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Physics-informed deep learning for solving phonon Boltzmann
transport equation with large temperature non-equilibrium
Ruiyang Li1, Jian-Xun Wang 1, Eungkyu Lee 2✉ and Tengfei Luo 1,3,4✉

Phonon Boltzmann transport equation (BTE) is a key tool for modeling multiscale phonon transport, which is critical to the thermal
management of miniaturized integrated circuits, but assumptions about the system temperatures (i.e., small temperature gradients)
are usually made to ensure that it is computationally tractable. To include the effects of large temperature non-equilibrium, we
demonstrate a data-free deep learning scheme, physics-informed neural network (PINN), for solving stationary, mode-resolved
phonon BTE with arbitrary temperature gradients. This scheme uses the temperature-dependent phonon relaxation times and
learns the solutions in parameterized spaces with both length scale and temperature gradient treated as input variables. Numerical
experiments suggest that the proposed PINN can accurately predict phonon transport (from 1D to 3D) under arbitrary temperature
gradients. Moreover, the proposed scheme shows great promise in simulating device-level phonon heat conduction efficiently and
can be potentially used for thermal design.
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INTRODUCTION
Multiscale phonon transport from the ballistic limit to the diffusive
extreme is ubiquitous in technologically important materials and
applications, such as thermoelectrics1,2 and miniaturized electro-
nic systems like central processing units and flat-panel display3,4. A
better understanding of thermal transport mechanisms in a large
span of length scales is critical to engineering such materials and
devices to achieve better properties1 and performances5. Phonon
Boltzmann transport equation (BTE)6,7 is a method capable of
modeling phonon transport from ballistic to diffusive regimes, and
a large number of research efforts have been made to devise
numerical solvers for it8. However, due to the limited computa-
tional efficacy of existing methods, phonon BTE faces difficulties
when applied to complicated problems involving mode-resolved
phonon properties, high spatial dimensions, and large tempera-
ture non-equilibrium. It is thus desirable to develop an accurate
and efficient mode-resolved BTE solver for predicting heat
conduction particularly under various temperature ranges and
length scales, where phonons can follow very different transport
mechanisms9,10.
Due to the challenges related to computational cost, apart from

the commonly adopted assumptions like single-mode relaxation
time approximation and isotropic phonon dispersion6, the
temperature difference is usually assumed to be sufficiently small
(relative to a reference temperature) to simplify the computa-
tions11–14. With small temperature differences, the phonon
equilibrium deviational distribution can be linearly approximated
by temperature15,16, and the relaxation time is often treated as
temperature independent and thus spatially invariant. Although
success has been achieved in investigating nanoscale size effects
for phonon transport under these assumptions17–19, the results
and conclusions cannot be simply generalized to the cases with
large temperature differences, since the phonon relaxation time or
mean free path does depend on the temperature9,10. Even in the
fully diffusive limit, it is well known that as the local temperature

changes drastically, the thermal conductivity can vary across the
system domain. Moreover, under large temperature gradients,
phonon transport can be in different regimes (diffusive or ballistic)
for a given phonon frequency and polarization at different spatial
locations20. In many applications, hotspots with temperatures
much higher than the average system temperature can emerge,
such as those in laser material processing21 and power electro-
nics22,23, especially at cryogenic temperatures24. As a result, it is
necessary to develop the capability to model the effects of large
temperature differences in phonon BTE.
Despite the necessity of developing a robust solver for phonon

BTE under arbitrary temperature differences, it is a challenging
task as the BTE can be multiscale in both the frequency and spatial
domains. The temperature-dependent relaxation time further
adds to the difficulty of solving phonon BTE given the high
dimensionality of this partial differential equation (PDE). Numerical
methods have been proposed for this problem, such as the Monte
Carlo (MC) method25–27 and deterministic discretization-based
methods28–30. However, traditional MC methods suffer from
statistical errors and become inefficient at small Knudsen numbers
(Kn) due to its restrictions on time step and grid size26,31. While
variance reduction techniques have been employed to enable fast
MC simulations, they are only suitable for problems with small
deviations from the equilibrium, and thus the computational
speedup can only be achieved under near-equilibrium conditions
(i.e., small temperature differences)11,32. As a widely used
deterministic solver, discrete ordinate method (DOM) discretizes
the angular space into small solid angles to capture the non-
equilibrium phonon distribution. However, DOM and its variants
usually converge slowly in the diffusive regime and require large
memory33. Recently, a finite-volume discrete unified gas kinetic
scheme (DUGKS)34 has been developed for arbitrary temperature
difference, but the explicit scheme is known to be restricted by
the Courant-Friedrichs-Lewy condition and not efficient for real
three-dimensional steady-state problems. In general, few of these
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methods are both accurate and efficient in predicting phonon
heat conduction under arbitrary temperature gradients.
Machine learning-based techniques started to play a role in

