. 

The wide range of appli~at~ions using physics-l~asetl niotleling t.1ra.t. ha.vc heen proposed and 

explored include range scanning, vehicle guidance, design a u t.orna t , i o ~ ~  and ma.nufact,uring 

automation, surveilla.nce and rernot,e sensing. Current I?., I . ~ S P ~ I , I . C I I  is also hci~rg conduct,ed 

in the following areas: modeling and a.nalysis of'the rnot,io~i of t,lie 11cla.rl. Iiun~an Sacelhead 

motion analysis and synt,hesis for model-based irnage co~nj)ression, a.iicl evolut.ion of coherent, 

structures in fluid mot,ions. 

Several research questions arise. What computat~ional nlet,llods allow us t,o represent 

objects which are more complex and which require great,er representrational accuracy than 

the ones we can provide t,oday'? What, are the r~~ode l s  suit.ahle for rnotlcliug t,he motion of 

an object and what are the relevant mat,hemat,ics? To what ext,ent will t,he physics-based 

paradigm and solut,ions created fbr conlput,er graphics a.11tl C ~ I I I ~ ) I I ~ , C I .  vision be useful for 

modeling efforts in other fields? 

The principles a,nd t.echniclues reviewed in t,liis pa,per r.cpresent eff0rt.s towards achieving 

the preceding research goals and questions. The goal of tlrc I)i1,1lcl. is to present some of t,he 

physics-based nlet,l~ods applied in cornput,er gra,pl~ics a11t1 cor~ll)r~t.er visior~ and evaluat,e t,heir 



2 PHYSICS-BASED MODELS 

potential. Emphasis is placed on describing a strategy for designing and managing t,he com- 

plexity of physics-based models in order to  increase understanding, generalit,y, reusability 

and communication of the models. 

The paper is organized as follows: In section 2, I expatiat,e on the term physics-based 

modeling and define its meaning on comput,er graphics and computer vision. In the area of 

computer vision, the term is used in two different contexts. I distinguish between the case 

in which exact physical models are taken into account to link the physics of image formation 

to the perceived image, and the case in which the principles of physics are used to drive the 

processes of both analysis and synthesis of an object's shape and motion. The problems of 

representing nonrigid articulated objects and animating their interaction with the rest of 

the world is discussed in section 3. Section 4 refers t,o the representation and reconstruction 

from noisy image dat,a of con~plex nonrigid shapes ant1 t.he cst.ili~a.t.ioii of t.heir rrlot,ion 

parameters. I review four papers from the areas of computer gl,aphics a.i~tl/or comput,er 

vision in section 5.  These papers can be broadly classified int,o t,wo cat,egories. Miller 

and Witkin et al. present t.echniclues applica.ble only t,o cornp~ltel gl.a.phics, whereas the 

techniques proposed by Pentland et al. ancl by Met,axas et. a.1. find a.pplicat,ions in cornput,er 

vision as well. Section 6 discusses t.he implica.t.ions of using a 111il.s~-sprirrg ~ i ~ o d e l  versus a 

continuous medium t,o model a nonrigid object,. I conclude in sect.ion 7 by summarizing t,he 

presented papers and my critique of them, and by exploring possiljle fut,ure applicat,ions of 

the paradigm both in computer graphics and computer vision. 

2 Physics-Based Models 

Physics-based modeling is a cross-disciplinary field, includir~g clernents of applied rnat,h- 

ematics, numerical ana.lysis, comput,at,iona,l physics, comput,er graphics, cornput.er vision, 

and software engineering. It has different. ends t,han it.s pa.rent, ficltls, physics and applied 

mathematics, and it is somewl~at different from it,s sibling fields, such as computat,ional 

physics and classical computer graphics. Its long term goal is t.o develop r~iet,hods enabling 

us t o  specify, design, build and cont,rol computational rnoclels of 1-1et.el.ogeneous physical 

systems of objects. 

The t,erm physics-based modeling (or plrysictrl ly-bnsell l  nrn(iclin!/) has I)cc.on~e a cat,ch-all 

term for a variety of techniques that, all share the approach of defining pl1,ysical principles 

of behavior of their models. A physics-based model is a mat,hen~at,icaI repl.esent.at,ion of an 

object (or its behavior) which incorpora.t.es physical chara.ct.erist ic's sucli a.s Ibi,ces, t,orques 

and energies into the model, allowing numerical siinulation of its bcha.vio~.. I n  cor~lput,er 

graphics, common elements are classical dynamics (rnot,ion b i~ .~cd  on forces, mass, inertia, 

etc.) with rigid or flexible bodies, inter-hody int,eraction ancl const,rainetl-11;tsed cont,rol. 

In computer vision the prefix physics-based has been usetl t,o denoh  t,wo approaches. 

In the first approach, the physics of irnage formation is t.aken int,o c.onsitierat.ion t80 link 

the 3-D real world t,o the images which are t,he input t,o a, vision syst,ern. Progress has 

been made in modeling t,he p~.oper,t.ies of ~111fi1ces [I:!. (is]. i l lurr~il~i~~its  [ . l o ] .  i l l i t1 seiisors 



t o  exploit phenomena such as color [62, 29, 371, shading [31], highlights [41], polarization 

[89], and inter-reflection [42] for image interpretation. The physical models have led t,o new 

algorithms for segmenting images [6] and recovering p~opert~ies of surfaces such as shape, 

spectral reflectance [49], and material. The second approach uses t,he principles of physics 

t o  form an abstraction of the world. The surface of the model is composed from simulat,ed 

elastic materials that  deform in response to  applied forces. Constraints, whether derived 

from the image or specified by a human operator who builds the model, generate forces that 

mold the model to  the desired form. The way in which the model responds to  the applied 

forces depends on the desired properties of the object modelled. For example, the dynamic 

evolution of the model through time can be described in the form of differential equations, 

which can be solved numerically to  estimate the shape and motion parameters of a moving 

oh ject. 

This new paradigm aims t,o crea,t,e al>st,~,a.ct,ions a.ntl irlat 11ernat.ica.I sel)resent,ations of 

objects which move and t,heir shape changes wit,h t,irne. C;corr~et>ric col~st.~.aint, propert.ies, 

mechanical properties of objects, the para~net,ers represent.ing t.he shape of an object,, and 

the control of its mot,ion are incorpora.t,ed int,o t,he same conceptual fr.a~-nework. 

3 Computer Graphics 

As the comput,er graphics field mat,ures, there is an inc.rea.sing dcrna.nt1 fo r  cornplex, physics- 

based models. Previous models have oft,en been ad hoc, specia.1 purpose, obscure and/or 

hard t o  ext,end. Lit,t,le &tention ha.s been given t,o clc!sign ~~rltt~lrodologirs. In  addit,ion, 

researchers want t.o be able t.0: 

Model nonrigid objects and t,heir int.eract,ion wit.11 t,he pl~ysical world 

a Realistically animate the rnotion of articulatetl objects with possibly tlefoi~rnable parts. 

In this section, we review work on nonrigid object ~notleling ; t ~ l t l  a n i ~ ~ ~ a t . i o n ,  prior to the 

use of physics-based models, and rnention some of t,he approaches t,ha,t emerged from this 

framework. 

Nonrigid object modeling: The major issues involved in object I-notleling include the ef- 

fectiveness in modeling t,he desired propert,ies, t,he implen1ent.at.io11 cornplexity of t.he model 

and it,s comput,ational cost. Mathemat,ical represent.a.t.ions of solid object,s are a.bundant, 

in the comput,er graphics lit,erat,ure. Alt,hough t,hese l.epresentat,ions a1.e part,icularly useful 

for modeling st,at,ionary, rigid ol~ject,s whose sha.pes do 1101, clla11g(~ ovcl. tiir~e. t,lit.y are of- 

ten inconvenient for rnodeling object mot,ion and,  moreover, t,he sha.pe of nat,ural  object,^. 

Even when spline patches [8, 261 are used to represent free fol.rr~ shapes, t.hey have been 

treated as purely geometric entit,ies deernphasizing t,lieir ~~hysical  uutlerpinnings. For exam- 

ple, McPheeters in [90] proposes anirna.t,ing soft object,s as iso-surfi~ces i n  a 3-D scalar field 



3 COMPUTER GRAPHICS 

enveloping control points. Since the control-point dynamics do not accurately describe the 

dynamics of the deformable materials, animations look contrived. Several researchers have 

used physics-based models [56, 611 to model waves [51], turbulence [91], clouds [59], terrain 

[36], cloths [81], skin [75], and deformable curves, surfaces and solid primit.ives [70], with 

elastic or inelastic behavior [71]. 

Motion animation: One of the most challenging aspect,s in computer mimatlion is the 

control of object parameters like position, orientation and motion path. As the parame- 

ters change over time, the corresponding attributes of the object cha,nge to produce t,he 

animation. Animation techniques currently in use include [3]: keyfrc~nzing, parametric in- 

terpolation, kinematics, inverse kinerna.tics, dynamic animation, constr.niills, simulation and 

scripting systems. 

A well-known met,hod for specifying mot,ioii of a georriet,ric object for. comput,er ani- 

mation is keyframing [IS]. The keyframe t,echnique is an ext.ension of how t.ratlit~iona1 cell 

animation is done. I11 cell a.nirna.t,ion, t,he most t.a.lent,etl ;~.rt.ists t1r.a.w thc figures at key 

positions and ot,her a,nimat,ors fill in t,he inbet,ween posit,ions. The ~ . w o - d i ~ r ~ c ~ ~ s i o n a l  drawing 

of an  object.'^ boundary is t.ransforrncd over t,inie by int,erl,olat.iiig [)oilit s o ~ i  the drawing 

between specified positions of key p o i ~ ~ t , s  i n  a sequence of kevf~.;tl~ies. \47liel.e;ts keyfritming 

may be appropriate to  model mot,ions that  are not, too COI-r~plex 01. need liot bear too much 

resemblance t o  realit,y, it turns out that  a, very skillful aninla.tor is needed cven t,o program 

reasonably realist,ic movements of nontrivial  object,^, let alone hu1r1a.n or anin1a.l moteion. 

In pal-ametric interpolation (63, 651, t,he user int.eract,ively specifies the values of  object,'^ 

parameters a t  cert,ain ii~st~ances of t,ime. Next, using soirie int.e~.pola.t.ion r.lile, t,he object,'s 

shape and position a.re comput,ed for the int,errnedia,te instances. Mot,iolr of' a.n object, along a 

given path,  for example, can be achieved using pa.ra~net,ric int,erpola.t,ion. Since t,he nurnber 

of the required pararnet,ers can easily esciilat,e t,o hundrc~ls, 1.1-I(' il~t,cr.;l(.t ioi~ I,et.ween t,he 

parameters may becorrie unmanageable. 

Rather than specify key positions t.o be in terp~la t~ed,  t.he anilnil,t.or. can specif:y a st.art,ing 

position and a funct,ion of time that  specifies t,he cha.nge of t,lle p a ~ ~ a r n e t e ~ . ~ .  This method is 

called kinematics [76] since the mot,ion of the object is cont.rolletl by funct.ions of position, 

velocity or a~celerat~ion . 

Inverse kinematics [4, 391 is used to handle the cornp1esit.y of rriot.ior~ of humans and 

animals. Inverse kinernat#ics refers t,o the posit,ioning of a, joinetl st.ruc,t.ur~ 11y defining t,he 

goal position for the end effector and cornputring the posit,ions ant1 orientat,ions for t,he 

intermediate joints of t,he linka,ge. 

To relief' the bul.den of t3he al~imat,or, several resea.i.cl~e~.s [S2, 9, 701 at1vocat.e a n  al- 

ternative way of describing inot,ion, nalriely dyn(rmic rr.rzirntrfzo12 ha.setl 011 Newt,onls laws. 

This approach uses tirne-dependent forces and n-iornent,s t,o drive t.he n~ot.ion of t,he cent,er 

of gravity of the object and the motpion of its cornpoi~ent~s in order t,o pl.otluce physically 

correct motion. 



While physics-based modeling has improved the realism of the animat,ed objects, there 

remains much t o  be done with respect to controlling not only low level motion, but also 

the high level interactions of complex systems. Constraints [58, 50, 86, 841, in the form 

of relationships, boundary ~ondit~ions,  potential functions or springs, have been used to 

describe the structure of complex physical systems and to specify t,he goals of motion. 

Motion is the result of time-dependent constraint forces. These forces operate on hinge 

points between the components of the object in order to keep the componentas assembled. For 

example, the different parts of an a~t~iculated object are constrained not t,o separate. Force- 

based constraint methods enforce the constraints by adding external forces and impulses to 

physical systems [9, 73, 831. [See Appendix A for a review of t,he met,hods used for control 

of the animation.] 

Given a description of a process involving object inte~actions or pal aineter relationships 

tha t  cannot pre-computed, a szmulntzon approach is needed. The dynarnic nature of the 

simulation [92] allows very general simulations to be rnotlclecl a r ~ d  allirr~ated. 

A scripting system is a programming language where a,~.bitra.ry changes t,o program 

variables can be invoked. The parameter changes are given t.irnes or t.empora1 relat.ionships 

and then posted to  the event list for a sirnulat,io~i-st,yle esecut.ion. 

