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Abstract The semiconductor industry is currently chal-

lenged by the emergence of Internet of Things, Big data, and

deep-learning techniques to enable object recognition and

inference in portable computers. These revolutions demand

new technologies for memory and computation going beyond

the standard CMOS-based platform. In this scenario, resis-

tive switching memory (RRAM) is extremely promising in

the frame of storage technology, memory devices, and in-

memory computing circuits, such as memristive logic or

neuromorphic machines. To serve as enabling technology

for these new fields, however, there is still a lack of industrial

tools to predict the device behavior under certain operation

schemes and to allow for optimization of the device prop-

erties based on materials and stack engineering. This work

provides an overview of modeling approaches for RRAM

simulation, at the level of technology computer aided design

and high-level compact models for circuit simulations. Finite

element method modeling, kinetic Monte Carlo models, and

physics-based analytical models will be reviewed. The adap-

tation of modeling schemes to various RRAM concepts, such

as filamentary switching and interface switching, will be dis-

cussed. Finally, application cases of compact modeling to

simulate simple RRAM circuits for computing will be shown.
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1 Introduction

Resistive switching memory (RRAM) is a 2-terminal mem-

ory device which can change its resistance in response to the

application of external voltage pulses [1–4]. RRAM, also

sometimes referred to as memristor [5], generally consists of

a metal-insulator-metal (MIM) stack, where resistance can

change as a result of a local modification of the material

composition, e.g., along a conductive filamentary (CF), or

within an interface layer. This marks the difference between

RRAM and other resistive memory devices, such as phase

change memory (PCM), where the resistance change is dic-

tated by a different phase of the active material [6], of

magnetic random-access memory (MRAM), where the resis-

tance change results from a re-orientation of the magnetic

polarization within a ferromagnetic layer [7]. RRAM offers

a simple structure, CMOS compatibility, back-end of the line

(BEOL) process, high speed and low power consumption.

Given the large number of switching materials and their

possible combination in MIM stacks [3], multilayers [8],

and multi-terminal structures [9], RRAM offers an unprece-

dented flexibility to serve different demands of memory,

storage and computing.

As other novel memory concepts, the industrial develop-

ment of RRAM requires the availability of accurate models

for predicting the device operation, reliability and scaling.

Models have been developed across the whole hierarchy

of materials-level atomistic simulations, device simulation,

and compact models for exploring RRAM applications in

memory and computing. Figure 1 schematically shows the

different modeling approaches for RRAM. Table 1 summa-

rizes the main properties of the modeling approaches in terms

of scale, computational cost, and information that can be

obtained by the model, spanning from highly physical param-

eters (energy barrier for defect generation and migration,
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Fig. 1 Ecosystem of physical-based models for RRAM. Ab-initio DFT

models provide the materials understanding that is instrumental to sim-

ulate device operation via FEM/KMC models. The latter provide input

for analytical models to simulate RRAM-based circuits. Computational

cost and complexity increase with the physical detail and the smaller

scale. High-level analytical models allow for a short-term impact in the

form of design of applications for motivating RRAM development

vacancy formation energy, etc.) to the device characteris-

tics or circuit functions that can be available from full circuit

simulations adopting compact RRAM models. Ab-initio sim-

ulation frames relying on the density functional theory (DFT)

at the atomistic scale (few nm3) provide the basis for a deep

understanding of materials structure, ion/atom diffusion and

migration mechanisms, and the impact of oxide composi-

tion on those aspects. Physically based device simulations

by finite element method (FEM) models and kinetic Monte

Carlo (KMC) models allow to grasp the switching mecha-

nisms at the device scale (few tens of nm3). These simulation

models have the added value of providing a direct output in

the form of calculated current-voltage characteristics, or cal-

culated response to applied pulses. FEM models consist of

differential equations for transport of charge carriers (elec-

trons, holes), heat, and ionized defects (e.g., oxygen vacan-

cies, cations) while relying on a continuous description of the

microscopic physical entities, such as electric field, tempera-

ture and defect concentration. On the other hand, KMC mod-

els solve similar equations with discrete individual defects

locally enhancing the conduction via, e.g., trap-assisted tun-

neling. As a result, KMC are inherently stochastic, as the

position of defects is dictated by Monte Carlo models for gen-

eration, recombination and migration, therefore the average

switching characteristics can be obtained only from several

simulation runs. On the other hand, FEM naturally yields the

average switching characteristics while variation character-

istics can be simulated by energy landscapes of microscopic

parameters, such as the energy barrier for migration. These

numerical simulations allow to visualize the local dynamics

of defect concentration leading to set/reset processes, thus

enabling the development of compact models consisting of a

simplified set of equations for macroscopic parameters, such

as the average temperature, or the geometry of the conduc-

tion spot in terms of diameter of the channel, or depleted gap.

Compact models are essential tools for circuit simulations, to

anticipate the demonstration of storage/computing concepts

thus supporting RRAM in various application frameworks to

strengthen the short-term impact on the market and industry

evolution. As the model scale becomes smaller, the mathe-

matical complexity, physical detail and computational cost

increase, as summarized in Table 1.

The purpose of this work is to provide a review of physical

modeling approaches at the levels of device simulations and

compact models. After briefly presenting the physical mecha-

Table 1 List of main physical modeling approaches adopted to investigate RRAM devices with a comparison as a function of scale, computational

cost and capabilities

Description Scale Computational cost Capability

Atomistic Solution of physical equations based on

DFT

Few nm3 High Calculate intimate physical quantities, e.g.,

energy barriers for defect generation and

migration, band structure, phonon structure,

etc

KMC Solution of equations for transport of heat,

electrons and defects. Defects are

described by individual positions

100 nm3 Medium high Calculate device characteristics such as I–V

curves, R–t curves, etc. The simulation is

inherently stochastic, thus average device

behavior can be obtained only by several

runs of the simulation tool

FEM Solution of equations for transport of heat,

electrons and defects. Defects are

described by a concentration

1000 nm3 Medium low Calculate device characteristics such as I–V

curves, R–t curves, etc. The model

simulates the average device behavior.

Variability and noise can be implemented

by energy landscape stochasticity

Compact Solution of equations describing global

characteristics of the device (e.g.,

filament diameter, average temperature,

voltage)

Several µm3 Low Calculate the device characteristics by simple

analytical formula, therefore enabling the

simulation of large circuit including RRAM
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nisms for resistance switching, the FEM and KMC modeling

approaches for RRAM will be described. Both operation and

reliability modeling will be covered, as variability and noise

aspects are crucial for RRAM optimization and application

space. Compact models will be finally described, providing

few examples of circuit applications for both memory and

computing that can be efficiently studied by compact RRAM

models.

2 Physical mechanisms of switching

Resistive switching mechanisms can be discriminated by the

type of localization of the chemical modification responsible

for the change of conductance. The 2 classes of switch-

ing phenomena are shown in Fig. 2: chemical/conductance

modification occurs along a filamentary path, also known

as conductive filament (CF), in filamentary switching (a),

whereas the change of conductance and composition occurs

on an interface region in the case of uniform, or interface,

switching (b).

2.1 Filamentary switching

Filamentary switching is generally triggered by a forming

operation, namely a soft breakdown operation that creates a

locally degraded region with a large concentration of defects.

In oxide-based RAM, also known as OxRAM, the dielectric

switching layer consists of a transition metal oxide such as

HfOx, TiOx and TaOx, which is sandwiched between a top

and a bottom metal electrode [1,2,10]. After forming, the CF

shows a high concentration of metallic impurities and/or oxy-

gen vacancies which are responsible for the low resistance

state (LRS) or set state. The CF is electrically disconnected

via a reset operation, which generally causes a defect deple-

tion within a relatively limited region along the CF, thus

leading to a high resistance state (HRS). The set process can

recreate the CF, thus supporting filamentary switching [4].

Filamentary OxRAM can exhibit 2 switching modes

depending on polarity of voltage pulses applied during set

and reset operations. If both transitions occur under the

positive polarity of applied voltage, resistive switching is

referred to as unipolar. In unipolar OxRAM, which was orig-

inally reported in NiO [11,12], CF formation and rupture are

explained by thermally activated redox reactions [13]. In par-

ticular, the reset process leads to CF oxidation resulting in the

formation of a depleted gap located at the point of CF at max-

imum temperature [14,15], while the set transition involves a

chemical reduction of metal oxide induced by Joule heating.