studying and predicting physical properties in the past
decade35–40. Deep learning has shown great potential in solving
high-dimensional PDEs to describe the unknown or unrepre-
sented physics41–45. Recently, we have developed a deep neural
network (DNN) framework for solving stationary mode-resolved
phonon BTE46. The model can be trained by minimizing the BTE
residuals to obey physical laws governed by the BTE without the
need of any labeled data. Such a physics-informed neural
network (PINN) can return accurate results in the domain of
interest very efficiently. Different from other numerical methods,
PINNs are trained to approximate a high-dimensional solution
function of the phonon BTE by leveraging its capability as a
universal function approximator47. The evaluation of such
trained models can be very fast as the feedforward algorithm
only involves a few matrix multiplications. Moreover, parametric
learning has also been enabled by treating system parameters
(e.g., system size) as additional inputs besides mode-resolved
phonon properties, providing a significant advantage of
investigating effects of parameters like characteristic length
scale, which is a key to determining the ballistic and diffusive
nature of the phonon transport process. However, as the first
demonstration of PINN for phonon BTE, small temperature
difference was still assumed46. To make this efficient tool more
generally applicable, it is necessary to extend the PINN model so
that it can handle problems with large temperature gradients.
In this work, we develop a data-free PINN scheme for solving

stationary mode-resolved phonon BTE with arbitrary temperature
difference. This scheme uses the temperature-dependent relaxation
times and learns the solutions by minimizing the residuals of the
governing equations and boundary conditions. Numerical experi-
ments are conducted to validate the model with up to three spatial
dimensions. We show that both the length scale and boundary
temperature difference can be used as input variables to learn BTE
solutions in parameterized spaces, so that a single training can
enable the model to be used for evaluating thermal transport at any
length scale or temperature difference. We also confirm the effects of
large temperature variations, which are difficult to capture in
conventional numerical methods. The proposed method performs
well in accuracy and efficiency, providing a powerful tool for
simulating device-level phonon heat conduction.

RESULTS
Phonon Boltzmann transport equation
Under the single-mode relaxation time approximation, the mode-
resolved phonon BTE at the steady state can be written as6,

v � ∇f ¼ f eqðTÞ � f
τðTÞ ; (1)

where f ¼ f ðx; s; k; pÞ (or f ðx; s;ω; pÞ) is the phonon distribution
function dependent on the spatial vector x, directional unit vector
s ¼ ðcosθ; sinθcosφ; sinθsinφÞ (θ is the polar angle and φ is the
azimuthal angle), wave number k (or angular frequency
ω ¼ ωðk; pÞ) and polarization p, and v is the phonon group
velocity. f eq represents the phonon equilibrium distribution
following the Bose-Einstein distribution,

f eqðω; p; TÞ ¼ 1=ðe _ω
kBT � 1Þ; (2)

where _ is the reduced Planck’s constant, and kB is the Boltzmann
constant. It is noted that in Eq. (1) the relaxation time τ ¼
τðω; p; TÞ also depends on the local temperature T, meaning that τ
changes spatially across the system for a given phonon frequency
and polarization.

In the case of a system without any internal heat source, we
have a physical constraint that the divergence of the heat flux q
must be zero, which can be obtained by integrating the energy-
based form of Eq. (1) over the solid angle space (Ω) and the
frequency space (ω, p)

∇ � q ¼
X
p

Z ωmax;p

0

Z
4π
_ωD

f eqðTÞ � f
τðTÞ dΩdω ¼ 0; (3)

where the heat flux is

q ¼
X
p

Z ωmax;p

0

Z
4π
v_ωDfdΩdω; (4)

with D ¼ Dðω; pÞ and ωmax;p being the phonon density of states
and maximum frequency, respectively.

PINNs for stationary phonon BTE with arbitrary temperature
difference
For a multiscale thermal transport problem at the steady state, the
physical constraints can be expressed as

Rðf ðx; s; k; p;μÞ; TÞ :¼
v � ∇f � f eqðTÞ�f

τðTÞ ¼ 0P
p

R ωmax;p

0

R
4π_ωD

f eqðTÞ�f
τðTÞ dΩ dω ¼ 0;

x; s; k; p 2 Γ; μ 2 Rd:

8><
>:

(5)

Here, the phonon distribution f is a function of variables in
domain Γ and additional parameters μ. The solution of f can be
uniquely determined under certain boundary conditions,

