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Abstract

Axion-like particles (ALPs) are well-motivated extensions of the Standard Model of Particle Physics and a generic
prediction of some string theories. X-ray observations of bright active galactic nuclei (AGNs) hosted by rich clusters
of galaxies are excellent probes of very-light ALPs, with masses < -mlog eV 12.0a( ) . We evaluate the potential of
future X-ray observatories, particularly Athena and the proposed AXIS, to constrain ALPs via observations of
cluster-hosted AGNs, taking NGC 1275 in the Perseus cluster as our exemplar. Assuming perfect knowledge of the
instrument calibration, we show that a modest exposure (200 ks) of NGC 1275 by Athena permits us to exclude all
photon–ALP couplings gaγ> 6.3× 10−14 GeV−1 at the 95% confidence level, as previously shown by Conlon
et al., representing a factor of 10 improvement over current limits. We then proceed to assess the impact of realistic
calibration uncertainties on the Athena projection by applying a standard Cash likelihood procedure, showing the
projected constraints on gaγ weaken by a factor of 10 (back to the current most sensitive constraints). However, we
show how the use of a deep neural network can disentangle the energy-dependent features induced by instrumental
miscalibration and those induced by photon–ALP mixing, allowing us to recover most of the sensitivity to the ALP
physics. In our explicit demonstration, the machine learning applied allows us to exclude gaγ> 2.0× 10−13 GeV−1,
complementing the projected constraints of next-generation ALP dark matter birefringent cavity searches for very-
light ALPs. Finally, we show that a 200 ks AXIS/on-axis observation of NGC 1275 will tighten the current best
constraints on very-light ALPs by a factor of 3.

Unified Astronomy Thesaurus concepts: Particle astrophysics (96); Dark matter (353); X-ray active galactic nuclei
(2035); Magnetic fields (994); X-ray telescopes (1825); Galaxy clusters (584)

1. Introduction

Astrophysical observations probe physical extremes that
provide a window onto physics beyond the Standard Model
(SM). Axions and axion-like particles (ALPs) in particular arise
from well-motivated extensions to the SM and are amenable to
astrophysical study. The quantum chromodynamics (QCD)
axion is the leading solution to the so-called “strong CP
problem” in the SM. This problem arises due to the
unexpectedly small value of the electric dipole moment for
the neutron, <10−9 e cm (Barton & White 1969), yielding
experimental evidence for the conservation of charge conjuga-
tion parity (CP) symmetry by the strong force, which is not
predicted by SM theory. Such a tension can be solved through
the introduction of a new U(1) symmetry in the SM Lagrangian
which enables replacing the CP-violating phase by a
pseudoscalar, dynamical field a (Peccei & Quinn 1977). This
symmetry, known as Peccei–Quinn symmetry, is both
spontaneously broken at a high scale and is anomalous,
resulting in a pseudo-Nambu–Goldstone boson (pNGB) of
mass ma, the QCD axion (Weinberg 1978; Wilczek 1978). The
dynamics and interactions of such particle can be derived from
its mass ma and decay constant, whose product is set by that of
the mass and decay constant of the neutral pion.

ALPs are pNGBs that arise in many “Beyond the SM”

(BSM) frameworks, such as string compactifications (Green
et al. 1988; Conlon 2006; Svrcek & Witten 2006; Cicoli et al.
2012). Excitingly, some of these theories predict sizeable ALP–
photon couplings that are within reach of astrophysical
observations (Halverson et al. 2019; Demirtas et al. 2021;
Mehta et al. 2021). ALPs do not couple to QCD, but can couple
to other vector bosons and have derivative interactions with
matter fields. Another driver for the rising interest in ALPs and
axion searches is their potential to be dark matter (DM; Abbott
& Sikivie 1983; Dine & Fischler 1983; Preskill et al. 1983;
Irastorza & Redondo 2018), or, for sufficiently light ALPs,
dark energy (Carroll 1998). In the low-energy effective theory
relevant for observations, the ALP mass ma and ALP coupling
to the electromagnetic field gaγ are assumed to be independent,
regardless of their cosmological role.
Most relevant to our work is the study of the interaction of

ALPs with electromagnetism. At a fundamental level, this
interaction is described by the Lagrangian term

=g g B Ea g , 1a a · ( )

where a is the ALP field, B and E are the magnetic and electric
fields, respectively, and gaγ is the photon–ALP coupling
constant. In most astrophysical searches for ALPs, the relevant
electric field is that of the photon beam, whereas the magnetic
field is imposed externally as a “background” field. The
resulting expressions for photon–ALP mixing in the simple
case of a uniform magnetic field are outlined in Appendix A.
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Importantly, photon–ALP mixing requires the external B-field
component perpendicular to the beam propagation direction to
be nonzero.

Photon–ALP mixing will induce energy-dependent features
in the spectrum of a photon beam propagating through an
ionized, magnetized plasma as the photons mix with suffi-
ciently light ALPs. Photon–ALP mixing is an oscillatory
function with energy that is strongly dependent on the
properties of the plasma, as well as ma, gaγ. It is the presence
(or absence) of such energy-dependent modulations in the
spectra of astrophysical sources that allows us to constrain
ALPs, that is, to set an upper bound on gaγ for a given ma.

Bounds on anomalous stellar cooling provided the earliest
astrophysical bounds on ALPs of ma< 10−10 eV (Raffelt &
Stodolsky 1988; Raffelt 1996; Carenza et al. 2020). Competitive
constraints on gaγ for such ALP masses come from gamma-ray
observations of SN 1987A (Payez et al. 2015) and other core-
collapse supernovae (Meyer & Petrushevska 2020; Crnogorčević
et al. 2021; Meyer et al. 2022). These limits have been
complemented in a broader mass range (ma< 0.02 eV) by the
CERN Axion Solar Telescope (CAST; Anastassopoulos et al.
2017), which aimed to reprocess ALPs generated at the core of the
Sun back into X-ray photons within a magnetized chamber
located at CERN and excluded all photon–ALP couplings
gaγ> 6.6× 10−11 GeV−1 at the 95% level.We refer to Armen-
gaud et al. (2019) and Hong et al. (2019) for projected constraints
from solar axions from future ground-based and spaced-based,
next-generation missions.

Many astrophysical settings are both photon rich and
magnetized, providing the opportunity to study ALPs. We
now proceed to focus on the bounds on gaγ inferred from X-ray
observations of AGNs hosted by galaxy clusters. Clusters are
permeated by the intracluster medium (ICM), known to be
magnetized up to ∼10 μG within cool-core cluster cores. While
the 3D structure of the ICM field cannot directly be mapped,

the strength and typical coherence length of the ICM field can
be inferred from measurements of Faraday rotation measures
(RMs) at radio wavelengths. RMs have also indicated that ICM
fields are not regular but turbulent on scales of 100 pc–10 kpc
(Govoni 2012).
In many clusters, the central brightest cluster galaxy (BCG)

hosts an X-ray luminous AGN. As X-rays from the AGN
traverse the magnetized ICM, photon–ALP interconversion
would imprint distortions on the intrinsic AGN spectrum. The
absence of observed distortions can be used to exclude regions
of the (ma, gaγ) parameter space for ma< 10−12 eV. The current
most sensitive bounds on these very-light ALPs were inferred
with this technique using Chandra transmission grating
spectroscopy of the luminous cluster-hosted AGN H1821
+643 (Sisk-Reynés et al. 2021; Table 1). We refer the reader to
Wouters & Brun (2013), Conlon et al. (2017b), Berg et al.
(2017), and Marsh et al. (2017) for previous astrophysical ALP
bounds inferred from X-ray observations of AGNs hosted by or
located behind clusters. The purpose of this paper is to assess
the capabilities of future X-ray missions, particularly the
Athena and AXIS observatories, to probe ALP physics.
The Athena X-ray Observatory is the European Space

Agency’s next flagship X-ray observatory and will offer
spatially resolved spectroscopic capabilities exceeding those
of current and next-generation missions expected to launch in
the near future (Barret et al. 2023). The leap in the science
Athena will provide is due to the unprecedented spectral
resolution (2.5 eV) of its X-ray Integral Field Unit (the Athena/
X-IFU or X-IFU), Athenaʼs large effective area (see Table 2),
and an arcsecond-scale spatial resolution across a broadband
coverage (0.5–12 keV; see Barret et al. 2020, 2023). These
factors provide Athena with exciting prospects for cluster–ALP
searches, given that an X-ray telescope with a fine energy
resolution such as the X-IFU will be able to discriminate

Table 1
Top: List of the Current Most Sensitive Bounds on Very-light ALPs (ma < 10−12 eV) Based on Single-source Spectroscopy Studies (see the References in Section 1)

Source Instrument Current Bounds on gaγ (not excluded) at the 95% level Reference
NGC 1275 Chandra/HETG gaγ < 4.0 × 10−13 GeV−1 (Reynolds et al. 2020; Model B)
A1795Sy1† Chandra gaγ  0.6 × 10−12 GeV−1 Schallmoser et al. (2021) + ML
H1821+643 Chandra/LETG+HETG gaγ < 5.0 × 10−13 GeV−1 Sisk-Reynés et al. (2021)

Projected bounds gaγ (not excluded) at the 95% level from next-generation X-ray telescopes

NGC 1275 Athena/X-IFU*,† gaγ < 6.3 × 10−14 GeV−1 This work, no calibration (+ML)
NGC 1275 Athena/X-IFU† gaγ < 2.0 × 10−13 GeV−1 This work, including calibration with ML
NGC 1275 AXIS/on-axis* gaγ < 2.0 × 10−13 GeV−1 This work, no calibration

Note. Schallmoser et al. (2021) used a 3D field model and machine-learning classifiers† to improve on the previous bound from A1795Sy1 found by Conlon et al.
(2017b). Bottom: projected bounds on very-light ALPs from the next-generation X-ray telescopes Athena/X-IFU and AXIS (when used for on-axis observations),
based on their optimal calibration* (see Section 5). The upper bound on gaγ quoted for Athena/X-IFU under the assessment of detector calibration† is found by a deep
neural network trained on simulated spectra of NGC 1275 with injected ALPs at different gaγ across a library of conservative detector responses (see Section 7).

Table 2
Overview of the Designs of Athena, AXIS (for its Average Field-of-view Response) and Chandra/HETG (Quoted for Its High Energy Grating, HEG, After the First

Five Years of Performance—see Canizares et al. 2005)

X-ray Mission Spectral Resolution Angular Resolution Collecting Area at 1 keV Broadband Energy Range

Athena 2.5 eV† at 1 keV 5″ 1 m2 0.5–12 keV
AXIS 150 eV at 6 keV 1″ 0.56 m2 0.2−12 keV
Chandra/HETG 150 eV at 1 keV 0.5″ 0.04 m2 2.0–12 keV

Note. All Athena specifications result from a combination of the capabilities of both of its instruments, the WFI and X-IFU, unless flagged with a dagger (†) symbol, in
which case they correspond to those of the X-IFU only.
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further among photon–ALP mixing models suited to describe
the residuals in high-quality AGN spectra.

The capabilities of undertaking ALP studies with Athena
under optimal detector calibration were first studied by Conlon
et al. (2017a), who considered the projected bounds on very-
light ALPs from a simulated observation of the central AGN in
the Perseus cluster, NGC 1275, with 200 ks of exposure. They
found projected bounds on very-light ALPs of gaγ< 1.5×
10−13 GeV−1 at 95% confidence.

In this paper, we revisit the potential of Athena to
constrain ALPs by extending the previous considerations of
Conlon et al. (2017a) to include the effects of instrumental
miscalibration. Experience with all previous X-ray spectro-
scopes has highlighted the difficulty of obtaining (relative)
calibration errors below the 1%–2% level. Importantly, the
performance requirements of the X-IFU are subject to knowing
both the broadband shape and normalization (within
0.5–10 keV and at 1 keV, respectively) of the effective area
curve with above 97% precision. We refer to Section 5 of
Barret & Cappi (2019) and Section 2 of Barret et al. (2023) for
detailed descriptions of these requirements, which imply that
any high-quality spectrum of a sufficiently bright AGN seen by
Athena/X-IFU will be dominated by systematic uncertainties,
namely detector miscalibration. Generically, this would not

apply to high-quality AGN spectra inferred by Chandra or
XMM-Newton since these would be dominated by statistical
uncertainties due to their smaller correcting areas.
Using a library of realistic (conservative) Athena/X-IFU

detector responses (such as in Barret & Cappi 2019), we show
that the application of the standard analysis techniques in the
presence of calibration errors hobbles the ALP constraints from
Athena/X-IFU data. However, spectral features resulting from
instrumental miscalibration are generally quite distinct from
those induced by ALP–photon mixing. We show that the
application of machine-learning techniques can, to a very large
extent, circumvent calibration uncertainties when evaluating
Athenaʼs projected bounds on ALPs. We conclude that the use
of such techniques may be key in unveiling the potential of
other next-generation X-ray observatories to probe ALP
parameter space further.
We also present the first projected bounds on ALPs from the

Advanced X-ray Imaging Satellite (AXIS), a probe-class
concept that will be proposed to NASA for a 2032
launch. While AXIS has a smaller collecting area and
significantly poorer spectral resolution than Athena, its superior
spatial resolution of 1″ half-power diameter (HPD) offers its
own advantages for studying cluster-embedded AGNs.
This paper is organized as follows. Section 2 summarizes the

Athena and AXIS missions. We proceed by simulating a 200 ks
Athena/X-IFU and AXIS observation of NGC 1275 under the
assumption of optimal detector responses (i.e., optimal calibra-
tion, Section 3). The grid of photon–ALP mixing models
employed in our analysis pipeline is described in Section 4. The
projected bounds on very-light ALPs from such missions are
presented in Section 5. In Section 6, we address ALP
constraints with Athena in the presence of realistic calibration
errors by marginalizing over a set of nonoptimal detector
responses. In Section 7, we introduce the exciting prospect of
using machine-learning techniques—in particular, deep neural
networks—to disentangle the effects of detector calibration and
photon–ALP signatures for Athena and next-generation X-ray
observatories. In Section 8, we present the projected recovery
of several “injected” ALP signals by Athena/X-IFU under the
effects of detector calibration and the magnetic field model. We
discuss our results and limitations and conclude in Sections 9
and 10, respectively.