In bipolar switching, instead, set and reset processes occur

under opposite voltage polarities. In bipolar OxRAM, ion

migration driven by electric field and accelerated by tem-

perature is responsible for the CF connection and disruption

[16]. During reset, negatively biased top electrode attracts

ionized defects such as oxygen vacancies disconnecting the

CF where the filament temperature is maximum. Set transi-

tion, instead, leads to a defect migration into the depleted gap

region, causing the creation of a continuous CF whose size is

limited by the maximum (compliance) current during the set

transition, generally controlled by a transistor or resistance in

series with the memory device. In particular, the same defects

are migrated in one direction or the other during set/reset

transitions in bipolar switching, whereas unipolar switching

is assumed to require recreation of defects and their radial

diffusion [17]. As a result, bipolar RRAM devices generally

exhibit a higher endurance than unipolar RRAM, making

bipolar switching overall more attractive for cycling inten-

sive applications. There have been reports where the same

device could show the coexistence of both unipolar and bipo-

lar switching behaviors, such as the case of TiN/HfO2 RRAM

[18].

A second type of filamentary switching device is the con-

ductive bridge RAM, also known as CBRAM [19,20]. In

CBRAM, metal impurities, typically cations supplied by Ag-

or Cu-based metallic cap at the top electrode, are injected

in a chalcogenide (GeSe, GeS) or oxide (SiO2, Al2O3) elec-

trolyte layer to create conductive paths. Set transition consists

of the migration of Ag/Cu cations from the active top elec-

trode toward the bottom electrode under a positive voltage

resulting in the Ag/Cu CF formation and growth that is con-

Fig. 2 Schematic representation for a filamentary switching RRAM, e.g. OxRAM and CBRAM, and b uniform switching RRAM. Reprinted with

permission from [10]. Copyright (2008) Elsevier Ltd
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Fig. 3 Measured I–V characteristics for a a Ta2O5−x/TaO2−x device featuring filamentary switching and b for an Al/PCMO stack with uniform

switching. a reprinted with permission from [8]. Copyright (2011) Nature Publishing Group. b reprinted with permission from [24]. Copyright

(2009) AIP Publishing LLC

trolled by the compliance current. On the other hand, by

applying a negative voltage to the top electrode for reset

process, cations migrate in the opposite direction causing a

dissolution of the metallic CF. Unipolar switching has been

sometimes reported in CBRAM [21].

Despite several similarities in terms of switching and

reliability between OxRAM and CBRAM devices, some dif-

ferences exist. CBRAM shows a ratio between HRS and

LRS resistances of about 104 that is 2–3 orders of mag-

nitude higher than OxRAM resistance window. The large

resistance window is probably due to the higher mobility of

Ag/Cu cations compared to the defects in OxRAM result-

ing in a larger gap and consequently in an increased HRS

resistance after reset transition. As a result of the increased

HRS, CBRAM devices can also operate at lower program-

ming currents of about 10 pA [22], and feature multilevel

cell operation [23].

2.2 Uniform switching

Uniform switching, where the modification of chemical com-

position at the origin of the resistance change occurs within

the whole device area, was evidenced in other classes of

materials, such as perovskite-type oxides, e.g., PrCaMnO

(PCMO) [24] and TaOx/TiO2 bilayers [25,26]. Uniform

switching was explained as a local chemical reaction tak-

ing place at the interface between 2 separate materials. For

instance, field-induced oxygen exchange can occur between

a reactive top electrode and the oxide layer, e.g., between

Sm top electrode and PCMO [27]. Alternatively, oxygen

exchange occurs between TiO2 and TaOx, where the latter

serves as the barrier oxide controlling HRS/LRS resistance

values [25,26]. Figure 2b illustrates the general principles of

operation for a uniform switching RRAM [10]. As a pos-

itive voltage is applied to the top electrode, oxygen ions

and/or electrons drift from the bulk oxide layer toward the top

electrode, thus inducing the oxidation of the electrode/oxide

interface. Interface switching requires thus the use of a

relatively reactive oxide, such as Al or Sm, while inert met-

als such as Pt do not yield significant resistance change.

The resulting oxidized layer causes a resistance increase

by enhancing the barrier height in a tunneling or Schot-

tky barrier for electrons/holes injection. Application of a

negative voltage results in a switching to LRS because of oxy-

gen migration back to the bulk oxide layer. Since resistivity

change occurs across the whole interface area, the HRS/LRS

resistance values and the programming currents are generally

proportional to the device area [28].

Filamentary and interface switching usually differ also

by the shape of their I–V characteristics. Figure 3 shows

the I–V characteristics for a filamentary Ta2O5−x/TaO2−x

RRAM device [8] (a) and for a uniform switching RRAM

with Al/PCMO structure (b) [24]. Filamentary switching is

marked by an abrupt set transition, which can be explained

by a sudden voltage snap back due to the sudden self-

accelerated formation and growth of a CF [29]. On the other

hand, uniform switching appears as smooth set/reset tran-

sition and usually shows largely asymmetric characteristics

due to rectification induced by Schottky barriers or asym-

metric tunneling barriers.

3 Device simulation models

RRAM switching devices have triggered strong research

interest in view of their small size, easy fabrication, low

current operation, and high speed. Despite these attractive

features, a critical barrier for RRAM commercialization has

been the lack of deep understanding and predictability of

the switching characteristics. To support the development

and scaling of RRAM, various types of computational mod-

els have been developed. Technology computer-aided design

(TCAD) techniques enable the simulation of device con-

duction and switching characteristics, allowing to give a

microscopic view of the switching mechanisms, to study the

impact of geometry on the switching behavior, and to explore
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scaling of RRAM technology. Therefore, TCAD models of

RRAM devices have received a strong interest from both the

academia and the industry. TCAD models can be divided

into 2 main classes, namely finite element method (FEM)

numerical models, and kinetic Monte Carlo (KMC) models.

3.1 Finite element method (FEM) modeling

In a FEM model, transport equations are numerically solved

in 2D or 3D geometries where the volume is discretized with

finite elements. While device simulations of typical Si-based

devices, e.g., p–n diodes or complementary metal-oxide-

semiconductor (CMOS) devices, only require the solution of

carrier transport equations, RRAM simulation is much more

complex as thermal and ionic effects are deeply functional

to the device operation. A FEM model for RRAM thus com-

bines the challenges of both process and device simulations

of CMOS devices, since transport equations of electrons, ions

and phonons must be solved in a self-consistent way.

Among these phenomena, ionic migration represents the

core mechanism at the origin of the change of the chem-

ical composition (hence resistivity) in the active material.

Ion migration can be described by a hopping mechanism

controlled by temperature-activated drift and a diffusion

mechanism, as depicted in Fig. 4. Diffusion (Fig. 4a) is driven

by concentration gradient, thus can occur even in the absence

of an electric field. On the other hand, ionic drift takes place

in the direction of the electric field F (Fig. 4b), because of

the field-induced lowering of the hopping barrier [16,30]. In

the general case, the total ion-migration current density jD

is given by the combination of diffusion current density jdiff

and the drift current density jdrift, namely:

jD = jdiff + jdrift = −D∇nD + μFnD, (1)

where nD is the ionized defect concentration, D is the ionic

diffusion coefficient, and µ is the ionic mobility. Note that ion

diffusivity is temperature activated according to the Arrhe-

nius law, namely:

D = D0e−
E A
kT , (2)

where T is the temperature, E A is the energy barrier for

hopping transport in Fig. 4a, and k is the Boltzmann constant.

Also, ion mobility µ depends on diffusivity according to the

equation:

μ =
q D

kT
, (3)

known as the Einstein relation.

The drift–diffusion ionic continuity equation ∇ jD = 0

must then be solved with the Poisson continuity equation for

electron current, which yields F to enter Eq. (1), and the

Fourier equation to calculate T entering Eq. (2). Note that

this model attributes resistive switching to a pure migration of

defects, without any significant generation or recombination

of defects. These are assumed to be generated at forming,

and remain confined in the CF region with negligible loss

during the set/reset cycling.

