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Physics-Based Passivity-Preserving Parameterized

Model Order Reduction for PEEC Circuit Analysis
Francesco Ferranti, Member, IEEE, Giulio Antonini, Senior Member, IEEE, Tom Dhaene, Senior Member, IEEE,

Luc Knockaert, Senior Member, IEEE, and Albert E. Ruehli, Life Fellow, IEEE

Abstract—The decrease of IC feature size and the increase of
operating frequencies require 3D electromagnetic methods, such
as the Partial Element Equivalent Circuit (PEEC) method, for
the analysis and design of high-speed circuits. Very large systems
of equations are often produced by 3D electromagnetic methods
and model order reduction (MOR) methods were proven to be
very effective in combating such high complexity. During the
circuit synthesis of large-scale digital or analog applications, it
is important to predict the response of the circuit under study
as a function of design parameters, such as geometrical and
substrate features. Traditional MOR techniques perform model
order reduction only with respect to frequency, therefore the
computation of a new electromagnetic model and corresponding
reduced model is needed each time a design parameter is
modified, reducing the CPU efficiency. Parameterized model
order reduction (PMOR) methods become necessary to reduce
large systems of equations with respect to frequency and other
design parameters of the circuit, such as geometrical layout or
substrate characteristics.

We propose a novel PMOR technique applicable to PEEC
analysis which is based on a parameterization process of matrices
generated by the PEEC method and the projection subspace
generated by a passivity-preserving MOR method. The proposed
PMOR technique guarantees overall stability and passivity of
parameterized reduced order models over a user defined range of
design parameter values. Pertinent numerical examples validate
the proposed PMOR approach.

Index Terms—Partial Element Equivalent Circuit method
(PEEC), parameterized model order reduction (PMOR), inter-
polation, passivity.

I. INTRODUCTION

Electromagnetic (EM) methods [1]–[3] have become in-

creasingly indispensable analysis and design tools for a variety

of complex high-speed systems. The use of these methods

usually results in very large systems of equations which are

prohibitively expensive to solve. Hence, model order reduction

(MOR) techniques are crucial to reduce the complexity of EM

models and the computational cost of the simulations, while
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retaining the important physical features of the original system

[4]–[7]. The development of a reduced order model (ROM)

of EM systems has become a topic of intense research over

the last years, with applications to vias, high-speed packages,

interconnects, and on-chip passive components [8]–[11]. An

increasing popularity among electromagnetic compatibility

engineers has been achieved by the Partial Element Equivalent

Circuit (PEEC) method, since it is able to transform the

EM system under examination into a passive RLC equivalent

circuit. PEEC uses a circuit interpretation of the Electric

Field Integral Equation (EFIE) [12], thus allowing to handle

complex problems involving EM fields and circuits [2], [13],

[14]. Nonlinear circuit devices such as drivers and receivers are

usually connected with PEEC equivalent circuits using a time

domain circuit simulator (e.g. SPICE [15]). However, inclusion

of the PEEC model directly into a circuit simulator may be

computationally intractable for complex structures, because

the number of circuit elements can be in the tens of thousands.

In this case, a first solution consists in the use of fast multipole

methods [16], [17]. The drawback of these techniques relies on

the fact that they are dependent on the Green’s function of the

problem. Another option is represented by MOR techniques

which are adopted to reduce the size of the PEEC model [7],

[18], [19].

Traditional MOR techniques perform model reduction only

with respect to frequency. However, during the circuit syn-

thesis of large-scale digital or analog applications, it is also

important to predict the response of the circuit under study

as a function of design parameters, such as geometrical and

substrate features. A typical design process includes optimiza-

tion and design space exploration, and thus requires repeated

simulations for different design parameter values. Such de-

sign activities call for parameterized model order reduction

(PMOR) methods that can reduce large systems of equations

with respect to frequency and other design parameters of the

circuit, such as geometrical layout or substrate characteristics.

Over the years, a number of PMOR methods have been de-

veloped. In order to model and analyze interconnect behavior

with process variations, various techniques have been proposed

for variational interconnect order reduction [20], [21]. These

approaches apply projection operator and generate reduced-

order interconnect models. In addition, the projection subspace

and/or the reduced-order system matrices are approximated

as low-order polynomials of process parameters such that

the process variation effects can be incorporated into the

interconnect model. These process parameters, for example,

can be the width and thickness of the interconnect metal wires.
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The authors in [22] propose to approximate the system transfer