2. The Athena and AXIS Observatories

The Athena X-ray Observatory is the second large (L)-class
mission selected by the European Space Agency within the
Cosmic Vision Program to address the Hot and Energetic
Universe scientific theme (Nandra et al. 2013). In this work, we
consider the baseline Athena design and capabilities as
described by Barret et al. (2020). Athena will consist of a
single X-ray telescope constructed from iridium-coated silicon
pore optics with a focal length of 12 m, permitting imaging
with a half energy width (HEW) of 5 arcsec and a mirror
effective area at 1 keV of 1.4 m2. A hexapod mechanism allows
the focused X-ray beam to be directed at one of two focal plane
instruments: the Wide Field Imager (WFI), consisting of an
array of active pixel sensors based of DePFET, and the X-IFU,
consisting of a cryogenically cooled microcalorimeter. Given
its unprecedented spectral resolution and effective area
(Table 2), the X-IFU will provide the high-quality view of
the intrinsic AGN emission and nearby ICM needed for
sensitive ALP constraints.

Figure 1. Top panel: optimal (baseline) effective area responses of Athena/X-
IFU, Chandra/HETG (when its HEG is read on ACIS-S), and AXIS (for on-
axis observations under its baseline and target requirements). Bottom panel:
ratio of the effective areas of Athena/X-IFU’s optimal response (in magenta)
divided by two realistic conservative responses (f1, f2). We refer the reader to
Barret & Cappi (2019) for a description on how the latter were produced.
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AXIS is a response to the NASA’s Astrophysics Probe
Explorer Program and answers the call by the Astro2020
Decadal Survey for a probe-class X-ray or mid-Infrared
Satellite to launch in 2032 (National Academies of Sciences,
Engineering, and Medicine 2021). AXIS will be a high-spatial-
resolution X-ray observatory that will provide powerful
synergy and complementarity with other facilities expected in
the 2030s, including Athena.

AXIS achieves 1 arcsec HPD image quality across a
´24 24 arcmin2 field of view and a mirror effective area of

7000 cm2 via a novel mirror design that employs precision cut
monocrystalline silicon foils. The detector consists of a cooled
fast-readout digital CCD, and is protected from both optical
light and molecular contamination by a set of filters. Including
the filter transmission curves and the detectors’ quantum
efficiency, the effective area of the observatory is 5700 cm2 at
1 keV. That is, an order of magnitude greater than Chandra
when used in imaging mode with the Advanced CCD Imaging
Spectrometer (ACIS).

The energy-dependent effective areas of Athena/X-IFU,
Chandra/HETG, and AXIS are shown in Figure 1. All
responses present a narrow drop at 1.5–2.0 keV, corresponding
to the absorption edge of the material coating the mirror. For
the baseline ARF scenario, AXISʼs effective area (for on-axis
observations of point-like sources) would differ from that in the
target scenario due to a limited performance at energies below
1 keV due to a significantly thicker optical blocking filter.

3. Simulating Athena and AXIS Observations of NGC 1275

NGC 1275 is the central BCG of the Perseus cluster, the
most massive (M200= (6.6± 0.4)× 1014Me; Simionescu et al.
2012) nearby cluster (at redshift z = 0.017284; Hitomi
Collaboration et al. 2018a) whose ICM structure and dynamics
have been extensively studied over the years with numerous
X-ray missions (e.g., Fabian et al. 2006; Simionescu et al.
2012; Zhuravleva et al. 2014). NGC 1275 hosts a luminous
AGN that is a prime target for ALP searches.

We refer to Reynolds et al. (2021) for a recent X-ray study of
this AGN and its circumnuclear environment. Reynolds et al.
(2021) employed the same 490 ks Chandra/HETG observation
previously used to set tight bounds on ALPs (see Table 1 and
Reynolds et al. 2020). Formerly, the study of Perseus and
NGC 1275 had been the first science target for the Hitomi Soft
X-ray Spectrometer, an X-ray microcalorimeter which provided
unprecedented details on the dynamics and thermodynamics of
the ICM emission as well as the Fe Kα region within the core
of NGC 1275 (Hitomi Collaboration et al. 2016, 2018b, 2018).

Below, we present the spectral models we assumed to
simulate Athena/X-IFU and AXIS observations of
NGC 1275. Throughout the entirety of our analysis, we assume
a flat (Ωκ= 0.0) universe compatible with Λ-cold dark matter
(ΛCDM) cosmology, with H0= 70 km s−1/Mpc, Ωm= 0.3,
and ΩΛ= 0.7 (Aghanim et al. 2020). At a redshift of
z = 0.017284, this places NGC 1275 at a luminosity distance
of 75Mpc. We assume a hydrogen column density local to the
Milky Way of NH= 1.32× 1021 cm−2 (Kalberla et al. 2005)
and use the element abundance ratios of Wilms et al. (2000).

3.1. The Baseline Model

Using the 490 ks Chandra/HETG observation of NGC 1275,
Reynolds et al. (2020) found the AGN to be well characterized

by an unabsorbed power law with photon index Γ≈ 1.9
modified by the effects of Galactic absorption, yielding
residuals only below the 3% level outside of the iron band. In
Reynolds et al. (2021), the description of the spectrum was
found to improve slightly with the use of a partial covering
intrinsic absorber, interpreted as a composite X-ray source with
an absorbed jet working surface and an unabsorbed accretion
disk corona. This interpretation also brings the X-ray data in
line with the detection of molecular absorption in Atacama
Large Millimeter/submillimeter Array (ALMA) observations
(Nagai et al. 2019).
However, Matthews et al. (2022) found that the upper bound

on gaγ inferred from Chandra data of NGC 1275 (see Table 1)
remains insensitive to whether a partial covering absorber is
accounted for in the spectral fits to the AGN spectrum. Thus,
for simplicity, in this work we adopt the simple power-law
model in order to generate simulated (fake) Athena and AXIS
spectra of NGC 1275. These simulated spectra were produced
with PYXSPECʼs fakeit command under the consideration of
Poisson noise statistics and neglecting background emission. In
all cases, we consider an on-source exposure of 200 ks for
comparison with Conlon et al. (2017a).

3.2. Simulated AXIS Observations of NGC 1275

Given AXISʼs superior spatial resolution (see Table 2), we
assume that it can capture a spectrum of NGC 1275 free from
the contributions of the surrounding ICM. Thus, the baseline
model for our AXIS simulations is just an absorbed power law
(tbabs * po); see Figure 2. We note that we have not included
the influence of photon pileup in our simulated AXIS spectra,
as follows. In this work, we operate under the assumption that
AXIS will have bright-source modes which permit accurate

Figure 2. Effective-area-corrected simulated spectra of NGC 1275 seen by
Athena/X-IFU and AXIS (used for on-axis observations under its target ARF
+RMF specifications) when read on their optimal detector responses
(ARFs). AXISʼs baseline and target RMFs differ only due to the improved
spectral energy resolution of the latter at lower energies. The dashed–dotted
line shows the predicted count rate for a 200 ks AXIS/on-axis observation of
NGC 1275 under its baseline ARF+RMF requirements. For plotting purposes,
an energy binning scheme of a target signal-to-noise ratio of 100 and 25, with
the restriction that no more than 200 and 75 spectral bins were coadded, was
applied to the Athena/X-IFU and AXIS spectra, respectively.
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CCD spectroscopy of sources with fluxes at least as high as a
few milliCrab.

3.3. Simulated Athena/X-IFU Observation of NGC 1275

Given an angular resolution of 5″HEW, an Athena/X-IFU
observation of a cluster-hosted AGN will necessarily suffer
from ICM contamination. However, excellent spectral separa-
tion of the AGN and ICM emission should be possible given
the combination of the Athena/X-IFU effective area and
spectral resolution.

We simulate an Athena/X-IFU observation of NCG 1275
using the bvvapec single-temperature plasma model to model
the velocity-broadened ICM emission lines. All model para-
meters were taken from the reference apec-v.3.0.8 model
that had been fitted to data from Hitomi Collaboration et al.
(2018; see their Table 1), with the exception of its normal-
ization parameter (Aplasma in Table 3), for reasons specified
below. The element abundances within bvvapec of the
elements not listed in Table 1 of Hitomi Collaboration et al.
(2018) were assumed to be 1.0 relative to the protosolar
metallicities of Lodders & Palme (2009).

Given Hitomiʼs 0.5′ angular resolution, the normalization of
the apec-v3.0.8 model fitted to the Hitomi Collaboration
et al. (2018) data modeled the ICM emission across a large
volume within Perseus. Considering Athenaʼs improved angu-
lar resolution compared to Hitomiʼs, a suitable value of Aplasma

for our analysis was found as follows.
We first identified the single longest observation of

NGC 1275 taken with Chandra. This observation (ObsID
4952; exposure 164.24 ks) had started in October 2004 and
had been read on the ACIS-S detector. We reprocessed these
data with the CIAO software5 v.4.14. We extracted a spectrum
of the ICM emission from an annuli centered on NGC 1275
with inner/outer radii of 1″/10″ and 2″/10″ in an attempt to
isolate the ICM emission in a plausible Athena extraction
region. To first order, these spectra were found to be well
described by an apec model with a normalization component
of 2× 10−3 cm−3. We therefore adopted the value of

Aplasma= 2× 10−3 cm−3 in our simulated Athena/X-IFU
spectrum of NGC 1275 (see Table 3).
Our simulated Athena/X-IFU spectra of NGC 1275 were

generated using a spectral model consisting of this ICM
component added to an absorbed power-law model, that is,
via tbabs * (po + bvvapec). The resulting Athena/
X-IFU view of NGC 1275 is shown by Figure 2, where the
narrow emission lines arising from the cluster ICM are
immediately apparent when compared to the AXIS view of
the AGN.

4. Grid of Photon–ALP Mixing Models

In order to find projected bounds on ALPs from Athena
and AXIS, we generate a library of photon–ALP mixing
models for photons propagating from NGC 1275 out to the
virial radius of the Perseus cluster, estimated to be R200=
1.8Mpc (Simionescu et al. 2012).
To produce the photon–ALP mixing models, we must

assume a magnetic field structure. We use a cell-based
approach to model the turbulent cluster field, specifically
adopting “Model B” from Reynolds et al. (2020) to determine
the radial profile of the cluster magnetic field and distribution
of cell sizes (“coherence lengths”). This model is chosen so
as to reproduce a value of the thermal-to-magnetic pressure
ratio of βplasma= 100 up to 1.8 Mpc from the cluster
center. “Model B” from Reynolds et al. (2020) broadly
reproduces the Faraday RMs within Perseus presented by
Taylor et al. (2006), where the cluster acts as a Faraday
screen. Having been motivated by RM observations of cool-
core clusters (Taylor et al. 2006; Böhringer et al. 2016), the
value βplasma= 100 has been adopted in previous cluster–
ALP searches (Reynolds et al. 2020; Sisk-Reynés et al. 2021;
Matthews et al. 2022). The derived constraints on gaγ can
readily be scaled to other choices of βplasma (see Section 5.1
of Sisk-Reynés et al. 2021). We also refer the reader to
Matthews et al. (2022) for a thorough exploration of the
effects of different assumptions of the turbulent magnetic
field structure (e.g., Gaussian random fields (GRFs) and
“cell-based” models) on cluster–ALP bounds.