The migration of ions within an active region, generally

consisting of the CF area, results in a change of chemical

composition which affects the local resistance. To describe

the impact of composition on resistivity, the defects, e.g.,

oxygen vacancies and hafnium ions, can be considered to

act as dopants in the metal oxide [30]. In fact, increasing

the defect density in a metal oxide is known to affect the

local density of states (DOS), by introducing states in the

gap which can act as doping [31,32]. According to this pic-

ture, the local defect concentration nD controls the electrical

conductivity σ , which is assumed dependent on temperature

via an Arrhenius law given by:

σ = σ0e−
E AC
kT , (4)

where σ0 is a pre-exponential factor and EAC is the acti-

vation energy for electrical conduction. In Eq. (4), electrical

transport is assumed to obey to a thermally activated hopping

mechanism, such as Poole–Frenkel, which has indeed been

evidenced at relatively low conductance in RRAM devices

Fig. 4 Schematic illustration of physical mechanisms controlling hopping-based migration of ionized defects in bipolar RRAM. a Ionic diffusion

is driven by temperature and concentration gradient, while b ionic drift is driven by the electric field. Reprinted with permission from [30]. Copyright

(2012) IEEE
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MetalOxide

(a)

(b)

Fig. 5 Calculated evolution of electrical conductivity parameters in

Eq. (4), namely a the pre-exponential factor σ0 and b the activation

energy E AC at increasing of defect density nD . Reprinted with permis-

sion from [30]. Copyright (2012) IEEE

[33]. Figure 5 shows σ0 (a) and E AC (b) as a function of nD

[30]. A linear increase of σ0 is assumed in the calculation,

to describe the transition from HRS, at low defect concen-

trations, to LRS at high defect concentration approaching a

maximum value nD = 1.2 × 1021 cm−3 at which the local

conductivity becomes virtually metallic. The linear increase

of σ0 is consistent with both the Poole-Frenkel picture of

conduction, where each carrier is thermally emitted from

a localized state, and the doping theory in semiconductors,

where carriers originate from the ionization of doping atoms.

The activation energy E AC is assumed zero for high nD ,

because of the doped-semiconductor or metallic-like con-

duction of CF in the set state, while E AC is assumed to

linearly increase for decreasing nD close to zero as a result

of a Poole–Frenkel-type electrical conduction in the case of

disconnected filament.

Figure 6a shows measured and calculated I–V characteris-

tics for an HfOx-based bipolar RRAM evidencing an abrupt

set transition and a more gradual reset process. The latter

is due to the migration of ionized defects activated by field

and temperature toward the negatively biased top electrode

resulting in a depleted gap along CF [16,30]. The depletion

process is seen to start close to the middle of CF, where T

generally reaches its maximum value along the CF [30]. This

physical explanation of reset process is supported by the evo-

lution of the defect density calculated by a numerical FEM

model [30], which is shown in Fig. 6b at the end of the reset

transition, i.e., for the HRS. In fact, the map evidences a

clear depletion region, or depleted gap, extending close to

the bottom electrode. In this depleted gap, the concentration

of defects is so low that the conductivity pre-factor σ0 is rel-

atively small, while the energy barrier is large according to

Fig. 5, therefore resulting in a relatively large resistance in

the depleted region which is at the origin of the resistance

rise during the reset process. On the other hand, when a pos-

itive voltage is applied to the top electrode, ionized defects

migrate in the direction of the electric field toward the bot-

tom electrode, causing a fast increase of defect density in the

depleted gap. The map of nD at the end of the set transition,

namely for the LRS, in Fig. 6c shows no depleted gap and a

continuous CF with low resistance.

More details about the evolution of the CF during set

transition are obtained by 3D contour plots of defect den-

sity shown in Fig. 7a. From the initial HRS, the set process

results in the connection of top and bottom stubs via forma-

tion of a sub CF whose diameter φ increases until reaching

a maximum value limited by the compliance current. Fig-

ure 7b illustrates the evolution of CF shape during reset

transition, showing the formation and the gradual opening of

the depleted gap with length � reaching a maximum value

in the HRS [30,34].

Figure 8 shows the measured (a) and calculated (b) cur-

rent during the reset transition as a function of the absolute

value of voltage. The I–V curves are shown for various ini-

tial set states (S1, S2, S3 and S4) differing by their diameter

φ, namely initial resistance increases from S1 to S4 as φ

Fig. 6 a Measured and calculated I–V characteristics, 3D maps of defect concentration nD describing b HRS and c LRS, respectively, obtained

by a FEM model
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Fig. 7 3D contour plots of the defect concentration illustrating the

evolution of a set transition by the formation and growth of the CF and

of b reset transition via a gradual opening of a depleted gap. Reprinted

with permission from [34]. Copyright (2014) IEEE

decreases due to a decreasing compliance current IC used

during the previous set transition [35]. Note that the reset

voltage Vreset is almost constant for all set states, thus the

reset current linearly increases with LRS conductance 1/R,

or equivalently with the cross-sectional area of the CF. Note

that Ireset ≈ IC in Fig. 8a, b, since Vreset is almost equal to

VC, i.e., the critical voltage controlling ionic migration dur-

ing set transition. Figure 8 also shows the measured (c) and

calculated (d) I–V curves of reset transition for various initial

states, including a set state S2 of resistance R = 0.4k� and

four reset states (R1, R2, R3, and R4) of increasing resistance.

These reset states were obtained by applying consecutive

reset sweeps with increasing stop voltage Vstop, namely the

maximum voltage in the reset transition. As Vstop increases,

the depleted gap length � increases in the final reset state,

thus R also gradually increases from R1 to R4. The first reset

state R1 was obtained by resetting S2 with Vstop = 0.5 V.

Afterward, starting from R1, a second voltage sweep with

Vstop = 0.6 V is applied causing the device resistance to

increase to a higher value corresponding to the reset state

R2. Finally, R3 and R4 are obtained by the application of

further consecutive sweeps at increasing Vstop resulting in

Fig. 8 a, b Measured and calculated I–V characteristics showing reset

transitions at variable initial LRS resistance (S1 − S4). Both measured

and simulated curves evidence that Vreset does not depend on initial state.

c, d Measured and calculated I–V curves for variable HRS (R1 − R4)

obtained by voltage sweeps at increasing Vstop starting from the set state

S2 of resistance R = 0.4 k�.Vreset increases with the initial resistance

of the HRS. Reprinted with permission from [35]. Copyright (2012)

IEEE

123



1128 J Comput Electron (2017) 16:1121–1143

Fig. 9 Measured and simulated Vreset as a function of R for variable

set states, differing by IC in the set transition, and variable reset states,

differing by Vstop in the reset transition. Reset states resulting from set

states obtained at two different values of IC (0.5 and 1 mA) are compared

in the figure. Note that Vreset is almost constant for set states, while it

increases with R for reset states. Reprinted with permission from [35].

Copyright (2012) IEEE

a further increase of R. Note that Vreset, defined as the first

voltage evidencing an increase of R, increases with the ini-

tial resistance of the reset state in both the experimental data

and the calculations, which is in contrast with the behavior

of Vreset observed for set states in Fig. 8a, b.

The different behavior of Vreset is further summarized in

Fig. 9, collecting the measured and calculated Vreset for vari-

able set and reset states. Set states are achieved at variable IC

while reset states are obtained at variable Vstop starting from

2 initial set states with IC = 1 mA and IC = 0.5 mA, respec-

tively. In the case of the set states, Vreset remains essentially

constant at 0.4 V since the maximum electric field and max-

imum temperature in the CF are not affected by any change

in CF diameter and cross section [33]. On the other hand,

reset states with increasing R show an increasing Vreset, as

a result of the increasing length of the depleted gap. In fact,

the electric field is strongly localized at the depleted gap, and

the longer is the depleted region, the smaller is the remain-

ing field across the conductive region of the CF, where F

drives ionic migration at the origin of the reset transition. As

a result, to activate ion migration in reset states, Vreset must

increase according to the gap extension.

In addition to static DC characteristics as in Figs. 6 and 8,

the numerical drift–diffusion model can provide accurate pre-

diction of AC-type measurement results, such as Vreset under

variable sweep rate, or reset time at constant voltage. Fig-

ure 10 shows the measured and calculated reset time defined

as the time to observe an increase of resistance by 60 %

with respect to the initial value during the reset transition at

constant voltage [30,35]. The reset time in Fig. 10a shows a

highly non-linear dependence on the absolute value of the

applied voltage. This can be explained by the Arrhenius

Fig. 10 Measured and calculated evolution of reset time as a function

of a pulse amplitude and b 1/kT, where T indicates the maximum tem-

perature in the CF calculated by the numerical model. Reprinted with

permission from [30]. Copyright (2012) IEEE

dependence of diffusion kinetics in Eq. (2), where the local

T is induced by Joule heating, thus increases approximately

with the square of the applied voltage [16]. To support this

explanation, Fig. 10b shows the reset time as a function of

1/kT, where T was evaluated from the model as the maximum

temperature along the CF at the reset transition. Data and

calculations show a clear exponential dependence, thus evi-

dencing the Arrhenius dependence and supporting the crucial

role of temperature in accelerating ion migration and reset

transition. The FEM model thus shows a full capability to pre-

dict device behavior under both basic lab-type experiment,

such as quasi-static I–V curves, and more application-driven

explorations of device speed, thus satisfying the need for

industrial TCAD-type simulations.