function by low-order polynomials of process parameters,

instead of the projection subspace and/or the reduced order

system matrices. The algorithm described in [22] computes

the projection subspace and generates parameterized ROMs

such that the multiparameter moments are matched. However,

the structure of such method may present some computational

problems, and the resulting parameterized ROMs usually suf-

fer from oversize when the number of moments to match

is high, either because high accuracy (order) is required or

because the number of parameters is large. The Compact Order

Reduction for parameterized Extraction (CORE) algorithm

[23] applies a two-step explicit-and-implicit scheme for multi-

parameter moment matching. It is numerically stable, but

unfortunately it does not preserve passivity. The Parameterized

Interconnect Macromodeling via a two-directional Arnoldi

process (PIMTAP) algorithm presented in [24] is numerically

stable, preserves the passivity of parameterized RLC net-

works, but, such as all multiparameter moment-matching based

PMOR techniques, it is suitable only to a low-dimensional

design space.

This paper proposes a PMOR method applicable to PEEC

analysis which is based on a parameterization process of

matrices generated by the PEEC method and the projection

subspace generated by a passivity-preserving MOR method.

The Laguerre-SVD MOR method [19] is used in this paper.

Overall stability and passivity of parameterized ROMs are

guaranteed by construction over the design space of interest.

PEEC models and parameterized ROMs describe an admit-

tance (Y) representation. However, it should be noted that the

proposed PMOR technique is not bound to the Laguerre-SVD

method, other passivity-preserving MOR techniques based on

a projection subspace approach can be used, such as the

PRIMA method [7].

The paper is organized as follows. Section II describes

the modified nodal analysis (MNA) equations of the PEEC

method. Section III describes the proposed PMOR method.

Finally, some pertinent numerical examples validate the pro-

posed technique in Section IV.

II. PEEC FORMULATION

The PEEC method [2] stems from the integral equation form

of Maxwell’s equations.

The main difference of the PEEC method with other integral

equation based techniques such as the Method of Moments

(MoM) [1] resides in the fact that it provides a circuit inter-

pretation of the EFIE [12] in terms of partial elements, namely

resistances, partial inductances and coefficients of potential.

Thus, the resulting equivalent circuit can be studied by means

of SPICE-like circuit solvers [15] in both time and frequency

domain.

Over the years, several improvements of the PEEC method

have been performed thus allowing to handle complex prob-

lems involving both circuits and electromagnetic fields [2],

[13], [14], [25]–[28].

In the standard approach, volumes and surfaces are dis-

cretized into elementary regions, hexahedra and patches re-

spectively [27] over which the current and charge densities are

expanded into a series of basis functions. Pulse basis functions

are usually adopted as expansion and weight functions. Such

choice of pulse basis functions corresponds to assume constant

current density and charge density over the elementary volume

(inductive) and surface (capacitive) cells, respectively.

Following the standard Galerkin’s testing procedure, topo-

logical elements, namely nodes and branches are generated

and electrical lumped elements are identified modeling both

the magnetic and electric field coupling.

Conductors are modeled by their ohmic resistance, while

dielectrics requires modeling the excess charge due to the

dielectric polarization [29]. Magnetic and electric field cou-

pling are modeled by partial inductances and coefficients of

potential, respectively.

The magnetic field coupling between two inductive volume

cells α and β is described by the partial inductance

Lpαβ =
µ

4π

1

aαaβ

∫

uα

∫

uβ

1

Rαβ

duαduβ (1)

where Rαβ is the distance between any two points in volumes

uα and uβ with aα and aβ their cross sections. The electric

field coupling between two capacitive surface cells δ and γ is

modeled by the coefficient of potential

Pδγ =
1

4πε

1

SδSγ

∫

Sδ

∫

Sγ

1

Rδγ

dSδdSγ (2)

where Rδγ is the distance between any two points on surfaces

δ and γ, while Sδ and Sγ denote the area of their respective

surfaces.

Generalized Kirchoff’s laws, for conductors, can be rewrit-

ten as

P−1 dv(t)

dt
−AT i(t) + ie(t) = 0 (3a)

−Av(t)− Lp

di(t)

dt
−Ri(t) = 0 (3b)

where A is the connectivity matrix, v(t) denotes the node

potentials to infinity, i(t) and ie(t) represent the currents

flowing in volume cells and the external currents, respectively.

When dielectrics are considered, the resistance voltage drop

Ri(t) is substituted by the excess capacitance voltage drop that

is related to the excess charge by vd(t) = C
−1
d qd(t) [29].