Table 3
Top: Model Parameters Used to Fit the Optimal Simulated AXIS (Section 3.2) and Athena/X-IFU (Section 3.3) Observations of NGC 1275

Model Parameters: Simulated Spectra of NGC 1275 Under Optimal ARFs

Component Parameter Description Athena/X-IFU AXIS

tbabs NH ISM column density 1.32 × 1021 cm−2

pow ΓX Photon index 1.89
pow AX Power-law normalization at 1 keV 8.28 × 10−3 phot s−1 keV−1

bvvapec kTplasma Plasma temperature 3.969 keV -
bvvapec σbroad Doppler velocity broadening 156 km s−1 -
bvvapec Aplasma Plasma normalization 2 × 10−3 cm−3 -
bvvapec z Redshift 0.017284 -
bvvapec ZSi, ZS, ZAr, ZCa, ZMn, ZFe, ZNi Element abundances ≠Ze -
bvvapec Zother Element abundances Ze -

Free parameters in fits to the simulated spectra of NGC 1275

pow ΓX Photon index ✓ ✓

pow AX Power-law normalization at 1 keV ✓ ✓

bvvapec Aplasma Plasma normalization ✓ -

Note. The tbabs, po, and bvvapec parameter values were adopted from Kalberla et al. (2005), Reynolds et al. (2020), and Hitomi Collaboration et al. (2018; see
their Table 1), respectively. Bottom: layout of the free parameters of the ALP-containing and fiducial astrophysical model simulated spectra of NGC 1275.

5 See https://cxc.cfa.harvard.edu/ciao/
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We generate 216 realizations of the turbulent ICM field,
where each realization reproduces a cluster field profile, B(r),
consistent with the notion that βplasma= 100 up to the virial
radius. Under this assumption, the Fabian et al. (2006) pressure
profile within Perseus yields an expected magnetic field
strength of 6.5 μG at 25 kpc from the cluster center. The
expected field profile up to 1.8 Mpc from the inner core is
found by approximating the cluster as isothermal. The field
strength at comoving distance r to the cluster center (shown in
Figure 4 of Sisk-Reynés et al. 2021) is therefore given by

~B r n r1 e( ) ( ) and normalized according to its value at
25 kpc from the cluster center. Here, ne(r) is the analytic
Churazov et al. (2003) electron number density profile found
from fitting XMM-Newton observations of Perseus.

For each realization, the cluster line of sight is split into
coherence lengths in the 3.5–10 kpc range under a power-law
probability distribution (Vacca et al. 2012; Berg et al.
2017). We highlight that, as specified in Section 3 of Reynolds
et al. (2020), their “Model B” accounted for the expected
increase in field coherence lengths away from the cluster
center. In each coherence length (or cell), the components of
the magnetic field perpendicular to the line of sight (i.e., the
field components which mix with ALPs as given by
Equation (1)) are set independently and randomly.

We employ the Axion-Like PROpagation (ALPRO6) public-
release code to construct a library of photon–ALP mixing
curves for ALPs with = -mlog eV 14.0a( ) across a grid of

Î - -g
-glog GeV 14.0, 11.0a

1( ) [ ], in steps of 0.1 dex, for 216
configurations of the turbulent cluster field. Although these
curves are computed for a specific ALP mass, these models will
accurately capture photon–ALP mixing for “effectively”
massless ALPs with < -mlog eV 12.0a( ) . Although the
extrapolation to higher (but still very light) ALP masses will
generally depend on the underlying density structure of the host
ICM, this does not impact our results.

For each magnetic field realization, the photon–ALP
propagation problem described in Appendix A is solved for
an initially unpolarized beam propagating from the inner core
to 1.8Mpc from the cluster center, at all coherence cells within
the line of sight. The contribution from all cells results in a
(total) energy-dependent photon “survival” probability Pγ→γ

for photons mixing with massless ALPs of a given gaγ. All
survival curves are sampled at 1.25 eV resolution (half of the
spectral resolution of Athena/X-IFU) and computed across
0.1–15 keV. The details of this calculation are outlined in
Sections 2 and 3 of Matthews et al. (2022).

The survival photon–ALP mixing curves for gaγ= 6.3×
10−13 GeV−1 for two different configurations of the turbulent
cluster field are shown by Figure 3. This corresponds to the
upper bound on gaγ inferred at the 99.7% level by the most
sensitive cluster–ALP single-source spectroscopy study to date
(Sisk-Reynés et al. 2021).

5. Optimal Bounds from Next-generation X-Ray Telescopes

Equipped with the grid of photon–ALP mixing models
introduced above, which we refer to as {ALP(i, gaγ)}, where i
and gaγ label the field realization and the photon–ALP
coupling, respectively, we first aim to find projected bounds
on ALPs from Athena and AXIS under the assumption that the
energy-dependent area of the detectors were perfectly

known.We highlight that Athenaʼs projected bounds on ALPs
were first reported in Sections 4 and 5 of Conlon et al. (2017a),
albeit upon a slightly different methodology to the one we
follow (see their Section 4).
To derive the projected constraints on ALPs, we analyze

simulated ALP-free Athena and AXIS spectra following the
procedure described in Section 4 of Sisk-Reynés et al.
(2021). We fit the simulated spectra in the observed energy
range 0.5–12.0 keV. For each ALP(i, gaγ) curve in our
photon–ALP mixing grid, we fit a spectral model that includes
photon–ALP mixing (via tbabs*(po + bvvapec)*ALP(i,
gaγ)) to the simulated Athena spectrum (Section 3.3), and
tbabs*po*ALP(i, gaγ) to the (separate target and baseline

Figure 3. Top: average photon survival probability (over 216 field realizations)
for quanta propagating through the Perseus cluster when mixing with massless
ALPs (ma = 10−14 eV) of gaγ = 6.3 × 10−13 GeV−1. The black solid and
dotted–dashed lines show the survival curves for two different turbulent field
realizations (respectively referred to as ò1 and ò2 in the text). The shaded region
shows the standard deviation of 216 curves in each energy bin, computed by
using 11,920 bins between 0.1 − 15 keV. Bottom: photon–ALP mixing models
showing the injected signals in the Athena/X-IFU analyses discussed in
Section 8. The solid and dashed green curves illustrate ALP models generated
under two different turbulent field models ( ¢1 and ¢2 , respectively).

6 See https://github.com/jhmatthews/alpro/tree/v1.1
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ARF+RMF) AXIS spectra. The best-fit regime of each spectral
fit was found by minimizing the Cash (C) statistic (Cash 1979;
Kaastra 2017), appropriate for Poisson-distributed data. We
find posteriors on gaγ for ma< 10−12 eV by using the Bayesian
framework described in Section 4 of Sisk-Reynés et al. (2021).
This procedure derives a normalized posterior distribution on
(ma, gaγ) by marginalizing over all magnetic field models. This
normalization is achieved via Equation (C1) and computed
across Î - -mlog eV 30.0, 12.0a( ) [ ) Îg

-glog GeVa
1⋃ ( )

- -19.0, 10.1[ ]. Operationally, all posteriors for =mlog eVa( )
-14.0 are identical to those for ALPs of log

Î - -m eV 30.0, 12.0a( ) [ ). Moreover, all ppost(ma, gaγ) for
Î - -g

-glog GeV 19.0, 14.0a
1( ) [ ) were assigned by taking

those for gaγ=1.0× 10−14 GeV−1 as a proxy. That is, in this
regime, the energy-dependent modulations induced by gaγ are
indistinguishable from those induced by Poisson noise.

Our priors on the ALP parameter space were chosen as
follows. First, the mass range considered embeds the phenom-
enology of “effectively” massless ALPs, that is, where the
relevant photon–ALP mixing equations (see Appendix A) are
mass independent. In general, the latter would hold for ALPs of
ma 10−12 eV. If such ALPs were to play a cosmological role,
they could indeed comprise DM. At masses 10−30 eV,
however, their de Broglie wavelength will exceed the particle
horizon of the universe and ALPs will then act as dark
energy (Carroll 1998). Second, for photon–ALP couplings

g
- g 10 GeVa

1 19 , the energy scale at which ALPs couple to
electromagnetism will exceed the Planck scale, which is not
expected to be realizable in consistent theories of quantum
gravity.

The 95% (2σ) confidence level (CL) constraints on gaγ we
infer from the simulated 200 ks Athena/X-IFU and AXIS
observations of NGC 1275 under the “perfect calibration”
scenario are listed in Table 1 and shown in Figure 4.
These projected Athena bounds significantly improve on the
current best constraints (Table 1), with Athena pushing a full
order of magnitude deeper than Chandra. We refer to
Section 9.1 for a comparison with the results in Conlon et al.
(2017a). The marginalized posterior distribution (over all
magnetic field realizations) for ALPs of ma= 10−14 eV is
expected to be dominated by low values of photon–ALP
coupling, i.e., gaγ 6.3× 10−14 GeV−1 (refer to Appendix B
for a discussion).
In the perfect calibration scenario, AXIS improves upon

current constraints by 0.3–0.4 dex for both its baseline and
target area responses. The latter is shown in Figure 4.

6. The Effects of Calibration on Athenaʼs Projected Bounds
on ALPs

Following on from Conlon et al. (2017a), we have shown
that Athena/X-IFU, with its unprecedented spectral energy
resolution of 2.5 eV and effective area of about 1 m2 at 1 keV,
could push down the current most sensitive bounds on gaγ by
an order of magnitude provided we have perfect knowledge of
its energy-dependent area. However, no X-ray observatory has
perfect calibration, with the practicalities of both ground and
in-orbit calibration leading to irreducible uncertainties in the
(relative) effective area curves at the level of 1%–2%. In view
of this reality, we now proceed to reassess Athenaʼs power to
constrain very-light ALPs under an imperfect calibration. The
importance of such an exercise is discussed in Sections 6.1 and

Figure 4. Projected (dotted and dashed lines) and current observational (solid lines) upper bounds (all shown at the 95% exclusion level unless otherwise explicitly
stated) on very-light ALPs inferred from this work and previous astrophysical searches. We include our projected upper bounds on gaγ from both the Athena/X-IFU
and the AXIS observatories under the assumption of a “perfect” detector calibration scenario, where, in both cases, we have marginalized over 216 realizations of the
turbulent field within Perseus. We also show the projected bounds on ALPs from Athena/X-IFU under the assessment of detector calibration (refer to Section 7),
which overlap with the AXIS exclusion under its optimal calibration scenario. We show the upper bounds inferred from the SN 1987A event (Payez et al. 2015),
complemented by Fermi/LAT observations of extragalactic supernovae (Meyer & Petrushevska 2020); projected bounds from the next-generation axion helioscope,
the International AXion Observatory (IAXO) and its upgrade (IAXO+; Armengaud et al. 2019); and existing AGN/cluster bounds from Chandra observations of
M87/Virgo (Marsh et al. 2017), NGC 1275/Perseus (Reynolds et al. 2020, their Model B), and H1821+643 (Sisk-Reynés et al. 2021). The shaded regions above all
curves underlie the parameter space excluded by any of the studies shown. We include projected bounds from the future birefringent cavity experiment ADBC (dashed
black line), a future axion interferometer which will constrain ALP DM (Liu et al. 2019).
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in Appendix B. In Section 6.2, we then quantify the effects of
detector calibration in Athenaʼs projected bounds on ALPs
using a Cash statistic likelihood method that extends from that
employed in the “optimal” calibration scenario. In Section 7,
we introduce the exciting prospect of disentangling calibration
residuals and ALP features via the use of machine learning,
thus leading to tighter bounds on gaγ.

6.1. Overview of the Effects of a Nonoptimal Calibration

One may worry that the energy-dependent residuals induced
by the calibration of a given detector (encapsulated in the area
response file, ARF) could mimic the energy-dependent
oscillations induced by photon–ALP mixing. We examine this
issue using a library of sampled effective area curves (ARFs)
for Athena/X-IFU, which was produced as described in Barret
& Cappi (2019). These ARFs capture the realistic effects of
instrumental modeling uncertainties on detector
calibration. The effects of modeling uncertainties of the mirror
response on detector calibration were not taken into account
and are therefore beyond the scope of this paper. These mirror-
induced calibration effects were recently explored by Guainazzi
et al. (2022). For reference, Figure 1 illustrates a subsample of
the realistic “nonoptimal” ARFs employed in our analysis.

Together with the energy-response matrix, the ARFs relate
the observed photon fluxes to the actual source spectrum. A
given detector’s ARF is sensitive to multiple design features,
for instance, the level of impurity and thickness of the material
coating the mirror, the orientation of the mirror, etc. Therefore,
in general, a representative set of ARFs for next-generation
X-ray observatories must be constructed in order to assess the
extent to which these missions will be able to meet their science
objectives.

We assess the effects of detector calibration on Athenaʼs
projected bounds on ALPs using the library of ARFs outlined
in Section 5 of Barret & Cappi (2019). Each ARF in the library
was generated so that its normalization remained unchanged at
1 keV and throughout 0.5–10 keV compared to the nominal
ARF, and was subjected to a change in the effective area shape
of up to 3% with respect to the nominal ARF. As the end
product, each ARF in the library captured the uncertainty in the
thickness of the instrument filters and absorbers without
accounting for uncertainties around the edge of the
response. The latter will be considered in a future paper.