To further support the physical picture and numeri-

cal accuracy of the FEM model, simulations were carried

out also to reproduce the complementary switching (CS)

phenomenon, which is shown in Fig. 11 [36]. In bipolar

switching (I–V curve in Fig. 11a), the amount of defect dis-

placement along the CF is usually controlled by limiting the

maximum current by an external IC, which thus limits the

resistance to a value R = VC/IC, where VC is the mini-

mum voltage inducing ionic migration in the time scale of

the experiment [16]. The external current limitation is sup-

pressed in CS, thus resulting in the I–V curves shown in

Fig. 11b for an HfOx RRAM device.

Starting from an initial reset state (state 1 in Fig. 11c),

an applied positive voltage in Fig. 11b causes the device to

undergo a set transition where the maximum current (about

2 mA) exceeds the compliance current of 1 mA, which was

initially used to set the device in the previous bipolar switch-

ing operation in Fig. 11a. This can be understood by the

unlimited ionic displacement which causes CF growth above

the usual limits of the bipolar switching. However, there is a

self-limitation mechanism of the CF size which is enforced

by the maximum availability of defects in the reservoir at the

top electrode. In fact, it should be noted once again that bipo-

lar switching is explained by ionic migration where no new
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Fig. 11 a Measured I–V curve with compliance current IC = 1 mA

and b without current limitation, resulting in a CS, for the same bipolar

HfOx RRAM. An applied positive voltage induces a set transition (from

state 1 to state 2) followed by a reset transition (from state 2 to state 3),

finally resulting in the positive HRS, or PHRS. Starting from PHRS, an

applied negative voltage induces a set transition (from state 3 to state

4) followed by a reset transition (from state 4 to state 5), finally result-

ing in the negative HRS, or NHRS. c–g Contour plots of nD depict the

CF shape modifications during CS from state 1 to state 5, respectively.

Reprinted with permission from [36]. Copyright (2013) IEEE

defects are generally generated, since the latter phenomenon

would require a much larger energy compared with simple

defect migration. After the maximum current state (state 2 in

Fig. 11d), the current decreases at increasing applied voltage

leading to a reset transition. Reset process can be understood

by ion migration from the top to the bottom electrode result-

ing in accumulation of defects at the bottom electrode side

and opening of a depleted gap at the top electrode side. This is

indicated by contour plot of nD for state 3 in Fig. 11e, with a

strong accumulation of defects at the bottom electrode. State

3 is also referred to as positive HRS (PHRS), as it is obtained

at the end of the positive voltage sweep [36]. From PHRS,

the application of a negative voltage sweep with no current

compliance limitation induces a set transition leading to state

4 (Fig. 11f), whose maximum size is again limited by defect

availability in the reservoir. Finally, the state 5 (Fig. 11g) is

obtained by the migration of defects toward the top electrode

side leading to a negative HRS (NHRS), which is similar

to the initial state 1. The 3D contour plots of nD indicate

that PHRS (Fig. 11e) and NHRS (Fig. 11g) differ by their

opposite orientations, as the defect accumulation is at the top

electrode side for NHRS, and at the bottom electrode side

for PHRS. Calculated I–V curves by the FEM model show

qualitative agreement with experimental results, thus further

supporting the physical basis of the model, in particular the

absence of significant generation/recombination effects dur-

ing bipolar/complementary switching [36].

The same FEM scheme was adopted by other simulation

works for calculating bipolar RRAM characteristics. Models

were applied to various materials and device structures, e.g.,

Fig. 12 a Cross section of a Pt/Ta2O5/TaOx/W RRAM device and

b a measured I–V characteristic with the corresponding calculation

obtained by a FEM model. Reprinted with permission from [37]. Copy-

right (2013) Nature Publishing Group

the Pt/Ta2O5/TaOx/W [37] and Pd/Ta2O5/TaOx/Pd [38] bi-

layered structures. Following [30], the FEM numerical model

[37] describes set and reset transitions in terms of migra-

tion of positively ionized oxygen vacancies accelerated by

electric field and Joule heating via a self-consistent solution

of partial differential equations for ion, electron, and heat

transport. Figure 12a shows a cross section of the simulated

RRAM where the Pt and W electrodes are assumed as ideal

heat sinks at room temperature [37]. Also, TaOx layer serves

as reservoir of oxygen vacancies for the formation of the
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Fig. 13 a Measured and b calculated I–V characteristics of a uniform switching TaOx/TiO2 RRAM showing multiple resistance states achieved

for variable Vset (top) and variable Vreset (bottom), respectively [25]

CF with a radius of about 10 nm after forming operation.

Figure 12b shows the experimental and simulated I–V char-

acteristics for TaOx-based bilayer structure during reset and

set processes. Contrary to Fig. 6, set transition takes place

under negative voltage applied to the top electrode, since the

negative voltage attracts oxygen vacancies and Ta impuri-

ties migrating across the top Ta2O5 barrier, thus allowing

to fill the depleted region and cause electrical connection

between top and bottom electrode. On the other hand, the

application of a positive voltage causes repulsion of positive

oxygen vacancies and Ta impurities from the top electrode,

causing defect depletion at the top electrode side. The calcu-

lated I–V curves show a remarkably accurate agreement with

the experimental data, further supporting the FEM model

as a flexible and reliable numerical approach for TCAD-

based RRAM simulations. FEM models were also extended

to include the generation of defects, which can be used to pre-

dict the forming characteristics to initiate the CF switching

from the pristine state [37,38].

In addition to filamentary switching, uniform switching

received a good deal of interest for the development of suit-

able simulation models. For instance, Fig. 13 shows the

measured (a) and calculated (b) I–V characteristics of a

Ta/TaOx/TiO2/Ti RRAM device displaying uniform switch-

ing [25]. The device shows a self-rectifying ratio of 103 and

was fabricated with a vertical structure, adopting highly con-

formal deposition of Ta/TaOx/TiO2 stack on the side wall of a

multilayer Ti/SiO2 stack [25,26]. The asymmetric character-

istics in Fig. 13 were explained by a Schottky barrier where

the TiO2/Ti interface acts as transparent ohmic contact. As

a result, as a positive voltage is applied on device, electron

migration from Ti electrode is hindered by the presence of

conduction band offset at TaOx/TiO2 interface. On the other

hand, as the polarity is reversed, electron flux from Ta elec-

trode is limited by Ta/TaOx interface acting as a Schottky

barrier. Switching in this uniform-type RRAM was explained

by modulation of Schottky barrier induced by charge distri-

bution at Ta/TaOx interface. Specifically, oxygen ions are

assumed mobile under applied electric field, while oxygen

vacancies as fixed donor-like dopants. The I–V characteris-

tics of Ta/TaOx/TiO2/Ti device in Fig. 13a show multiple set

(top) and reset (bottom) states at increasing Vset and Vreset,

respectively, where the multiple states can be attributed to

variable charge densities in the Schottky barrier.

This physical description of Ta/TaOx/TiO2/Ti operation

was verified by a 1D numerical model [26] taking into

account both oxygen migration and barrier modulation.

According to this model, oxygen ions migration evidences

both diffusion and drift components relying on ion hopping.

Consequently, both are understood as temperature-assisted

mechanisms according to an Arrhenius-type law. The drift

velocity of oxygen ions driven by electric field is given by

v = a f e−
E A
kT sinh

(

−
qγ aF

kT

)

, (5)

where a is the effective hopping distance, f is the attempt-

to-escape rate, E A is activation energy of ion migration, T

is the temperature, γ is a fitting parameter related to field

dependence and q is the elementary charge. On the other

hand, the diffusion component is modeled by a diffusivity
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coefficient D =
a2 f

2
e−

E A
kT . In addition, time dependence

of oxygen ion concentration No is given by the continuity

equation of drift–diffusion:

∂ N0

∂t
= D

∂2 N0

∂x2
− v

∂ N0

∂x
. (6)

Unlike oxygen ions, oxygen vacancies Vo are assumed as

fixed donor-like dopants in TaOx layer whose concentration

NV changes as NI e−x/x0 , where NI is the vacancy density

at Ta/TaOx interface and x0 is the decay constant.