In summary, physics-based modeling fa.cilit,ates t.l~e crea.t.ion of curri~~lex shapes a ~ ~ d  

realistic motions - once t,he sole province of highly t.r,;l.ine(l motlelcrs ir.~ltl  ani1~iat.01.s. In 

addition, it adds new levels of represent,at,ion of 011ject.s; c.rn\~otlies physical laws which 

make them respo~lsive t-o one anot,her and t,he sirnula.t.ed physical woi.ltl; a.l~tl ~ynt~hesizes 

complex motions aut,omat,ically, t,o produce the desired a.ni~rla.t.jo~l. 

4 Computer Vision 

In computer vision, the need for physics-based ir~odels st.er11s frorr-I t.he desire t.0: 

Represent complex nonrigid shapes 

Reconstruct them from noisy image data.  

Estimate ant1 track the  notion of nonrigid multi-part objects 

S h a p e  r e p r e s e n t a t i o n  a n d  recons t ruc t ion :  The visual 1)1.ocessil1g syst.thni must, recover 

the complete three-dimensional description of objects in space, from t . 1 1 ~  int.ensity changes 

occurring on a two-dimensional image. Alt,llough hurna.ns can underst,a.ntl and communicat,e 

a wide variety of shapes almost effort,lessly, finding a useful a.nd general rnet,hod for machine 

representat,ion of shape has proven difficult. 

First, the chosen shape must satisfy the oft,ei~ conflict.i~~g rec l l~ i~ .c~~~~cn t  s ol' shape recon- 

struction and sha.pe recognit,ion. A ~.epresent,at.ion scht3r11e s l~ol~ld  iiffo~.tl c.11oug11 fiexibility 

t o  describe corrlplex curved  object,^, and yet, provide coir~pa.ct ol~ject  descriptions capable 
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of supporting recognition. Most existing t,echniques are limited t,o rigid o1jject.s wit,h simple 

shapes; natural shapes cannot be represented accurately. There is a need for new mod- 

els that  can accommodate deformation, nonconvexity, nonplanarity, inexact symmet,ry and 

local irregularities. 

Several different approaches have been used t,o bridge the gap bet,ween raw da ta  and 

high level representations. Binford [13] introduced the generalized cglinders t,hat represent 

a volume by sweeping a 2-D closed contour along a 3-D space curve which forms t,he axis 

of a cylinder. They are suitable for axisymmetric objects, where the axis is clear but they 

are not suitable for blob-like objects with no obvious axis of symmetry. Since some amount, 

of asymmetry is evident in many synthetic and most natural objects, the use of generalized 

cylinders may result in the loss of crucial information. 

Kass, Witkin and Terzopoulos [35] have developed snakes whicl~ rrlodel the cont,ours 

of an  image by mininlizing the energy associated with a, spline. The energy of a, snake 

configuration is based upon the image and its first a.nd second dc~.ivat,ive, t'he curvature of 

the components in the image, and t,he first and second clei.iva.tive of t.lle spline. Terzopoulos 

at  al. [74] extended the concept of snakes into symmet,ry-seeking rnotlels t.11a.t derive a three 

dimensional shape from a two dimensional image by employing a n  axisyr~irnct.ric elastic skin 

spread over a flexible spline. Alt,hough the rnotlel is capahle of rcp~.esent.ing nat,ural object,s 

with asymmetries and fine detail, the generalized spline conlponent,s of' t,hc model do not 

explicitly provide a. ~.epresent,at,ion wit,11 few ~)a , ra i~~e te r s .  C'ur~l,cntly. a priori inSor.lnat.ion 

about the configuration and orientation of the object being modeled is required. 

Solina et al. [64] have used superquadric rrlodels wit,ll global (1~lb1.111il.t ~ O I I S  a.s volur~~~et.ric 

primitives to  segment dense range data  from cornplex 3-D scenes i r~t~o t,l~eir constit.uent parts. 

They define an energy or cost function whose value depends on t,he dist,ance of object point,s 

from the model's surface and on the overall size of t,he model. Model recovery is formulated 

as a least squares minimization of the cost funct,ion for all range points belonging to t,he 

same part .  For the case of objects wit8h more t,han one pa.rt,, t.he motlel can a.ct,ively search 

for a better fit by compressing or expanding itself. C;upt,a 1281 has tlevelopc(l a.n int,egrat,ed 

framework for the recovery of st,ruct,ured descript,ions of cornples objects wit,hout a priori 

domain knowledge. To recover shape descript,ions he uses hi-cl ua.dric rr~odels for surface 

representation and superquadric 11lodels for volumet.ric ~epl,csent,a,tion. 

Solid modeling systems could use geometric models c~.ext.erl a.ut,o~r~at.ica~lIy by a vision 

system. The design time would be reduced, especially when designing sculpt,ured free-form 

surfaces, because such task is a very time consuming process and typically requires extensive 

knowledge about the modeling p~inlit~ives, for inst,ance, spline funct.ions. Since t.here is 

no single representation that. would be t,he most, appropriat.e in all sit.uations, Koivunen 

[38] employs mult,iple represent,ations, e.g., NUR.BS snrfaces a ~ ~ t l  super~ellipsoicls, t,o build 

procedural CAD models from range dat.a. Procedural models ca.n represent overall geometric 

properties useful in analysis and process pla,n ning i 11 a.d tl i t ion t.o low level geornet.rir dat,a. 

Visual reconst,ruct,ion as a dat,a fit,ting problem has received considerable int,erest, in the 

context of the surface reconstruction probleni [Is]. Surface ~ .ccons t .~~~~c t . io r~  t.rrl~niques I~ased 

on generalized splines [60] have attract,ed interest. i r ~  t.he vision c o l ~ ~ ~ ~ ~ u l ~ i t y  for several years 



[69, 15, 17, 66, 671 (see also the survey [16]). Despit,e t,he large body of work on 3-D surface 

reconstruction, the ability t o  extract accurate, quantitative shape models has not kept up 

with the ability to produce the actual images. A promising approach t,hat can be applied 

to  surface reconstruction problems is the use of physics-motivated deformable models. The 

dynamic model fitting approach is being pursued by several researchers [72, 53, 541, For 

example, Wang [78] presents a 3D surface reconstruction technique that  is based on elastic, 

deformable models. The basic struct,ure used is an imaginary elastic grid which is made of a 

membranal, thin plate type material. Shape reconstruction is guided by a set of imaginary 

springs, derived from the image data, that  enforce consistency in the position, orientation, 

and curvature measurements of the elastic grid and the desiretl shape. The dynamics of the 

reconstruction is guided by the principle of least action. 

Nonr ig id  m o t i o n  Es t ima t ion :  Mot,ion a.nalysis, the process o f ' i n f e ~ . c ~ ~ ~ c i ~ ~ g  the 3-1) nlot,ion 

parameters of an  object based on 2-D images of t,he object, t.a.ken (luring t.wo or. nlore tirr~e 

instances, has been an important researcli t.opic for several tlecildcs. Most, of t.his work has 

focused on rigid motion, t,hat is, the motion of objects ivhose shape does not change over 

time. The results of this work, in gener.a.1, cannot be ext.entletl t.o the analysis of nonrigid 

motion. In addition, in previous approaches, motion was concel)t,ualized as being mostly 

unstructured. What  one could say is how a point. or a, pa.tch is moving, which requires 

three unknowns per point,, and as consequence the proble~n becornes under-const,rained. In 

that  spirit, Ullman's incremental rigidity scheme [77] finds the st.~,uct.ure a.11d rnot.ion of a11 

object t,hat are most consist,ent with t,he given noisy di~t ,a by assu~~i ing  it s~t~it l l  clrange in t.he 

rigidity of this object, between frarnes. It, works best, for rubbery o1jject.s wl~ich are aln~ost, 

rigid. 

Recently, t8here has been an increasing trentl t,owartls rcsPa,rch i n  no~lrigid rr~ot~ion anal- 

ysis [79, 24, 22, 30, 3111 due t,o it,s pot,ent,ial applicat,ions, which inclutle: ~,errrot,e sensing, 

range scanning, medical scanning, vehicle guidar~ce, surveilla.nce, design automation and 

manufacturing a ~ t ~ o m a t i o n .  Nonrigid mot,ion analysis has proven a. 1.ic.11 a ~ t d  fruit.fu1 area 

for research. Applications of the analysis of nonrigitl mottion include the tracking of cloud 

movement for weather st,udies [I] ,  tracking cell I-11011ilit.y [.1.3] i~nd  qua.ntif'.ving t.lie mot,ion of 

the heart [19, 231. 

Analysis of t,he re~t~ricted motions of art,icula.t,ecl objccts has heen donc I>y numerous 

researchers [58, 80, 2, 121. For example, Webl, ant1 Aggarwa.1 [SO] st udic(l t Ile case in which 

the rotation axis can be assumed to be fixetl in direction t.lr~.oligl~out, t . 1 1 ~  ol~scl.ved secluence. 

Chen and Penna in [21, 201 carried out a, more gene1,al invest,iga.t,ion of elast,ic mot,ion and 

proposed several approaches. However, rnotion pa~.arnete~,s can be ol,t.ained. only under 

restricted ass~mpt~ ions  such as isometry - an isomet,ric mot.ion preserves lengths of curves 

and angles between int,ersect,ing curves. Goldgof' and I-Iuang i l l  1271 used 3-D curvat,ure t,o 

analyze nonrigid motion. Specifically, they used the 111ean a ~ i d  t.he Ciaussian curvat,ure t,o 

segment out rigid part,s of an art,icula.t.ed object,, and t.o tlistil~guisl-I among rigid, isomet,ric, 

hom~the t~ ic ,  conformal a,nd general nonrigid 11-lotions. I n  a.not.l~er tlef'orrnable mat.ching 

technique, Bajcsy and KovaEiE [5] used a rr~ult,iresolut.ion app~.oiirll to elast.ically defor111 a 
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known brain atlas t o  match the image of a scanned brain. This approach decreases the 

resolution of the data  set, then deforms the brain atlas so that  the outer edge and ventricles 

match the data.  The resolution is t,hen increased and the deformation process is repeated. 

The drawback in using an atlas to  fit an object is that  a sufficiently precise at,las is required 

for every object to be modeled. 

Jasinchi and Yuille in [33] study the problem of recover,ing the struct,ure from the motmion 

figures that  are permitted to  perform a controlled (motion t,hat preserves t.he Gaussian 

n a t u r e )  nonrigid motion. They use R,egge calculus to  approximate a general surface by a 

net of triangles. The nonrigid flexing motion that  they examine corresponds t,o the triangles 

remaining rigid and the bending occurring only a t  the joints between the triangles. The 

depth information of the vertices of the tria.ngles can be obtained using a modified version 

of the incremental rigiditmy scheme. In cases in which t,he mot.ion of t.he figure displays 

fundamentally different views at each f'ritrne present.a.t,io~t. t l ~ c  ;tlgo~.itl~lr~ works well. not. 

only for strictly rigid motion but also for a limited anlount of' I~entiing; cleformation. The 

results obtained in t,he case of two triangles perforrning r.igitI gi01)il.l ~ . o t a t i o ~ ~  f'ollowed by a. 

local bending def~rmat~ion (along t,he common eclge of t,lre fa,ces) shows that t h v  dgorit,hm 

performs well when tlhe axis of global rot,at,ion is close t.o t.Ile para.lle1 posit.ion wit,li respect, 

t o  the image plane, and when the angle of' rotat,ion lies in t,he range between 30 and 60 

degrees. The bending angle also has to he small. 

5 Critical review 

In the following, I e1aborat.e on the physics-based modeling paradiglr~ 1,y reviewing four rel- 

evant papers. I have st,ruct,ured my review of t,he physical ~nodels to I ~ i ~ v e  four sect,ions: T h e  

conceptual model, the nzathematical nzodel, t.he cidd~esserr! l)~.oblenrs i~ntl t.11e impleinerzt(~,tion. 

These sections can be thought as answers t,o t , l~e following clucstions: 

1. What is the  model trying t o  do? The co~lceptual model is a des~ript~ion of 

the properties, features and charact'erist.ics of the ent,ity being modeled. This al~st~ract, 

description rarely captures all t,he aspect,s of t,he ent,it.y; inst,ea.d it focuses on those 

aspects tha.t are releva.nt t.o one's purpose ill  crea.t,ing t l1t1 111otlel ant1 excluties t.hose 

that  are irrelevant. For example, it may cont,ain inforrna.t,ion sl~clr as mass or mo- 

mentum that  enter into the mathen~at,ical descript.ion of rr~ot i o ~ ~ ,  or sur,face color. and 

specularity that  are useful for t,he rendering i n  the case of co~npntc~ .  graphics. 

2. What are the  underlying equations? The lnat hernat ica1 111odel i h  a collection of 

mathematical equations that desc~ibe the behav~or of the  ~r~odel .  'I'hese ~~lnthemat ica l  

equations state the relationships between the entities in the rr~odel ant1 are coniplete 

without the definition of the conceptual model; they ale context free. 

3.  What are the  knowns and unknowns? The t l l i~d step of pl~ysics-based 

modeling, once we hnve definer1 the cor~cept ual ant1 t 11c 111dt I I C I I I ~ L ~  i c  nl   nod el, is the 
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collection of the mathematical problems, which are the statements of the concep- 

tual tasks pursued. In other words, in the addressed problems section we examine 

which of the terms of t,he mathemat,ical model have known values a.nd which t,erms 

are unknown. In addition, we determine the order in which the equations from t,he 

mathematical model come into play. 

