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ABSTRACT

A sound field estimation method based on a physics-informed con-
volutional neural network (PICNN) using spline interpolation is pro-
posed. Most of the sound field estimation methods are based on
wavefunction expansion, making the estimated function satisfy the
Helmholtz equation. However, these methods rely only on physical
properties; thus, they suffer from a significant deterioration of accu-
racy when the number of measurements is small. Recent learning-
based methods based on neural networks have advantages in esti-
mating from sparse measurements when training data are available.
However, since physical properties are not taken into considera-
tion, the estimated function can be a physically infeasible solution.
We propose the application of PICNN to the sound field estimation
problem by using a loss function that penalizes deviation from the
Helmholtz equation. Since the output of CNN is a spatially dis-
cretized pressure distribution, it is difficult to directly evaluate the
Helmholtz-equation loss function. Therefore, we incorporate bicu-
bic spline interpolation in the PICNN framework. Experimental re-
sults indicated that accurate and physically feasible estimation from
sparse measurements can be achieved with the proposed method.

Index Terms— sound field estimation, physics-informed neural
networks, Helmholtz equation, spline interpolation

1. INTRODUCTION

Sound field estimation (or reconstruction) is aimed at estimating or
interpolating an acoustic field from discrete measurements of sensors
(microphones). Such estimation has a broad range of applications,
such as spatial audio recording for virtual/augmented reality [1–3],
visualization of sound fields [4], identification of sources [5], and
spatial active noise control [6–8]; therefore, a large number of sound
field estimation methods have been studied.

A typical approach to sound field estimation is based on wave-
function expansion [9], which fairly approximates any solution of
the homogeneous Helmholtz equation. Representing an acoustic
field by a combination of plane wave functions or spherical wave-
functions allows us to interpolate the sound field in a source-free
region by estimating expansion coefficients [1, 2, 10]. The kernel
interpolation for the sound field [11, 12], which corresponds to the
infinite-dimensional wavefunction expansion, constrains the inter-
polated function to satisfying the Helmholtz equation. Thus, current
sound field estimation methods take advantage of physical properties
of the acoustic field. However, these methods basically do not adapt
to the acoustic environment in which the estimation is performed.
Therefore, the estimation accuracy deteriorates greatly when only a
small number of microphones are available.

Learning the properties of the acoustic environment will be a
promising strategy to increase the estimation accuracy when the

available number of microphones is limited but training data are
available. Recent studies have shown that sound field estimation
methods based on deep neural networks (DNNs) make interpolation
from sparse measurements possible by learning from data [13, 14].
However, these methods do not exploit physical properties and are
largely dependent on training data. Thus, the estimated sound field
can be a physically infeasible solution.

Several studies on incorporating physical properties into a DNN
framework have been conducted in recent years. For example, a
physics-informed neural network (PINN) [15, 16] learns a function
that returns a value corresponding to positional inputs using a loss
function penalizing deviations from the governing equation, mak-
ing the network have desired physical properties. A similar idea is
applied to a convolutional-neural-network (CNN) framework in the
physics-informed CNN (PICNN) [17] to utilize various spatial reso-
lution features of input images. The effectiveness of these methods
is mainly validated in a forward problem, e.g., physical simulation.

We propose a learning-based sound field estimation method ex-
ploiting physical properties. We apply the PICNN framework to
the sound field estimation, which is an inverse problem to esti-
mate a distribution satisfying the Helmholtz equation from a sparse
set of measurements. We define the Helmholtz-equation loss func-
tion that measures the deviation of the CNN output from func-
tions satisfying the Helmholtz equation. However, the CNN output
is a spatially discretized acoustic pressure distribution. Since the
Helmholtz equation involves a Laplacian operator, it is difficult to
evaluate the Helmholtz-equation loss function from the CNN out-
put. Therefore, we incorporate the bicubic spline interpolation in
the PICNN-based sound field estimation. Numerical experiments
are conducted to evaluate the proposed method, and compare it with
kernel-interpolation-based and CNN-based methods.