The electric field F is obtained solving the Poisson equa-

tion

∂ F

∂x
=

2q

εrε0
(−N0 + NV +) , (7)

where NV + is the density of positively ionized oxygen vacan-

cies obtained at F �= 0, εr is the relative permittivity of

TaOx or TiO2 and ε0 is the vacuum permittivity. Also, this

1D numerical model neglects the current transport in TiO2

because the latter is limited by TaOx Schottky barrier. Over-

all, numerical calculations in Fig. 13b show good qualitative

agreement for both controlled set mode (top) and controlled

reset mode (bottom) with data which support the validity of

the model.

3.2 Kinetic Monte Carlo modeling

Another approach being adopted to investigate switching

characteristics of bipolar RRAM devices relies on Kinetic

Monte Carlo (KMC) models. As opposed to FEM schemes,

where all variables are treated as continuous, the KMC

approach deals with discrete quantities, such as the number

and position of defects.

The KMC numerical model presented in [39] assumes

generation/recombination of oxygen vacancies as the main

origin of resistance change, and trap-assisted tunneling (TAT)

as the mechanism responsible for conduction in resistive

switching devices. Based on TAT conduction interpretation,

electrons tunnel from cathode into the closest oxide trap and

from there hop through a chain of oxygen vacancies until

reaching, by tunnel, the anode. Figure 14 shows calculations

performed by this model for forming, reset and set processes

of a 2D RRAM with an HfOx dielectric layer of thickness 10

nm [39]. As indicated in Fig. 14a, the RRAM device initially

shows a high resistance owing to random spatial configura-

tion of few defects in the oxide layer. During forming, whose

I–V curve is shown in Fig. 14b, the application of a high

positive voltage on pristine device results in the formation

of percolating paths because of the fast increase in oxygen

vacancies driven by electric field and temperature on the basis

of a positive feedback mechanism. At the end of forming,

a defect configuration as the one in Fig. 14c is obtained.

After forming, a reset operation is carried out on RRAM. To

this purpose, Fig. 14d illustrates the I–V characteristics for

two different reset transitions with Vstop = −2.5 and −3 V,

respectively. As confirmed by Fig. 14e, f, the reset opera-

tion with higher Vstop leads to a longer depleted gap which

thus results in a higher HRS. In addition, note that depleted

gaps evidence random edges, which can be due to stochastic

nature of recombination process of oxygen vacancies. Also,

simulated results show sequential current drops during the

reset transition, which again can be attributed to random

recombination events affecting the overall device resistance.

Figure 14g–i shows set transitions under two different com-

pliance currents. Set operated at higher compliance current

(Fig. 14i) induces a higher amount of vacancies, thus result-

ing in a high number of conductive paths and thus in a lower

LRS.

The KMC model [40] was shown to allow for an accu-

rate description of the forming process and its statistics as

indicated in Fig. 15. Forming is activated by the power

consumption which induces a considerable increase of tem-

perature resulting in a high generation rate of oxygen

vacancies. The oxygen vacancy generation rate G was mod-

eled as an exponential function of temperature and electric

field F given by:

G (x, y, z) = ve
−

E A(x,y,z)−bF(x,y,z)

kT (x,y,z) , (8)

where ν is the Debye vibration frequency, b is the bond polar-

ization factor, k is the Boltzmann constant, and EA is the

effective defect formation energy at F = 0. Oxygen vacan-

cies result in an increase of TAT current, hence in a higher

temperature leading to a positive feedback responsible for

CF formation. The model allows to simulate the distribution

of forming voltage in Fig. 15a, and of the spatial distribution

of discrete defects, namely oxygen ions (red) and vacancies

(green) as shown in Fig. 15b. It should be noted that oxygen

vacancies are uniformly distributed evidencing the forma-

tion of a CF, whereas the oxygen ions move toward the top

electrode interface as a result of field-assisted drift.

3.3 Atomistic simulations

FEM numerical models provide extremely accurate results

for the understanding of switching phenomena in RRAM

devices. However, although the description of the funda-

mental mechanisms responsible for the switching process

is highly accurate, as validated against several experimen-

tal results, the quantitative details of ionic drift/diffusion and

the relationship between defect concentration and the ther-

mal/electrical conductivities require more dedicated physical

investigation, such as atomistic physical models, to serve as

input to TCAD industrial-scale models.
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Fig. 14 Calculated results by a KMC modeling of resistive switching

for a bipolar RRAM with a 10-nm-thick HfOx layer. a Starting from an

initial reset state, b the device undergoes the forming operation leading

to c the formation of some percolation paths. After forming, d RRAM

can be reset by applying a negative voltage sweep whose maximum

value Vstop controls the length of the gap and thus the final HRS (e, f).

g The application of a positive voltage induces a set transition limited

by IC resulting in the formation of CF connecting two electrodes. h, i

The number of CFs increases for higher IC, thus leading to lower LRS.

Reprinted with permission from [39]. Copyright (2011) IEEE

Figure 16a–c illustrates calculated results of an atomistic

model showing the oxygen vacancy migration in λ phase

Ta2O5-based RRAM [41]. Because of adaptive crystal struc-

ture of this oxide layer, the oxygen vacancies diffuse through

energy barriers inducing a rearrangement of neighboring

atoms. The migration process starts with an in plane coordi-

nated displacement of atoms leading a 3f vacancy to reach

a 2f vacancy (a). Afterward, the 2f vacancy migrates toward

a 3f vacancy (b) and finally, from 3f oxygen site, either the

sequence 3f-2f-3f is repeated again or the vacancy directly

reaches the 2f site (c) [41]. Figure 16d shows calculated

migration barrier energy as a function of the oxygen vacancy

formation energy for various transition metal oxides and note

that λ −Ta2O5 evidences the lowest energies compared with
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Fig. 15 a Measured and

calculated cumulative

distributions of forming voltage

for TiN/HfO2/TiN RRAM at

T = 25 ◦C and b calculated

distributions of oxygen

vacancies (green) and oxygen

ions (red) in case of ramped

voltage forming with slope

1 V/s. Reprinted with permission

from [40]. Copyright (2012)

IEEE (Color figure online)

TiN (anode)

TiN (cathode)

x [nm]y [nm]

z
 [

n
m

] 
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Fig. 16 a–c Calculated oxygen vacancy migration for λ-Ta2O5 RRAM at atomic scale and d diagram of migration energy as a function of oxygen

vacancy formation energy to compare λ-Ta2O5 to other important transition metal oxides. Reprinted with permission from [41]. Copyright (2016)

AIP Publishing LLC

monoclinic-HfO2, rutile-TiO2, and α -Al2O3. This result,

obtained starting from first principles, supports λ -Ta2O5

RRAM as an extremely attractive solution for very fast,

low power RRAM devices. A similar atomistic approach

was also used to study in depth the switching kinetics of

Cu/amorphous SiO2 CBRAM cells at technological minia-

turization limit corresponding to a cross section of 7×7 nm2

and an oxide thickness of 1–4 nm, namely at scaling limit

[42]. To this purpose, Fig. 17 shows a time evolution of con-

nection and disruption of a CF between two electrodes at

atomic level. The atomistic simulations performed on ultra-

scaled devices evidence that the application of a positive

forming voltage induces Cu ions at the active electrode to

become positively charged. As a result, these Cu ions tend to

dissolve into the electrolyte causing the formation of small

metallic aggregates. In addition, the electric field drives these

Cu ions toward the inactive electrode resulting in the for-

mation of continuous conductive bridges whose stability is

enhanced by applied voltage.

After forming, the cell can be reset by the application of a

negative voltage, which positively charges the filament ions

close to the inactive electrode. Consequently, these Cu ions

dissolve into the electrolyte causing a partial rupture of the

CF, namely only at inactive electrode side. Finally, changing

the polarity of applied voltage, the active electrode assumes

a positive charge easily dissolving into the electrolyte and

thus inducing the formation of conductive bridge paths.