Biðx; s; k; p; f ; μÞ ¼ 0; x; s; k; p 2 Γb; μ 2 Rd; (6)

where Bi are the boundary condition operators, and Γb denotes
the boundary region. In the “Methods” section, we show three
typical boundary conditions encountered in phonon BTE, includ-
ing the isothermal boundary, the diffusely reflecting boundary,
and the periodic boundary.
For fast predictions of steady-state multiscale thermal

transport with arbitrary temperature difference, a PINN model
is developed as depicted in Fig. 1. The input layer is composed
of x, s, k, p, and parameters of interest μ. Parameter μ in this
work is set to be either length scale L or boundary temperature
difference ΔT. We use two fully connected DNNs to approximate
the equilibrium part f eqðTÞ and the non-equilibrium part f neq ¼
f � f eqðTÞ of the phonon distribution. Each sub-network maps
the inputs to a target output, through several layers of neurons
comprising affine linear transformations and scalar nonlinear
activation functions. Specifically, the output from one DNN is
the equilibrium temperature T, which determines f eqðTÞ and
τðTÞ accordingly. The other output is f neq, and we combine it
with f eqðTÞ to obtain the total phonon distribution function f.
While the loss function can be explicitly defined with the
residuals of Eqs. (5) and (6), it is difficult to directly minimize the
second integral in Eq. (5) as proper nondimensionalization must
be performed to evaluate it relative to some appropriate unit.
Inspired by the way of linearly approximating f eq under small
temperature difference, an additional shallow neural network
(NN) with only one hidden layer is pretrained to generate a
scaling factor βðTÞ such that we have

f eqðTÞ � f eqðT refÞ þ βðTÞðT � T refÞ; (7)

where Tref is the reference temperature. Same as f eqðTÞ, the
scaling factor βðTÞ is also implicitly dependent on (ω, p). It is
noted that this factor is reduced to ∂f eq

∂T under the assumption of
small temperature differences. Although Eq. (7) is still a
nonlinear approximation of f eq by T, substituting it into Eq.
(3) allows us to close the system of equations. If we denote T in
the linear part of Eq. (7) as T*and plug Eq. (7) into Eq. (3), we
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have

T� ¼ T ref þ 1
4π

X
p

Z ωmax;p

0

Z
4π
_ωD

f � f eqðT refÞ
τðTÞ dΩ dω

 !
´
X
p

Z ωmax;p

0

_ωDβðTÞ
τðTÞ dω

 !�1

:

(8)

Apparently, T and T* should be identical. Then Eq. (5) becomes

Rðf ðx; s; k; p; μÞ; TÞ :¼ v � ∇f � f eqðTÞ�f
τðTÞ ¼ 0

T� � T ¼ 0;
x; s; k; p 2 Γ; μ 2 Rd;

(

(9)

where T* is calculated based on Eq. (8). The difference between
these two temperatures can be easily nondimensionalized by
the temperature difference across the simulation domain.
Different from conventional solvers that determine the local
equilibrium temperature by dichotomy or Newton’s method,
the introduction of β enables efficient computation of T*

without any iterative process. It is also noted that pretraining
must be conducted to learn β with a shallow NN, which is
sufficient to capture the nonlinear relationship between β and
(ω, p, T). Therefore, instead of directly using Eq. (2), in the
present scheme we compute f eqðTÞ based on Eq. (7) with the
outputs β and T from the two networks (see Fig. 1).
As shown in Fig. 1, given Tref and the temperature range

T 2 ½T ref � ΔT ; T ref þ ΔT �, a shallow NN is first trained to provide
the scaling factor β ¼ βðω; p; TÞ. Then two DNNs are trained by
minimizing the sum of residuals in Eqs. (6) and (9) as follows:

LðW;bÞ ¼ v � ∇f � f eq � f
τ

����
����
2

þ kT� � Tk2 þ
X
i

kBik2; (10)

where W and b refer to the weights and biases of the entire
network, and k � k is L2 norm. An optimal set of network
parameters can be obtained by minimizing this composite loss

function,

W�; b� ¼ argminW;bLðW;bÞ: (11)

The specific DNN architectures and training details are included
in the “Methods” section.

Model systems
Numerical tests are carried out to evaluate the performance of this
PINN scheme. We investigate several steady-state thermal
transport problems with arbitrary temperature differences at
different length scales, including 1D cross-plane, 2D in-plane, 2D
rectangle and 3D cuboid. Single crystalline silicon is used as a
model material, but the proposed model is applicable to other
materials. We assume that the phonon dispersion relation of
silicon is isotropic and the (100) direction information9 is used in
all tests. The derivations of phonon frequencies and relaxation
times are based on refs. 10,48 (see the “Methods” section). Only one
longitudinal acoustic (LA, set as p ¼ 1) and two degenerate
transverse acoustic (TA, set as p ¼ 0) phonon branches are
considered because the optical branches contribute little to the
thermal transport31. It should be noted that including optical
branches is possible and only involves expanding the sample
space of the discrete input variable p. Since we assume that the
silicon system is not heavily doped, electron–phonon interaction is
not considered important in this work, but its effect can be easily
included by adding its influence in the phonon relaxation times49.
For each phonon branch, we discretize the wave vector space
k 2 ½0; 2π=a� equally into Nk frequency bands by the midpoint
rule, where a ¼ 5:431 Å is the lattice constant for silicon. We set
Nk ¼ 10 in all cases as it gives a bulk thermal conductivity around
145.6 Wm−1 K−1 at 300 K, which is in agreement with the
literature value50. To obtain the average Knudsen number Kn ¼
λ=L at different temperatures, the average mean free path λ is