Hence, for dielectric elementary cells, equations (3) become

P−1 dv(t)

dt
−AT i(t) + ie(t) = 0 (4a)

−Av(t)− Lp

di(t)

dt
− vd(t) = 0 (4b)

i(t) = Cd

dvd(t)

dt
(4c)

A selection matrix K is introduced to define the port voltages

by selecting node potentials. The same matrix is used to obtain

the external currents ie(t) by the currents is(t) which are of

opposite sign with respect to the np port currents ip(t)

vp(t) = Kv(t) (5a)

ie(t) = KT is(t). (5b)

An example of PEEC circuit electrical quantities for a

conductor elementary cell is illustrated, in the Laplace domain,
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in Fig. 1 where the current controlled voltage sources sLp,ijIj

and the current controlled current sources Icci model the

magnetic and electric field coupling, respectively

1 2
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I
c3

Icc3

L
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22

1/P
33

1/P
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Fig. 1. Illustration of PEEC circuit electrical quantities for a conductor
elementary cell.

A. Descriptor representation of PEEC circuits

Let us assume that the system under analysis consists

of conductors and dielectrics. Let the current and charge

density be defined in volumes and surface of conductors and

dielectrics, respectively. The Galerkin’s approach is applied to

convert the continuous electromagnetic problem described by

the EFIE to a discrete problem in terms of electrical circuit

quantities, e.g. currents i(t) and node potentials v(t). Let us

denote with nn the number of nodes and ni the number of

branches where currents flow. Among the latter, we denote

with nc and nd the number of branches of conductors and

dielectrics, respectively. Furthermore, let us assume to be

interested in generating an admittance representation having

np output currents ip(t) under voltage excitation vp(t). Since

dielectrics require the excess capacitance to model the po-

larization charge [30], additional nd unknowns are needed in

addition to currents. Hence, if the MNA approach [31] is used,

the global number of unknowns is nu = ni + nd + nn + np.

In a matrix form, the previous equations (3)-(5) read





Inn,nn
0nn,ni

0nn,nd
0nn,np

0ni,nn
Lp 0ni,nd

0ni,np

0nd,nn
0nd,ni

Cd 0nd,np

0np,nn
0np,ni

0np,nd
0np,np





︸ ︷︷ ︸
C

d

dt





v(t)
i(t)
vd(t)
is(t)





︸ ︷︷ ︸
x(t)

=

−





0nn,nn
−PAT 0nn,nd

PKT

A R Φ 0ni,np

0nd,nn
−ΦT 0nd,nd

0nd,np

−K 0np,ni
0np,nd

0np,np





︸ ︷︷ ︸
G

·





v(t)
i(t)
vd(t)
is(t)





︸ ︷︷ ︸
x(t)

+

[
0nn+ni+nd,np

−Inp,np

]

︸ ︷︷ ︸
B

·
[
vp(t)

]
︸ ︷︷ ︸
u(t)

(6)

where Inp,np
is the identity matrix of dimensions equal to the

number of ports. Matrix Φ is

Φ =

[
0nc,nd

Ind,nd

]
(7)

TABLE I
SCALED UNITS

Voltage V
Current mA
Charge pC

P pF−1

Cd pF
R kΩ
Lp µH
f GHz
s ns

Then, potentials v(t) are expressed in terms of charges as

v(t) = Pq(t) (8)

Hence, equation (6) can be recast as





P 0nn,ni
0nn,nd

0nn,np

0ni,nn
Lp 0ni,nd

0ni,np

0nd,nn
0nd,ni

Cd 0nd,np

0np,nn
0np,ni

0np,nd
0np,np





︸ ︷︷ ︸
C

d

dt





q(t)
i(t)
vd(t)
is(t)





︸ ︷︷ ︸
x(t)

=

−





0nn,nn
−PAT 0nn,nd

PKT

AP R Φ 0ni,np

0nd,nn
−ΦT 0nd,nd

0nd,np

−KP 0np,ni
0np,nd

0np,np





︸ ︷︷ ︸
G

·





q(t)
i(t)
vd(t)
is(t)





︸ ︷︷ ︸
x(t)

+

[
0nn+ni+nd,np

−Inp,np

]

︸ ︷︷ ︸
B

·
[
vp(t)

]
︸ ︷︷ ︸
u(t)

(9)

In a more compact form, the previous equations (9) can be

rewritten as

C
dx(t)

dt
= −Gx(t) +Bu(t) (10a)

ip(t) = LTx(t) (10b)

where x(t) = [q(t) i(t) vd(t) is(t)]
T

. Since this is an

np-port formulation, whereby the only sources are the voltage

sources at the np-port nodes, B = L where B ∈ ℜnu×np .

B. Scaling

The system of equations (9) is typically ill-conditioned

because charges are usually much smaller than currents and

voltages. Correspondingly, the entries of the matrix P are

larger than other elements in matrices C and G by several

orders of magnitude. The ill-conditioning of (9) prevents MOR

methods to be efficiently applied. In order to mitigate such a

problem, scaling can be adopted. The units of the electrical

quantities are changed consistently as shown in Table I.