4 Compact modeling of RRAM

While TCAD device simulations provide high detail at the

relevant scale of MIM stack and RRAM device, they are not

suitable for large-scale simulations of circuits. For instance,

a memory array might contain from kbit up to several Gbit

of memory devices, thus requiring analytical models with an

adjustable degree of simplification depending on the circuit

scale. A key feature of such analytical models is the capabil-

ity to incorporate device switching variability of switching
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Fig. 17 Atomistic pictorial representation of forming, reset and set

transitions in ultra-scaled Cu/a-SiO2 CBRAM cell. The application of

a positive voltage (indicated by blue color) at Cu-based active electrode

induces the dissolution of Cu ions into the a-SiO2 layer forming small

clusters leading to stable conductive filaments. On the other hand, as the

voltage is reversed, the inactive electrode becomes positively charged

causing the filament rupture at its side. Reprinted with permission from

[42]. Copyright (2015) Nature Publishing Group (Color figure online)

voltages, e.g., Vset and Vreset, and resistance values. These

analytical models are best suited to support functionality at

the level of the circuit of a system, thus providing a strong

demonstration and motivation for RRAM usage in several

memory and computing scenarios.

Several compact models for RRAM and CBRAM have

been presented to date [16,29,43–46]. These models can

either predict the resistance distribution [46], or simulate

the whole switching characteristics by physically based

equations of CF growth/depletion [16,29,43–45], including

statistical variability affecting the switching voltages, cur-

rents, and resistance values [34]. Variability effects can be

included with a Monte Carlo approach in circuit simulations,

to allow for a realistic description of statistical effects, which

are a key feature to explore random number generation with

RRAM [47,48], or to predict window failure in high-density

memories.

4.1 Simplified physical picture

In general, the starting point for developing a compact

model is to learn the switching mechanism from a detailed

device simulation, such as the FEM simulation of filamen-

tary switching shown in Fig. 7. Here, the CF shows distinctly

different evolutions during set and reset processes: set tran-

sition consists of a sudden appearance of defects within the

depleted gap, followed by a CF growth in terms of defect den-

sity and CF diameter within the depleted gap (Fig. 18a). On

the other hand, reset transition is due to an increased length of

the depleted gap (Fig. 18b). The ‘explosive’ nature of set pro-

cess agrees well with the abrupt change of current in the I–V

curves, compared to the more gradual transition in the reset

process. The different dynamics of set and reset processes can

be understood by the positive or negative feedback of elec-

tric field, temperature, and the defect distribution along the

CF [29,30]. In fact, defects during set transition migrate in

response to the large electric field across the depleted gap. As

defect migration starts to take place, the depleted gap length

decreases, thus the local electric field increases, which further

accelerates defect migration. Such positive feedback effect

would result in a destructive failure of the device; however,

current limitation (compliance) systems introduce an exter-

nal negative feedback which allows to reduce the voltage

during set transition, thus preventing destructive breakdown

and enabling a detailed control of the final CF size and resis-

tance [16,29]. On the other hand, defect migration during

reset transition is triggered by a relatively low electric field

across the continuous CF. As the depleted gap starts to form,

the electric field decreases in the CF regions where defects

are located, thus slowing down the migration kinetics. As a

result of such negative feedback effect, the voltage must be

increased to further sustain the reset transition, resulting in

the gradual increase of resistance.

4.2 Simulation results

Figure 18 shows the CF evolution in filamentary-type RRAM

during set (a) and reset transition (b) [29]. The CF evolution
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Fig. 18 Schematic illustration of filament evolution during switching in RRAM for a set transition, b reset transition, and c I–V curve calculated

with an analytical model, compared to experimental data for a TiN/HfO2/TiN device. Reprinted with permission from [29]. Copyright (2014) IEEE

mimics the observed set/reset migration dynamics in Fig. 7,

namely, set transition evolves via the growth of CF diameter

φ within the depleted gap region (a), whereas reset transition

occurs by the gradual increase of the depleted gap length

� (b). Formally, the rate equations for φ and � resemble

the drift/diffusion equations governing the continuous FEM

modeling of RRAM [30], namely:

dφ

dt
= Ae

−
E A

kTinj (9)

for set transition, where A is a pre-exponential constant, E A

is a voltage dependent energy barrier for migration, and Tinj is

the local temperature at the injecting CF tip, namely the one

with positive potential. A similar rate equation was assumed

for reset transition, namely:

d�

dt
= Ae

−
E A

kTinj , (10)

where Tinj is again calculated at the positively biased, inject-

ing CF tip [29]. These equations can be viewed as a simplified

description of the CF evolution mechanism, where the CF

evolves via Arrhenius-type migration dynamics controlled

by an energy barrier E A, and driven by the local electric

field and the local temperature Tinj. Figure 18c shows the

measured and calculated I–V curve obtained by this model:

simulation results show the same abrupt change of resis-

tance during set transition, and a gradual change of resistance

during reset transition, thus demonstrating that it correctly

captures the positive/negative feedback loops controlling the

microscopic CF evolution. Among the model equations, it

is necessary to include (i) a shape–resistance relationship

allowing to derive R for each value of φ and �, and (ii)

a simplified electro-thermal model allowing to estimate the

local temperature Tinj based on the dissipated power V*I,

and based on a detailed description of the thermal resistance

controlling heat exchange across the time-varying CF and

the surrounding oxide layer [29].

In the simulation results of Fig. 18, a migration energy

barrier E A = 1.2 eV was assumed, thus similar to the val-

ues derived from time-dependent analysis of switching by

numerical simulations [30], and similar to independent ab-

initio studies of diffusion barriers in amorphous HfO2 [49].

To better support the feasibility of Eqs. (9) and (10) com-

bined with this value of E A, Fig. 19 shows the measured and

calculated I–V curves describing the reset transition at vari-

able rate of the applied voltage sweep [29]. As the sweep

rate β = dV/dt was increased from 1 Vs−1 to 106 Vs−1, the

reset voltage and corresponding reset current increased by

about a factor 2, although the initial LRS resistance was kept

constant. This is due to the time-dependent reset dynamics,

where a higher local Tinj, hence a higher Vreset, is needed to

trigger ionic migration within a shorter time according to the

Arrhenius law in Eqs. (9) and (10). The analytical simulations

in Fig. 19 agree very well with the experimental data, sup-

porting the accuracy of the rate equations and of the energy

barrier E A assumed in the calculations of resistance switch-

ing in TiN/HfO2/TiN. Note that a different material and/or

stack would lead to different values of A and E A in the equa-

tions; thus, this compact model requires careful adjustment

to describe a specific RRAM technology.

The model also accounts for the dependence on current

compliance IC via the LRS resistance. Figure 20 shows

the measured and calculated resistance R (a), reset current

123



1136 J Comput Electron (2017) 16:1121–1143

Fig. 19 Measured and calculated I–V characteristics showing reset

transition at increasing sweep rate, namely a β = 1Vs−1, b β =

102 Vs −1, c β = 104 Vs−1, and d β = 106 Vs−1. Reprinted with

permission from [29]. Copyright (2014) IEEE

Fig. 20 a Measured and calculated average LRS resistance R, b reset

current Ireset and c reset voltage Vreset , as a function of the compliance

current IC. Data were collected for integrated one-transistor/one-

resistor (1T1R) structures allowing control of the LRS in the range

10–100 k� for IC in the range 10–100 µA. Calculations agree very

well with experimental data, supporting multilevel cell control of LRS

resistance and low power operation of RRAM. Reprinted with permis-

sion from [34]. Copyright (2014) IEEE

Ireset (b) and reset voltage Vreset (c), as a function of IC.

These experimental results were collected for integrated one-

transistor/one-resistor (1T1R) structures, where the small

parasitic capacitance allowed for a tight control of the max-

imum current during set transition close to IC and without

significant overshoots [50]. As IC decreases, LRS increases

as a result of the reduced maximum CF size reached within

the experimental time, which was about 1 s in the DC exper-

iments of Fig. 20. In fact, a relatively small IC causes a

negative-feedback-induced voltage snap back to occur at rel-

atively low current, thus forcing the final resistance to a

relatively high value R = VC/I C, where VC is a characteristic

voltage capable of inducing ionic migration on experimental

time scale [16,29]. Analysis of data in the figure indicates

VC = 0.5 V for these experimental devices, in agreement

with other RRAM device technologies including both unipo-

lar and bipolar switching RRAMs [16]. The reset current

increases with IC as a result of the decreasing R and of the

constant reset voltage Vreset (c). The latter is almost equal to

VC, thus suggesting a symmetric behavior of ionic migration

with respect to voltage polarity. Two device types differing

in HfO2 thickness and deposition recipe are compared in the

figure [34,51], however indicating only minor deviations. In

particular, the value of VC was shown to depend only slightly

on the device material/stack and geometry parameters, such

as the thickness of the oxide layer, or the length of the CF

[16]. This can be explained by the analytical formula for the

maximum temperature along the CF, given by:

T = T0 +
Rth

R
V 2 = T0 +

V 2

8ρkth
, (11)

where T0 is the room temperature, Rth/R is the ratio between

thermal and electric resistances of the CF, V is the voltage

drop across the CF, ρ is the electrical resistivity and kth is

the thermal conductivity of the CF materials. The equation

indicates that the local temperature does not depend on CF

thickness, but is solely controlled by applied voltage since

Rth/R is approximately constant. The balancing effect of

thermal/electrical resistances can be explained as follows: as

the thickness increases, the power dissipation P = V 2/R

within the CF decreases, while the corresponding tempera-

ture along the CF increases. As a result, the same voltage VC

is needed to achieve the critical temperature needed to induce

migration within the time scale of the experiment [16].