We can obtain a first estimate of the effect of calibration
expected from pure Poisson statistics by assuming that the
“true” ARF is an unknown member of the library of
ARFs. Following Drake et al. (2006), one can then proceed
by (i) either simulating a single spectrum with the nominal
ARF and fitting it across all ARFs in the library, (ii) or by
generating a single spectrum per ARF in the library and
subsequently fitting it with the nominal ARF. Following
Section 5 of Barret & Cappi (2019), we use the former method
as it is able to capture more closely the perturbative nature of
detector miscalibration in the recovery of best-fit parameter
values; and we refer to Cucchetti et al. (2018) for an
implementation of the latter method. In both approaches, the
realistic effects of detector miscalibration can be inferred from
a Monte Carlo approach by recording the best-fit parameter
values when a spectral model is fitted to the simulated
spectra. We refer to Figure 5 and Appendix B for a qualitative
assessment on the realistic impact of calibration in Athenaʼs
sensitivity to constraining ALPs.

6.2. Revisiting Athena’s Projected Bounds on ALPs Under the
Assessment of Detector Calibration

In this section, we examine the impact of realistic
imperfections in the calibration of the ARF on our ability to
set bounds on the ALP–photon coupling constant using our
standard C-statistic likelihood approach. We simulate an ALP-
free Athena/X-IFU spectrum of NGC 1275 using a particular
choice of ARF. We then fit the simulated spectrum across both
our library of ALP–photon survival curves (including scans
over both the ALP–photon coupling constant and the magnetic
field realizations) as well as a subset of the library of calibration
responses (i.e., ARFs). The normalized posterior distribution on
ALPs must then be found by marginalizing over magnetic field
models and ARFs. The Bayesian framework we follow is
described in Appendix C.
Marginalizing over 216 ARFs and over 216 magnetic field

realizations, we see that our standard C-statistic likelihood
technique for setting bounds on gaγ is significantly influenced
by imperfect knowledge of the calibration, as follows. The
excluded region weakens to gaγ� 6.3× 10−13 GeV−1 both at
the 95% and 99.7% CLs compared to the value of
gaγ> 6.3× 10−14 GeV−1 excluded at 95% CL in the “perfect”
calibration scenario, implying a weakening of Athenaʼs bounds
on ALPs by an order of magnitude.
The essential reason for this is that our standard technique

for assessing bounds on the ALP–photon coupling constant
simply examines the significance of X-ray spectral distortions
away from the astrophysical model, and not the nature of the
distortions. However, as we see from a comparison of Figure 3
and Figure 1, the typical characteristics of instrumental-
calibration-related features are very distinct from those of the
ALP–photon conversion, respectively, with the latter having
significant quasiperiodic structure. In the next section, we show
that the application of machine learning can use these
differences to disentangle ALP-induced and calibration-
induced effects partially, thereby restoring to a large degree
the ability of the Athena/X-IFU to constrain ALPs.

7. Circumventing Detector Calibration Limits with Neural
Networks

Because artificial neural networks (ANNs) do not rely on a
fit statistic to derive a detection confidence, it is possible that
they may be able to circumvent the reduction in confidence
associated with calibration uncertainties. For a proof-of-con-
cept test we adapt the parameter estimation scheme from Parker
et al. (2022), and train ANNs to recover gaγ from raw spectra. If
a strong ALP signal is present in the spectrum, the ANN should
recover the value of gaγ of the input spectrum, and a detection
limit can be derived from the point where this recovery
breaks down.
First, we tested several different network architectures,

including the two designs from Parker et al. (2022). In the first
of these architectures, the spectra were normalized and directly
input into the first layer of the ANN. In the second architecture,
a principal component analysis (Pearson 1901) was first
applied to reduce the dimensionality of the spectroscopic data
(counts per energy bin), making it easier for the ANN to learn
the relevant features and to dismiss the redundant features
of the spectroscopic data while reducing the risk of
overfitting. However, PCA preprocessing was found not to be
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effective given the complexity of the ALP-induced features in
our synthetic Athena/X-IFU spectra.

Finally, we tested a convolutional neural network (CNN),
where the spectroscopic data pass through a series of
convolutional layers. In the more common use of CNNs for
image recognition, where the convolutional layers identify
structure within the data, such as edges or lines, CNNs
determine the important features of the data and optimize for
such features themselves. As the data pass through multiple
layers, this information becomes more abstracted and more
condensed. In our CNN implementation, after each convolu-
tional layer we include a max pooling layer, which down-
samples the data, taking the highest value from each N data
points (where N is the degree of pooling). This compresses the
data, and allows CNNs to be invariant to small shifts in the
position of features. We find that the CNN generally outper-
forms the two ANN architectures described above, for which
we focus on the CNN for the remainder of this section.

The CNN was thereby trained on 10,000 simulated Athena/X-
IFU spectra, with values of Î - -g

-glog GeV 15.0, 11.0a
1( ) [ ]

in steps of 0.1 dex, and randomly allocated response files and
magnetic field realizations from a library of 1001 representative
response files and a set of 300 configurations of the turbulent
cluster field. The data are truncated to the first 20,000 spectral bins
and rebinned by a factor of 5.We then normalized and detrended
the spectra using the SCIPY.SIGNAL.DETREND function. The latter
implements a linear detrending of the data.We find our results
(shown by Figure 6) to be insensitive to whether linear or a
higher-order polynomial detrending is employed. This applies to
both the 95% and 99.7% exclusion levels on gaγ inferred by the
CNN and to the distributions illustrated by Figure 6.We used the
KERAS deep-learning API (Chollet 2015) for PYTHON, running on
the TENSORFLOW machine-learning platform (Abadi et al.
2015). We used the Adam optimizer (Kingma & Ba 2014), the
rectified linear unit (ReLU) activation function (Nair &
Hinton 2010), the mean squared error loss function, and early
stopping (Prechelt 1998) with a patience of 50.We followed each
convolutional layer with a max pooling layer, downsampling the
feature map. Our CNN design is summarized in Figure 7.

We performed a basic hyperparameter optimization, ran-
domly selecting 200 combinations of values of the number of
convolutional layers, number and breadth of dense layers,
number of filters, learning rate, batch size, and pooling size. In
each case, we evaluated the performance of the network on a
test set of 2000 spectra and selected the best-performing
network based on the mean squared error (Figure 7). Finally,
we used the network to predict the value of gaγ from a set of
1001 validation spectra (one for each response file) which were
not used to train the network or evaluate the performance
during hyperparameter optimization. We note that the latter
were generated with an independent library of 204 magnetic
field configurations within Perseus.
The recovered value of the photon–ALP coupling as a

function of its simulated value is shown by the main panel in
Figure 6. We refer to these variables as glog sim( ) and glog fit( ),
respectively, where both gsim and gfit are expressed in
GeV−1. The absolute value of these variables is shown in
Figure 6, where the photon–ALP coupling value decreases
along both axes.
We interpret the CNN regression method by referring the

reader to the main panel of Figure 6. For sufficiently high
values of gaγ, the photon–ALP-induced oscillations are
distinguishable from the effects of detector calibration. Clearly,
the CNN is successful at identifying the presence of ALPs
when -glog 12.3sim( ) , albeit with a bias of 0.2–0.4 dex in

glog rec( ). The flattening of gfit at Îglog 11.0, 11.2sim∣ ( )∣ [ )
arises due to the averaging of Paγ to 0.5 at hard energies from
an unpolarized photon beam (see Section 4 of Marsh et al.
2017).
In the intermediate range of Î - -glog 12.7, 12.4sim( ) [ ], the

CNN is only partially successful at detecting the presence of
ALPs in the input spectra. In such successful scenarios, one
would expect a favorable magnetic field model that enables the
CNN to disentangle correctly between the effects of detector
calibration, ALP-induced features, and Poisson noise in the
synthetic data. However, for simulated values of the photon–
ALP coupling below the intermediate range, i.e., for

-glog 12.8sim( ) , the CNN is unable to recover the ALP
signal as the amplitude and shape of the ALP-induced

Figure 5. Residuals from fitting the synthetic Athena/X-IFU spectrum presented in Section 3 with a variety of models. The different panels illustrate the effects of
detector calibration and of photon–ALP mixing when fitting the synthetic data as follows. Left panel: a “fiducial” (astrophysics only) model is fitted under an optimal
detector calibration scenario. Central panel: a “fiducial” (astrophysics only) model is fitted to the data under a conservative calibration scenario. Right panel: a
multiplicative ALP model (featuring gaγ = 5.0 × 10−13 GeV−1) is fitted under an optimal calibration scenario. The simulated data were fitted within the observed
energies 0.5–12 keV. For plotting purposes, a binning scheme of a target signal-to-noise ratio of 250 with the restriction that no more than 100 spectral bins were
coadded was applied, and we show the energy range 0.5–7.5 keV. The best-fit C-statistic of each fit, the number of DOF, and the reduced C-statistic (≡C/DOF) are
quoted (with the latter in parenthesis). The ALP fit corresponds to = -g

-glog GeV 12.3a
1( ) , i.e., close to the current exclusion on gaγ (refer to Table 1).
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perturbations are comparable and indistinguishable to those of
the Poisson noise in the data. In this regime, the CNN
“guesses” a value of gfit within the range of gsim which the
CNN cannot adequately recover in order to minimize the loss
function.

We compute the 95% and 99.7% CLs on gaγ inferred by the
CNN as follows. To begin with, we consider the probability of
obtaining a given value of glog fit( ) from glog sim( ). First, we
define a detection threshold. We use the points

glog 13.5sim∣ ( )∣ as proxies for spectra with no injected

Figure 6. Main panel: recovery of the value of gaγ as inferred by the artificial neural network (ANN) introduced in Section 7. The x-axis of the main panel shows the
absolute simulated value of the photon–ALP coupling, while the y-axis shows its parameter estimation by the ANN. The horizontal line shows the detection threshold

glog lim∣ ( )∣, defined as the 99% limit of the distribution of glog fit( ) for < -glog 13.5sim( ) . This is shown in the right panel, where the red line shows a Gaussian kernel
density estimation. The dashed lines show the limits derived from the posterior distribution of glog sim∣ ( )∣ for all spectra that do not have ALP detections (shown in the
top panel). We refer the reader to Section 7 for a discussion.

Figure 7. Architecture of the CNN used to estimate the value of gaγ. The data input into the CNN are represented by the first blue column on the left. These pass
through a series of 1D convolution and pooling layers, which extract features from the data and then downsample it by a factor of 4 (see first paragraph of
Section 7). The final feature map is then flattened, resulting in the final single column, before being input into a series of fully connected layers which estimate gaγ
from the feature map. The numbers in brackets below the columns represent the size of the data or feature map at each stage in the convolutional layers, and the
numbers below the fully connected layers give the number of nodes in each layer.
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ALP signal. We calculate the distribution of glog fit( ) for these
spectra. The latter is shown by the right panel of Figure 6. We
then define a detection (“limit”) threshold, glog lim( ), such that
there is a 1% false positive rate. We then find the posterior
distribution of glog sim( ) for all spectra that have

>g glog logfit lim( ) ( ). The probability that this distribution
corresponds to is shown by the top panel of Figure 6. Adopting
the same priors in ALP parameters described in Section 5, we
extrapolate this out to =g

-glog GeV 19.0a
1∣ ( )∣ , and then find

the 95% and 99.7% CLs of the distribution.
In general, one would expect the CNN performance to

improve upon training it with a larger sample of synthetic
spectra and with the use of alternative network
architectures. This will be the subject of a future
publication. We highlight that training the CNN on residuals
from fitting synthetic data—rather than on spectra—could also
help improve the CNN’s performance (see Schallmoser et al.
2021).

Clearly, the CNN permits inferring tighter projected bounds
on ALPs from Athena/X-IFU under the assessment of detector
calibration when compared to the C-statistic likelihood
approach (Section 6.2). We refer to Section 9.3 for further
discussion and for an overview of other machine-learning
implementations in the context of cluster/ALP searches. We
highlight that machine-learning classifiers such as support
vector machines, decision tree, and random forest classifiers
were used by Schallmoser et al. (2021) to tighten the bounds on
ALPs previously found by Conlon et al. (2017b).

8. Injected Signal: Athena Recovery

A useful exercise that facilitates comparison with Section 7
within the C-statistic likelihood framework we have employed
(Sections 5 and 6.2) is to assess to which extent Athena would
be able to recover a true ALP signal under the effects of
detector calibration, as follows.