4. What are the so lu t ion  techniques? Sometimes the mat,hernatical problems 

may be solved analytically, but,, in the case of physics-baed rnodels, t,he problems 

are solved numerically. The implementation section cont,a,ins details such as which 

numerical solvers are used for the specific prol~lem, and which numerical parameter 

settings produce acceptable results. 

For the rest of the paper, I will use this division t.o underst,a.n<l, a.nalyze, and present. 

the reviewed t,eckrniques. Addit,ionally, posing m t l  answer.ir1g these cl~~est.ions during the 

modeling and development phase can help us build n~orlels Ihat will 1 ) ~ )  robust,, r.eliiible and 

extensible. 

5.1 The Motion Dynamics of Snakes and Worl~ls 

Miller in [48] addresses t,he quest,ion of  nodel ling biological I'orrrrs I'or t Ilc 1,urposes of a n -  

mation. Animating three specific modes of 1ocomot.ion of legless creatures, such as snakes 

and worms, is at,t,ained by using mass-sl~ring models. 

Conceptual model. Animals ca.n be cla.ssified illt,o two cat.egories b;tsed on t.heir st,ruct,ure. 

Animals that  ha.ve rigid skeletons and part,s conrrect,ed t,ogt.thel. by joillts and animals such 

as worms and snakes that  can he thought as a, t,uhe which ca.n I)e hei~tl it.11t1 stret,clied. The 

complex t,opology of the skelet,on of anjmxls wit.h arms an tl legs rc*cluircs the considerat.ion 

of the dynamics of hiera.rchica1 rigid st~.uct,ui.es. The authors ij.l.gliP t l i i>t  t,lic. kinen-latic 

and dynamic rnoclels t,hat. have been presei~t.etl i n  the 1i1,ei.a.t u1.e fbr (he  ~lrntlelir~g of legless 

figures [32], although successfl~l at aniniating the skclet.a.1 st.ruct.r~r.e. 1 1 i i . v ~  not. addressed 

problems concerning the skill and muscles. Modeling t,lre skin a ~ i d  the muscles is not the 

only challenge: worms and snakes change shape during the locomot,ion. They move on t,he 

ground in a way that  depends on t,heir grip t80 it.. Also, t,hey tlefbrm elast,ically when they 

come into cont,act. with other creatures or 0bject.s in t,lieir environi~lent,. 

The author is not t,rying to rnodel a.ccura.t,ely snakes arltl worlns. 1>1it rat.lier t,o cont,rive 

a dynamic model t,o meet his goal for realistic animation of' locomotion. \4lorms are modeled 

as tubes formed from elastically deformable materials. ,4lt,hough sna.kes do have a skeleton, 

their sha.pe wa.s approximat,ed a.s a tube as well. Each segrnclit o f t  h e  cr.tat ur.e is nlodeled as 

a cube with it.s mass nz dist.ribut.ed at t,he ver.tex poiirts Iriivi~rg spri11gs of It111gt 11 1, alo~lg each 

edge and across t,he diagonals of each face. The edge ant1 diagoni~l spr,ings t,oget,her cont,rol 

the Young's modulus and the diagonal springs a.ffect t,he shear and t.wist.ing lnoduli. To nrake 

the model realistic (since in realit,y the ~nuscles of woritls bulge out, during cont,ract,ion) the 

circumferential spring lcngt,hs are increasetl as a funct,ion of the axial compression. To keep 
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the total volume constant, the springs around the circumference of the worm are scaled 

using the scale factor 1/ L.  

To achieve locomotion, the author incorporates to  the model forces, that  act on the 

environment in a direction opposite to the motion. He draws the analogy from walking 

systems that  use isotropic friction to propel themselves forward by alternating pressure 

from one foot to  the other. However, since snakes and worms are constant.ly in touch with 

the ground, they utilize different mechanisms. The interaction forces can be categorized 

into macroscopic friction and microscopic friction. Macroscopic friction occurs when an 

object such as a snake interacts with large objects, pushing against them by reconfiguring 

its body shape. Microscopic friction occurs when the surface micro structure of the object 

interacts with the small scale features of the surface. 

Y=Ys 

___O 

Direction of Movement P i . 1  

Figure I :  (a)  A two mass, one spring worm. (I)) Point,-plane const.~.ai~r t, int.erscct.ion 

Scientists have observed three basic pat,t,erns of locomotion in snakes ancl worms. In 

horizontal undulatory progression the snake moves forwartl by throwing out lateral undula- 

tions of the body and pushing them against any ir~.egularit,y in t.lte surface. On surfaces with 

no macroscopic features to push on, snakes move forward by scut,ing forward and backward 

over their ribs. This movement where the snake moves so that, every p i ~ ~ . t  of i t s  botly follows 

approximately a straight-line path is called rectilinec~r progression. When a body segment 

moves forward, the scales slide relat,ively easily over t,he ground wit,h mini ma1 friction. On 

the contrary, when the hody segment slides ba,ckward t,he scales tlig i n  and t.he frict.ional 

forces are large. Fig. ( l a )  shows a geometric model of t,his form of ~nicroscopic tlirect,ional 

friction. When the spring expands, scale B will slide over the ground and scale '4 will grip. 

When the spring contracts, scale B will dig ant1 scale A will slitle. A t.hird form of snake 

locomotion, used on smooth or yielding surfaces, is sidednrlin!]. I n  cases of poor surface 

grip, such as sand, one way to  increase the frictional force is by retlt~cing t.he cont.a.ct area 

with the surface resulting on an increase of the effective pressure. In  essence, t,he snake 

anchors a portion of the body in the substratum and lifts the rest out Iat,erally to a new 

position. When t,he lifted part in anchored again, the portions of t.he body left. behind 

are lifted to  a new position. By const.ant,ly lift,ing and anchoring a.lt,ernat.c part.s the snake 

moves in a lateral direction. 

M a t h e m a t i c a l  m o d e l  The au t ,ho~  calcula.tJes t,he forces exer.t.ecl at. the ends of t,he spring 
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a t  each time interval. The force f along the spring direct,ion is given by the formula: 

where k is the spring constant, L is the minimum energy spring length, 1 is the current 

length of the spring and D is the damping constant. The total force, including the force 

of gravity and forces imposed to the system externally is divided by the mass to give the 

acceleration. By integrating the acceleration twice with respect to  time, the new position 

x, of point p is computed as x, = J J fidt dt, where m, is the mass of the point and ft 
m~ 

is the total force acting on the point,. 

The effects of the directional friction were studied using a geometric model. The local 

forward spine unit vector s was con~puted from the center of the next 'xntl last segments: 

The velocity v was then modified as follows: if (s . v  < 0.0) v = v - s(s . v) ,  which results 

in preventing any hackward sliding of the creature. 

As a point mass moves from one point t,o a.not,her, collision with a.not,her point ma.ss 

or surface is possible. For computer aniniations, two specific issues a.1.e at. hand, collision 

detection and collision response. Det,ection is primarily a, kine~nakic problein, which involves 

the relat,ive posit,ions of t,wo  object,^, while response is a. tlvnamic prohlerr~ which involves 

predicting behavior according to laws of physics. The aut,llo~.  present.^ a geometric method 

to  detect if the motion of a point int,ersect,s wit,h a. surfa.ce tlesc~~ibed by a con~t~raint, equation 

y = y, and comput,e t.he coordinat,es of t8he new position in t,he case of collision. For a point, 

mass traveling from P, to  P,+l (Fig. 11)) t,he int,ersect.ion position ( r , .  y,)  will be given by 
(" -x + I )  y; = ys and x; = x,+l + (ys - y , + l ) y y .  The new posit,ion (1:',+, , y'l+l) is given by: 

Yl- -Y,+I  

y'j+l = y i + ~ n ( y i  -y j f l )  and x ' ,+~ = xi f r t ( x t  - x,+1 ), where T, is t ,l~c coefficient of normal 

reflection, and rt is the coefficient of tangent reflectlion, a s s u ~ ~ ~ i n g  iLn inelastic collision. 

Addressed Problems Using t,he al~ove ir~a.t.llen~at~ici~l ~-r~odel, t . l~e aut 1101. seeks to  ani- 

mate the three nat,ural n-lodes of' loco~not,ion. To achieve horizont,al untlula.t.ory progression 

external forces are applied as waves that are send down t,o t,he 111ass-spring systern. To 

achieve the effect of bending the snake t.he springs OII t.he lest 1~a11d sitlc are 180 degrees 

out of phase wit,h those on the right hand side, Rect.ilineitr p~,ogress io~~ is att.ained by os- 

cillating the spring length as a funct,ion of t,ime. The filnct,ion chosen is a sine wave, since 

using a compression square wave result,s in peculiar dist,ol.t,ions of t.hc shape of t,he worm, 

due t o  the coarse nature of the mass-spring a.pproxirnat,ion. For t.he sitlewinding motion a 

vertical sinusoidal flexing of the snake, which is 90 degrees out. of' plia,se wit,h respect to the 

horizontal undulations. is used. 

Implementation Notes To c0mput.e the posit.ion x i3.11d t.l~e velocity v oSea.ch point,-rr~ass 

the Euler integration method was employed: 
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X ( t + l )  = X ( t )  + J t )  hi + l a ( t )  and V(f+l)  = V ( t )  + a(') ~t 
2 

where 

a(t)  is the acceleration of a point a t  time t .  The author chose the Euler integration, although 

it is slower t o  converge than higher order methods such as the Runge-Kut,t,a [lo]. The reason 

is that  the higher order methods are based on the assumption that  the forces vary smoot,hly 

as a function of time, which does not hold in t,he present model which has similar behavior 

as if collision detection was implemented as impulse based forces - infini1.e forces applied 

instantaneously. 

Commeilts The use of a mass-spring model, introduces excessive implementation de- 

tail a t  the conceptual level and results to  discretization art,ifacts hardwired t,o t,he model. 

Specifically, the disadvantages are the following: 

Changing the solut.ion paramet.ers requires modifying the liigl~e~. level 111otlel. 

The interaction with ot,her objects is rest.rict,ed t.o occu~. at, t,he grid poi1it.s of the 

model. In collision det,ect.ion for example, t,est.s must. I)e pe~,fo~,nred i l l  order for small 

object,s not to penetarate t.hroug11 t,he ernpt,y spa.ce bet,ween t,lre lirasscs. 

The user needs to  select initially t,he number of poii~t.-1nassc.s s~i t . i~I>lc  for the simula- 

tion. 

The primary source of complexity a t  t,he given motlel is the number of t,he point-masses. 

Since we are only considering one snake, t,he conceptual model is simple. Tlir mathematical 

model, on the other hand, is presented collect,ions of ecluat.ions t.llat. describe the iiidividual 

components of the model but there is no rnat,hema.t,ical expression for t.Ile rr~odel as a, whole. 

In that  respect the present,ation of t,he ma.t,hemat,ica.l model is I-lot coinplcte. There is no 

indication of the amount of mass a.ssigned t,o each segrr~cnt 11~it11c.1.  a.1.e t he tlirnensions of 

the springs specified, nor the coortlina.te syst,e~ir is present.t.tl. 111 atl(1itio11. choice of t,he 

model parameters are arbit,rary and based on t,rial anti error. 

The geometric model for collision det,ection of t,he snake wit,h a, surface I~as  t,he following 

advantages : 

It is easy to compute. 

It is done in t,he stat,ic coordinat,e frame of the constl.a.int ec1uat.ion that tlescribes t,he 

surface so that  we ca,n int,o a,ccount t.he ~rroveinent of  tlrr sl11.fa.ccl. 

The constraint is always met,, ant1 t,llerefore t.he points ii.1.e gua.ra.nteecl not t.o penetrate 

the surface. 

Nevertheless, in case of surfaces with sharp discontinuities, exterlsivc collision detection 

tests have t o  be performed, which increase the computational loatl of the algorithm. 

One possible ext,ension would be to consider. environ~-rient,a.l obst~acles also 1.0 use a, stleer- 

to-avoid algorithm. R.eynolds in [57] presents a det a.iled st.eer-1.0-avoid algo~.it.lim based on 

a perception model of simulat,ed vision. 
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After a collision is detected the issue of collision response comes into play. In the 

current scheme there is no efficient method for response that  would account for the stress 

distributions due to  deformations across the surface. Moreover, the current model permits 

the snakes t o  inter-penetrate themselves when they coil up. 

A more realistic model will involve more than one snakes or worms moving at, an 

environment with static and dynamic obstacles. This would require 1.0 direct t,he snakes 

t o  specific actions giving the creatures goals and path planning abilities. Having different 

goals though, implies being able to  mingle various behavior modes into a single model, 

whose overall behavior will change as a function of time. 

5.2 Fast Animation and Control of Nonrigid Structures 

Systems that  use mass-spring lat,tices possess many local tleg1,ees of freetlol~~, and they t.end 

to lead to  stiff equations which are expensive t,o solve. To overcome t.hese problems, Witkin 

and Welch present in [87] a fast inethod for approxirnat.ing t.lre sli;ll>e of' o11ject.s composed 

from nonrigid components, and for cont~rolliiig t.hei I. rr~ot ion tl u 1.i I I ~  si I I I  ula.t.ion . The goals 

of the model include the abi1it.y t,o: 

Represent nonrigid objects 

Simulate nonrigid behavior in a rapid way. 

Produce animation by directly specifying t,he goa.ls, ant1 by tlynamically calculating 

the motion required to  sat,isfy them. 