C. Properties PEEC formulation

In order to apply the proposed PMOR technique, it is

important to specify the properties of the matrices involved

in the PEEC formulation (9).

Both matrices describing electric and magnetic field cou-

pling, P and Lp respectively, are full symmetric matrices. In
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the case of orthogonal geometries, mutual partial inductances

corresponding to orthogonal currents are equal to zero. Even

in this case, rows and columns can be recast so that the partial

inductance matrix Lp is block-diagonal. Since each block is

symmetric positive definite, the overall matrix Lp is symmetric

positive definite as well. The coefficient of potential matrix P

is also symmetric positive definite [32].

When pulse basis functions are used, as is in the standard

PEEC formulation [2], resistance and excess capacitance ma-

trices, R and Cd respectively, are diagonal and symmetric

positive semidefinite and definite. The matrix R is diagonal,

with positive diagonal elements corresponding to conductor

elementary cells, while the diagonal elements corresponding

to dielectric elementary cells are equal to zero. The matrix Cd

is diagonal with all the diagonal elements positive.

Assuming the previous matrix properties, it is easy to prove

that the matrices C,G satisfy the following properties

C = CT ≥ 0 (11a)

G+GT ≥ 0 (11b)

The properties of the PEEC matrices B = L, C = CT ≥
0, G+GT ≥ 0 ensure the passivity of the PEEC admittance

model Y(s) = LT (sC + G)−1B [33] and allow to exploit

the passivity-preserving capability of the Laguerre-SVD MOR

algorithm [19]. When performing transient analysis, stability

and passivity must be guaranteed. It is known that, while a

passive system is also stable, the reverse is not necessarily

true [34], which is crucial when the reduced model is to

be utilized in a general-purpose analysis-oriented nonlinear

simulator (e.g. SPICE). Passivity refers to the property of

systems that cannot generate more energy than they absorb

through their electrical ports. When the system is terminated

on any arbitrary passive loads, none of them will cause the

system to become unstable [35], [36].

III. PARAMETERIZED MODEL ORDER REDUCTION

In this section we describe a PMOR algorithm that is able

to include, in addition to frequency, N design parameters

g = (g(1), ..., g(N)) in a parameterized ROM, such as the

layout features of a circuit (e.g. lengths, widths,...) or the

substrate parameters (e.g. thickness, dielectric permittivity,

losses,...). The main objective of the PMOR method is to

accurately approximate the original scalable system (having

a high complexity) with a reduced scalable system (having

a low complexity) by capturing the behavior of the original

system with respect to frequency and other design parame-

ters. The design space D(g) is considered as the parameter

space P(s, g) without frequency. The parameter space P(s, g)
contains all parameters (s, g). If the parameter space is (N+1)-

dimensional, the design space is N-dimensional. The proposed

algorithm guarantees stability and passivity of a parameterized

ROM over the entire design space of interest. Two data grids

are used in the modeling process: an estimation grid and a

validation grid. The first grid is utilized to build parameterized

ROMs, while the second grid, more dense than the previous

one, is utilized to assess the capability of parameterized ROMs

of describing the system under study in points of the design

space previously not used for its construction. To clarify the

use of these two design space grids, we show in Fig. 2 a

possible estimation and validation design space grid in the

case of two design parameters g = (g(1), g(2)).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

g(1)

g(2
)

 

 
Estimation grid
Validation grid

Fig. 2. An example of estimation and validation design space grid.

A. PMOR algorithm

Considering the influence of the design parameters g =
(g(1), ..., g(N)), the MNA formulation (10a)-(10b) becomes

C(g)
dx(t, g)

dt
= −G(g)x(t, g) +Bu(t) (12a)

ip(t, g) = LTx(t, g) (12b)

We assume that a topologically fixed discretisation mesh is

used and it is independent from the specific design param-

eters values. It preserves the size of the system matrices as

well as the numbering of the mesh nodes and mesh edges.

The mesh is only locally stretched or shrunk, when shape

parameters are modified. In general, the global coordinates

of the nodes as well as the length and orientation of the edges

of the topologically fixed mesh change when shape parame-

ters change; however, these changes are neither introducing

new state variables nor eliminating existing state variables.