We first simulated an Athena/X-IFU 200 ks observation of
NGC 1275 by loading a multiplicative ALP spectrum with
ma= 10−14 eV and gaγ= 5.0× 10−13 GeV−1 (whose photon

survival curve is shown in the lower panel of Figure 3). As in
Section 3, we considered Poisson noise statistics without the
assignment of a background spectral file. This injected
spectrum was generated under a turbulent cluster field
configuration which is not part of the 216 set of models
present in our analysis pipeline (Section 4).
The effects of the turbulent magnetic field model in the

recovery of the ALP signal are shown by Figure 8. Its left panel
shows the residuals resulting from fitting the injected spectrum
with an astrophysics-only model under a given detector
calibration setup. Clearly, the injected ALP induces features
in the spectrum such that residuals up to∼2% appear in the
spectrum at high energies.
The central and right panels of Figure 8 illustrate the

residuals resulting from fitting the injected spectrum with two
multiplicative photon–ALP mixing models (ò1 and ò2, see the
upper panel of Figure 3) with ma= 10−14 eV and
gaγ= 5.0× 10−13 GeV−1. Interestingly, the geometry of field
ò2 (Figure 8) is better suited to describing the injected ALP
spectrum at energies 4–6 keV (Figure 8).
The injected spectrum was thereby fitted across our library of

216 possible detector responses, each of which was fitted
across our library of 216 field models, following our previous
analysis. The posteriors on the ALPs were inferred following
the Bayesian framework described in Appendix C. The injected
signal was found to be well recovered at both the 95% and
99.7% CLs, that is, all couplings gaγ� 5.0× 10−13 GeV−1 are
excluded at the 2σ level for ma< 10−12 eV.
We note that, given the input spectrum contains an ALP in

the “massless regime”, no knowledge on the ALP mass would
be recovered and would be limited to Îmlog eVa( )
- -30.0, 12.0[ ). Nevertheless, if there were an effectively
massless ALP with gaγ= 5.0× 10−13 GeV−1 in the spectrum,
it would indeed be detected by Athena/X-IFU, even under the
assessment of detector calibration. Figure 9 shows the posterior
on the recovery of such an injected signal under the effects of
detector calibration, where the inferred posterior on gaγ is
Gaussian distributed with a mean corresponding to the true gaγ
and a standard deviation of 0.1−0.2 dex.

Figure 8. Residuals from fitting one of the Athena/X-IFU-injected ALP spectra presented in Section 8 with a set of spectral models. For illustration purposes, all
panels show the residuals under the optimal calibration scenario. The photon–ALP model employed as the injected signal is shown in the bottom panel of Figure 1,
and features the “true” value of gaγ = 5.0 × 10−13 GeV−1. The different panels illustrate the importance of the field model when employing a cell-based approach to
describe the spectrum, as follows. Left panel: a “fiducial” (astrophysics only) model is fitted. Central and right panels: a multiplicative ALP model (featuring
gaγ = 5.0 × 10−13 GeV−1) is fitted under a specific turbulent field geometry (referred to as ò1 and ò2, respectively). The simulated data were fitted within the observed
energies 0.5–12 keV. For plotting purposes, a binning scheme of a target signal-to-noise ratio of 250 with the restriction that no more than 100 spectral bins were
coadded was applied, and we show the energy range 0.5–7.5 keV. The best-fit C-statistic of each fit, the number of DOF, and the reduced C-statistic (≡C/DOF) are
quoted (with the latter in parenthesis).
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On the other hand, the upper bound on gaγ inferred in the
previous section (see Figure 6) suggests that one could expect
to recover all true gaγ up to ~ -g

-glog GeV 12.6a
1( ) . We

thereby generated two simulated Athena/X-IFU spectra, with
200 ks of exposure, by loading multiplicative ALP models with
ma= 10−14 eV and = -g

-glog GeV 12.6a
1( ) using two con-

figurations of the cluster field not embedded in the photon–
ALP mixing grid introduced in Section 4. Their corresponding
photon survival functions are shown in the lower panel of
Figure 3. Both of these spectra were then fed into our analysis
scripts, resulting in the posterior distributions shown in
Figure 9. Although biased to higher photon–ALP coupling
values, both signals would be detected and recovered. This
suggests that, even if marginally outside of the detection
threshold, a true ALP signal may eventually be recovered if
existing in a favorable underlying cluster field geometry. We
refer to Section 9.4 for further discussion.

9. Discussion

9.1. Bounds on ALPs from Athena and AXIS: Optimal
Calibration Scenarios

Following from the work of Conlon et al. (2017a), we have
shown that Athena/X-IFU, with its unprecedented effective area
and spectral resolution, can in principle improve on the current
ALP constraints (Table 1) by an order of magnitude for

< -mlog eV 12.0a( ) , if its calibration is well understood.
In this work, we simulated a 200 ks Athena/X-IFU

observation of NGC 1275. The cluster emission component
which would be included in the Athena beam was modeled
with a Doppler-broadened single-plasma temperature comp-
onent, with reference free parameters taken from Hitomi
Collaboration et al. (2018; see Section 9.5 for further
details). We highlight that, for a 1 Ms Athena/X-IFU
observation of NGC 1275, all photon–ALP couplings

gaγ> 4.0× 10−14 GeV−1 would be excluded for ma�
10−12 eV under an optimal calibration scenario. Following
from Reynolds et al. (2020), we have employed a fiducial
model for the cluster magnetic field (summarized in
Section 9.4). In our analysis pipeline, we consider 216
realizations of the turbulent cluster field.
We have also presented projected bounds on effectively

massless ALPs from AXIS, under its current target and baseline
on-axis response files. In both cases, we generated a fake 200
ks AXIS observation of NGC 1275, finding an upper bound of
gaγ∼ 2.0× 10−13 GeV−1 at the 95% CL for both
responses. With its more modest spectral resolution compared
with that expected for Athena/X-IFU, AXIS’s superb spatial
resolution will permit a clear extraction of the intrinsic AGN
emission. This will provide AXIS with exciting prospects to
constrain ALPs, in particular, given the improvement compared
to the current most sensitive constraints from single-source
Chandra AGN observations (Table 1).
Our projected AXIS bounds on ALPs also highlight the

prospects of next-generation telescopes with intrinsically
different setups to probe the physics BSM such as Arcus,
LEM (Sisk-Reynés et al. 2023), STROBE-X (Ray et al. 2019),
and Lynx (Gaskin et al. 2019).

9.2. Bounds on ALPs from Athena: Conservative Calibration
Scenario

Knowledge of detector calibration will undoubtedly make an
impact on the potential of next-generation observatories to
constrain the physics BSM and, in particular, very-light
ALPs. In our work, we have solely focused on reassessing
Athenaʼs projected bounds under the effects of calibration,
although such a consideration will need be made for any
upcoming X-ray mission.
We first employed a library of conservative calibration files

and fitted the simulated 200 ks Athena/X-IFU observation of
NGC 1275 across this library, and 216 models for the turbulent
field for each detector response. Using the standard C-statistic
likelihood procedure (see Appendix C), marginalizing over
field models and detector responses, all couplings gaγ>
6.3× 10−13 GeV−1 for ALPs of masses ma� 10−12 eV are
excluded at the 95% and 99.7% CLs. This would imply a
weakening of Athenaʼs projected bounds on massless ALPs by
an order of magnitude, compared to the optimal calibration
scenario.We note that, for a 1 Ms Athena/X-IFU observation of
NGC 1275, all photon–ALP couplings gaγ> 4.0× 10−13 GeV−1

would be excluded at the 95% CL on the basis of the standard C-
statistic likelihood procedure.
With the aim of disentangling between the effects of cross-

calibration residuals and those of photon–ALP mixing in order
to acquire more sensitive bounds on ALPs, we proceeded by
reevaluating Athenaʼs projected bounds on ALPs through the
use of machine learning.

9.3. The Effect of Calibration Assessed via Machine Learning

Machine-learning techniques have increasingly been used in
cluster–ALP searches (e.g., Conlon & Rummel 2019; Day &
Krippendorf 2020). One of the most relevant studies pertinent
to our work is that of Schallmoser et al. (2021), who employ
machine-learning classifiers to find updated bounds on very-
light ALPs from previous Chandra observations of AGNs
centered or behind clusters, following from the work of

Figure 9. Normalized posterior distribution on gaγ for ALPs of ma = 10−14 eV
(see Equation (C1)). Each color represents the posterior inferred when fitting
each of the simulated Athena/X-IFU spectra of NGC 1275 which contain a
specific ALP signal (illustrated in the lower panel of Figure 8). In all cases, the
posteriors were inferred by marginalizing over 216 magnetic field realizations
and over 216 conservative detector responses.
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Conlon et al. (2017b). Under a 3D field model (see Section 9.4
for a further discussion) and for the multiclass classification
method, Schallmoser et al. (2021) were able to tighten the
previous upper bound on gaγ from Chandra observations of
A1795Sy1 by a factor of 4, excluding gaγ 6× 10−13 GeV−1

at the 95% CL (Table 1). In this case, the machine-learning
classifier had been trained on the residuals from fitting
simulated Chandra spectra of the source divided by the average
survival probability across a range of gaγ values while being
fitted by an astrophysics-only model. Finally, we note that
Schallmoser et al. (2021) were the first to use approximate
Bayesian computation (ApBC) methods, a specific type of
likelihood-free inference, to find updated bounds on gaγ from
their analysis (Sisson et al. 2018).

Our machine-learning study mostly differs from that of
Schallmoser et al. (2021) as follows. Schallmoser et al. (2021)
use a wide range of machine-learning classifiers to distinguish
between spectra with and without an injected ALP signal. The
classifiers had been trained on spectra with a specific coupling,
and were then tested on spectra with a range of couplings. We
instead test a CNN regression approach, training CNNs on data
with a wide range of coupling factors to estimate the coupling
as accurately as possible. Our parameter estimation approach
more closely mirrors conventional spectral fitting.

The advantage of a convolutional approach is that it enables
the network to “learn” effectively the important features of the
data for itself, for example by detecting edges in the data, and
also makes it invariant to small shifts of spectral features due to
the pooling of features from adjacent bins. We speculate that
the convolutional layers are able to distinguish between the
shapes of residual features caused by any instrumental
miscalibration and residual features due to an ALP signal
based on their shapes. That is, ARF features tend to be either
sharp edges or gradual broadband slopes, whereas ALP
features are smoother (that is, more absorption-like). For
instance, the amplitude of the ALP signal tends to increase
monotonically with energy (Figure 3).

The biggest limitation of the machine-learning approach is
likely the requirement for synthetic training data. This means
that the accuracy and performance of the CNN is dependent on
how comprehensive the simulated spectra are, as the network
cannot be relied upon outside the scope of the training set. The
ANNs used here are relatively simple compared to many used
in deep-learning applications, so they can be trained and tested
in a short timeframe (∼5 minutes running on a laptop CPU)
once the synthetic training set has been constructed.

9.4. Modeling Cluster Magnetic Fields

Our inferred upper bounds on gaγ are based upon the
assumption that the magnetic field strength is scaled by the
electron number density for an isothermal ICM. The inferred
field profile broadly reproduces a value of the magnetic-to-
pressure ratio of βplasma= 100 up to 1.8Mpc up from the cluster
center. This fiducial field model, which had already been
adopted in “Model B” of Reynolds et al. (2020), is supported
by RM observations of cool-core clusters (Taylor et al. 2006;
Govoni 2012) and by measurements of the turbulent velocities of
the ICM in the Perseus cluster (Zhuravleva et al. 2014; Hitomi
Collaboration et al. 2018c). Moreover, magnetohydrodynamic
(MHD) simulations of galaxy clusters predict the existence of
turbulent magnetic fields in the ICM (Vazza et al. 2017; Donnert
et al. 2018). However, some of these studies have predicted a

radial decrease of βpl across the cluster volume, e.g., due to an
increase in the nonthermal pressure support triggered by
mergers.We refer to Matthews et al. (2022) and Marsh et al.
(2022) for discussions of the impact of magnetic field modeling
assumptions on photon–ALP bounds inferred from cluster/AGN
searches under cell-based and GRF approaches. Specifically,
Matthews et al. (2022) found that a radially dependent βpl can
systematically shift bounds on g

-glog GeVa
1( ) from cell-based

and GRF studies by 0.3 dex (depending on the exact radial
profile of βpl). The same study also finds that the limits are fairly
insensitive to whether cell-based or GRF models are used.
The use of the Fourier formalism (Marsh et al. 2022),

accurate to leading order in the coupling, may provide a fairly
computationally inexpensive route to computing photon–ALP
conversion. This formalism is valid for sufficiently low values
of gaγ such that the ALP-induced distortions are of the
order5%–10%, which is the appropriate regime for our
simulated observations. This formalism, embedded in ALPRO
(Matthews 2022), can also be applied to the massive ALP
regime (see Section III of Marsh et al. 2022). Furthermore, as
noted by Marsh et al. (2022), if an ALP signal is present, the
residuals of the data may be able to be transformed directly to
obtain the autocorrelation function of the line-of-sight magnetic
field. Such an exercise is challenging, requiring very good
quality data, but the high spectral resolution and large effective
area of Athena offer exciting prospects if this formalism were
to be applied in future.
Ideally, a 3D description of the cluster field, constrained by

observational RM and pressure profile data, would be adopted
to unveil its true underlying structure (for recent studies, see
Schallmoser et al. 2021; Carenza et al. 2022). The turbulent
nature of the field can create departures from predictions using
a GRF, as shown by Carenza et al. (2022). They compute the
conversion probabilities using a high-resolution 3D MHD
simulation, finding that non-Gaussian, local spikes in the MHD
magnetic field produce “heavy-tailed” distributions of the
conversion probability. This work therefore suggests that, for
certain sightlines, stronger ALP signals could be observed.
Finally, we note that if an effectively massless

(ma 10−12 eV) ALP signal with sufficiently high gaγ
(compared to the Poisson noise) were to be discovered by
Athena/X-IFU, the extent to which the former signal would be
recovered would depend on the underlying field structure. This
is shown by Figures 8 and 9; the results are encouraging, in the
sense that the ALP coupling is recovered quite reliably even
when the exact magnetic field structure is not known. However,
in this effectively massless ALP regime, no information about
the true ALP mass would be retained, given that all ALPs of
masses Î - -mlog eV 30.0, 12.0a( ) [ ) induce near-identical
spectral distortions. In addition, if the true magnetic field model
intersected by the line of sight included the non-Gaussian
structure described by Carenza et al. (2022), then using a cell-
based or GRF model for the inference of gaγ would result in a
bias, leading to a higher gaγ being estimated than the true
photon–ALP coupling value.
Overall, the above considerations regarding magnetic field

modeling suggest a fairly encouraging outlook for the next
generation of X-ray ALP searches, but they do highlight the
importance of high-frequency-resolution RM studies of
clusters, combined with improved theoretical understanding
of the ICM magnetic field structure from the cluster core to the
virial radius.
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9.5. Other Systematics

9.5.1. Initially Unpolarized Photon Beam

In our work, we have solved the photon–ALP propagation
problem for an initially unpolarized photon beam propagating
through the host cluster. One would expect such an assumption
to yield conservative photon–ALP mixing probabilities com-
pared to an initially polarized photon beam.We refer the reader
to Day & Krippendorf (2018), Dessert et al. (2022), Galanti
et al. (2023), and Galanti (2022) for explorations on how one
can use source polarization and ALP-induced polarization to
probe ALPs.