Develop a vocabulary of simple goal-direct,ed 11ehavior.s that car1 h e  chained to produce 

complex act,ions. 

Conceptual model In order to create sirriplified tlynarnic n~odels, Wit,kin and Welch 

model nonrigid objects using global deformations, wit,h relat,ively few degrees of freedom. A 

global deformation is a mathenlatical funct,ion that, maps spa.ce t,o it,self' bv a.ssigning new, 

deformed coordinat,es t,o each point of t,he untleformcd spa.ce. T h e y  have i~ugrr~ent,ed glol~al 

deformations in t,wo ways. First,, mass is embecltletl in 1.11~ spilce ivherc t Ire tlcforrnat,ion act,s; 

second, an  energy t.erm is adtled, inducing eit,lier ela.st,ic or volurrle preserving behavior. 

Mathematical model Global deforrna.t,ions t,ha.t i1 l . t  lineill. f'unct.ions of' t he st.a.t.e of t.he 

system can be writ,t,en as 2, = R;,p,, where x is a, worltl-spii.ce p o i ~ ~ t .  t .l~e corr1ponent.s 

of matrix R are the generalized coordinat,es, and p is a, funct.io~~ of t I I ~  coordinat,es of t,he 

undeformed point, but not of R or of time. The index i tlenot,es t.he ( J : ~ ,  s;!, T ~ )  coordinates of 

a point,. Notice t,liat while deforn~ations of this form are 1inea.1. in t.l~e st,il.,t,e R, p may depend 

nonlinearly on the undeformecl coortlinates, as in p ( r ,  y, 2 )  = ( I ,  : r ,  y, z, .r.g, a.2, yr ,  r 2 ,  y2, z 2 )  

which is second order. 



A particularly simple linear deformation that  can describe the deformation of a body 

that  undergoes affine transformations - t ran~la t~ion,  rotaation, stretch and shear - has p(x, y, Z) = 

[x, Y, z ,  llT and 

The 3 x 3 submatrix N is an ordinary 3-D transformation matrix, a.nd T is a t ran~la t~ion 

vector. If we imagine a cloud of a fixed points, each one with mass m ,  all subject,ed to global 

deformation, changing the deformation paramet,ers will result in moveme~~t  of the deformed 

points. Thus, we can associate a mass displacement (change in the kinetic energy) with a 

parameter change. Given the velocity of a point xi = Rijp,, the kinetic energy of the model 

is 
1 .  1 .  

I = -7n5iii = - R , ~  R i k ~ , 7 k  
2 2 

where M is a constrant symmetric matrix defined by1 A l l k  = nl/J,pl-. 

To attain elastic behavior, we define an energy function V, = h', ) r s , , , r ~ , , ~  - h , k 1 2 ,  where h', 

is a stiffness const,ant,, whose rninirnu~n lies at. t.he undeforr~~ccl st.at.c> ii11c1 t l ~ r  A'..; i1.r.c I < r . o ~ ~ e c k ~ ~  

deltas, defined by 6;, = 1 if i = j and zero ot.l~e~,wise. ?'lie vii.litlity 01' t l r c l  st.at.clr~ci~t caii 

be verified by the following observat,ions. The scluared nl;l.gi~i t, ude of' a I. l .a.~~sl 'o~l~rle( vect.or 

x j  is n;jnikx,xk, which is equal t,o the squared rnagnitntle of' .r for all .r: exact,ly when 

N is orthogonal. Arl affine deformable body is in its undefbrmetl stat,e exact,ly when the 

submatrix N is an orthogonal matrix, t,ha.t is n,,Tt;k = 

In order to attain volume-preserving beha.vior, in which wheu a. body is st,ret.ched along 

one dimension, should squash along the ot,hers, t,he aut.hors define t.he energy function 

V ,  = iC,(det(N) - 112, where K ,  is a. stiffness const,ant. This is true bc~cause a n  affine 

transformat,ion is volume-preserving exact,ly when (lct(N) = I .  The foi,ccs ;~ssocia.t.ed wit,h 

these energy terms are given by t,he gradients of t hc defined ftinct.ions. 

a v The authors omit t,he potent,ial energy V ,  noting t,hat the force tlric 1.0 V is - ( -  , 
a4 ) 

which may be subsumed in the generalized force Q,  t,heref'ore the L a . g ~ . a ~ ~ g i i t ~ ~  L = I. The 

generalized coordinates that  describe t.he geometric degrees of freetlon~ ol  t,he system are 

the components of the matrix R. To obt,ain the Lagrange eyuat,ions oi' n~ot~ion we observe 

that  

a c Using the identit,y a i j b i j  = a, and also the symmetry of M, we ol~t,ain - = R,.k.Mks from 
8 R , ,  

which it follows that, $(% ) = ~ ~ ' . f l l k ,  ar~d  also 1,liat & - - 0. ( ' o ~ r ~ i ~ i n i ~ ~ g  t.11e iibove, the 

equations that  govern the change in t,he value of the genera,lizetl coo~.(linilt es a.s a. ~.esult. of' 

the application of the ext,ernal forces are: Ri,M,]k - QiL. = 0 and since M is const.ant. it,s 

'In the paper is erroneously stated as: Mjl;  = ~ ( m P j p k )  wi th  s ~ ~ r ~ ~ r u i r t i o n  perforrued over all the  mass 

points in the body. 
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inverse W may be precomputed giving: 

where the generalized force Q due t,o a force f applied a t  a world-space point x is Qik  = 
ax 

f r ~  = f r 6 T i b j k ~ j  = f i p k .  

Equation (1) refers to the entire system. In a system consisting of' more tha t  one 

objects, the global state vector is formed by concatenat,ing the state vectors of each object. 

In the case of objects with parts, the joints are abstracted using at,t,achment constraints 

according to  the method described in [85] ,  which is related to [9] and [ 5 5 ] .  Given a physical 

system whose state is described by the vector q, we can iir~plicitly irr~pose a holonomic 

constraint, where we define as st,at,es consistent with t,he const,raint t.he ones t,hat satisfy 

the equation c ( q ,  t )  = 0. If mult,iple const,raint,s are t,o I>e rnet sir-rrult.aneously t.hen c is a 

vect,or of const,raint~s The basic a,ssumpt,ion is t,hat if t,he svst.em begins in a. legal state wit,h 

c ( q , t )  = 0, and c(q ,  t )  = 0 t,hen requiring c ( q ,  t )  = 0 suffices, a,t least i n  principle, t,o hold 

the  constraint,^ in force. The differential equat,ions governing n~ot,ion of t.he con~t~rained 

system are: 

iJ = jwJk(Fk + Q k )  ('2) 

where Q is the known applied force a.nd F is t.he const,~,a,inetl fc)~.c.c. I3(~.ausca q tlepends on 

the force, the prol~lem is t,o calculat,e a const,rainetl force F t.hat projects the arcelerat,iou int,o 

the legal subspace. The authors' inet,hod is similar to t , l~e consl.rair~t, sta1)ilization method. 

First, they express the vector c as a funct,ion of q as 

a 2 c  . where 2 = q k .  The const,r:rint force should not add 01 relrlove energy from the 

system therefore rccortling t,o t,he principle of the virt,oa,l work Fl = A,$, where A's are 

known as Lngrnnge multipliers. Subst,it,nt,ing: ( 2 )  i n  ( 3 )  r.ecluir.i~lg c = 0, we obt.ai11 

The constra.int,s are enforced by solving ( 4 )  for X ;tntl t.heu using X t,o cornput,e F. In 

practice, F plus an addit,ional feedba.ck t8erm, are a.ddetl t,o t.he applied forces t,o compute 

the legal accelerat,ioes. The feedback t,errn (crc, -/- /3fi)%, where o and /3 are const,ant,s, 

inhibitas drift and brings the syst,ern initmially t,o a. legal sta,t,e. 

TO handle collisions the authors allow the prescril>etl velocity of' a point to undergo a 

discontinuous change, using impulses Z. Irnpulse is the ~j~.otlucr of t.lle ;t.verage value of a 

force wit,h the t,ime during which i t  a.ct.s ant1 equal t,o the (lllit~~gc i l l  ~ l ~ o r ~ ~ e n t . u ~ n  produced 

by the force in t,his time int,erval. For discont,inuit,ies at. t.lle velocity, tluc t.o ve1.y large 

forces t#hat act for a very short period of t.irne, resear.cl~el.s t. r.ea.t t.lre cl u ra.t,io~i of t.he event, 
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as zero and describe the behavior of the system in terms of the integral over the short. 

time interval. The equation 4i; = W i j Q I j  becomes Aq; = W i j Z j  where A4 is the change in 

velocity. Assuming that  impulse forces are a linear combination of the constraint gradients 

the discontinuity a t  the velocity appears in the direct derivative of the constraint with 

r e s ~ e c t  t o  time. 

Once A is obtained, the constrained impulse is Z, = A;$. 

Addressed Problems To achieve their first goal, being able to represent complex nonrigid 

objects, the authors used point-to-point const~aints. The joint Ijetww11 tlrc p a ~ t s ,  hiound 

which the bodies may move freely, ale abstractetl as a point-to-point constraint which 

requires that  two points (one from each object) to coincide i l l  space. 

Their mathematical model provides the machinery l.equi~,cd t.o a.ni1n;lt.e a, collection of 

objects, by moving arbitrary points of t,he object as a funct,ion of t,ime. The user can select, 

points on arbitrary frames and specify the traje~t~ories t,hat t,hey are allowed t,o follow. Given 

the position and the velocity at  t.he beginning of t,he frame, tllc rrroclel is a.l,le t,o accurately 

and stably follow any piecewise t.wice differentiable trajectory, specified by a, point.-to-pat,h 

constraint of the form R;jy, - ru,(t) = 0 ( w ( t )  is a t.wice-tliff'e~.ent~iaI~Ic function of' t . i~~re) ,  a.t. 

interactive speed. As the control poii1t.s move along the specified pa,th, tlre ~.est oft,he body 

points move with passive dynamics. The real advant,age of t.his rnet.1iod is t.hat fewer degrees 

of control than degrees of freedom are ernployed since t,he r.est, of' the I I I ~ ~ . ~ ~ I I  is tlet,e~.inined 

by the laws of physics. 

One import,ant aspect of their technique for controlling t,he aniination is t.he ability to 

freely turn constraints on and off during the animation. Turning a coi~st~~.aint  off is easy; 

it involves eliminating the relevant blocks from t,lre const~l~aior inatrix %l/15a% t ,h~is elim- 
arl, 

inating the rest,oring forces. On the cont,rary, turning on a c o ~ ~ s t . r i t i ~ ~ t ,  du~,ing an ongoing 

motion, raises several technical issues. The reason being t.ha.t,, when t.he const.raint. is ini- 

tiated the position and t,he velocit,y of the cont,rol point,, which 111) t.o t.hat point were in  

accordance with the specified splined t,raject,ory, 1na.y not init,ia.lly Fulfill  t,lhc const.~.aint.. 'lo 

handle this problem t,he aut-hors propose the met,liod of' constrrlirlt pr~.r.oll. To 111,ing t,he 

point smoothly from t,he uncont,rolled st,at,e t,o t,he requi~.cd init.ia.1 st.;ltc. t l~cy con1put.e a 

spline segment that  joins t,he t.he two st,ates and is a.ct,ivat,ed shol.t,ly hefore t,he nominal 

activation of the constraint,. 

The authors have placed ernphasis on t,he development, of a voca.ljula.ry of goal-directed 

behaviors that  can be combined to at,tain complex behavior. One example of at,omic be- 

havior is to  move a body point to a specified position and velocit,y, over a determined time 

interval. Specifying point. t.rajectories has t,he disa.dva.nt,a.ge t.l1;1.1 i t ,  cannot. ;l,ccount for the 

dynamic changes in the environment,. For exa.~nple, in t.he case or the ( ~ o ~ ~ ~ l ) r ~ t . i i . t . i o ~  of t,he 

motion required for ;L hand to grasp an object,, if t,lle ohject , '~  posit,ion is changed "the 

hand will happily grab t,he empty space where t,he object used 1.0 be" [I). 2-19]. To solve 
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this problem they directly specify the goals of the actions, and dyna~nically calculat,e the 

motion required t o  satisfy them. In the case of the atomic behavior of chasing a target, if 

the target is stationary, a spline segment is constructed where the cha.ser's initial position 

and velocity are the initial conditions, and the velocit,y and position a t  the target are the 

final conditions. If the target is moving, its positlion and velocity at  the tirrle of cont,act are 

calculated based on the current values and a spline to the estimated point. is constructed 

and updated only when things change. 

An additional feature of the proposed method for the control of an animation refers 

to  the ability t o  provide a graceful way to  start and stop animation using impulses. The 

authors not only use an impulse to  install the initial control point velocities and start an 

animation but also to  bring the cont,rol points to a well-behaved halt. 

Comments The use of global deformations offers t,he a.tlvant,age of reducing the dimension- 

ality of the equations ant1 eliminat.iug t,he high-frequency co~r~l)oirel~t.s t.l~at l e d  t.o ~t~iffness. 

For def~rmat~ions  that  are linear functions of st,a.t.e, t,he I I I ~ ~  rix M is cunst,ant which in a 

true dynamic syst,erri is not constant,. Pre-inverting t,llis ~l.la,t~.ix yielcls considerable benefits 

of performance and allows reasonably complex systems t,o he ma.nip~~la.ted at. interactive 

speed. 