The matrices B, LT are uniquely determined by the circuit

topology and therefore remain constant, while the matrices C

and G are defined as functions of the design parameters. At a

deeper level in the MNA equations (12a)-(12b), the previous

assumptions lead to haveP(g),Lp(g),Cd(g),R(g), while the

other internal PEEC matrices A,Φ,K are constant. The pro-

posed PMOR method starts from computing the multivariate

models P(g),Lp(g),Cd(g),R(g) guaranteeing some matrix

properties, as explained in Section III-B.

When the multivariate models P(g),Lp(g),Cd(g),R(g)
are computed, instead of assembling a PEEC model and

performing a MOR step for each point of interest ĝ =

(g
(1)
k1

, ..., g
(N)
kN
) in the design space, the Laguerre-SVD MOR

method [19] is applied to each PEEC model related to the

estimation design space grid
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• choose a value for α (positive scaling parameter of

Laguerre basis functions) and the reduced order q;

• solve (G+ αC)Q0 = B;

• for k = 1, . . . , q − 1 solve (G + αC)Qk = (G −
αC)Qk−1

• Kr = [Q0, . . . ,Qq−1];

and a corresponding set of Krylov matrices Kr is computed.

Then, this set of Krylov matrices is interpolated and modeled

asKr(g). The sampling density in the estimation design space

grid is important to accurately describe the parameterized

behavior of an EM system under study over the entire design

space of interest. A technique to choose the number of

points in the estimation grid can be found in [37]. Once

the multivariate models P(g),Lp(g),Cd(g),R(g),Kr(g) are

built, a PEEC model Y(s, ĝ) = LT (sC(ĝ) +G(ĝ))−1B can

be assembled and a projection matrix U(ĝ) can be computed

by means of the singular value decomposition [38] of Kr(ĝ)

[19] for any point ĝ = (g
(1)
k1

, ..., g
(N)
kN
)

U(ĝ)Σ(ĝ)V(ĝ)T = SVD[Kr(ĝ)]. (13)

Finally, a congruence transformation is applied on

C(ĝ),G(ĝ),L,B using U(ĝ) [19]

Cr(ĝ) = U(ĝ)
TC(ĝ)U(ĝ) (14a)

Gr(ĝ) = U(ĝ)
TG(ĝ)U(ĝ) (14b)

Br(ĝ) = U(ĝ)
TB (14c)

Lr(ĝ) = U(ĝ)
TL (14d)

to obtain the parameterized reduced model. A flowchart that

describes the different steps of the proposed PMOR method

is shown in Fig. 3. Concerning the reduced order, which

represents the column dimension of Kr(g) and U(g), it is

chosen by a bottom-up approach: it is increased as long as

a certain RMS-error threshold is satisfied in the validation

design space grid.

MOR step Y(s;bg) ¡! Yr(s;bg) by means ofMOR step Y(s;bg) ¡! Yr(s;bg) by means of

P(g);Lp(g);Cd(g);R(g), g = (g(1)
; :::; g

(N))P(g);Lp(g);Cd(g);R(g), g = (g(1)
; :::; g

(N))

Compute multivariate models of the internal PEEC matricesCompute multivariate models of the internal PEEC matrices

a congruence transformationa congruence transformation

Compute multivariate model of the Krylov matrixCompute multivariate model of the Krylov matrix

Kr(g) (Laguerre-SVD MOR method)Kr(g) (Laguerre-SVD MOR method)

Fig. 3. Flowchart of the proposed PMOR method.

B. Multivariate interpolation of the internal PEEC matrices

Starting from multivariate data samples

{gk,P(gk),Lp(gk),Cd(gk),R(gk),Kr(gk)}
Ktot

k=1 , the

multivariate models P(g),Lp(g),Cd(g),R(g),Kr(g)
are built. While the interpolation process of the set of

Krylov matrices is performed without any constraint,

the multivariate models of the internal PEEC matrices

preserve the positive definiteness of P(g),Lp(g),Cd(g) and

the positive semidefiniteness of R(g). Consequently, the

properties (11a)-(11b) of an admittance PEEC model and its

related passivity are satisfied for any point ĝ = (g
(1)
k1

, ..., g
(N)
kN
)

over the design space. Since the matrices R(g) and Cd(g)
are diagonal, only the diagonal elements are interpolated

by means of a positivity-preserving interpolation scheme.

Multivariate interpolation schemes that belong to a class

of positive interpolation operators [39] can be used, e.g.