9.5.2. Spectral Model for NGC 1275

Other than for its normalization, all model parameters of the
bvvapec model component applied to describe the simulated
Athena/X-IFU spectrum of NGC 1275 were frozen (see
Table 3). Our inferred posterior on ALPs remains insensitive
to this choice. Furthermore, one would expect our results to
remain insensitive to whether partial covering is accounted for
in the fits to our Athena and AXIS simulated spectra of
NGC 1275 (see Figure 6 and the discussion in Matthews et al.
2022).

Finally, we note that throughout our work, we ignored the
effects of relativistic reflection from slowly moving material
surrounding the immediate vicinity of NGC 1275. The latter
has frequently been modeled to explain the 6.4 keV reflection
signature frequently detected in high-resolution X-ray spectra
of NGC 1275 (e.g., Hitomi Collaboration et al. 2018b;
Reynolds et al. 2021). We would expect this to not affect the
photon–ALP bounds inferred in our work.

10. Conclusions

We have conducted an analysis that revisits Athenaʼs
projected bounds on very-light ALPs, following from Conlon
et al. (2017a), under the effects of detector calibration. We have
also explored the potential of AXIS for BSM searches. In both
cases, we employ 200 ks simulated observations of NGC 1275
as the subject of our study; for concreteness, we consider
detector setups broadly consistent with those proposed in
Barret et al. (2020) and Mushotzky & AXIS Team (2019),
respectively. Our main findings are:

1. Bright cluster-hosted AGNs located within magnetically
rich galaxy clusters are excellent probes of massless
ALPs, < -mlog eV 12.0a( ) . With its unprecedented
spectral energy resolution (2.5 eV for its X-IFU), Athena
will be able to exclude all photon–ALP couplings
gaγ� 2.0× 10−13 GeV−1 at 95% CL. These bounds have
been inferred under a conservative assessment of detector
calibration.

2. Athena/X-IFU will be able to improve on the current
limits on gaγ by an order of magnitude (excluding
gaγ� 6.3× 10−14 GeV−1 at 95% CL) provided accurate
knowledge of its detector-induced residuals. For a 1 Ms
exposure of NGC 1275, the upper bound on

g
-glog GeVa

1( ) would further tighten by 0.2 dex in both
the optimal and conservative calibration scenarios.

3. Machine learning will provide an automated route
to disentangling the effects of detector calibration
and photon–ALP-induced residuals in next-generation

cluster/ALP searches. This will be particularly relevant
for the AXIS CCD mission.

4. Despite having a fundamentally different design to
Athena/X-IFU, AXISʼs more moderate spectral resolu-
tion will be circumvented by its unprecedented angular
resolution, being able to offer high-quality AGN spectra
free from cluster emission. In the optimal calibration
scenario, AXIS would exceed the current best bounds on
light ALPs from a 200 ks on-axis observation of
NCG 1275 by a factor of 3. Excitingly, for a 1 Ms
observation of NGC 1275, AXIS will exclude all
couplings gaγ> 4× 10−14 GeV−1 in the optimal calibra-
tion scenario, exceeding the current best bounds on
massless ALPs by more than an order of magnitude.

5. Next-generation X-ray observatories may play a key role
in constraining axions arising in string theories which
predict low values of gaγ such as type-IIB string theories
(Halverson et al. 2019; Demirtas et al. 2021). Some of
these theories will additionally make predictions for a
favored number of ultralight axion fields. The parameter
space of these theories may additionally be probed by
complementary astrophysical observations, e.g., with
population studies of the spin–mass distribution of black
holes over cosmic time with next-generation gravitational
wave detectors such as LISA (Mehta et al. 2021).

Overall, our work shows the potential of next-generation X-ray
observatories to constraining very-light ALPs, even under
fundamentally different designs. Our analysis suggests that, in
the future, these X-ray missions may complement future
laboratory-based ALP DM searches (e.g., in birefringent
cavities such as ADBC) down to very-light masses.
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Appendix A
Theory of Photon–ALP Mixing

At a fundamental level, the interaction between ALPs and
electromagnetism is specified by Equation (1). Here, we present
the relevant equations derived from Equation (1) for a
simplified external field geometry. This is for illustration
purposes and context only. We refer to Sections 2 and 3 of
Matthews et al. (2022) for a description of the calculations used
to generate the photon–ALP mixing grid employed throughout
our analysis.

We proceed to consider a scenario where the electromagnetic
wave is traversing an ionized and magnetized medium such
that its self-induced magnetic field can be ignored relative to
the latter. We refer to Galanti & Roncadelli (2022) for an
overview of the relevant equations inferred when the self-
induced electric and magnetic fields are not negligible.

We consider an initially unpolarized beam propagating
through an external homogeneous field perpendicular to the
direction of propagation, B0 (of strength B0). Most generally,
however, the magnetic field geometry of a given external
medium will be complex, for which the photon–ALP mixing
problem (derived from Equation (1)) must be solved
numerically.

In the field geometry considered, a wave-like equation can
be derived for ga which, at energies E?ma, for
ma� 10−10 eV, simplifies to a Schrödinger-type equation that
can be solved through the eigenvalue problem. The solution to
such problem can be quantified via a nonunity “survival”
probability for the photon beam as it interconverts into ALPs of
mass ma and coupling gaγ after having traveled distance L along

the magnetized medium. Following Section 4.1 of Marsh et al.
(2017), Pγ→γ is given by:
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massless ALPs (ma= ωpl, i.e., w -meff
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2 ), we now proceed

to consider the regime where Equations (A2) and (A3) satisfy
θ? 1 and Δeff= 1, respectively. In a suitable environment
(i.e., that provided by rich cool-core clusters and for a suitable
location of ALP parameter space), the survival function will be:
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where we have adopted a similar notation to Conlon et al.
(2017a) and where g(E) ä [0, 1] is an oscillatory function with
energy of order unity. We highlight that the product (B0 L) in
Equation (A4) can attain large values in rich cool-core clusters
compared to other astrophysical systems, which underlies why
rich clusters should be efficient photon–ALP interconverters.

Appendix B
Effects of a Nonoptimal Calibration on Athena/X-IFU

Revisited

The left panel of Figure 5 shows the residuals resulting from
fitting the simulated Athena/X-IFU spectrum of NGC 1275
with an astrophysics-only spectral model (see Table 3), i.e.,
without ALPs. The input spectrum is then interpreted under an
“optimal” calibration (simulating and fitting with the same
ARF) and an example “nonoptimal” calibration (simulating and
fitting with different ARFs) scenario (left and central panels,
respectively). Clearly, the miscalibrated spectrum seems to
retain most of the curvature present in the residuals of the
optimal case with the exception of acquiring additional
curvature at energies < 2 keV. This is likely due to a
miscalibration of instrumental effects at such energies. We
highlight that an even more conservative approach to assessing
the effects of detector calibration would involve convolving the
miscalibrated responses for the mirror and microcalorimeters,
but is, however, beyond the scope of this paper (see the
discussion in Barret & Cappi 2019). The right panel of Figure 5
shows the residuals resulting from fitting a multiplicative ALP
model in our photon–ALP mixing grid (Section 4) to the
simulated Athena/X-IFU spectrum of NGC 1275 under the
optimal calibration scenario. For the specific turbulent field
realization and value of gaγ chosen, the ALP-induced features
result in well-defined peaks in the residuals whose amplitudes

7 See https://axis.astro.umd.edu/
8 See https://github.com/jhmatthews/alpro/tree/v1.1
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increase with energy. Interestingly, the C-statistic of such ALP
fit will still more accurately describe the simulated spectrum of
NGC 1275 compared to a miscalibrated non–ALP-containing
model. This is illustrated by comparing the C-statistics of the
central and right panels to that in the left panel of Figure 5.

For further comparison, we fit the miscalibrated Athena/X-
IFU spectrum (Section 3) across our grid of photon–ALP
mixing models {ALP(i, gaγ)}, following the procedure
described in Section 5. The marginalized posterior (over 216
field models) is compared to that for the optimal calibration
case in Figure 10. Importantly, we see that the former is now
dominated by large values of the photon–ALP coupling gaγ
(i.e., above the 95% exclusion level in the optimal calibration
case) suited to describe the energy-dependent features induced
by instrumental detector miscalibration. The analysis of such a
miscalibrated spectrum would translate into a weakening of the
95% CL on gaγ by a factor of 4, compared to the optimal
calibration scenario. In Section 6.2, we thereby proceed to
assess the potential effects of detector miscalibration on the
resulting posteriors on ALPs by considering a library of
conservative ARFs.

Appendix C
Marginalizing Over Response Files

In Section 5, we present the optimal bounds on ALPs from
Athena/X-IFU and AXIS by using the Bayesian framework
presented in Section 4 of Sisk-Reynés et al. (2021). We hereby
proceed to compute Athenaʼs bounds on massless ALPs by
marginalizing over a set of 216 ARFs and 216 realizations of
the turbulent field within Perseus. Our results are presented in
Section 6.2.

Equipped with the library of photon–ALP mixing curves
introduced in Section 4, we proceed as follows. We iteratively
fit the optimal Athena/X-IFU spectrum of NGC 1275
(Figure 2) with the spectral model tbabs*(po +

bvvapec)*ALP(ma, gaγ, i) across a library of conservative
detector responses, {f}. Here, ALP(ma, gaγ, i) quantifies the
energy-dependent survival function of quanta mixing with
ALPs of parameters (ma, gaγ) for a given field realization i. We
refer to the goodness-of-fit statistic (C-statistic) of each fit as
C(ma, gaγ, i, f). The free parameters of each fit are outlined in
Table 3. Each multiplicative table ALP model has a redshift
parameter attributed to it, frozen to that of the galaxy
(z = 0.01278; Hitomi Collaboration et al. 2018a).
We now introduce the Bayesian framework that permits

converting C(ma, gaγ, mathtti, f) into a normalized posterior
ppost(ma, gaγ). The latter can then be used to find CLs on ALP
parameter space.
Ultimately, we seek to find a posterior distribution on ALP

parameters ppost(ma, gaγ) normalized according to the condi-
tion:

å å =g
g

-
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m glog eV log GeV

post a a
a a

1

( ) ( )
( ) ( )

where we assume flat priors on the ALP parameters. The
summations involved comprise the parameter space

Î - - Î - -g
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where the choice of lower limits in ma and gaγ is justified in
Section 5.
Operationally, ppost(ma, gaγ) is found by marginalizing over

all magnetic field models i ä [1, 216] and detector responses
fä [0, 215], where f0 is the optimal Athena/X-IFU ARF.We
broadly follow the description in Appendix 2 of Marsh et al.
(2017), where we marginalize over the added DOF encapsu-
lated by the set of ARFs (f). For a given ARF f, the
unnormalised posterior on a given set of ALP parameters (ma,
gaγ) is given by:
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where the summation over i marginalizes over magnetic field
configurations, on which we assume flat priors (as previously
done in Sisk-Reynés et al. 2021; Matthews et al. 2022). Here,
Cfid(f) is the “fiducial” best-fit C-statistic of the simulated
X-IFU spectrum read on the fth ARF when fitted with the
tbabs*(po+bvvapec) model (see Table 3).
Clearly, for a given (fth) ARF, the posterior distribution on

ALPs will be dominated by the ALP models suited to
describing the underlying residuals in the spectrum of
NGC 1275 once its calibration-induced features have been
corrected. Similar to the case of the magnetic field realization,
the dependence on detector response can be eliminated
through:

åº =g g g
=

p m g m g p m g, , , , , C3post a a a a
0

215

post a a( ) ( ) ( ) ( ) f
f

where, again, we assume flat priors on the ARF nuisance
parameter. Operationally, we find the constant of proportion-
ality in Equation (C2) through the normalization condition of
ppost(ma, gaγ), i.e., Equation (C1). In the equation above, we
have explicitly stated the equivalence of the normalized
posterior and the marginalized likelihood gm g,a a( ) over
ARFs and field configurations.