The const,rained nlat,rix remains const,ant, except when corlst,r.aint,s are adtled or delet,ed, 

therefore interact,ive speed is attained. If x is a point. on a l i ~ ~ e i ~ r l y  dclbrrt~able body, then 
ax, - ~ ( R , , P ~ )  - 
aR,,- 

- 6;,p,, which is a const,ant,. Since ea.ch const~.a. i~~t.  is a. linear funct.ion of 

one or more points, the derivat,ive of any const.r;ti~lt. wit 11 r.espcct. t,o a point x is constrant, 

as well. Their technique for const,raint sat,isfaction offers t,hc a.dtlitional i~tlvant.age, over t,he 

constraint stal~ilizat~ion t,echniclue, t,hat it can handle cout.ra.tlict ory const raint,s wit,h grace. 

If there are a.ny cont,ra.dict,ory const,ra.int, forces in t,he svst.ern. tlrev C ~ I I C P I  out t,hrough t,he 

Lagrange multiplier method. The relative st.~.engt,hs of' the fe~dback t,erm det,ermine the 

relative import,ance of each constraint and t,herefor.e the final st.a.t.c of t lie syst.ern. However, 

since these feedba.ck terms interact,, it, is difficult t,o cont.rol the exact rnot.ion t,owards the 

constraints. 

Being able t.o freely t,urn control p0int.s off and 011 d u r i ~ ~ g  t I I P  i>~li~l~i>t.ioll is irt~[)ort,ant,, 

since we need not cont,rol t,he movement of all cout,rol point,s i ~ t  all tirnes. If, for example, 

they wanted to  animate walking it would not be necessary t,o control heel, t.oe and knees, 

all a t  the same t,ime. The heel position must be accurat.ely cont.rolled I~efbre ant1 (luring the 

support phase, but during the swing i t  can just follow t.he t.oc. 

One import,ant aspect of t,he a,ut,hors' resea.t.ch is t.hc tlcvclol)rner~t of a vocabula~~y of 

goal-directed behaviors t,hat can be cotnbined t,o a t , t , a i~~  coniplex beha.vior.. Specifying goals 

of the actions for t,he animation ant1 dyna.mica1ly calculat,ing the motion required t,o sat,isfy 

them has the advant,age t,hat tlyna.mic cha.nges in t,he environment a.1.e taken into account. 

during the animation. 

On t,he ot,her hand, represent,ing only global clefori-~~a.tions t11a.i. ill.(' li11ri1.1 i n  st,at,e, t.hey 

give up the ability to represent a numl~er of natural o11ject.s. The intlivitl~ial components of 
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the mathematical model are described as collections of equations, having no mathematical 

description of the relationships between these collections. Therefore, the presentation of 

the mathematical model is incomplete. 

5.3 Recovery of Nonrigid Motion and Structure 

Pentland and Horowitz [54] take advantage of the constraints that  real ~nat~erials impose 

on the types of nonrigid motion, to  allow over-constrained estimates of 3-D nonrigid motion 

from optical flow data. Their method is inspired by modal analysis, a technique for analyzing 

the vibrations of linear mechanical systems under periodic forcing conditions, and they 

discard high frequency modes, to reduce the dimensionality and the stiffness of the models. 

C o n c e p t u a l  m o d e l  The authors use the force-and-process rnc.t,a.phor of I-nodeling clay: 

the shape of the an object is considered t,o be the result of'pushing, pinching and pulling on a 

lump of elast,ic ma.teria1 such as cla,y. For t,he represent,at,ion, t,hcy e~nploy pararnct.ric solid 

models described as irnplicit funct,ions. To st,ress t.he ir[lporta.nce of glol)al dcforrna.t.ions 

they mention the following quot,e from Grirnson "An el;i.st,ic rnot ion, including t.hat of a 

walking man with his gestures and facial expressions, coultl be analyzed i11t.o a set of rigid 

motions of elementary particles if one wished to do so, but, it is ljet,t,er t,lrought of in terrris 

of components like bending, flexing, st-retching, skewing, expi~ntling and bulgingn[p. 7301. 

M a t h e m a t i c a l  m o d e l  The authors' intent,io~i being to use tleforma.ble li~odels, they use 

formulations for relating the forces on t,he surface and wit.hirr t . 1 1 ~  I)otly t.o its defbr~~~at . ions .  

Finite Element Met,l~od (FEM), which is one of the numerical procedur.es for solving syst,ems 

of differential equations for engineering analysis, p~~ovicles a very efficient forrnulat,ion for 

this kind of appli~at~ion.  The primary steps of t.he FEM [ l o ]  are 1.0: 

r Idealize t,he system into a form that can he ana.lyzetl - tliscr.ct ize. 

r Formulate the governing equilibrium equations of t,he itiealizetl sys te~n.  

r Solve these ecluilibriuin ecluat,ions 

r Interpret the results t,o the entire system - utilize cont. i~~uulr~ ol' e1c111ent.s t.o obt.ain 

solutions for t,he whole system. 

The f~rmulat~ion of the displacement,-ha.setl FEM is ba,sctl on 1 hc facl 1 Iial when a part of 

an  object is allowed to be displaced, it is possible t,o ci~lcu1~~:tt.e t.he a.pplied forces on it.. 

First, we idealize the structure as an assemblage of elen-kenis t,hat. are int,erconnect.ed, and 

identify the unknown  displacement,^, which are t,he result of' t.he a.pplietl forces. For the 

equilibrium of the body it is required t,hat for any compa.t,il,le, sn~all  vi~.t.uai displa~cement~s, 

which satisfy the essential boundary contlit,ions imposed on the I~otly, the t,ot,al vir.t,ual work 

is equal t o  the tota.1 external virtual work. Energy equa.t,ions are formulat,ed in t,erms of 
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the displacements of the nodes of the elements along with the forces corresponding to  the 

unknown node displacements. The equations governing the linear dynamic response of the 

system of finite elements are2: 

where U is a 3 n  x 1 vector of the (Ax ,  Ay, Az)  displacements of the n nodal points relative 

t o  the object's center of mass, M ,  C and K are the 3n x 3n matrices describing the mass, 

damping and material stiffness bet,ween each point within the body and R is a 3n x 1 vect,or 

describing the (x,  y, 2) components of the forces acting on t,he nodes. Equat,ion (5) is a 

system of linear differential equations of second order. The solution can be obtained by 

standard methods for solving different,ial equations. However, these rnet,hods are computa- 

tionally expensive; hence a few effective t,echniques are requil.etl 1.0 reduce t lie corr~putational 

cost. Two of these techniques are discussed I~elow. 

Direct integrrltion methods: In direct. int,egr,at.ion t.he eclu:at.ion is int.egr,at,ed using an 

iterative technique. By direct,, it is meant that prior t,o nnrnerici~l int.egr.at,ion, t,he ec~uat~ion 

need not be transformed. These techniques are air~~etl  a.1. sa.t.isf:vil~g r l ~ c  cclu;i.t.io~~ only at, 

discrete time intervals A t  apart ,  rather t,lran at, a,ny t,ilne. 'l'l~e vil,~.iat,ioi~s in displa.cert~ent, 

velocities and accelerations within a time st,ep are assu~t~ecl ~ n d  i t .  is t liis assurnpt.ion that 

determines t,he accuracy, st,abilit.y and cost efficiency of' 1.111. s o l ~ r t i o ~ ~ .  Therefore, direct, 

integration techniques are good for simulat~ions with short du~,a,t,ion. 

Clzange of basis to generalized disylncen~ents: To reduce t,bc co111put.ij.t.iona1 cost, 

we can transform t,he original coordi~lat~e syst,em for notlal tiisplaceii~ent~s t,o one whose 

basis vectors are the columns of a matrix P for which U = P f i ,  where P is a square 

transformation matrix and o(t) is a time-dependent vect,or of ~]enerurlized displncenzents. By 

sub~t i t~ut ing this t,ransformation int,o ecluxt,ion ( 5 )  and pre-mult,iplving by PT, t,he governing 

equation is transformed int,o t,he eclua,t.io~i: 

(where M = P ~ M P ,  = P ~ C P ,  K = P ~ K P  and R = PTRP)  for. t.he coordinat,e 

system defined by the basis P. The new mass, stiffness and tla.rnping nla.t.rices have smaller 

bandwidth than the ones of the original syst,err~. The opt,i~nal h;i.sis Q, t.o diagonalize the 

system of ecjuat,ions, which uncouples t,he degrees of freetloni a~itl 1)rovitles the abilit,y t,o find 

closed form solut,ions, has as columns t,he eigenvectors of M - ' K  [ lo] .  These eige~lvect~ors 

are called t,he free vilrration moties. Using t,his t,r.ansforma.t,ion n ~ a t  [,is we get, 

where R 2  has as diagonal elerr~ent,~ the eigenvalues of M - ' K  

'In the paper the equation is erroneously stated as: MU + CU + K U  = R 
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Note that  the eigenvector 4 ; ,  which is called the i th mode's shape vector, describes how 

the coordinates of each nodal point (z;, y;, . z ; ) ~  change as a function of C,, t,he it,h mode's 

amplitude: 
dxl dyl dz l  

4; = (- - -,.. ., dzn dy. d.Z,)T --- 
dii; ' diii ' diii dGi ' diii ' dii;  

Letting V = (x l ,  yl, i - l , .  . .,in, y,, be the 3-D velocity of each node, we then have 

V = +% = afi, and given the 3-D motions of each node, the modal velocities can be 

computed as follows: fi = +- lV.  

Addressed Problems For shape estimation, which is described in [54], sensor measure- 

ments are used t,o define virt,ual forces which deforlri an ol)jec.l. t,o f i t  {.he tlitt,a point ,~.  The 

authors solve the equililjrium ecluat,ion KU = R t,o obt.ain t.he tlisplace~ncnts U. To over- 

come the difficulty posed by the large dimensionality of t,he mat.ris K a.ncl t . ~  obta.in a closed 

form solution, this equation is converted t,o the modal coor.dinat.e s y s t e ~ t ~ :  a T ~ + f J  = a T ~ .  

In the case of mot,ion est,irnation, the problem is t.o "find t,he 1.igit1 and nonrigid 3-D 
dU motions that  best account for the ohserved 2-D irna.ge vclociti~s"[p. 7:3:3].  The inajor 

difficulty in finding a solut,ion for t,llis case is 1.1-\at t.llcre arc 3 1 1  I I I I ~ I I O L V I I  tlcgi.~~os of'1'1.eetlom 

in the model and at  most 211 degrees of freetlon~ i n  t , l~e obse~.vi~t . io~~s.  'To ~ . ~ t l u c c  t , l~e ~~ulr iber  

of unknowns, the authors discard the high frequency ~nodes. T l r c l ~ t f o ~ ~  t 11r ~)roljlcrn i n  the 
? ij 

modal coordinate syst,ern hecon~es t.o b'find t.hc set. of' :J-I) 111,or1( 7!clorit;ic.i. t.lra.t, best. 

account for tlhe observed 2-D ima.ge velocit,ies"[p. 7331. H y  clcoosing t.he r n  ( / / I  5 2n)  

lowest frequency modes, the prohlen~ can always Ije rriatle over-const.~.a.ii~etl. 'l'o est.irria,t,e 

the nonrigid 3-D deformation at  each subsequent t,irrle t given noisy est,irna.t.es of 2-LI optical 

flow data  a t  m image points, they first allocate each of' the o~j t~ic  flow vectors t.o the nodal 

point whose image projection is closer to t,he flow's vector positior~. This produces est.imat,es 

of the projected 2-D nodal velocities V,. The aut,hors construct rna.t,~.ix cP, by removing the 

rows of @ that  correspond t,o z-axis displa.cements, t.he rows that, cor~~espond t.o t,he x a.nd y 

displacement of nodes witshout nearby opt,ical flow, along with t I I C .  colu~rlr~s t.1ia.t cor.respond 

t o  modes that  cannot be observed undel. ort,hog;~~aphic pr,oject,ion, like t.~.anslat.ion, scaling 

and shearing along z-axis. Correspontling rows and colu1111rs a.~.o r,tt~r~ovctl f'~.orr~ t.he matrix - - 
U also, yielding Up. To over-const,rain t>he problem, t,hev also clisca.rtl a sufficient. number of 

the low-amplitude high frequency modes. Th~1,efor.e. t,he est.i~nat,c of' the ohjec.t's 3-D shape 

u!) based on the optic flow dat,a is: 

Whenever the 3-D velocities of the individual nodes are reclujr.cd, w r  can convert 6, back 

to  the original space coordinates Ily inult.iplying Ily a,. 