4.3 Variability simulations

A key aspect of RRAM operation and its simulation for

circuit applications is the statistical variability of set/reset

processes. In fact, one of the purposes of circuit simula-

tions is the prediction of the impact of device mismatch or

cycle-to-cycle variations on the operation of a certain macro,

such as a memory array, or a neuromorphic network, or a

Boolean stateful logic circuit. In specific cases, such as a

random number generator (RNG), variability is the key for

circuit functionality, therefore circuit simulations inherently

require that RRAM compact models feature the possibility

to predict variability effects. On the other hand, numerical

tools, such as the FEM or KMC models, are unfeasible for

circuit simulations due to excessive computational cost, since

to predict the impact of variability, one should perform Monte

Carlo circuit simulations with several repeated cycles, e.g.,

1 million simulations to account for a 6-sigma error rate.
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Fig. 21 Schematic illustration of the switching variability model,

based on discrete defect migration. a A uniform distribution of energy

barriers is assumed, and b a random value of E A is attributed to any

individual migration event during set/reset processes, corresponding to

c an individual defect, or defect cluster. Reprinted with permission from

[34]. Copyright (2014) IEEE

To account for stochastic switching within RRAM com-

pact simulations, one should consider that variability orig-

inates from the random environment and migration paths

affecting ionic migration during set and reset processes [34].

Such randomness is captured by KMC models at the level

of physical TCAD device simulation and can be introduced

in FEM simulation approaches by energy landscape descrip-

tion of the migration barrier [34]. In analytical calculations,

randomness can be introduced according to a Monte Carlo

approach, where the migration barrier E A is assumed to

belong to a uniform distribution as shown in Fig. 21a. Each

defect is then attributed an EA value (Fig. 21b), randomly

extracted from the distribution of Fig. 21a, and control-

ling the defect migration process, e.g., during set transition

(Fig. 21c). This approach well describes random migration

effects in a simplified scheme for fast simulations within an

analytical model.

Figure 22 shows the measured (a) and calculated (b) I–V

characteristics evidencing stochastic switching phenomena.

In the measurements, the same 1T1R device was subjected

to several repeated set/reset I–V experiments for IC = 80 µA,

resulting in statistical variation of all switching parameters,

including Vset, Vreset, Ireset, and resistance of LRS and HRS.

In both the data and calculations, the voltage drop across the

transistor was subtracted from the overall I–V curve, for best

representation of the LRS resistance variability.

Calculations according to the discrete defect model in

Fig. 21 show individual steps along both the set and reset

transitions, which correspond to individual defects (or defect

clusters) contributing to CF growth during set process, or

gap depletion during reset process. Depending on the E A

values of individual migration events, different values of

resistance, Vset and Vreset are simulated. The simulations

compare individual Monte Carlo runs with the average cal-

Fig. 22 a Measured and b calculated I–V characteristics, under vari-

ous measurements or Monte Carlo calculation cycles. Reprinted with

permission from [34]. Copyright (2014) IEEE

culated behavior according to the standard compact model

of Sect. 4.2, which evidences that this variability model well

describes the picture of stochastic variations around an aver-

age ‘ideal’ switching characteristic.

Quantitative evaluations of the relative variation of LRS

resistance, which can be expressed by the standard deviation

of resistance σR divided by the average R, show that σR/R

decreases for increasing IC, or equivalently increases for

increasing R. This is due to the increasing number of defects

involved in the set process, which results in an increased

averaging among individual stochastic events, and in a con-

sequently smaller variability. Theoretical investigations [51]

and simulation results [34] indicate that the number variation

causes σR/R to increase as R0.5, due to the Poisson distribu-

tion of defect number in the CF. As shown in Fig. 23a, this

model agrees well with the HRS slope [4]; however, it does

not account for the observed behavior of LRS, indicating a

much higher slope and linear increase of σR/R with R.

The R-dependent variability of LRS can be well described

by the shape variation of the CF [4]. If we assume an ideal
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Fig. 23 a Measured σR/R as a function of R for LRS and HRS and schematic illustration of a CF with b ideal cylindrical shape and c distorted

conical shape [4]

cylindrical shape of the CF (Fig. 23b) with a diameter φ and

length L, stochastic variation in the migration paths might

eventually result in non-ideal CF conformations, such as the

conical shape in Fig. 23c, where the cylindrical shape is dis-

torted by an angle θ, although the volume is not significantly

affected and may be assumed to coincide with the ideal cylin-

drical one. According to a simplified analysis, the cone-CF

resistance can be written as:

R′ =
4ρL

πφ1φ2
≈

4ρL

π(φ + Lθ)(φ − Lθ)
(12)

where φ1 and φ2 are the 2 CF diameters at the top and bottom

electrodes, respectively. A comparison with the ideal cylin-

drical resistance R =
4ρL

πφ2 yields a variation:

σR =
4ρL

π φ2

⎛

⎜

⎝

1

1 −

(

Lθ
φ

)2
− 1

⎞

⎟

⎠
≈ R

(

Lθ

φ

)2

. (13)

From Eq. (12), one can derive a linear proportionality for

the relative standard deviation, namely σR/R ∼ R as shown

by LRS data in Fig. 23a [4]. These results suggest that R

variability is controlled by number variation in HRS, and

shape variation in LRS.

4.4 Circuit simulations

The major strength of the analytical model is its capability to

handle even a hard circuit complexity and yield simulation

in a relatively short time. To highlight the compact model

capability, Fig. 24 illustrates the case of a simple circuit,

namely the complementary resistive switch (CRS) combin-

ing 2 RRAM devices in anti-serial arrangement [29,52,53].

Figure 24a shows the connection of the 2 RRAM devices by

their active electrode, the one with the oxygen vacancy layer

to serve as reservoir during set transition. After cell connec-

tion, this common electrode becomes floating and is never

electrically accessed, except for monitoring the electrostatic

Fig. 24 a Structure of the complementary resistive switch and b

corresponding measured and calculated I–V curve. Reprinted with per-

mission from [29]. Copyright (2014) IEEE

potential [29]. Figure 24b shows the measured and calcu-

lated I–V curves, including a schematic of the evolution of

the states in the 2 cells (top and bottom cells) during the pos-

itive voltage sweep. The CRS was obtained by connecting 2

RRAM devices consisting of a stack of TiN/HfO2/TiN which

were electrically formed [29]. Initially (point A), the devices

are in a negative high resistance state (NHRS), namely a

state which has been obtained applying a high negative volt-

age resulting in reset of the bottom cell, and set of the top

cell. The application of a moderate positive voltage around

0.5 V results in set transition in the bottom cell, by injection

of oxygen vacancies from the intermediate electrode toward

the bottom electrode. In fact, most of the voltage drops across

the bottom cell which is in a HRS. Starting from the set event

in the bottom cell, the voltage is equally divided between the

2 cells which are both in the LRS. A further increase of volt-
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Fig. 25 a Circuit schematic for the generation of random numbers, b measured stream of random output voltages Vout and Vout2, and c their

distributions compared to calculated results from stochastic Monte Carlo circuit simulations. Reprinted with permission from [48]. Copyright

(2016) IEEE

age (point B) causes reset of the top cell, by retraction of the

CF from the top electrode toward the intermediate electrode.

After the reset transition is initiated, the increasing voltage

allows to complete the CF retraction in the top cell as a result

of the gradual reset transition in the TiN/HfO2/TiN device.