2. PROBLEM STATEMENT AND PRIOR WORKS

2.1. Sound field estimation problem

Suppose that a target region Ω is an open subset of R3 or 2. The
acoustic pressure at the position r ∈ Ω and angular frequency ω ∈ R
is denoted by u(r, ω) (u : Ω × R → C). We assume that the
region Ω does not contain sources and the acoustic field is stationary.
Then, we set N evaluation points inside Ω, whose index set and
positions are denoted byN and {rn}n∈N (|N | = N ), respectively.
M observations {sm}m∈M are taken from a subset of the evaluation
points M ⊆ N (|M| = M ). These observations are obtained
by using pressure microphones at the positions {rm}m∈M. Our
goal is to estimate {u(rn, ω)}n∈N ⊂ CN from {sm}m∈M ⊂ CM .
Hereafter, ω is omitted for notational simplicity.
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2.2. Prior works on sound field estimation

There exist several well-established methods for the sound field esti-
mation problem [1, 2]. The method based on kernel ridge regression
proposed in [18] enables us to interpolate a pressure field from a dis-
crete set of observations using a kernel function that guarantees that
the estimated function satisfies the Helmholtz equation. This method
corresponds to the estimation based on infinite-dimensional expan-
sion into plane wave functions or spherical wavefunctions [11, 12].
However, this kernel interpolation method does not adapt to the
acoustic environment in which the estimation is performed, with a
few exceptions [19], because the kernel function is generally defined
in analytical form. In the subsequent sections, we consider sound
field estimation methods that learn or adapt to the features of the
acoustic environment.

3. CNN-BASED SOUND FIELD ESTIMATION METHOD

First, we introduce a CNN-based sound field estimation method for
the problem defined in Sect. 2.1 that incorporates the features learned
from data into the estimation. This method is a simplification of the
method proposed in [13, 14] for comparison; therefore, we refer to
this CNN-based method as the baseline method.

To simplify the problem, the target region Ω is supposed to be a
2D rectangular region on the xy-plane with its center at the origin
in a 2D space. The evaluation points are regularly arranged on Ω,
whose index n is redefined by i and j for each side of the rectangle.
The number of evaluation points on each side is I or J , i.e., IJ = N .
The points at the corners, i.e., (i, j) = (1, 1), (1, J), (I, 1), and
(I, J), are on the corners of Ω. Now, the problem to be solved is to
estimate {u(ri,j)}(i,j)∈N from the observations {sm}m∈M.

In the baseline method, a CNN receives an input tensor S ∈
R3×I×J and returns an output tensor Û ∈ R2×I×J . The input ten-
sor S has three channels, where the first two channels correspond to
the real and imaginary parts of the observations, and the last channel
is the mask matrix with 1 for the elements of the observation points
and 0 otherwise. The output tensor Û has two channels, where these
channels correspond to the real and imaginary parts of the pressure
at the evaluation points.

The loss function LD is defined as the mean square error between
the estimated pressure {û(ri,j)}(i,j)∈N , which corresponds to the
elements of the output Û , and the ground truth {u(ri,j)}(i,j)∈N as

LD :=
1

N

∑
(i,j)∈N

|u(ri,j)− û(ri,j)|2. (1)

LD is called the data loss function. In the baseline method, LD

is used as the total loss function L, i.e., L = LD. The net-
work is trained to minimize this loss function L by using a set
of training data, i.e., the input and output tensors consisting of
{u(ri,j)}(i,j)∈N .

4. PROPOSED METHOD

The baseline method in Sect. 3 is one of the simple approaches to
learning-based sound field estimation. However, there is no guaran-
tee that the estimated pressure field is a physically feasible solution
because CNN is simply designed to generate an output that mini-
mizes the data loss function.

We propose a method that incorporates physical properties into
the CNN-based sound field estimation method. Since the estimate

û(r) is a pressure field, û(r) should satisfy the Helmholtz equation:(
∆ + k2) û(r) = 0, (2)

where ∆ is the Laplacian and k is the wavenumber. However, it
is difficult to exactly restrict the estimate û(r) to a member of the
solution space of (2) in the CNN framework. Hence, we consider
to relax the constraint by formulating the Helmholtz-equation loss
function LH that penalizes the deviation of the estimate from the
Helmholtz equation.