Until now, we have considered kiiielnatic equations wherc3 veloc~ty a1 only one instant is 

taken into account. For tirne sequences however, we neetl 10 consitlor the < I v ~ ~ a ~ r ~ i c  propelties 

31n the  paper  is erroneously s ta ted  as:  u ( ' )  = +,,-'vl' '~r 
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of the body and data  measurements. The Ii'alman filter [ 2 5 ]  is a standard technique for 

obtaining estimates of the state vectors of dynamic models, and for preclict,ing the st,at,e 

vectors a t  some later time. The authors use a linear I<alman filter t,o est,irrlat,e positmion and 

velocity for the finite elemeilt modal parameters. Recall t,hat,, the state tunnsition equrition 

is x = Fx + w,  where F is the state transition matrix and w is the tlriving noise that  

accounts for the possible inadequacies of the state space model; the rrle(lsurement equation 

is z = Hx + v, where H is the measurement matrix that  describes the linear combinations 

of the s ta te  variables and v is the noise associated with the  measurement,^ z. Then, t8he 

optimal estimate 2 of x is given by the following eyuat,ion: 3 = Fjc + Kl(z - FI) ,  where 

K j  is the Kalman gain matrix. The authors choose as state variables the modal amplitudes 

fJ and their velocities = 0. In state space notation, the systern of equations is 

where a is a noise vector due to  nodal accelerat,ions. The ol>sel.vctl vil~,ii~l)le will the 7n x 1 + - 
vector of the 2-D nodal velocities4, V, = S U P  + v,  w11el.e v is t,he observation noise. The 

Kalman filter is t,herefore:': 

where 21 and rr ale the standartl tleviiltions of the  ~ r ~ o t l e l i ~ ~ g  a n d  I I I O ~ ~ I I I ~ I ~ ~ I I ~  ~ ~ o i s e  re- 

spectively. Using these equations, we call f'ormolate thc tlisl)lr?c~rr~rnt p~cclirtion at tirnc 

t + At. 

For the case of two objects attached t,o each ot,her, t,lie authors iissuine a. virt,ual spring 

between a point on each object's surface, which exert,s equal and opposit,e a.t.t.ract,ive forces 

on the two points of att,achment. Give11 a priori knowledge of t.he  constraint,^ t.hat the 

spring imposes, t,he aut,hors compensat,e for the cont,rihut,ion of t,ll;~.t const.raint to t,he st,at,e 

equations and then estimate motion as previously. The lialrnan st,ate equat,ion ( 7 )  becomes 

where Rc is a vector describing t,he load exe~ ted  on ea.ch ~lod i~ l  1)oint l ~ y  all irc.t,ive ror~st.ra.ints. 

+ - 
41n t he  paper is erroneously stated as: Vp = 2 U  + v 

51n all Pentland's papers t h e  equation is erroneollsly s ta ted  as :  
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Implementation Notes Using either mode superposition or direct integrat,ion procedure 

the solution is obtained by numerical integration. However, as the periods of vibration, Ti = 

e, i = 1 , 2 ,  . . . , n are known, in the numerical integration of ecj~iat~ions ( 6 )  an appropriat,e 
wt 

time step can be chosen that  ensures a required level of accuracy. On t,he other hand, if 

all the n equations are integrated using the same t,ime st,ep, t,lien the mode ~uperposit~ion 

is equivalent t o  direct integration. The essence of the rnode superposit,ion solut,ion is t,hat 

frequently only a small fraction of the total number of decoupled equat,ions need to be 

considered, in order to attain a good approximation. That  means that  only p eigenvalues 

and eigenvectors need t o  be found. The reason for only the lowest modes being considered 

lies with the fact that  when monotonic convergence condit,io~ls are not sat.isfied, the finite 

element analysis approximates the lowest frecluencies, and little or no accuracy can be 

expected in approximating the higher frequencies. 

Comments To solve t,he shape recovery problem i n  isolilt ~ O I I  ~ ' ~ O I I I  scgr~~cnl,ation, t.he au- 

thors assume that  t,he object part segruent.i~.t.ion is given i n  a.dva.~~ce. Alt.l~ougl~ segn~ent.at,ion 

and shape represent.at.ion appear t,o be tlist,illct pr.oblems a ~ ~ d  a.1.e t r.ea.ttvl as such i11 rnost. 

computer systems, Bajcsy et a1 [7] have present,etl arg111r1ent.s t hilt t hesc two problenis are 

related and have to be treat,ed simult~aueously. If any of t.he two pr~ol)lt~rr~s is solved first,, 

the other one becomes easier. For example, if the image is co~.~ect,ly tlividetl int,o part,s, the 

subsequent shape description of those parts becomes easier. The op1)osit.e is also t.rue: when 

the shapes of parts are known, the part,it,ioning of the image I~ccomes simpler. 

The modal representation provides a nat,ural rnult,i-scale repl.esent,at.ion for t,hree dimen- 

sional object shapes in much the same manner as Fourier t,ransfor111 provitles a multi-scale 

image representation for irnages. Although using deforrriat.ion ~ ~ ~ o c l e s  is efficient. for the re- 

covery of smooth, symrnet~rically deforrncd ol,jecl.s. t1lc1.c ii.1.c c.i~.sos for s i~~ i l ) l r  ol~ject s, such 

as rods, for which the error increases severely. In these mscs t11c1.0 is 1101 ellough dat.a 

t o  distinguish between various modes of tlefo~.ma,tion. For exa.~rlplc, i n  1.lic ca.se of' a rod, 

rigid-body rotat,ion cannot be dist,inguished from lengthwise cont,ract.io~~. l'o avoitl t,llese 

problems, the aut,hors limit inter-frame mot,ions t,o srnall roti>.t,ions (less t.lritn 10 degrees) and 

deformations (less than 10% of t,he object, size). I n  atltlit,ion. globa.1 cleformation modes lack 

parameters with an obvious physical meaning. Such pa~.arnet,ers ~vould give Imore int,uitive 

ability in understanding the paramet,erized shape. 

While the aut,hors present t,he t,heory for f i n d i ~ ~ g  t,hc ~no(lcs. i n  fa,ct they (lo not find 

the real modes of an object but t,hey assume t,hat. the ol~jcct 's shape is a li~leitr. cornbina.t,ion 

of different modes of vil~rat~ion of an undeforrned superqua.clric. l'entland i n  [52] st.ates t ha.t. 

using only the low order modes to  describe object defbrr~~a.t,ions is va.litl since t.lre low order 

modes change very slowly a.s a function of  object.'^ shape. C:onsec[uent.ly. he assumes that, 

the same vibration modes can be used t,o describe the shape of a, ra.nge of tliffel.ent. - but, 

similar - undeformed shapes without incurring substant~ial error. Since we know t,ha.t when 

the shape changes, the eigenvect,ors and eigenvalues change, a, eluant it.at ive i1.11;tlysis should 

be provided t o  back the assuniption above. The aut,llo~.s 11ia.ke t . l~e atlt1it.iona.l claim that 

by describing the object behavior using a truncated series of vibrat.ion/deforrr~ation modes, 
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one can obtain the best r.m.s. error description possible for a given number of parameters. 

This claim, though, is not supported. 

Moreover, their modeling primitives are not fully dynamic in that  the underlying su- 

perquadric parameters do not respond to  forces and are not fitted to data  through force 

interactions. The authors point out that  another limitation of the rr~et,llod arises from the 

fact tha t  the input is the optical flow rather than feature points. The use of opt,ical flow 

requires the integration of object motion over time in order to  determine the object's cur- 

rent position and shape. There is no way to  connect the est i~nat~es of position and shape to  

current observations. 

The notation a t  the development of the Kalman filter in the paper is problematic with 

typographical errors, which we already have pointed out,  and conceptual errors. Specifically, 

by assuming that  the velocity is const,ant. t,heir syst.er11 is I L O  longer dynaniic. In addit,ion, 

they assume that  the observat,ions a.re linear coml>ina.t,ions of t.lie genel.alized coordinat,es, 

which is not true. Also, the assumptioli t,l~at, t,he error cova~~~ia.nce 1~1a.t.r.i~ is constant. limits 

the ability of an estimat,or t,o recover accurat,e para.rnet,er.s frorr-r t.he t1a.t.a. 

The use of springs to model hard point.- t.0-point. const.~.;tint.s is ~,~ul,lc~iiitt~it si~ice springs 

are appropriate for motleling weak const.raints only. Tlir I.t.il,son is t I~i i t  sl) l . i~~gs rlo not. cancel 

the force components violating the coiistraint,~ ant1 stiffe~~ing of' springs yieltls ill-conditioned 

equations. 

5.4 Constrained Deformable Superquadrics and Nonrigid Motion 

To overcome the restrict,ions of the li~iea,rly deformable models in [87] a.nd quadrat,ically 

deformable ones in [53], Metaxa.s and Terzopoulos i n  [4.5] successfully combine local de- 

formations wit,h global def~rmat~ions.  The authors present. a physics-based framework for 

shape and motion estimation wit,h t,he following specific goals: 

Recovery and repre~ent~at~ion of closed sul.fa.ces wit I1 co1111)l(~s sl~iil)c.s. 

Est,imation of nonrigid 3D rnot,ion. 

Fast computation of the point-to-point const,raii~t,s. 

Tracking of ar t ic~la t~ed object,s wit,li deformal~le p;l.rt.s. 

Conceptual model The a,ut,hors use as ~iiodels al~stl.act visc0~1a.sti~ solids a.nd imblie 

them with mass and da.mping tiensit,ies t.o make t,hem dynamic - thr  posit.ions of ma.teria1 

points become a time-depencient func.t,ion. lJsing La.g~,angia~-i cly~~a.mics. t,he energies yield 

forces and when t,he forces equilibrat,e, t8he nlodel I~ccort-~cs st.iltic. 

Mat hematical model For the case of a solid whose ~-nat.erixl coordina,t.es are u = ( u ,  a ,  w),  

the position of the point,s on the model can be writ.t,en as x ( u ,  t )  = c ( t )  + R ( t ) p ( u ,  t) where 
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Figure 2: Geomet,ry of cleforma.l~lr rrlotlol 

x gives the positions of points on the ir~otlcl wit11 re<pctt to i lie fiscd icfcreute fiatrte 

Q, and c is the instarltaneou~ positioll of the tnolt-iner tial ~tlotlcl-tctlt cictl TI ~Irllc d, whose 

orientation relative to  Q, is R. The positions p of points telative to I$ can 1)e espiessed as 

p ( u , t )  = s ( u , t )  + d ( u , t )  where s is the refe~ence shape and d a tlisplacert~ent function. 

Any geometric primit,ive describetl as a different,ia.hle ~)ill.a~rlet er.izctl function of u - 

e ( u ;  a l , a2 , .  . .) - can be used as a reference shape. To gain ;~tltlit.ional ~r~otleling power 

the authors extend t,he reference shape to include pararnet.erizetl g1ol1a.l tlc~fol.t~~at.ior~s s = 

T ( e ( u ;  a.1, a2,. . .); bl, b2,. . .), where T is a sequence of pri~nit,ive tlefor~tnat~ion functions (like 

tapering, bending and shearing) wit,h paramet,ers L,. The glol)xl cleforr-tiat.ion para.met,ers 
T form the vector q, = (a,l,  a2,.  . . , b l ,  b2 , .  . .) . 

To further enhance flexibility, local free-forn~ defor~nat,iot~s are incor.l)or.a.t.ed directly 

into the geometric primitive as finit,e eleruent shape funci.ions. The  itui.11ors errtploy t,he 

finite element method t,o discretize the tlefori-riable surfa.ce rrlotlels i n t . 0  a set. of connected 

element domains. By collectring t.he displa.cernent, vect,oi.s q , ,  assoriiltetl wit11 ea.ch node 

a t  the corners of each finite element,, t,hey const,ruct the vcct,or q d  = ( .  . . . q,. . . .lT. The 

displacement which tlescril~es the local tlefortnat.io~~s is d = Sqd. where S is a shape rnat,rix 

whose entries are the finitme element 1)asis fiinct,ions. 

The velocit,y of a point is k = g c j  = Lcj, w11ei.e q is the vrrt,ol of gri~rl~ixlizrcl coor- 

dinates for the dynamic model ant1 L is the Jacol~ian tha.1 I-liilps (/-sl)ilcc to :3-sl)ace. The 

generalized coordina,t,es a.re the geo~~rct  ric. ])ar.a~i~c~t c1.s of t 1 1 ( .  solitl 1 ) l . i l l l i t  i\.o. t I I V  gI~l)i\l  il.tid 
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local deformation parameters, and the six degrees of freedom of rigid bocly motion 

To make their models dynamic, the authors assurne that  the rnotlel has a mass distribu- 

tion p(u),  tha t  the material is subject to frictional damping and that  the rnat,erial deforms 

elastically or viscoelastically. The dynamic behavior of the model is governed by 

where M, D, K are the mass, darnping and stiffness matrices respectively, g, are t,he gen- 

eralized inertial forces arising from the dynamic coupling between local it11t1 glol~al degrees 

of freedom and f,(u, t )  are the generalized external forces. 

The elastic properties of the model determine the stiffness matrix K. The energy 

f S i  associated wit.h each of the global paramet,ers is a.ssurned Ho0kea.n; t,herefore &,, = 

$ I K ~ , ( ~ , ,  - q,,, ) 2 ,  where K,$, is t,lle st,iffness a.ssocia.t,e(l wit 11 the glol,a.l para,nlet,er q,, and 

q,,, is the natural rest value of this pa.ra.rnet,er. One of I W O  ~llo(leIs is usrat1 tlepending on t.he 

desired ~ont inui t~y of the surface of t,he deformahle rnodel. 'Thc lotr(le(1 r?rrnlbnrne is suit,able 

for C' continuous surfaces and the thin plate under tension rnoc-lel is useti for C1 continuous 

surfaces. 