At the end of the positive sweep (point C), the device is found

in a positive high resistance state (PHRS), where the top cell

is in HRS and the bottom cell is in LRS. The reduction of

the positive voltage toward zero leaves the cell in this state,

which externally shows an overall high resistance. The appli-

cation of a negative voltage sweep shows a similar transition,

including set transition of the top cell, followed by reset of

the bottom cell and resulting in a NHRS state [29,52,53].

Simulation results of CRS in Fig. 24b show a highly accu-

rate description of the I–V curve for both positive and negative

polarities, including the presence of a non-zero intercept of

the LRS characteristic at zero current: the intercept is in fact

given by VC, namely about 0.4 V in this device technology.

This non-zero intercept is due to the fact that, while the bot-

tom cell undergoes set transition at increasing current IC,

the voltage drop across it is constantly equal to VC, namely

the minimum voltage needed to sustain ion migration in the

device. On the other hand, the voltage across the top cell

increases linearly with IC and is much less than VC, since

the top cell is already in LRS and no ionic migration needs

to be sustained. Thus, the overall voltage across the device

is V (I ) = Vbottom + Vtop = VC + RLRS ∗ I , which leads to

the non-zero intercept in Fig. 24b.

Note that both NHRS and PHRS have a high resistance;

thus, the CRS may in principle show no LRS during read.

This allows for the design of CRS crossbar arrays with no

selectors, since there is no significant leakage current in

half-selected HRS cells. In reality, due to the relatively low

resistance window in oxide-based RRAM, the HRS leakage

is quite remarkable and prevents the application of CRS in

select-free crossbar arrays. Higher scale circuit simulations

with the analytical model allow to assess the feasibility of a

CRS-based selector-free crossbar array [29].

Figure 25 shows stochastic Monte Carlo simulations of

a random number generator (RNG) obtained by assembling

2 RRAM devices in the relatively small circuit shown in

Fig. 25a. Here, 2 RRAM devices P and Q are arranged in

a serial connection between voltage supplies VP and VQ,

respectively. The intermediate voltage Vout is connected

either to a third generator, or to the input of a comparator

(CMP), which in turn yields a second output voltage Vout2.

Both cells are initially prepared in LRS, by externally apply-

ing suitable positive voltages VP − Vout and Vout − VQ in a

preliminary preparation phase [48]. The second phase is the

random reset operation, where symmetric voltages VP and

VQ are applied with VP < VQ, thus resulting in an overall

negative voltage across both P and Q. As a result, reset tran-

sition is initiated in one of the two devices, either P or Q.

Assuming that reset operation starts in P, the negative volt-

age across P increases because of its increasing resistance,

whereas the voltage across Q decreases because of a volt-

age divider effect. This results in a positive feedback which

causes even further reset in P and prevents any possible reset

transition in Q. Due to the statistical distribution of the reset

voltage, the probability that reset transition starts in P is

50%, equal to the probability that reset transition starts in

Q, which makes this simple circuit a useful RNG. After the

random reset phase, devices are independently set to prepare

for a new RNG cycle.

Figure 25b shows the measured Vout, under the applica-

tion of a relatively low positive voltage VP − VQ for probing

the final states of P and Q during a sequence of 650 RNG

cycles. The output voltage shows a random distribution of

positive and negative values, corresponding to reset transi-

tions having occurred in the bottom cell Q or top cell P .
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Fig. 26 a Circuit schematic for the 2T1R synapse, b calculated waveforms of pre-synaptic (top) and post-synaptic (bottom) spikes inducing STDP,

and c the corresponding STDP characteristics at variable initial LRS state for increasing IC [57]. a Reprinted with permission from [56]. Copyright

(2016) IEEE

The figure also shows the second output voltage Vout2 which

regenerates Vout by passing it into a comparator. Figure 25c

shows the measured distribution of Vout, and the correspond-

ing distribution calculated by the analytical model including

Monte Carlo description of stochastic reset transition. By

assuming a realistic distribution of Vreset, the simulation of

the circuit in Fig. 25a could yield accurate prediction of the

RNG results, thus supporting the high accuracy and feasibil-

ity of variability-aware circuit simulations for exploring new

RRAM functions and applications.

While the simulation of digital circuits for RRAM is

relevant for exploring CRS memory [29], RNG [48], and

Boolean logic gates [54,55], analog computing circuits may

also benefit from realistic analytical simulations of RRAM.

Figure 26 shows an example for an analog computing cir-

cuit block, namely a 2-transistor/1-resistor (2T1R) synapse

circuit capable of spike-timing dependent plasticity (STDP)

[56,57]. In STDP, the conductance of a synapse is increased

(potentiated) when the synapse received a spike from the pre-

synaptic neuron first, followed by a spike received from the

post-synaptic neuron. On the other hand, if the pre-synaptic

spike follows the post-synaptic spike, then the synapse con-

ductance (weight) is decreased (depressed). Since STDP

is a well-known biological phenomenon [58,59], artificial

synapses capable of mimicking the same STDP behavior

might allow for neural networks capable of unsupervised

learning of patterns and associative memory, similar to the

brain [60].

To meet this challenge, the 2T1R circuit in Fig. 26a con-

sists of a RRAM device (1R) connected to 2 transistors in

parallel configuration. The 2T1R synapse is connected to the

pre-synaptic neuron by the communication gate (CG) of the

left transistor and the top electrode, while it is connected to

the post-synaptic neuron by the fire gate (FG) of the right tran-

sistor and the bottom electrode. Figure 26b (top) shows the

pre-synaptic spike applied to the top electrode of the synapse,

including a negative pulse with increasing voltage, followed

by a positive spike. At the same time, a CG pulse is applied to

the transistor to enable a relatively small current flow across

the synapse, which reaches the post-synaptic neuron through

the bottom electrode connection. After integrating all incom-

ing spikes, the post-synaptic neuron eventually reaches the

threshold for fire, i.e., for delivering the post-synaptic spike

shown in Fig. 26b (bottom). The latter spike consists of an

exponentially increasing positive spike applied to the FG.

The overlap between the pre-synaptic spike at the top elec-

trode and the post-synaptic spike at the bottom electrode

results in STDP: for negative delay, which is the case shown

in Fig. 26b, the overlap takes place during the negative part

of the top electrode pulse, which thus results in a reset tran-

sition of the RRAM device in the 2T1R synapse [57]. On the

other hand, a positive delay (not shown) would result in an

overlap between the 2 spikes during the positive peak of the

top electrode pulse, thus resulting in a set transition in the

RRAM device.

Figure 26c shows measured and calculated conductance

change, namely R0/R, where R0 is the initial resistance of

the device and R is the final resistance of the RRAM after

the application of a pair of pre- and post-synaptic spikes.

The RRAM was initially prepared in various set states with

increasing IC, and R0/R is reported as a function of the delay

�t between pre- and post-synaptic spikes. In general, R0/R

shows STDP behavior, with potentiation for �t > 0 and

depression for �t < 0. Depression may take place at some

extent also for relatively large positive �t , since both neg-

ative and positive pulses are applied in that case, resulting

in a competition between set and reset events. Overall, the

simulation results can account for the measured STDP char-

acteristics, including the analog variation R0/R during both

set and reset transition. This is due to the carefully designed

waveform of the pre- and post-synaptic spikes, where both

the negative voltage of the top electrode pulse and the positive
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voltage of the FG exponentially increase with time, to allow

for a �t-controlled modulation of potentiation/depression.

These results confirm the strong value of analytical compact

models for simulating and designing RRAM circuits in vari-

ous scenarios, including digital/analog applications, even in

operation mode where stochastic variations are instrumental

to achieve the expected behavior of the circuit. The develop-

ment of even more accurate, universal compact models for

RRAM will further boost the current exploration of RRAM-

based circuits for analog/digital in-memory computing.

5 Conclusions

This work provides an overview of various modeling app-

roaches to RRAM devices and RRAM-based circuits. TCAD

models, such as the FEM and KMC tools, provide physically

based valuable tools for industrial development of RRAM

devices with the ability to study not only operation, but

also reliability and scaling. The extension of such models

to novel RRAM device technologies, such as the uniform

switching RRAM, is still a work in progress. On the other

hand, analytical models for assisting the design of memory

and in-memory computing circuits allow for fast simulation

and exploration of novel applications, thus serving as valu-

able tools for future exploitation of RRAM functionalities

in novel computing scenarios, such as digital Boolean mem-

computing and brain-inspired neuromorphic computing.
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