Fig. 1 A schematic of the PINN framework for solving stationary phonon BTE with arbitrary temperature differences. Two DNNs are
employed to approximate the temperature (T) and non-equilibrium (f neq) parts of the phonon distribution function, respectively. Inputs
include spatial vector x, directional unit vector s ¼ ðcosθ; sinθcosφ; sinθsinφÞ (θ is the polar angle and φ is the azimuthal angle), wave number
k and polarization p. μ represents additional parameters, which is either characteristic length L or boundary temperature difference ΔT in this
study. σ represents the activation function, which is set to be the Swish activation function. The pretrained shallow NN provides a scaling
factor β for approximating the equilibrium phonon distribution f eq. The loss function contains residuals of the PDEs and boundary conditions
on sampled collocation points in the simulation domain. The parameters in the two DNNs are learned by minimizing the total loss.
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introduced as

λðTÞ ¼
X
p

Z ωmax;p

0
_ωD

∂f eq

∂T
jvjτdω

 ! X
p

Z ωmax;p

0
_ωD

∂f eq

∂T
dω

 !�1

:

(12)

The average mean free path as a function of temperature is
shown in Fig. 2a.
The training and testing details about numerical experiments

are summarized in Table 1. Nx is the number of interior points in
the spatial domain (quasi-random Sobol sequences in training and
uniform grids in testing), and Ns is the number of solid angles by
the Gauss-Legendre quadrature. Nμ represents the number of
parameter values (length scale L or boundary temperature
difference ΔT) sampled in a range given in Table 1. Then the
total number of collocation points is Nx × Ns × Nk × Np × Nμ, where
Np ¼ 2 is the number of phonon branches. The computation times
and losses of training and testing processes are shown in Table 2,
where the training loss is defined in Eq. (10) after nondimensio-
nalization, and the validation loss is the total loss evaluated in
testing with the settings shown in Table 1.

1D cross-plane phonon transport
We first evaluate the quasi-1D cross-plane thermal transport in
silicon films (Fig. 2b). The phenomena are described by an 1D
phonon BTE with two isothermal boundary conditions (see the
“Methods” section). The thickness of the film is L, and a

temperature difference ΔT is induced in the x direction. The
temperature of the left boundary is set as TL ¼ T ref þ ΔT=2, while
that of the right boundary is set as TR ¼ T ref � ΔT=2. For the
training of our PINN model, the spatial domain is equally
discretized with 40 training points, and 16-point Gauss-Legendre
quadrature is used for the phonon transport direction sx ¼ cosθ
(Table 1). Here we have conducted several tests at different

Fig. 2 Results of 1D cross-plane phonon transport with small temperature differences. a Temperature-dependent average phonon mean
free path. b A schematic of the quasi-1D cross-plane phonon transport and the boundary temperatures. c Dimensionless temperature profiles
of silicon thin films with different thicknesses (L= 10 nm, 100 nm, 1 μm, 100 μm), where T� ¼ ðT � TRÞ=ðTL � TRÞ and X ¼ x=L. The black solid
lines represent analytical solutions to the quasi-1D phonon BTE. d Effective thermal conductivity normalized by the bulk thermal conductivity
as a function of the thickness L. The filled circles represent the parameter points used in training, while the open circles are predicted points
not included in training.

Table 1. Training and testing information of the numerical
experiments.

Case μ Range of μ Training Testing

Nx Ns Nμ Nx Ns Nμ

1D cross-
planea

L [10−8, 10−4] (m) 40 16 9 80 64 17

1D cross-
planeb

ΔT [200, 400] (K) 40 16 5 80 64 5

2D in-plane L [10−8, 10−4] (m) 400 100 5 1600 576 9

2D rectangle L [10−7, 10−4] (m) 450 100 4 2601 576 4

3D cuboid L [3 × 10−7, 3 ×
10−6] (m)

1600 100 3 132,651 576 4

Two types of parametric training are used for 1D cross-plane problems
with length scale L and boundary temperature difference ΔT, as denoted
with superscript a and b.

R. Li et al.

4

npj Computational Materials (2022)    29 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



reference temperatures Tref, and the effects of L and ΔT are
separately studied by parametric learning.
To validate the proposed scheme, we perform numerical tests

under the small temperature difference limit but without explicitly
linearizing the equilibrium deviational distribution with respect to
temperature. This is the limit where analytical solutions exist for
such quasi-1D problems. Here, Tref is set to be 300 K and ΔT is set
to 2 K. In this case, the pretrained scaling factor β is almost
equivalent to ∂f eq

∂T since ΔT is sufficiently small. Parametric training
is employed with thickness L as an input to the DNNs. The model
is trained with 9 samples of L in the range between 10 nm and
100 μm. After training, the temperature and heat flux can be
evaluated at any new L given the interpolation ability of DNNs.
Figure 2c shows the dimensionless temperature profiles T� ¼
ðT � TRÞ=ðTL � TRÞ at different L. The analytical solutions by the
method of degenerate kernels12 are included for comparison.
Temperature profiles predicted by the PINN model are found to
agree almost exactly with analytical solutions, with the discre-
pancy < 1%. We also calculate the dimensionless thermal
conductivities (keff=kbulk), where keff ¼ qL=ΔT is the effective
thermal conductivity defined by Fourier’s law, and kbulk ¼
1
3