Figure 10. Normalized posterior distribution on gaγ for ALPs of
ma = 10−14 eV (see Equation (C1)), inferred when fitting our simulated
Athena/X-IFU spectrum of NGC 1275 in an “optimal” and a representative
“conservative” detector response scenario (Section 6.1 for a discussion). The
posterior is inferred by marginalizing over 216 magnetic field realizations. The
shaded regions delimit regions of parameter space that are excluded at
95% (i. e. 2σ) confidence, respectively.

16

The Astrophysical Journal, 951:5 (17pp), 2023 July 1 Sisk-Reynés et al.



Finally, we note the ALP constraints inferred in our work are
insensitive to the choice of binning scheme chosen throughout
the data processing discussed in Sections 5 and 6.

ORCID iDs

Júlia Sisk-Reynés https://orcid.org/0000-0003-3814-6796
Christopher S. Reynolds https://orcid.org/0000-0002-
1510-4860
Michael L. Parker https://orcid.org/0000-0002-8466-7317
James H. Matthews https://orcid.org/0000-0002-3493-7737
M. C. David Marsh https://orcid.org/0000-0001-7271-4115

References

Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, https://www.
tensorflow.org/

Abbott, L. F., & Sikivie, P. 1983, PhLB, 120, 133
Aghanim, N., Akrami, Y., Ashdown, M., et al. 2020, A&A, 641, A6
Anastassopoulos, V., Aune, S., Barth, K., et al. 2017, NatPh, 13, 584
Armengaud, E., Attie, D., Basso, S., et al. 2019, JCAP, 06, 047
Arnaud, K. A. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis

Software and Systems V, ed. G. H. Jacoby & J. Barnes (San Francisco, CA:
ASP), 17

Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ,
156, 123

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A,
558, A33

Barret, D., Albouys, V., Herder, J.-W. D., et al. 2023, ExA, 55, 373
Barret, D., & Cappi, M. 2019, A&A, 628, A5
Barret, D., Decourchelle, A., Fabian, A., et al. 2020, AN, 341, 224
Barton, G., & White, E. D. 1969, PhRv, 184, 1660
Berg, M., Conlon, J. P., Day, F., et al. 2017, ApJ, 847, 101
Böhringer, H., Chon, G., & Kronberg, P. P. 2016, A&A, 596, A22
Canizares, C., Davis, J., Dewey, D., et al. 2005, PASP, 117, 1144
Carenza, P., Sharma, R., Marsh, M. C. D., Brandenburg, A., & Müller, E.

2022, arXiv:2208.04333
Carenza, P., Straniero, O., Döbrich, B., et al. 2020, PhLB, 809, 135709
Carroll, S. M. 1998, PhRvL, 81, 3067
Cash, W. 1979, ApJ, 228, 939
Chollet, F. 2015, Keras Development Team https://keras.io
Churazov, E., Forman, W., Jones, C., & Bohringer, H. 2003, ApJ, 590, 225
Cicoli, M., Goodsell, M. D., & Ringwald, A. 2012, JHEP, 2012, 146
Conlon, J. P. 2006, JHEP, 2006, 078
Conlon, J. P., Day, F., Jennings, N., Krippendorf, S., & Muia, F. 2017a,

MNRAS, 473, 4932
Conlon, J. P., Day, F., Jennings, N., Krippendorf, S., & Rummel, M. 2017b,

JCAP, 07, 005
Conlon, J. P., & Rummel, M. 2019, MNRAS, 484, 3573
Crnogorčević, M., Caputo, R., Meyer, M., Omodei, N., & Gustafsson, M.

2021, PhRvD, 104, 103001
Cucchetti, E., Eckart, M. E., Peille, P., et al. 2018, Proc. SPIE, 10699,

106994M
Day, F., & Krippendorf, S. 2018, Galax, 6, 45
Day, F., & Krippendorf, S. 2020, JCAP, 2020, 046
Demirtas, M., Gendler, N., Long, C., McAllister, L., & Moritz, J. 2021,

arXiv:2112.04503
Dessert, C., Dunsky, D., & Safdi, B. R. 2022, PhRvD, 105, 103034
Dine, M., & Fischler, W. 1983, PhLB, 120, 137
Donnert, J., Vazza, F., Brüggen, M., & ZuHone, J. 2018, SSRv, 214, 122
Drake, J. J., Ratzlaff, P., Kashyap, V., et al. 2006, Proc. SPIE, 6270, 62701I
Fabian, A. C., Sanders, J. S., Taylor, G. B., et al. 2006, MNRAS, 366, 417
Gabriel, E., Fagg, G. E., Bosilca, G., et al. 2004, in Proc. 11th European PVM/

MPI Users' Group Meeting, 3241, ed. D. Kranzlmüller, P. Kacsuk, &
J. Dongarra (Berlin: Springer), 97

Galanti, G. 2022, PhRvD, 107, 043006
Galanti, G., & Roncadelli, M. 2022, Univ, 8, 253
Galanti, G., Roncadelli, M., Tavecchio, F., & Costa, E. 2023, PhRvD, 107,

103007
Gaskin, J. A., Swartz, D., Vikhlinin, A. A., et al. 2019, JATIS, 5, 021001
Govoni, F. 2012, IAU Proc. Vol. 10, Highlights H16: Highlights of Astronomy

(Cambridge: Cambridge Univ. Press), 404

Green, M. B., Schwarz, J. H., & Witten, E. 1988, Superstring Theory
(Cambridge: Cambridge Univ. Press)

Guainazzi, M., Willingale, R., Brenneman, L. W., et al. 2022, JATIS, 8,
044002

Hitomi Collaboration, Aharonian, F., Akamatsu, H., et al. 2018a, PASJ, 70, 9
Hitomi Collaboration, Aharonian, F., Akamatsu, H., et al. 2016, Natur,

535, 117
Hitomi Collaboration, Aharonian, F., Akamatsu, H., et al. 2018b, PASJ, 70, 13
Hitomi Collaboration, Aharonian, F., Akamatsu, H., et al. 2018c, PASJ, 70, 9
Hitomi Collaboration, Akamatsu, H., Akimoto, F., et al. 2018, PASJ, 70, 12
Halverson, J., Long, C., Nelson, B., & Salinas, G. 2019, PhRvD, 100, 106010
Hong, J., Romaine, S., Kenter, A., et al. 2019, Proc. SPIE, 11118, 1111810
Hunter, J. D. 2007, CSE, 9, 90
Irastorza, I. G., & Redondo, J. 2018, PrPNP, 102, 89
Kaastra, J. S. 2017, A&A, 605, A51
Kalberla, P. M. W., Burton, W. B., Hartmann, D., et al. 2005, A&A, 440, 775
Kingma, D. P., & Ba, J. 2014, arXiv:1412.6980
Liu, H., Elwood, B. D., Evans, M., & Thaler, J. 2019, PhRvD, 100, 023548
Lodders, K., & Palme, H. 2009, M&PSA, 72, 5154
Marsh, M. C. D., Matthews, J. H., Reynolds, C., & Carenza, P. 2022, PhRvD,

105, 016013
Marsh, M. D., Russell, H. R., Fabian, A. C., et al. 2017, JCAP, 2017, 036
Matthews, J. 2022, jhmatthews/alpro: Alpro v1.1, Zenodo, doi:10.5281/

zenodo.6137185
Matthews, J. H., Reynolds, C. S., Marsh, M. C. D., Sisk-Reynés, J., &

Rodman, P. E. 2022, ApJ, 930, 90
McKinney, W. 2010, in Proc. 9th Python in Science Conf., ed.

S. van der Walt & J. Millman (Austin, TX: SciPy), 56
Mehta, V. M., Demirtas, M., Long, C., et al. 2021, JCAP, 2021, 033
Meyer, M., Davies, J., & Kuhlmann, J. 2022, ICRC (Berlin), 37, 557
Meyer, M., & Petrushevska, T. 2020, PhRvL, 124, 231101
Mushotzky, R. & AXIS Team 2019, in The Space Astrophysics Landscape for

the 2020s and Beyond, 2135, 5025
Nagai, H., Onishi, K., Kawakatu, N., et al. 2019, ApJ, 883, 193
Nair, V., & Hinton, G. E. 2010, in Proc. 27th Int. Conf. on Machine Learning

(Madison, WI: Omnipress), 807
Nandra, K., Barret, D., Barcons, X., et al. 2013, arXiv:1306.2307
National Academies of Sciences, Engineering, and Medicine 2021, Pathways

to Discovery in Astronomy and Astrophysics for the 2020s (Washington,
DC: The National Academies Press)

Pandas Development Team, Reback, J., jbrockmendel, et al. 2020, pandas-
dev/pandas v1.4.2, Zenodo, doi:10.5281/zenodo.3509134

Parker, M. L., Lieu, M., & Matzeu, G. A. 2022, MNRAS, 514, 4061
Payez, A., Evoli, C., Fischer, T., et al. 2015, JCAP, 2015, 006
Pearson, K. 1901, Lond. Edinb. Dublin Philos. Mag. J. Sci., 2, 559
Peccei, R. D., & Quinn, H. R. 1977, PhRvL, 38, 1440
Prechelt, L. 1998, Neural Networks: Tricks of the Trade (Berlin: Springer), 55
Preskill, J., Wise, M. B., & Wilczek, F. 1983, PhLB, 120, 127
Raffelt, G., & Stodolsky, L. 1988, PhRvD, 37, 1237
Raffelt, G. G. 1996, Stars as laboratories for fundamental physics: The

astrophysics of neutrinos, axions, and other weakly interacting particles
(Chicago: Univ. Chicago Press)

Ray, P. S., Arzoumanian, Z., Ballantyne, D., et al. 2019, arXiv:1903.03035
Reynolds, C. S., Marsh, M. C. D., Russell, H. R., et al. 2020, ApJ, 890, 59
Reynolds, C. S., Smith, R. N., Fabian, A. C., et al. 2021, MNRAS, 507, 5613
Schallmoser, S., Krippendorf, S., Chadha-Day, F., & Weller, J. 2021, MNRAS,

514, 329
Simionescu, A., Werner, N., Urban, O., et al. 2012, ApJ, 757, 182
Sisk-Reynés, J., Matthews, J. H., Reynolds, C. S., et al. 2021, MNRAS,

510, 1264
Sisk-Reynés, J. M., Reynolds, C. S., & Matthews, J. H. 2023, arXiv:2304.

08513
Sisson, S. A., Fan, Y., & Beaumont, M. A. 2018, arXiv:1802.09720
Spiga, D., Ferreira, D. D. M., Shortt, B., et al. 2017, Proc. SPIE, 10399,

103990H
Svrcek, P., & Witten, E. 2006, JHEP, 2006, 051
Taylor, G. B., Gugliucci, N. E., Fabian, A. C., et al. 2006, MNRAS, 368, 1500
Vacca, V., Murgia, M., Govoni, F., et al. 2012, A&A, 540, A38
Vazza, F., Brunetti, G., Brüggen, M., & Bonafede, A. 2017, MNRAS,

474, 1672
Weinberg, S. 1978, PhRvL, 40, 223
Wilczek, F. 1978, PhRvL, 40, 279
Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542, 914
Wouters, D., & Brun, P. 2013, ApJ, 772, 44
Zhuravleva, I., Churazov, E., Schekochihin, A. A., et al. 2014, Natur, 515, 85

17

The Astrophysical Journal, 951:5 (17pp), 2023 July 1 Sisk-Reynés et al.