To define LH, it is necessary to calculate (2) for the output of
CNN. However, the CNN output Û is a spatially discretized pres-
sure at {ri,j}(i,j)∈N . That means (2) is not computable because û
is a continuous function of r ∈ Ω. Furthermore, the difference ap-
proximation of (2) is not preferable, especially when the intervals of
the evaluation points are not sufficiently small. Therefore, we con-
sider interpolating the CNN output to obtain û for r ∈ Ω from Û .
Then, LH becomes computable by using the interpolated function.

4.1. Bicubic spline interpolation

There exist numerous interpolation methods; however, in this sce-
nario, the 2D function must be interpolated from discrete values.
Moreover, the interpolated function must be twice differentiable, i.e.,
in C2, and its twice differential values should generally be non-zero.
We apply bicubic spline interpolation [20] that meets the require-
ments described above.

The real and imaginary parts of û(x, y), defined by ûRe(x, y) and
ûIm(x, y), respectively, are interpolated separately. Both ûRe(x, y)
and ûIm(x, y) are divided into (I − 1) × (J − 1) small rectangu-
lar patches {Ωi,j}(i,j)∈N̄ where the (i, j)th patch is in [xi, xi+1]×
[yj , yj+1] with (xi, yj) := ri,j , and N̄ is the index set excluding
the points on the two sides of Ω, {(i, J)}Ii=1 ∪ {(I, j)}Jj=1. In the
bicubic spline interpolation, the functions in each patch hRe

i,j(x, y)

and hIm
i,j (x, y) are approximated by 2D cubic functions. Therefore,

for p ∈ {Re, Im}, hp
i,j(x, y) is obtained as

hp
i,j(x, y) = g (x− xi)T Ap

i,jg (y − yj) , (3)

where Ap
i,j ∈ R4×4 and g(z) := [1, z, z2, z3]T. The elements of

{Ap
i,j}(i,j)∈N̄ are calculated by sequentially solving linear equa-

tions using the following.

ûp(xi, yj) for (i, j) ∈ N

ûp
x :=

∂ûp

∂x
for (i, j) ∈ Nx

ûp
y :=

∂ûp

∂y
for (i, j) ∈ Ny

ûp
x,y :=

∂2ûp

∂x∂y
for (i, j) ∈ Nx,y

Here, Nx := {(1, j)}Jj=1 ∪ {(I, j)}Jj=1, Ny := {(i, 1)}Ii=1 ∪
{(i, J)}Ii=1, and Nx,y := {(1, 1), (I, 1), (1, J), (I, J)}. Then,
ûRe(x, y) and ûIm(x, y) are approximated as a concatenation of the
patches hRe

i,j(x, y) and hIm
i,j (x, y), respectively. Thus, û(x, y) is ob-

tained as ûRe(x, y) + jûIm(x, y).

4.2. Computation of Helmholtz-equation loss function

To compute the Helmholtz-equation loss function, the par-
tial derivatives of û are added to the CNN output. Specif-
ically, the output tensor Û ∈ R(4×2)×I×J consists of



{ûp(xi, yj)}(i,j)∈N , {ûp
x(xi, yj)}(i,j)∈Nx , {ûp

y(xi, yj)}(i,j)∈Ny ,
and {ûp

xy(xi, yj)}(i,j)∈Nx,y , i.e., four channels for each real and
imaginary part. Using the output Û and the procedure shown in
Sect. 4.1, we can obtain the continuous û(x, y).

The Helmholtz-equation loss function LH is defined as

LH :=
1

SΩ

∫
Ω

∣∣(∆ + k2) û(x, y)
∣∣2 dxdy, (4)

where SΩ represents the area of Ω. This function LH is used to eval-
uate the deviation of û from the function that satisfies the Helmholtz
equation. On the basis of the bicubic spline interpolation, the inte-
gration in (4) is computed as∫

Ω

∣∣(∆ + k2) û(x, y)
∣∣2 dxdy

=
∑

(i,j)∈N̄

∫
Ωi,j

∣∣(∆ + k2) û(x, y)
∣∣2 dxdy.