P
p

R ωmax;p

0 Cjvj2τdω is the bulk thermal conductivity in the
diffusive limit. As shown in Fig. 2d, we again observe good
agreement for all testing points with the analytical solution (error
< 0.7%). Although only trained with discrete thickness values, our
model provides accurate predictions of thermal conductivity at
unseen input thicknesses.
We then apply this framework to problems with larger

temperature differences. In the ballistic limit, the phonon
transport is governed by Stefan-Boltzmann law51, where the
phonon scattering is rare and the temperature across the whole

system approximately follows T4 ¼ ðTL4 � TR4Þ=2. We consider a
silicon film with TL ¼ 50 K, TR ¼ 40 K and L ¼ 10 nm such that the
average Knudsen number Kn ¼ λ=L � 10. The shallow NN for β
has been trained for the relevant temperature range. We note that
training this shallow NN is very fast, taking < 20 s. Figure 3a shows
the predicted temperature profile, which is very consistent with
the analytical solution by Stefan-Boltzmann law. The small
difference stems from the fact that there are still a small number
of phonons with mean free path smaller than the thickness L ¼ 10
nm, so they are close to diffusive.
As the system size increases, the phonon transport becomes

more diffusive. Here, we continue to study the thermal transport
in the diffusive regime at T ref ¼ 300 K, but with a much larger ΔT.
For fast predictions under different ΔT, this time we incorporate ΔT
as an input variable and learn the solutions in a parametric setting.
Similar to the previous case, a shallow NN is trained to provide β in
the temperature range between 200 and 400 K. Then, the PINN
model is trained with 5 sampled ΔT values (20, 60, 100, 150, and
200 K) at a fixed thickness L ¼ 100 μm, where all phonons are
expected to be diffusive. Figure 3b shows the predicted
temperature profiles with different ΔT. Compared to the analytical
solutions based on Fourier’s law, which is valid in the diffusive
limit, our model accurately reproduces the analytical solutions
(mean absolute error < 0.4 K) and captures the nonlinear effect
due to the temperature-dependent thermal conductivity. Speci-
fically, different from the linear profile in the diffusive regime
under small ΔT (Fig. 2c), the temperature profile is predicted to be
convex with larger ΔT. Since at higher temperatures lattice thermal
conductivity decreases due to the stronger intrinsic phonon
scattering, the local temperature gradient increases with increas-
ing temperature given the same heat flux. Thus, the convex
temperature profile correctly indicates that the thermal conduc-
tivity decreases with the increasing temperature between 200 and
400 K.
The same training procedure is adopted for cases at T ref ¼ 100

K, where the average mean free path changes more drastically
(Fig. 2a). Considering the larger λ at lower temperatures, we set
L ¼ 5 mm to ensure that the phonon transport is close to the
diffusive limit. As shown in Fig. 4a, good agreement with Fourier
solution in predicted temperature is confirmed for ΔT ranging
from 10 to 50 K. We also successfully reproduce the nonlinear
temperature curves, which is infeasible under the assumption of
small ΔT. To further investigate the effects of ΔT, we consider the
cases near the ballistic regime with L ¼ 100 nm. Tref is fixed at
100 K, while ΔT varies through a ratio R ¼ ΔT=T ref and is added as
an input in parametric training. The dimensionless temperature
profiles T* with different R values are plotted in Fig. 4b. Since the
phonon transport in this case is dominated by the phonon

Table 2. Computation times and losses of numerical experiments.

Case Training Testing

Loss Wall time (h) Loss Wall time (s)

1D cross-planea 2.0 × 10−4 0.53 1.3 × 10−3 0.11

1D cross-planeb 1.0 × 10−4 0.38 6.5 × 10−4 0.05

2D in-plane 4.5 × 10−4 3.70 6.4 × 10−4 7.70

2D rectangle 8.5 × 10−3 3.46 9.7 × 10−3 5.79

3D cuboid 8.0 × 10−3 11.13 1.0 × 10−2 301.26

Wall times are recorded for evaluations of both temperature profiles and
heat flux on a NVIDIA Tesla P100 GPU. Two types of parametric training are
used for 1D cross-plane problems with length scale L and boundary
temperature difference ΔT, as denoted with superscript a and b.