To connect t8hese new dynamic p~.irnit,ivcs t,ogether, the alltl101.s use point-t,o-point con- 

straints between t,wo objects or part,s of an object. They con~put,c t.lic ge~~el.;i.lizeti forces be- 

tween the models, using a stabilized Lagrange multiplier technique wllicl~ is I~a.sed on Baum- 

garte's constraint stabilization t.echnique [Il l .  .4lt,hough t ,hc> 1,;l.grit.ngr;c ~r,ult.iplier rnethod 

is very general, it is pot,ent,ially expensive for the tlefor~rtrablc ~l~otlels .  .As a n  alt,ernat,ive, a 

fast specialized met,hod to  compute the unknown genel.alizerl constra.int forces f,< associ- 

ated with the point,-t,o-point const.ra.int,s is proposetl. For t.11c ca.se of' a single point.-to-point. 

constraint, let. f, be the constraint force bet,ween the first, and t.he seco~ltl object or part of 

an object. The constraint etluation can I>e written a.s Nf,. + v = 0, where t,he 3 x 3 mat,rix N 

and the 3 x 1 vector v must be det,ermined. Aft.cr con~pl~t ing N ant1 v,  t.1ien f,. = -N-'v. 

In the case of lnult,iple point,-t,o-point const r a i i ~ t  s, t.hey tl~finc a11 ohjt.ct 's const r.ii.int force 

vector f, = (f,, , f,, , . . . , f,,), wl~ere f,, is tlre const,ra.int f'o~.c.o for c o ~ ~ s t  1 . a i 1 1 t  i ,  il.ssemble a 

system of equations Nf, + v = 0. where N is a : 3X .  x 3X. t ~ ~ ; i t ~ . i x ,  v il L . ( ~ ( , ~ c ) I .  wit11 Ieligt.ll 3k 

and solve it t,hl.ough LU deconlposit,ion of N .  

Addressed Problems The physics-l~itsetl fra.~newor.k Illat is tlc~scr.il)c~tl i l l ~ o ~ e  can be used 

in computer vision for both sha.~>e est,irr~ation a.nd 111otiol1 csti111at.io11. I)y~~a.rnic fit,t,ing is 

achieved by integrating Lagrangian equations of motion t,hrough t.irne t.o a.tljust t,he defor- 

mation degrees of freedom of the nlotlels. The ol)ject,ives of t,he rnet,hod are the following: 

first, t o  fit the data  as fast as possible ant1 secontl t,he lnotlel t.o come to rest, as soon as t,he 

data dependent forces vanish. -4 rno1.e t.ra,ct able subset oft  hc 1,a.grit.lrge ccluat.ions, while pre- 

serving the useful dynamics, is at,t,a.i~~ed by set.t,ing 1nil.ss tlc~1sit.y to zero: Dq + Kq = f, 

(since M and g, vanish). Therefore, t.he rriodel ha.s no inertia ant1 co1rlc.s 1.0 rest. as soon as 

all the applied forces vanish or. ec1uilibra.t,e. These apl)lietl fr>l.ccs a.1.c i ~ ~ t t ~ r ~ ~ r a l  forces. which 

describe elastic properties of the surface, and ext.er11a.l forces cvhich are p~.oduced from t,he 

salient image features. External forces ca.n subsequel~t.ly Ile ~Iivitletl i11t.o sliort rnngt and 
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long range forces. The image I(x, y )  is converted into a force field using t.he gradients of 

image potentials P ( x ,  y) =( I  V(G, * I )  I), where G, denotes a Gaussian smoothing filter of 

characteristic width a.  The short range forces f = PVP act on the model, and deform it to  

become consistent with the image dat,a. On the ot,lier hand, t,he long range forxes a.re based 

on the distance between the data  points and the model's surface. The goal is to adjust the 

translational, rotational and deformational degrees of freedom of the model to be consistent 

with the data.  

Background knowledge about the image formation and the shape of the objects can be 

incorporated in the form of constraints. For example, these constrai~lt-s can help t,o retain 

the parts of an articulated object in the correct configuration.  constraint.^ can also be 

helpful in deriving the shape and motion of an occluded part.  

In the case of moving objectas, t,he aut,hors have developed a. nonliuear I ial~nan filt,er 
,, 

for recursively est.imating the shape a r ~ d  nonrigitl rnot.ion. I he I I O I I ~ ~ ~ I C ~ I .  I i i ~ l n ~ a r ~  filter 

employs as a model t,he nlot,ion equat,ions and t.ra.nsfbrrrls t hc tlisc-~.cl)ii~lc.y I)oi weer1 c r ~ r r e ~ ~ t  

observations and t,he posit,ions of the rnotiel i11t.o forces t,k~at. a.t,t.ra.ct t Ire r~~otl(.l. The Kalrnan 

filter equations for t,he dyna.mic model take thc for~n:  

where H is the matrix t,hat relates the time varying measul.ement.s z ( f )  t,o t,hc rnodel's s tate 

vector q ( t ) ,  while w ( t )  and v(t) are modeling and measurerrieut. errors. The state estimation 

equation is: 

6 = - D - ' K ~  + ~ - l f , , <  + G ( Z  - ~ q )  

where G ( t )  is the Icalman gain matrix, which depends on t,he syst,e~-rl's dynamics and noise 

processes, and q is the estimated statre of the model. 

Experimental result,s suggest that  the model is useful for. s1l;tlje r.econst.r.uct.io~~ of objects 

or part of object,s with irregular shape from regular or spar.se data, a n d  for tra.cking the 

motions of articulated objects consisting of rigid and nonrigicl pi~.l.t,s. 

The authors have used the same fra.rnework t.o adtlrcss challenges in c o ~ ~ ~ p u t , e r  graphics 

and visualization also [46]. As in [83, 91, const,raint,s can be used t.o a.sse~nl)le co~nplex objects 

from initially mis-posit.ioned partas. The fralnework is used to synt Iresize a.1.t iculi~ted o l ~ j e c t . ~  

with deformable part,s, nonrigid ~liot,ions ant1 object, il~t.cr.;lrt ions wit 11 t t r t l  ~)lrysic,a.l worltl for 

the purposes of animat.ion. Animat8ions tlepict flesihle rnultihoclv oh,jects in gra.vit,a.t,ional 

fields, including elastic collisions with ol~sta.cles a.nt1 frict.ion effbct,s. 

Comments General purpose shape reconst.ruct,ion r.etll~ir.es ~nodels with t.l~e al~ilit,y t,o 

assume a wide range of shapes. The models rnust ext,ract 111ea.11ingful i nfor,ma,t,ion from 

noisy sensor data  while, a t  the same t,irne, making t.he weakest. possil)le a s s r ~ ~ ~ ~ p t . i o n s  about, 

observed shapes. The proposed physics-based framework allows i.lie syst.e~~~;tt.ic creat.ion of 

dynamic models from parameterized solid primitives, globit1 geoi~~et.~. ic clef 'or~l~at.io~~s and 
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local deformations. Global deformations contribute to tfhe efficiency a.ntl a.ccuracy of esti- 

mation by coarsely approximating the true shape of t,he object, which subsequently allows 

accurate shape recovery by using local deformations. The coupling of rigid-body and de- 

forination dynamics is similar to  that  described in [74], but the new fbrmulat,ion accom- 

modates global deformations defined by fully nonlinear parametric ec~uations. Therefore, 

the proposed framework can potentially satisfy the oft,en conflict,ing ~.ecluirements of shape 

reconstruction and shape recognition. 

An important feature of the approach is that  the method applies across all geometric 

primitives and deformations. Depending on the application, the user can specify the geo- 

metric model and the method automat,ically converts the geometric degrees of freedom of 

the model to  physical degrees of freedom through the Lagrange eclua.t,ions of rnot,ion. More- 

over, the various geometric parainet,ers assume well-tlefi net1 pliy sica.1 ~neanings in relation 

to  prescribed miass distribut,ions, elast,icit,ies, and energv clissipat,ion rates. 

The models are dyna,mic and t.heir 1)eha.vior is gove~.ncd 1,y t l1r1 Lii.gl.ii11g~ ecluat.ions of 

motion. The equations of motion rrlake t.he models ~.esponsivc. t,o forces tlerivecl from the 

image data  or const,raints. These forces cause tlie r~iotlols to c o ~ ~ f o r ~ ~ ~  1.0 t Ile project.ed shape 

of the object in the image space. 

The authors address the challenges relat,ed t.o t,he applica.t,ion of'  constraint,^ tmo con- 

st,ruction and cont,rol of articnla.tec1 niodels by tleveloping efficient cor-~~~)uta t ion rnet,hods for 

the point-to-point const,raint,s. The metliod involves t.hc so l~~ t ion  of a li11ei11. syst.ern whose 

size is equal t,o t,he nuinl3er of const,raint,s, which is usually s~rlall. 

To speedup coinput,at,ions, they do not. asse~rible ant1 f'il.ct.o~.ize a fi11it.e elernelit. st,iffness 

matrix, as is comrnon practice i l l  finite eleir~ent. a.nalysis, but ilist.eil.cl t.11e.y conlput,e Kqd 

efficiently in an elel-[lent,-by-elernelit fashion. Tlip e ler r~r~~- i t - I>y-c le~i~~nt  con~putat.ion makes 

the model-fitt,ing process easily pa~~allelizal)le, whicl-I i s  ~~..;l)e~iiill\.. ~~scf'ul f'or rr-lult i-processor 

architectures. 

In contrast t,o other papers in physics-l~asetl rnet,hotls, thc 1nat.hc1-niltical model is pre- 

sented in a comp1et.e form. The syst,el~~a.t.ic approach t.o 1,;lgr.a.ngia.n tljrnal-r~ics a ~ i d  finite 

element method a.dds t,o t,he cla.rity of present,at.io~~ ant1 effect ivt~ness i l l  (.he con~rtlunication 

of the model. 

Despit,e the strengths of the frarnework, t,he goal I~eing to solve t.he sI~i~.pe recovery prob- 

lem in isolation from segment,at,ion, linowletlge of t.he ol~ject 1.)a1.t s c g ~ t ~ e ~ ~ t  ilt,ion is ~,equired in 

advance. The problem of selecting an init,ial position for the 111ot1el I)cco~nes simpler when 

one considers a sequence of irnages. For e x a , ~ ~ ~ p l c ,  i l l  t.hc cii.sc of t l.acking, o111.y t l ~ e  very first. 

frame needs init,iaIization, which ca.n al~vays he solv~cl pc~ .n~ i t  ting ~ ~ s c r .  int.rra.ct.ion. For 

the following frames, the model found in t,he preceding f'~.i~,me ca.n 1)e used as a good init,ial 

position for the analysis of the current frarne. 

Many of t,he experiment,~ use synt,het,ic tlat,a.. a.nd st.~cri\l eluant i t  iltive espc~, i~r~ent ,s  are 

present,ed along with an error a.nalysis. The perfb~,rt~ancc of t I I P  t.c~ll~ricll~c, t l io~~gl i :  should 

be meanred  not. only by t,he qualit,y of the fi11il.l f i t  tctl 11iodc1 I ~ r i t  iilso 1,y t hcl a ~ ~ ~ o u ~ i t  of 

time required for the fit,. Among t,he fact,ors t,liat, i11fluc~nc.c t l~ r sc  ~ ~ ~ c a . s u r . ( ~ s  tile following: 
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a priori information for the object, the magnitude and ,variation of local deformations, the 

force gain parameters, and the time step used in the Euler met,hod. The init,ial shape and 

size (or location) does affect the fitting time, since the closer t,he initial rnodels are t,o t,he 

shape and size of the shape to  be estimated, the less time is required. The performance 

of the model is also greatly affected, by the values of the magnitude and variation of the 

local deformations that  control the internal forces, and by the weights of the external forces. 

These weights have t o  be chosen such that  the external forces have comparable magnitude 

with the internal ones. If the internal forces are dominant, the model will not interpolate 

the data  and it becomes too smooth. On the contrary, if external forces are dominant, the 

model tends t o  be insufficiently smooth and fits the noise. Currently, these values are set 

manually on a trial and error basis. As for the time step, it must be chosen carefully, since 

the Euler method, although simple and fast, has a limited range of sta1)ilit.y. Small time 

steps can slow down the comp~t~a~t ion  while large time steps result i n  ~lurnerical inst.abilities. 

From this discussion, it is clear t,hat t,he model fit,t,ing process is greatly influcnretl I>y several 

model parameters. Guidelines for set,t,ing t,hese parameters, inclutli~~g pa.r;llneter bounds, 

need to  be more fully developed. A next step would also be t,o develop all ext.ensive error 

analysis for real data.  

The method, in the current stage of development, cannot deal wit,h highlights and 

texture. However, it can serve as an umbrella for the int,egra.t,ion of different qua.lit,at,ive 

and quantitative modalities. Addressing the problems of integrat,ion of segrnent,at,ion and 

physics-based fitting technjques to  estimate shape of paramet,erized ol~ject~s from noisy data  

under orthographic, perspective and st,ereo projections is a t,opic of future research[47, 

441. In principle, using the same framework, researchers 1na.y I)e able also t,o det.ermine 

experiment.ally the st,iffness of a mat,erial. Based on t,his ii~for~i-iat,ionl we could classify t,he 

material from which tlhe object is made [52]. 

6 Discussion 

This section contrasts the t,wo approaches presented for  nodel ling a deforrna.l)le object. In 

the first approach, Miller has refined the conceptual model to a mass-spring system from 

which he directly obtained the discrete equations. On the contrary, in t.he second approach, 

expressed by the last three papers, t,he concept,ual rnodel is a tlefbr~r~xl)le object made from 

a continuous medium and the rnat,hernat,ical representfation is cliscret.ized 1.0 find a solut.ion. 