Shepard’s method [40], multilinear and simplicial methods

[41]. Such interpolation schemes have interpolation kernel

functions that only depend on the design space grid points. In

the case of multilinear interpolation, each interpolated matrix

T(g(1), ..., g(N)), being in turn Cd(g),R(g), can be written

as

T(g(1), ..., g(N)) = (15)

=

K1∑

k1=1

· · ·

KN∑

kN=1

T(
g
(1)

k1
,...,g

(N)

kN

)ℓk1(g
(1)) · · · ℓkN

(g(N))

where T(
g
(1)

k1
,...,g

(N)

kN

) are in turn

C
d,
(
g
(1)

k1
,...,g

(N)

kN

),R(
g
(1)

k1
,...,g

(N)

kN

), therefore the discrete

set of Cd,R matrices related to the estimation design space

grid. Each interpolation kernel ℓki
(g(i)), i = 1, ..., N is

selected as in piecewise linear interpolation

g(i) − g
(i)
ki−1

g
(i)
ki

− g
(i)
ki−1

, g(i) ∈
[
g
(i)
ki−1

, g
(i)
ki

]
, ki = 2, ..., Ki, (16a)

g
(i)
ki+1

− g(i)

g
(i)
ki+1

− g
(i)
ki

, g(i) ∈
[
g
(i)
ki

, g
(i)
ki+1

]
, ki = 1, ..., Ki − 1,

(16b)

0 , otherwise (16c)

Hence, the interpolation kernels ℓki
(g(i)), i = 1, ..., N are

independent from the matrices used in the interpolation pro-

cess and depend only on the design space grid points. Other

interpolation schemes have kernel functions that depend on the

matrices used in the interpolation process, e.g. multivariate

cubic spline interpolation [42]. It is a useful technique to

interpolate multivariate data points due to its stable and smooth

characteristics and it performs elementwise interpolation. Un-

fortunately, although ordinary spline schemes are generally

well behaved, they do not prevent overshoot and undesired

oscillations at intermediate points, that can violate inherited

data features as positivity. Some modified spline interpolation
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schemes that are able to preserve positivity of the data samples

in the univariate case are described in [43]–[45]. Another

simpler and straightforward approach to preserve positivity

using the ordinary splines is proposed in this paper and it

is composed of three steps: 1) an analytical mapping of

the data samples is performed, 2) the new data samples are

interpolated using ordinary splines without any constraint, 3)

the interpolated data samples are transformed back by the

inverse mapping. The mapping function has to be able to

ensure the positivity of the interpolated data samples after the

inverse mapping. For any positive diagonal matrix entry f(g)
of the matrices Cd(g),R(g) under modeling, the following

mapping function is used

M(g) = log

(
f(g)

min(f(g))

)
, g ∈ {gk}

Ktot

k=1 (17)

Once the transformed data samples are modeled by using

multivariate splines, the inverse mapping function

Minv(g) = min(f(g))exp(M(g)), g ∈ {gk}
Ktot,interp

k=1

(18)

is used for the back transformation. It is straightforward

to verify that the following procedure ensure the positivity

of the final interpolated values. While a diagonal matrix is

positive definite if and only if all the diagonal elements

are positive, a non-diagonal matrix requires more general

conditions. The matrix P(g) is full, symmetric and positive

definite, while the matrix Lp(g) is symmetric, positive definite

and in general a certain degree of sparsity can be present,

due to orthogonal elementary cells. It is easy to show that

multivariate interpolation schemes that belong to a class of

positive interpolation operators [39]–[41] are able to preserve

the positive definiteness property, when they are applied to

positive definite matrices. When the interpolation of positive

definite non-diagonal matrices is performed elementwise by

schemes with kernel functions that depend on the matrices

used in the interpolation process (e.g. multivariate cubic spline

interpolation), the following procedure can be used to guaran-

tee the positive definiteness property. Let us denote

S(R) = {Q ∈ M(R),QT = Q} (19)

the space of all R × R real symmetric matrices with M(R)
the space of R× R real matrices and

P(R) = {Q ∈ S(R),Q > 0} (20)

the space of all R×R real symmetric positive-definite matrices.

It is well known that the matrix exponential is a one-to-one

map from S(R) to P(R). In other words, the matrix exponen-

tial of any real symmetric matrix is a real symmetric positive-

definite matrix, and the inverse of the matrix exponential (i.e.,

principal matrix logarithm) of any real symmetric positive-

definite matrix is a real symmetric matrix [46], [47]. Exploiting

such property of the exponential map, the matrices P(g),
Lp(g) that are symmetric and positive definite are mapped

from P(R) to S(R) using the principal matrix logarithm oper-

ator, then only the lower or upper triangular part is interpolated

elementwise using the ordinary splines. Finally, the matrices

are mapped back by the matrix exponential operator which

results in symmetric positive definite matrices, therefore the

original properties of the matrices P(g), Lp(g) are preserved.