Fig. 3 Results of 1D cross-plane phonon transport in the ballistic and diffusive limits with arbitrary temperature differences. a
Temperature profile of a silicon film at L ¼ 10 nm, with boundary condition TL ¼ 50 K, TR ¼ 40 K, and X ¼ x=L. The black solid line is the
analytical solution by Stefan-Boltzmann law in the ballistic limit. b Temperature profiles with various boundary temperature differences at
L ¼ 100 μm, and the black lines are derived based on Fourier’s law in the diffusive limit.
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boundary scattering, we observe temperature slips near the
boundaries. As ΔT increases, the temperatures at the two
boundaries increase, which can be attributed to the higher Kn
at a lower temperature. The phonon boundary scattering has a
larger impact at the cold boundary, leading to a larger
temperature deviation from the predefined boundary tempera-
ture, and vice versa for the hot boundary.
All these testing cases confirm that the present scheme can not

only describe the phonon transport correctly under small
temperature ranges, but also provide accurate predictions when
the temperature difference is large. As for the computational cost,
the training time is estimated to be consistently less than one
hour on a GPU in the form of parametric training, while all testing
processes take less than one second (Table 2). It is important to
note that since parameters like L and ΔT can be added to the
parametric space (μ) when training the model, a single training
will allow the use of the model for different conditions (see Figs.
2c, d, 3b and 4)—a main advantage of PINN over traditional
numerical solvers, which need new simulations from scratch when
any of the parameters are changed.

2D in-plane phonon transport
For 2D in-plane thermal transport, we focus on the square silicon
film (inset in Fig. 5) with a small temperature gradient (ΔT ¼ 2 K)
along the x-direction, where analytical solutions can be derived
from the Fuchs-Sondheimer theory for comparison18. Although
approaching the small temperature gradient limit, we do not

explicitly linearize the BTE but use the shallow NN for the scaling
factor β. Diffusely reflecting boundary condition (see the
“Methods” section) is applied to the top and bottom walls, and
the other boundaries are periodic boundaries. The settings of the
computational domain can be found in Table 1 and the “Methods”
section. Here, Tref is fixed at 300 K, and the length scale L is used as
an input parameter. Two PINN models are trained to predict the
phonon transport at L within the range [10 nm, 1 μm] and [1 μm,
100 μm], respectively, to minimize the training loss for each range
as phonon transport transitions from highly ballistic to diffusive.
Figure 5a shows the dimensionless x-directional heat flux q�x ¼

qxðYÞ=qbulk at different L, where qbulk ¼ �kbulk � ΔT=L. The differ-
ences between the PINN predictions and the analytical solutions are
< 2.9%. We also observe a good agreement (error < 1.9%) in effective
thermal conductivity keff ¼ �ðdT=dxÞ�1R 1

0qxðYÞdY as shown in Fig.
5b, and again the present method reproduces the varying effective
thermal conductivity due to the change of length scale. Like our
previous model devised for small temperature differences46, the
present scheme shows high accuracy in 2D in-plane thermal
transport. The evaluation is also very fast and takes < 8 s on a
domain with much more collocation points than the training domain
(Tables 1 and 2).

2D rectangle phonon transport
Next, we apply our method to the phonon transport in a 2D
rectangle domain (Fig. 6a) with large temperature differences. The
length and width of the geometry are L and 0.5L, respectively.

Fig. 4 Results of 1D cross-plane phonon transport at Tref = 100 K. a Temperature profiles with different boundary temperature differences
at L ¼ 5 mm, and the black lines are derived based on Fourier’s law. b Dimensionless temperature profiles with different boundary
temperature differences at L ¼ 100 nm, where T� ¼ ðT � TRÞ=ΔT , R ¼ ΔT=T ref , T ref ¼ 100 K, and X ¼ x=L.

Fig. 5 Results of 2D in-plane phonon transport (ΔT ¼ 2 K). a Dimensionless x-directional heat flux results along the y-axis (see inset in panel
(b)) in silicon films with different length scales, where q�x ¼ qxðYÞ=qbulk and Y ¼ y=L. From bottom to top, the PINN predictions are shown as
circles for L= 100 nm, 300 nm, 1 μm, 10 μm. The black solid lines represent analytical solutions by the Fuchs-Sondheimer theory. b Effective
thermal conductivity normalized by the bulk thermal conductivity at different length scales. The filled circles represent the parameter points
used in training, while the open circles are predicted points not included in training. The inset shows the schematic of the simulation domain
and boundary conditions.
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To mimic the condition of Joule self-heating, we apply a Gaussian
temperature distribution Th to the top boundary, while other
boundaries are held at a lower temperature T c ¼ 300 K. The
Gaussian temperature distribution is set with the full width at half
maximum (FWHM) to be 0.4L, and the difference between the
peak temperature at the center of the top wall Tmax and Tc is 100 K.
Parametric training is conducted on 4 geometries with L

ranging from 100 nm to 100 μm. It is observed that PINN
successfully reproduces the Gaussian temperature distribution at
the top boundary (Fig. 6b). Figure 6c–e shows the predicted 2D
temperature contours at different L. Although there is no available
analytical solution for direct comparison, we derive a Fourier
solution (i.e., solution in the diffusive limit) using a simple PINN
model for a 2D steady-state heat equation (Fig. 6f). This result can
be treated as the benchmark solution in the diffusive limit as the
final training loss is as low as 4 × 10−4.
We can find that the result of the 100 μm case (Fig. 6e), which is

close to the diffusive limit, is nearly identical to the Fourier
benchmark (Fig. 6f), with the mean absolute error < 0.3 K. Obvious
temperature slips near the top boundary are also observed in
cases with smaller L, and as L increases the slip decreases. This test
confirms the capability of the present scheme in solving 2D
phonon transport under large temperature gradients. Another
feature about this scheme is that although the training time
increases due to more training points used and the higher input
dimension (Table 2), the evaluation cost can be less than one
second if we only need to predict the temperature profile, which is
the output of a sub-network in our model (see Fig. 1).