'
∑

(i,j)∈N̄

[∫
Ωi,j

∣∣∣(∆ + k2) g (x− xi)T ARe
i,jg (y − yj)

∣∣∣2 dxdy

+

∫
Ωi,j

∣∣∣(∆ + k2) g (x− xi)T AIm
i,jg (y − yj)

∣∣∣2 dxdy

]
.

(5)

Here, each patch Ωi,j is assumed to be a square of the length l for
simplicity. Then, the integration in (5) is analytically derived as∫

Ωi,j

∣∣∣(∆ + k2) g (x− xi)T Ap
i,jg (y − yj)

∣∣∣2 dxdy

= sum
[
Ap

i,jC1

(
Ap

i,j

)T ⊗C2

+ Ap
i,jC2

(
Ap

i,j

)T ⊗C1

+ k4Ap
i,jC1

(
Ap

i,j

)T ⊗C1

+ 2Ap
i,jC

T
3

(
Ap

i,j

)T ⊗C3

+ 2k2Ap
i,jC3

(
Ap

i,j

)T ⊗C1

+2k2Ap
i,jC1

(
Ap

i,j

)T ⊗CT
3

]
, (6)

where sum[·] is a function that returns the sum of all elements of an
input matrix, ⊗ means the Kronecker product, and C1, C2, and C3

are matrices defined as follows:

C1 =


l l2/2 l3/3 l4/4

l2/2 l3/3 l4/4 l5/5
l3/3 l4/4 l5/5 l6/6
l4/4 l5/5 l6/6 l7/7



C2 =


0 0 0 0
0 0 0 0
0 0 4l 6l2

0 0 6l2 12l3



C3 =


0 0 0 0
0 0 0 0
2l l2 2l3/3 l4/2
3l2 2l3 3l4/2 6l5/5

 . (7)

Thus, LH can be analytically calculated from the output Û . There-
fore, a difference approximation or numerical integration is not nec-
essary to evaluate LH.

3.1 m

Target region
3.1 m

Fig. 1: Experimental setup. The sound field in the rectangular target
region Ω is estimated. The positions of the vertices of the pentagonal
room are indicated.

Finally, the loss function L in the proposed method is defined as
the weighted sum of the data loss function LD and the Helmholtz
equation loss function LH:

L = LD + λLH, (8)

where λ is a balancing parameter. When λ is set to 0, the proposed
method is equivalent to the baseline method in Sect. 3.

5. NUMERICAL EXPERIMENTS

Numerical experiments were conducted to evaluate the effective-
ness of the learning-based framework and the proposed Helmholtz-
equation loss function. The compared methods are the kernel inter-
polation method [11,18] (Kernel), the baseline method described in
Sect. 3 (Baseline), and the proposed method (Proposed).

5.1. Experimental conditions

The experiments were carried out under the assumption of a sta-
tionary sound field in a pentagonal room in a 2D space. As shown
in Fig. 1, the target rectangular region Ω was a square region of
3.1 m × 3.1 m in size, whose center was at the coordinate origin.
I = J = 32 evaluation points were regularly set inside Ω at inter-
vals of 0.1 m. The investigated frequency was 300 Hz. In Kernel,
the kernel function of 0th-order Bessel function was used with the
regularization parameter of 10−3. The details of the experimental
conditions for Baseline and Proposed are described below.

5.1.1. Dataset

A point source was placed at a randomly selected point outside Ω.
The sound field generated by the point source at a single frequency
was simulated by the finite element method using FreeFEM++ [21].
The sound absorption ratio on the wall was set at 0.25. The sound
speed was 340 m/s. We generated the sound field data for 128 × 2
point source positions. This dataset was divided into two equal parts:
training and test data. The number of observations M were 5, 10,
15, and 20. The training was performed with randomly selected
observation points from the evaluation points.