We propose a multivariate interpolation process that is able to

preserve the positive definiteness of P(g),Lp(g),Cd(g) and

the positive semidefiniteness of R(g). Consequently, the prop-

erties (11a)-(11b) of the admittance PEEC model Y(s, g) =
LT (sC(g) +G(g))−1B and its related passivity are satisfied

for any point ĝ = (g
(1)
k1

, ..., g
(N)
kN
) over the design space.

The overall computational complexity of the presented PMOR

algorithm can be divided into: 1) complexity of computing the

multivariate models of P(g),Lp(g),Cd(g),R(g),Kr(g) by

interpolation, 2) complexity of the SVD operation on Kr(g)
to obtain the projection matrix U(g), 3) complexity of the

congruence transformation by means of U(g). Which step is

the most computationally expensive cannot be established in

advance, since the computational complexity of the interpo-

lation process depends on the chosen interpolation scheme.

Concerning the SVD operation, it can be replaced by cheaper

modified Gram-Schmidt (MGS) and Householder QR (HQR)

operations [19], [38], which are computationally cheaper.

C. Passivity assessment considerations

The properties of the PEEC matrices, the multivariate in-

terpolation approach and the Laguerre-SVD MOR algorithm

ensure overall stability and passivity for a parameterized ROM

Yr(s, g) by construction. Although no passivity check is

required for Yr(s, g), the authors describe in this section a

passivity test for the sake of completeness. Let us assume that

Yr(s, g) is obtained and one wants to perform a passivity test

for a specific point ĝ in the design space. If the descriptor

matrix Cr of Yr(s, ĝ) is singular, the procedure described in

[48] is used to convert the descriptor system into a standard

state-space model

dx(t)

dt
= Ax(t) + Bu(t) (21a)

y(t) = Cx(t) +Du(t) (21b)

otherwise the standard state-space model can be obtained by

A = −Cr
−1Gr

B = Cr
−1Br

C = Br
T

D = Dr (22)

OnceYr(s, ĝ) is transformed into a standard state-space form,

its passivity can be verified by computing the eigenvalues of

an associated Hamiltonian matrix [49]

H̃ =

[
A− BR−1C BR−1BT

−CTR−1C −AT + CTR−1BT

]
(23)

with R = D +DT . The system Yr(s, ĝ) is passive if H̃ has

no purely imaginary eigenvalues. This passivity test can only

be applied if D+DT is not singular. If such singularity exists,
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the modified Hamiltonian-based passivity check proposed in

[50] should be used.

IV. NUMERICAL RESULTS

This section presents two numerical examples that validate

the proposed PMOR method. Let us define the weighted RMS-

error as:

Err(g) =

=

√√√√
∑(Nport)2

i=1

∑Ks

k=1

∣∣∣wYi
(sk, g)

(
Yr,i(sk, g)− Yi(sk, g)

)∣∣∣
2

(Nport)2Ks

(24)

with

wYi
(s, g) = |(Yi(s, g))

−1| (25)

where Nport is the number of system ports and Ks is the

number of frequency samples. The worst case RMS-error over

the validation grid is chosen to assess the accuracy and the

quality of parameterized ROMs

gmax = argmax
g

Err(g), g ∈ validation grid (26)

Errmax = Err(gmax) (27)

and it is used in the numerical examples. The proposed PMOR

algorithm was implemented in Matlab R2009A [51] and all

experiments were carried out on Windows platform on Intel

Core2 Extreme CPU Q9300 2.53GHz machines with 8GB

RAM.

A. Two coupled microstrips with variable spacing

Two coupled microstrips (length L = 2 cm) have been

modeled in this example. The cross section is shown in Fig.

4. The conductors have width W = 500 µm and thickness

t = 50 µm, the dielectric is 800 µm thick. A bivariate ROM

is built as a function of the spacing S between the microstrips

in addition to frequency. Their corresponding ranges are shown

in Table II.

w S

t

h

w

Fig. 4. Cross section of the coupled microstrips.

The PEEC method is used to compute the C,G,B,L

matrices in (10a)-(10b) for 25 values of the spacing. The

order of all original PEEC models is equal to nu = 2640.
The multivariate models P(g),Lp(g),Cd(g),R(g),Kr(g)
are computed by spline interpolation using only 9 spacing

TABLE II
PARAMETERS OF THE COUPLED MICROSTRIPS.