3D cuboid phonon transport
To validate the present model for problems in a more realistic
setting, we consider the phonon transport in a 3D cuboid
geometry as an extension of the last 2D case. The test geometry
is a silicon block of size L × L × 0.5L, with a circular hot spot
following a Gaussian temperature distribution (FWHM= 0.4L) on
the top surface, as depicted in Fig. 7a. To demonstrate that the
present model is applicable to 3D problems where the phonon
mean free path features a wide span of orders of magnitudes (e.g.,
below 200 K), we select a different temperature range than that in
the 2D case in this test. The peak temperature Tmax is set to 200 K
at the center of the top surface, and the other surfaces are
maintained at T c ¼ 100 K. A PINN model is first trained at L=
1mm without additional input parameters. Similar to the previous
test, we compare the results to the Fourier solution for the 3D heat
equation from a PINN model (training loss < 7 × 10−4).

Figure 7b shows the temperature contours in two central planes
predicted by our PINN model without parametric learning, which
are evaluated on a computational domain with much more points
than the training domain. Comparing our prediction with the
Fourier benchmark in the plane at y= 0.5L (Fig. 7c, d), we find that
the difference is small as the 1mm case is close to the diffusive
limit, while the mean absolute temperature difference is < 0.2 K
across the whole system. We have also performed a parametric
training with variable L sampled in the range between 300 nm and
3 μm (Table 1) and achieved the ability to predict the temperature
profile for various sample lengths within a few minutes. Figure 7e,
f shows the predicted temperature profiles at two length scales,
while L= 500 nm is a predicted point not included in the training.
Based on the good performance in 1D and 2D problems, we
expect high computational accuracies for 3D geometries of
different sizes as well, but there are no benchmark results to
compare with for the 3D non-diffusive cases. It is noted that such
fast and accurate prediction in 3D geometries has not been
achieved by any other methods under large temperature
gradients.

DISCUSSION
In summary, a deep learning-based PINN model is developed for
solving mode-resolved phonon BTE with arbitrary temperature
differences. Numerical tests show that the present scheme can
accurately predict steady-state phonon transport from 1D to 3D
under arbitrary temperature differences, which is computationally
challenging, if not impossible, for conventional numerical
methods. Under large temperature gradients, the phonon
transport is found to be very different from that under small
temperature differences due to the temperature-dependent
phonon relaxation times. When the temperature difference is
large, the phonon relaxation time can vary significantly over space
for a given frequency and polarization depending on the local
temperature, and the present scheme successfully handles such
situations through the introduction of a scaling factor described
by a pretrained shallow NN. Parametric learning is also enabled by
including the length scale or boundary temperature difference as
additional inputs to the model, allowing for efficient investigation
of effects due to varying temperature differences and Knudsen
numbers. As for the computational cost, we note that conven-
tional solvers usually require long computation time (tens of
hours) and large memory (hundreds of gigabytes) for 3D solutions
under large temperature difference even using large-scale parallel
computing29,52. However, the present model can provide solutions

Fig. 6 Results of 2D rectangle phonon transport. a The computational domain is of size L × 0.5L. Gaussian temperature distribution Th is
applied to the top boundary (with T ¼ 400 K ), while all the other boundaries are maintained at a lower temperature (T c ¼ 300 K). b PINN-
predicted temperature distributions at the top wall at different length scales. c–e Predicted temperature contours at length scale L= 100 nm,
1 μm, 100 μm. f Solution of the 2D heat equation based on the Fourier’s law, which is obtained by a well-trained PINN. X and Y are normalized
spatial coordinates.
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at any point in the computational domain within at most several
minutes, and it is very computationally efficient even considering
the training time due to the implementation of parametric
learning.
The parametric learning feature, together with the low

evaluation cost, may allow for efficient search in parameterized
spaces for design purposes. To apply this scheme to the
simulations of realistic device-level thermal transport, we need
the phonon dispersion relations for the materials constituting the
target system. When the component materials are heavily doped,
the effects of electron–phonon interaction should be included by
adjusting the phonon relaxation time accordingly. Besides, an
efficient sampling strategy must be adopted for improved
learning performance when the system structure is more complex.
Since the current scheme approximates the solution function by
minimizing the BTE residuals on the sampled collocation points, it
is theoretically applicable to inhomogeneous systems such as
heterojunctions and porous materials given the intrinsic phonon
properties and interfacial phonon scattering. This PINN scheme is
also easy to implement and does not need any labeled data for
training. It can be a powerful tool in studying multiscale thermal
transport for applications like thermoelectrics and electronics
thermal management.
While being accurate and efficient in predicting multiscale