There are several di~advant~ages t,o t,he use of mass-point,-spring rnodel. a.s opposed t.o using 

a continuous medium: 

Changing the solution parameters requires modifying the higher level model. In the 

second approach, since the method of solution is independent. from the higher levels 

of the model, the efficiency of various numerical solvers can be investigated without 

affecting the higher level of the program. 

The interaction wit11 ot,her objects in the model is rest.rict.ed t.o grid poii1t.s. On t,lie 

contrary in the second approach, collision det,ect,ior~ t,est,s can b r  performed 11et~ween 



surfaces without worrying if small objects can penetrat,e through t.he cracks. 

The user needs to  select from the beginning a grid density suitable for the simulation. 

In the second approach, the grid density can be chosen automatically by the numerical 

solver, based on the specific domain or can vary as a function of time or as a function 

of space. 

The choice of the first approach for the modeling introduces excessive irr~plementation detail 

a t  the conceptual level and results to  discretization artifacts hardwired to  the model. This 

approach is mostly used because it can be implemented on the top of rigid body simulation 

systems and there are no partial differential equations involved. 

The model in the second approach is clean and robust. Moreover, the use of adaptive 

solvers will allow us to simulat#e more efficiently systems that require fine sampling for only 

a few extreme configurat,ions. In a.ddition, t,he body can be re11 dered wit.liout regard to t,he 

numerical discret,izat,ion. 

7 Future Open Problems and Conclusions 

I have reviewed four papers from the emerging field of physics-based met,hods for comput,er 

graphics and/or c o m p ~ t ~ e r  vision. Although these met,hods a.re not. by any rnea.ns exha.ust,ive 

of the research done a t  the area, they give us an intuition about, t,he physics-based met,hods 

and a basis for a comparative study of the various approaches. 

The papers were present,ed in such a way as to answer t.he following quest,ions: 

r What  is the model trying to  do Y 

What  are the underlying equations ? 

r What  are the knowns and unknowns i n  these equations :I' 

What  are the solution tecllniques ? 

All these questions are import,ant not only in analyzing and nnderstanding a rnodel but also 

in developing reliable and extensible models. 

In cornput-er graphics the issues are object modeling and a.nirnat,ion. Miller models hio- 

logical forms using the mass-spring model. He demonst.rates t.he anirnat,ion of t,hree specific 

modes of locomotion of creat,ures like snakes and worms despit,e t,he inherent, di~advant~ages 

of the model. Specifically, the use of a mass-spring model introduces irr~plernentation detail 

a t  the conceptual level and results in discretization artifacts hardwired t.o t,he rnodel. The 

geometric models of collision detection and response are not adequate t.o handle a wide 

variety of cases. In a more demanding scenario of anima.t,ion, which wolild require more ac- 

curate interaction with the environment, the weaknesses of t,he model will 1)ecome a limit,ing 

factor. 
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Witkin and Welch present a geometric model for linear global deformations, to  over- 

come the problem that  the many degrees of freedom of mass-spring systems result in stiff 

numerical equations. By representing only global deformations that  are linear in state, 

though, they give up the ability t o  represent a number of natural objects. However, one of 

the strengths of their model is the ability to  directly specify the goal of the animation and to  

dynamically calculate the motion required to  satisfy them. They can handle cont,radictory 

constraints with grace, but it is difficult to  control the exact motion t,owards the constraints. 

In computer vision, the concern lies with shape and motion estimation. Pentland 

and Horowitz parameterize whole-body motion using a linear combination of the different 

modes of vibration of an undeformed superquadric. The formulation allows t,hem to discard 

the high-frequency low amplitude components without excessive error. Nevertheless, using 

deformation modes is efficient only for the recovery of smooth, symmet,rically deformed 

objects. Using optic flow data  they have been able to  obta i i~  over-const.rained est,irnat,es of 

rigid and nonrigid motion and track the objects over time, only when t,hey lirnit inter-frame 

motion t o  small rotat,ions and deformations. 

Metaxas and Terzopoulos, by successfully combining local with global deformat,ions, 

overcome the problems of the previous approaches. The proposed framework applies across 

all geometric primitives and deformat-ions. Using a simulated force t,echiiiclue they a,re able 

to  fit their dynamic models to sparse, noise-corrupted 2-D and 3-D visual dat.a and t,rack 

the motions of an object over t,ime. Currently, though, a nurnl>e~ of' pararnet,ers must be set 

manually on a trial and error basis for t,he experiments. 

The two methods described above estimate shape and a.t,t,empt. (.o extract global proper- 

ties - the parameters of the shape. For reliable parameter est.imat,ion, though, it is required 

that  all the points used for the estimat,ion belong to the same object,, the object for which 

the parameters are estimat,ed. However, these t,echniyues assume t.11at t,he 2-D or 3-D vision 

da ta  have been segmeilt,ed in a preprocessing step. Segment.ing tlat,;t i ~ ~ t , o  cliifo~.ent,  object.^, 

though, is a research problem on its own. 

Physics-based models tend t.o require large amount,s of cornput.a,tion. \~\~itli  t . l~e advent, 

of more powerful computers and the development of more efficient algorit,h~ns, this will t,end 

to  be less and less of a problem. 

The new paradigm of physics-based models opens new opport,unit,ies 11ot,l1 in the areas 

of computer graphics and complit,er vision. In computer graphics, we can build drawing 

tools for shape de~cript~ion and develop visualization tools t,o a.t,t,a,in plea.sing animat,ions. In 

addition, we can more efficiently handle interactions between rnult,ibody syst,ems and use 

dynamics to  simula.t,e tasks such as riding a bicycle or skiing, which are considered hard 

with the existing met,hods. By incorporating dynamics, we can (leterrnine t.he fcasibilit,y of 

certain tasks by measuring forces and torques during simulat,ion. 

Physics-based modeling is also applicable, perhaps most. inlport.aiit.ly, 1.0 biol~ietiical ap- 

plications. Such applications will include modeling and simula.t~ion of t,he physical propert,ies 

of t,issues and orga.ns and shape reconstruction of int,ernal organs or ext.ernal part,s. 

Modeling based on physical principles is est,al>lishing itself a.s a, pot,ent t,echnique in 



computer graphics and computer vision. It is a rich and fruit(fu1 area for research in terms of 

both theory and applicat,ions. It is important, though, to develop  concept,^, methodologies, 

and techniques which will be widely applicable to  many types of applications. Physics- 

based models, while computationally more complex than many traditional models, offer 

unsurpassed realism in the modeling of natural phenomena. 
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A Appendix: Constraint-Based Modeling 

Several researchers have proposed physics-based constraint methods for controlling anima- 

tions of rigid and non-rigid bodies. A powerful way t o  control models is to  specify constraints 

on the geometric configuration of the bodies. Barzel and Barr [9] have introduced three 

types of constraints on the locations of body points: point-to-nail, point-to-path and point- 

to-point. The point-to-nail constraint requires that  a body point be in a constant location 

in space. A point-to-path constraint requires that  a body follows a pre-specified kinematic 

path. For the assembly of complex objects a point-to-point constraint may be used where 

two points are required to  stay attached, although the bodies that  they belong may move 

freely. There are two outlooks for the physical interpretation of the constraints: 

Abstraction of' the mechanicnl mechanisms: A point-to-point, constraint ca,n be 

thought of as an idealized ball-and-socket joint. Alt,hough we don't, need to model 

the exact details of the joint, the forces resulting from a point.-t.0-point. con~t~raint  

result in the same net force and torque that  a frictionless physical joint would exert. 

Exploration: Sometimes we don't know the underlying physical rr~echanism. For 

example, we assume the kinemat,ic path that  a body point, would follow in order t,o 

determine the dynamic response of the rest of the syst.em. 

I will describe t,hree methods previously used t,o const,rain physic-lmsed 111odels: t,he 

penalty method, the constmint stabilization and the dynamic constraints r~lethocl. The t,wo 

latter ones are examples of t,he generic Lagrangian constmints nt.c.tlro0. 

Given a physical syst,ern whose state is described by t,he vector q, we ca.n il-nplicit,ly im- 

pose a holonomic constraint, which defines as states consistent with the const,raint the ones 

that  satisfy the equation C(q, t )  = 0. If multiple constraints are t,o 11e met simultaneously, 

then C is a vector of  constraint,^. 

The Penalty method: Researchers [73, 831 have used this met.hod ext.ensively in the 

past. This method converts a constrained problem to  an unconst,rained problem in which 

deviation from the constraint is penalized. It is equivalent to  adding a. rubber. band to t,he 
a C mechanical system. The penalty force is FPenait, = -2kC(q)-. wlherc X: is t,he st,rengt,h 

a c of the rubber band and FpelLalty points toward the manifold C(q) = 0, when - is not. 
acl 

zero. The constraint force, as a function of the system st,;~t.e, ca.uses t~he syst,em t,o find a 

particular state that  balances t,he forces. This has the disadvant,a.ge t,hat. t,he constraint is 

not guaranteed t o  be fulfilled. In addition, as penalt,y strengt,hs increa.se, t.he equations of the 

physical system become stiff, therefore the numerical different,ial equat,ion solver t,akes very 

small steps, consuming computing t,ime without significant. progress. The main at,t,raction 

of the method is that  it offers a very simple way to  convert. a constrainecl pl.oblern int.0 an 

unconstrained one. 

Lagrangian constraints: The penalt,y method involves a for~nulat~ion of t,he problem in 

which constraints are only approximately satisfied. A cornplet.ely different viewpoint is 



taken when the constraints are t o  be fulfilled exactly. In Lagrangian constrajnt,~ method, 

forces tha t  would cause the system t o  violate the constraint are cancelled independently of 

the system state, and they are substituted by a force that  gradually makes the syst,em t o  

fulfill the constraints. There are two lagrangian constraint methods t,hat. have been used: 

constraint stabilization and dynamic constraints. 

C o n s t r a i n t  stabil ization:  Constrained stabilization has been used by mechanical engi- 

neers to  correct numerical inaccuracies in systems that  are initialized with the constraints 

fulfilled. If the system begins in a legal state, with C(y,t )  = 0 and ~ ( ~ , t )  = 0,  then 

requiring ~ ( ~ , t )  = O suffices in principle to  hold the constraints in force. In practice an 

additional feedback term must be added t o  inhibit drift and bring the system to  a legal 

state initially. Baumgarte in [ll] suggested the damped second order differential equations 

where a and ,h' are st,al~ilization factors, so that  if a syst,errl departs from a constraint,, it. 

will get pushed back. 

To enforce the constraints exactly, forces are added t,o t,he mechanical syst,em, which 

are computed via the Lagrange multipliers. The augment,ed eclua,t,ions of rnot.ion t,ake the 

form: 

M i i + D t l + K q = g , + f , - f g c  ( 9 )  

Lagrangian physics states that  constraint forces must be in t,he direction of the gradient of 

the constraint function, in order tmo obey the principle of t,he virt,nal work [88], therefore f,, = 
T T - c ~ X ,  where C: is the t,ranspose of the const,raint Jacobian rna,t,ris and X = (A:. . . . . A ,  ) 

is the vector of Lagrange multipliers tthat must be det,el.rnincd. ("oI-r~bining (8 )  and ( 9 )  we 

obtain: 

Notice that  the penalty method also creates forces that. are in the gradient of the 

function C(q) but approximates the lagrangian multipliers by  -kc. 'The force becomes 

zero when the constraint is fulfilled and any external force will pull t,he syst,em out of the 

constraint surface. 

Constraint stabilization offers the following advant.ages: 

Regardless of the forces applied to the physical syst,enl all the constraints are fulfilled 

exactly. 

a If a physical system starts away from a constraint surface C(q)  = 0, t,he system can 

return t o  the constraint surface. 

Using the parameters a and P ,  we can control the rate by which t,he constraints are fulfilled. 

Additionally, we can construct complex objects initially apa.rt or enforce const,raint,s in the 
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middle of animation without sudden jumps. The price to  pay for t,he above flexil~ilit~y is 

that  the rates o and ,# are non-intuitive and the system may oscillate around the state in 

which the constraints are fulfilled, which is unpleasant for the animation. 

Dynamic constraints: Barzel and Barr [9] were among the first to  use the idea of ~t~abilized 

constraints [55] for computer graphics modeling and animation with a variation of the 

constraint stabilization method called dynamic constraints. Often the animat,ion starts 

with the constraints being violated. They assume that  a physical system is always very 

close t o  fulfilling the constraints. To control the speed of the constraint fulfillment they 

have suggested using the parameters a = and ,# = 5, t being the time constant for 

the critically dumped motion and 3 being the speed of fulfillment. But. they model their 

constraint forces as FcOnstraint = CkGik,  where Ck is the strengt,h and Gik is t,he direct,ion 

of the constraint. force. Therefore it is possible to choose a directpion for a constraint force 

that  it is not in the gradient direction, therefore violating the principle of virtual work. 

In summary, ~ o n s t ~ ~ ~ a i n t ~ s  allow the animators to cont,rol the a.nirnat.ion. Con~t~raint ,  

forces are applied in t,he direction of the gradient of the const,raint violat.ion funct,ions. Using 

constraint forces that  are collinear with the gradient direct.io11 assures t.1ia.t t.he Lagrangian 

physics is still obeyed. The magnitude of these constraint forces are comput,ed so that  the 

physical simulation approaches the constraint surface with critically clamped n~ot,ion. 
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