Parameter Min Max

Frequency (freq) 1 kHz 4 GHz
Spacing (S) 1 mm 4 mm

values and with a CPU time equal to 9.6 s. Then, the

bivariate ROM Yr(s, S) is obtained with a reduced order

q = 38.Fig. 5 shows the magnitude of the parameterized

ROM of Y11(s, S), while Fig. 6 compares the magnitude of

Y11(s, S), Y12(s, S) and their parameterized ROMs for the

spacing values S = {1.125, 2.375, 3.875} mm. These specific

spacing values have not been used during the construction

of the multivariate models P(g),Lp(g),Cd(g),R(g),Kr(g),
nevertheless an excellent agreement between model and data

can be observed. The worst case RMS-error defined in (27) is

equal to 1.8 · 10−2 and it occurs for gmax = S = 3.875 mm.

Fig. 7 shows the minimum absolute value of the real part of

the Hamiltonian matrix eigenvalues over a dense sweep of the

design space. Since there are no purely imaginary eigenvalues,

the parameterized ROM is passive over the design space of

interest. As clearly seen, the parameterized ROM captures the

behavior of the system very accurately, while guaranteeing

stability and passivity over the entire design space.

0 1 2 3 4
1

2

3

4
10

−10

10
−5

10
0

10
5

Frequency [GHz]
Spacing [mm]

|Y
11

| [
S

]

Fig. 5. Magnitude of the bivariate ROM of Y11(s, S).

B. Spiral inductor with variable horizontal and vertical length

An integrated spiral inductor has been modeled in this

example. The structure is shown in Fig. 8. The conductors

width is equal to 46 µm. A trivariate ROM is built as a

function of the horizontal Lx and vertical Ly length of the

spiral inductor in addition to frequency. Their corresponding

ranges are shown in Table III.

The PEEC method is used to compute the C,G,B,L ma-

trices in (10a)-(10b) for 11 values of Lx and 11 values of Ly .

The order of all original PEEC models is equal to nu = 801.
The multivariate models P(g),Lp(g),Cd(g),R(g),Kr(g)
are computed by spline interpolation using only 6 values
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Fig. 6. Magnitude of the bivariate ROMs of Y11(s, S) and Y12(s, S)
(S = {1.125, 2.375, 3.875} mm).
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Fig. 7. Minimum absolute value of the real part of the Hamiltonian matrix
eigenvalues.

of Lx and 6 values of Ly and with a CPU time equal

to 43.7 s. Then, the trivariate ROM Yr(s, Lx, Ly) is ob-

tained with a reduced order q = 91. Figs. 9-10 show the

magnitude of the parameterized ROM of Y11(s, Lx, Ly) for

the vertical length values Ly = {0.46, 0.93} mm, while

Fig. 8. Structure of the spiral inductor.

TABLE III
PARAMETERS OF THE SPIRAL INDUCTOR.

Parameter Min Max

Frequency (freq) 10 kHz 30 GHz
Horizontal length (Lx) 0.46 mm 0.93 mm
Vertical length (Ly) 0.46 mm 0.93 mm

Fig. 11 compares the magnitude of Y11(s, Lx, Ly) and its

parameterized ROM for the horizontal and vertical length

values Lx = 0.63 mm, Ly = {0.50, 0.63, 0.76} mm.

These specific horizontal and vertical length values have not

been used during the construction of the multivariate models

P(g),Lp(g),Cd(g),R(g),Kr(g), nevertheless an excellent

agreement between model and data can be observed. The worst

case RMS-error defined in (27) is equal to 5 · 10−2 and it

occurs for gmax = {Lx, Ly} = {0.86, 0.76} mm. Fig. 12

shows the minimum absolute value of the real part of the

Hamiltonian matrix eigenvalues over a dense sweep of the

design space. Since there are no purely imaginary eigenvalues,

the parameterized ROM is passive over the design space of

interest. As in the previous example, the parameterized ROM

is able to accurately describe the parameterized behavior of

the system, while preserving overall stability and passivity.

V. CONCLUSIONS

We have presented a new PMOR technique applicable to

PEEC analysis which is based on a parameterization process

of matrices generated by the PEEC method and the projec-

tion subspace generated by the Laguerre-SVD MOR method.

Overall stability and passivity of parameterized ROMs are

guaranteed by construction over the design space of interest.

Numerical examples have validated the proposed PMOR ap-

proach on practical application cases, showing that it is able

to build very accurate parameterized ROMs of highly dynamic

EM systems, while guaranteeing stability and passivity over

the entire design space of interest.
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Fig. 9. Magnitude of the trivariate ROM of Y11(s, Lx, Ly) (Ly = 0.46
mm).
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Fig. 10. Magnitude of the trivariate ROM of Y11(s, Lx, Ly) (Ly = 0.93
mm).
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Fig. 11. Magnitude of the trivariate ROM of Y11(s, Lx, Ly) (Lx = 0.63
mm, Ly = {0.50, 0.63, 0.76} mm).
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