https://orcid.org/0000-0003-3814-6796
https://orcid.org/0000-0003-3814-6796
https://orcid.org/0000-0003-3814-6796
https://orcid.org/0000-0003-3814-6796
https://orcid.org/0000-0003-3814-6796
https://orcid.org/0000-0003-3814-6796
https://orcid.org/0000-0003-3814-6796
https://orcid.org/0000-0003-3814-6796
https://orcid.org/0000-0002-1510-4860
https://orcid.org/0000-0002-1510-4860
https://orcid.org/0000-0002-1510-4860
https://orcid.org/0000-0002-1510-4860
https://orcid.org/0000-0002-1510-4860
https://orcid.org/0000-0002-1510-4860
https://orcid.org/0000-0002-1510-4860
https://orcid.org/0000-0002-1510-4860
https://orcid.org/0000-0002-1510-4860
https://orcid.org/0000-0002-8466-7317
https://orcid.org/0000-0002-8466-7317
https://orcid.org/0000-0002-8466-7317
https://orcid.org/0000-0002-8466-7317
https://orcid.org/0000-0002-8466-7317
https://orcid.org/0000-0002-8466-7317
https://orcid.org/0000-0002-8466-7317
https://orcid.org/0000-0002-8466-7317
https://orcid.org/0000-0002-3493-7737
https://orcid.org/0000-0002-3493-7737
https://orcid.org/0000-0002-3493-7737
https://orcid.org/0000-0002-3493-7737
https://orcid.org/0000-0002-3493-7737
https://orcid.org/0000-0002-3493-7737
https://orcid.org/0000-0002-3493-7737
https://orcid.org/0000-0002-3493-7737
https://orcid.org/0000-0001-7271-4115
https://orcid.org/0000-0001-7271-4115
https://orcid.org/0000-0001-7271-4115
https://orcid.org/0000-0001-7271-4115
https://orcid.org/0000-0001-7271-4115
https://orcid.org/0000-0001-7271-4115
https://orcid.org/0000-0001-7271-4115
https://orcid.org/0000-0001-7271-4115
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1016/0370-2693(83)90638-X
https://ui.adsabs.harvard.edu/abs/1983PhLB..120..133A/abstract
https://doi.org/10.1051/0004-6361/201833910
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...6P/abstract
https://doi.org/10.1038/nphys4109
https://ui.adsabs.harvard.edu/abs/2017NatPh..13..584A/abstract
https://doi.org/10.1088/1475-7516/2019/06/047
https://ui.adsabs.harvard.edu/abs/2019JCAP...06..047A/abstract
https://ui.adsabs.harvard.edu/abs/1996ASPC..101...17A/abstract
https://doi.org/10.3847/1538-3881/aabc4f
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://doi.org/10.1007/s10686-022-09880-7
https://ui.adsabs.harvard.edu/abs/2023ExA....55..373B/abstract
https://doi.org/10.1051/0004-6361/201935817
https://ui.adsabs.harvard.edu/abs/2019A&A...628A...5B/abstract
https://doi.org/10.1002/asna.202023782
https://ui.adsabs.harvard.edu/abs/2020AN....341..224B/abstract
https://doi.org/10.1103/PhysRev.184.1660
https://ui.adsabs.harvard.edu/abs/1969PhRv..184.1660B/abstract
https://doi.org/10.3847/1538-4357/aa8b16
https://ui.adsabs.harvard.edu/abs/2017ApJ...847..101B/abstract
https://doi.org/10.1051/0004-6361/201628873
https://ui.adsabs.harvard.edu/abs/2016A&A...596A..22B/abstract
https://doi.org/10.1086/432898
https://ui.adsabs.harvard.edu/abs/2005PASP..117.1144C/abstract
http://arxiv.org/abs/2208.04333
https://doi.org/10.1016/j.physletb.2020.135709
https://ui.adsabs.harvard.edu/abs/2020PhLB..80935709C/abstract
https://doi.org/10.1103/PhysRevLett.81.3067
https://ui.adsabs.harvard.edu/abs/1998PhRvL..81.3067C/abstract
https://doi.org/10.1086/156922
https://ui.adsabs.harvard.edu/abs/1979ApJ...228..939C/abstract
https://keras.io
https://doi.org/10.1086/374923
https://ui.adsabs.harvard.edu/abs/2003ApJ...590..225C/abstract
https://doi.org/10.1007/JHEP10(2012)146
https://ui.adsabs.harvard.edu/abs/2012JHEP...10..146C/abstract
https://doi.org/10.1088/1126-6708/2006/05/078
https://doi.org/10.1093/mnras/stx2652
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473.4932C/abstract
https://doi.org/10.1088/1475-7516/2017/07/005
https://ui.adsabs.harvard.edu/abs/2017JCAP...07..005C/abstract
https://doi.org/10.1093/mnras/stz211
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.3573C/abstract
https://doi.org/10.1103/PhysRevD.104.103001
https://ui.adsabs.harvard.edu/abs/2021PhRvD.104j3001C/abstract
https://doi.org/10.1117/12.2312170
https://ui.adsabs.harvard.edu/abs/2018SPIE10699E..4MC/abstract
https://ui.adsabs.harvard.edu/abs/2018SPIE10699E..4MC/abstract
https://doi.org/10.3390/galaxies6020045
https://ui.adsabs.harvard.edu/abs/2018Galax...6...45D/abstract
https://doi.org/10.1088/1475-7516/2020/03/046
https://ui.adsabs.harvard.edu/abs/2020JCAP...03..046D/abstract
http://arxiv.org/abs/2112.04503
https://doi.org/10.1103/physrevd.105.103034
https://ui.adsabs.harvard.edu/abs/2022PhRvD.105j3034D/abstract
https://doi.org/10.1016/0370-2693(83)90639-1
https://ui.adsabs.harvard.edu/abs/1983PhLB..120..137D/abstract
https://doi.org/10.1007/s11214-018-0556-8
https://ui.adsabs.harvard.edu/abs/2018SSRv..214..122D/abstract
https://doi.org/10.1117/12.672226
https://ui.adsabs.harvard.edu/abs/2006SPIE.6270E..1ID/abstract
https://doi.org/10.1111/j.1365-2966.2005.09896.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.366..417F/abstract
https://doi.org/10.1103/PhysRevD.107.043006
https://ui.adsabs.harvard.edu/abs/2023PhRvD.107d3006G/abstract
https://doi.org/10.3390/universe8050253
https://ui.adsabs.harvard.edu/abs/2022Univ....8..253G/abstract
https://doi.org/10.1103/PhysRevD.107.103007
https://ui.adsabs.harvard.edu/abs/2023PhRvD.107j3007G/abstract
https://ui.adsabs.harvard.edu/abs/2023PhRvD.107j3007G/abstract
https://doi.org/10.1117/1.JATIS.5.2.021001
https://ui.adsabs.harvard.edu/abs/2019JATIS...5b1001G/abstract
https://ui.adsabs.harvard.edu/abs/2015HiA....16..404G/abstract
https://doi.org/10.1117/1.JATIS.8.4.044002
https://ui.adsabs.harvard.edu/abs/2022JATIS...8d4002G/abstract
https://ui.adsabs.harvard.edu/abs/2022JATIS...8d4002G/abstract
https://doi.org/10.1093/pasj/psx138
https://ui.adsabs.harvard.edu/abs/2018PASJ...70....9H/abstract
https://doi.org/10.1038/nature18627
https://ui.adsabs.harvard.edu/abs/2016Natur.535..117H/abstract
https://ui.adsabs.harvard.edu/abs/2016Natur.535..117H/abstract
https://doi.org/10.1093/pasj/psx147
https://ui.adsabs.harvard.edu/abs/2018PASJ...70...13H/abstract
https://doi.org/10.1093/pasj/psx138
https://ui.adsabs.harvard.edu/abs/2018PASJ...70....9H/abstract
https://doi.org/10.1093/pasj/psx156
https://ui.adsabs.harvard.edu/abs/2018PASJ...70...12H/abstract
https://doi.org/10.1103/PhysRevD.100.106010
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100j6010H/abstract
https://doi.org/10.1117/12.2529781
https://ui.adsabs.harvard.edu/abs/2019SPIE11118E..10H/abstract
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://doi.org/10.1016/j.ppnp.2018.05.003
https://ui.adsabs.harvard.edu/abs/2018PrPNP.102...89I/abstract
https://doi.org/10.1051/0004-6361/201629319
https://ui.adsabs.harvard.edu/abs/2017A&A...605A..51K/abstract
https://doi.org/10.1051/0004-6361:20041864
https://ui.adsabs.harvard.edu/abs/2005A&A...440..775K/abstract
http://arxiv.org/abs/1412.6980
https://doi.org/10.1103/physrevd.100.023548
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100b3548L/abstract
https://ui.adsabs.harvard.edu/abs/2009M&PSA..72.5154L/abstract
https://doi.org/10.1103/PhysRevD.105.016013
https://ui.adsabs.harvard.edu/abs/2022PhRvD.105a6013M/abstract
https://ui.adsabs.harvard.edu/abs/2022PhRvD.105a6013M/abstract
https://doi.org/10.1088/1475-7516/2017/12/036
https://ui.adsabs.harvard.edu/abs/2017JCAP...12..036M/abstract
https://doi.org/10.5281/zenodo.6137185
https://doi.org/10.5281/zenodo.6137185
https://doi.org/10.3847/1538-4357/ac5625
https://ui.adsabs.harvard.edu/abs/2022ApJ...930...90M/abstract
https://doi.org/10.1088/1475-7516/2021/07/033
https://ui.adsabs.harvard.edu/abs/2021JCAP...07..033M/abstract
https://doi.org/10.22323/1.395.0557
https://ui.adsabs.harvard.edu/abs/2022icrc.confE.557M/abstract
https://doi.org/10.1103/physrevlett.124.231101
https://ui.adsabs.harvard.edu/abs/2020PhRvL.124w1101M/abstract
https://ui.adsabs.harvard.edu/abs/2019LPICo2135.5025M/abstract
https://doi.org/10.3847/1538-4357/ab3e6e
https://ui.adsabs.harvard.edu/abs/2019ApJ...883..193N/abstract
http://arxiv.org/abs/1306.2307
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1093/mnras/stac1639
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514.4061P/abstract
https://doi.org/10.1088/1475-7516/2015/02/006
https://ui.adsabs.harvard.edu/abs/2015JCAP...02..006P/abstract
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1103/PhysRevLett.38.1440
https://ui.adsabs.harvard.edu/abs/1977PhRvL..38.1440P/abstract
https://doi.org/10.1016/0370-2693(83)90637-8
https://ui.adsabs.harvard.edu/abs/1983PhLB..120..127P/abstract
https://doi.org/10.1103/PhysRevD.37.1237
https://ui.adsabs.harvard.edu/abs/1988PhRvD..37.1237R/abstract
http://arXiv.org/abs/1903.03035
https://doi.org/10.3847/1538-4357/ab6a0c
https://ui.adsabs.harvard.edu/abs/2020ApJ...890...59R/abstract
https://doi.org/10.1093/mnras/stab2507
https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.5613R/abstract
https://doi.org/10.1093/mnras/stac1224
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514..329S/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514..329S/abstract
https://doi.org/10.1088/0004-637x/757/2/182
https://ui.adsabs.harvard.edu/abs/2012ApJ...757..182S/abstract
https://doi.org/10.1093/mnras/stab3464
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510.1264S/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510.1264S/abstract
http://arxiv.org/abs/2304.08513
http://arxiv.org/abs/2304.08513
http://arxiv.org/abs/1802.09720
https://doi.org/10.1117/12.2274905
https://ui.adsabs.harvard.edu/abs/2017SPIE10399E..0HS/abstract
https://ui.adsabs.harvard.edu/abs/2017SPIE10399E..0HS/abstract
https://doi.org/10.1088/1126-6708/2006/06/051
https://ui.adsabs.harvard.edu/abs/2006JHEP...06..051S/abstract
https://doi.org/10.1111/j.1365-2966.2006.10244.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.368.1500T/abstract
https://doi.org/10.1051/0004-6361/201116622
https://ui.adsabs.harvard.edu/abs/2012A&A...540A..38V/abstract
https://doi.org/10.1093/mnras/stx2830
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.1672V/abstract
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.1672V/abstract
https://doi.org/10.1103/PhysRevLett.40.223
https://ui.adsabs.harvard.edu/abs/1978PhRvL..40..223W/abstract
https://doi.org/10.1103/PhysRevLett.40.279
https://ui.adsabs.harvard.edu/abs/1978PhRvL..40..279W/abstract
https://doi.org/10.1086/317016
https://ui.adsabs.harvard.edu/abs/2000ApJ...542..914W/abstract
https://doi.org/10.1088/0004-637X/772/1/44
https://ui.adsabs.harvard.edu/abs/2013ApJ...772...44W/abstract
https://doi.org/10.1038/nature13830
https://ui.adsabs.harvard.edu/abs/2014Natur.515...85Z/abstract

	1. Introduction
	2. The Athena and AXIS Observatories
	3. Simulating Athena and AXIS Observations of NGC 1275
	3.1. The Baseline Model
	3.2. Simulated AXIS Observations of NGC 1275
	3.3. Simulated Athena/X-IFU Observation of NGC 1275

	4. Grid of Photon–ALP Mixing Models
	5. Optimal Bounds from Next-generation X-Ray Telescopes
	6. The Effects of Calibration on Athena's Projected Bounds on ALPs
	6.1. Overview of the Effects of a Nonoptimal Calibration
	6.2. Revisiting Athena’s Projected Bounds on ALPs Under the Assessment of Detector Calibration

	7. Circumventing Detector Calibration Limits with Neural Networks
	8. Injected Signal: Athena Recovery
	9. Discussion
	9.1. Bounds on ALPs from Athena and AXIS: Optimal Calibration Scenarios
	9.2. Bounds on ALPs from Athena: Conservative Calibration Scenario
	9.3. The Effect of Calibration Assessed via Machine Learning
	9.4. Modeling Cluster Magnetic Fields
	9.5. Other Systematics
	9.5.1. Initially Unpolarized Photon Beam
	9.5.2. Spectral Model for NGC 1275


	10. Conclusions
	Data Availability
	Appendix ATheory of Photon–ALP Mixing
	Appendix BEffects of a Nonoptimal Calibration on Athena/X-IFU Revisited
	Appendix CMarginalizing Over Response Files
	References