Table 1: Mean and standard deviation of NMSE in dB

M Kernel Baseline Proposed

5 −1.36± 0.69 −2.44± 1.66 −2.44± 1.65
10 −3.21± 1.11 −4.87± 2.34 −4.88± 2.33
15 −5.99± 1.66 −6.58± 2.70 −6.61± 2.68
20 −11.02± 2.64 −7.87± 2.96 −7.92± 2.92

Table 2: Mean and standard deviation of HE on a logarithmic scale

M Kernel Baseline Proposed

5 – 2.79± 0.17 2.22± 0.17
10 – 2.95± 0.17 2.35± 0.18
15 – 2.87± 0.17 2.22± 0.19
20 – 2.75± 0.16 2.06± 0.20

5.1.2. Training

The parameter λ in (8) was set to 10−5 in Proposed on the basis
of preliminary experimental results. For scale-independent learning,
the input was standardized so that the value of each element was be-
tween−1 and 1. Moreover, the phase was randomized in each epoch
for phase-independent learning. CNN was trained using Adam [22],
and the learning rate was set at 0.01. For each dataset, training was
repeated for 5000 epochs.

5.1.3. Evaluation measure

For evaluation measures, normalized mean square error (NMSE)
and Helmholtz-equation error (HE) are respectively defined as

NMSE =

∑
(i,j)∈N |û(ri,j)− u(ri,j)|2∑

(i,j)∈N |u(ri,j)|2
(9)

HE =
1

SΩ

∫
Ω

∣∣(∆ + k2) û(x, y)
∣∣2 dxdy, (10)

In Baseline, HE was evaluated for the function interpolated by bicu-
bic spline interpolation from the CNN output, where ûp

x at Nx, ûp
y

at Ny , and ûp
x,y at Nx,y were assumed to be 0. Training was con-

ducted 5 times for each number of observations M in Baseline and
Proposed.

5.2. Results and discussion

The mean and standard deviation of NMSE in dB are shown in Ta-
ble 1. The learning-based methods, Proposed and Baseline, indi-
cated improvements in NMSE for M = 5, 10, and 15, compared
with Kernel. The difference in NMSE between Proposed and Base-
line was small. Therefore, the learning-based approach is effective
when the number of sensors is small.

Fig. 2 shows an example of ground truth and estimated pressure
distribution when M = 10. Although the NMSE of Baseline is rel-
atively small, the pressure distribution includes unnatural variations,
compared with that of Proposed. These variations originate from
the deviation of the estimate from the Helmholtz equation.

Table 2 shows the mean and standard deviation of HE on a log-
arithmic scale. Note that HE of Kernel is not indicated because
the estimate of Kernel exactly satisfies the Helmholtz equation. As
indicated by HE in Table 2, the estimate of Proposed was less devi-
ated from solutions of the Helmholtz equation, compared to that of
Baseline.

-1.6 0 1.6

1.6

0

-1.6

(a) Ground truth
-1.6 0 1.6

1.6

0

-1.6
1

0

1

(b) Kernel

-1.6 0 1.6

1.6

0

-1.6

(c) Baseline
-1.6 0 1.6

1.6

0

-1.6
1

0

1

(d) Proposed

Fig. 2: Estimated pressure distribution when M = 10. Ticks shows
the scale of the target region in m. Crosses indicate the observation
points. NMSEs of Kernel, Baseline, and Proposed were −4.95,
−7.86, and −7.89 dB, respectively. HEs on a logarithmic scale of
Baseline and Proposed were 3.04 and 2.37, respectively.

6. CONCLUSION

We proposed a learning-based sound field estimation method based
on PICNN using bicubic spline interpolation. Although current
learning-based methods enable us to estimate an acoustic field from
sparse measurements, its solution can be physically infeasible be-
cause physical properties are not taken into consideration. We con-
sidered applying PICNN to the sound field estimation problem.
However, direct application of PICNN can lead to errors because
the CNN output is spatially discretized values of pressure distri-
bution. We incorporate bicubic spline interpolation in the PICNN
framework to evaluate the Helmholtz-equation loss function without
discretization. In numerical experiments, the learning-based meth-
ods improved the estimation accuracy when the number of measure-
ments is small. The estimation accuracy of the proposed method was
comparable to that of the CNN-based method, but the deviation from
the Helmholtz equation remained small, which means that a physi-
cally feasible solution can be obtained by the proposed method.
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