thermal transport, the current scheme still has limitations, which

warrants further research. In particular, our framework is designed
for steady-state problems, and modifications are required in order
to capture the transient thermal transport. For example, Long-
Short Term Memory (LSTM) recurrent neural network architec-
ture53 could potentially be used to deal with dynamic systems.
Furthermore, for realistic electronic device-level simulations, it is
desirable to solve the phonon BTE and electron BTE simulta-
neously. Since most existing methods for electro-thermal simula-
tions have employed simplifications in physics equations54 or
separate solvers for electrons and phonons55,56, a unified PINN
model would be ideal for reliable investigation of self-heating
effects by solving the coupled BTEs.

METHODS
PINN architecture and training
The proposed PINN model consists of two DNNs for training and one
pretrained ANN, where two DNNs have the local temperature (T) and the
non-equilibrium (f neq) part of the phonon distribution function as output,
respectively (Fig. 1). With 30 neurons per layer, the DNN for f neq has a
structure of 8 hidden layers, while the DNN for T has a varying number of
hidden layers depending on the problem dimension. The pretrained ANN
for scaling factor β has only one hidden layer with 30 neurons. Two DNNs
are trained simultaneously with a unified physics-informed loss function.
We employ the Swish activation function (x·Sigmoid(x))57 in each layer
except the last one, where a linear activation function is applied. The Adam

Fig. 7 Results of 3D cuboid phonon transport. a Schematic of the 3D thermal transport in a cuboid geometry of size L × L × 0.5L. Gaussian
temperature distribution is applied to the top surface (T ¼ 200 K), while all the other surfaces are maintained at a lower temperature (T c ¼ 100
K). b Predicted steady-state temperature contour for a 3D system of size 1mm× 1mm× 0.5 mm. c Predicted temperature contour in the
central plane (y= 0.5L) at L= 1mm. d Solution of 3D heat equation based on Fourier’s law under the same boundary conditions, which is
obtained by a well-trained PINN. e–f Predicted temperature contours at two length scales through parametric training, and L= 500 nm is not
included in the training. X and Z are normalized spatial coordinates.
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optimizer58, a robust variant of the stochastic gradient descent algorithm,
is used to solve the optimization problem defined in Eq. (10) by training on
mini-batches of inputs. The initial learning rate is set as 5 × 10−3, and
training points are generated by sampling of the input domain. To
approximate the integrals in Eq. (8), Gauss-Legendre quadrature59 is
adopted for the solid angle space, while the midpoint rule is used for the
frequency space. In the case the spatial domain is logically rectangular, we
can set the interior training points as quasi-random low-discrepancy Sobol
sequences60 to alleviate the curse of dimensionality. Input spatial
coordinates are scaled to the range [0, 1]. The PINN algorithm is
implemented within the PyTorch platform61, and all numerical experi-
ments are performed on a single NVIDIA Tesla P100 Graphic Processing
Unit (GPU).

Boundary conditions
Three categories of boundary conditions are usually met in phonon
transport problems, including isothermal boundary conditions, diffusely
reflecting boundary conditions, and periodic boundary conditions.
These boundary conditions can be applied to problems with any
parameter sets μ.
Isothermal boundary absorbs all incident phonons and emits phonons in

thermal equilibrium with the boundary temperature Tb. Mathematically,
this can be expressed as

f ðxb; s; k; pÞ ¼ f eqðk; p; TbÞ; s � nb > 0; (13)

where nb is the normal unit vector pointing into the simulation domain.
Diffusely reflecting boundary is a type of adiabatic boundary. At this

boundary, the net heat flux is zero, meaning that the phonons are reflected
with equal probability along all possible directions, namely,

f ðxb; s; k; pÞ ¼ 1
π

Z
s0 �nb<0

f ðxb; s0; k; pÞjs0 � nbjdΩ; s � nb > 0: (14)

For the periodic boundary, a phonon that crosses it is emitted at the
opposite boundary with the same velocity vector and frequency. Besides,
two corresponding boundaries follow the local thermal equilibrium,

f ðxb1 ; s; k; pÞ � f eqðk; p; Tb1 Þ ¼ f ðxb2 ; s; k; pÞ � f eqðk; p; Tb2 Þ; (15)

where xb1 , Tb1 and xb2 , Tb2 are the spatial coordinates and temperatures of
two associated periodic boundaries b1 and b2, respectively.

Phonon dispersion and scattering
The dispersion relations of the acoustic phonons are approximated as
ω ¼ c1k þ c2k

248, where for LA branch c1 = 9.01 × 105 cm/s, c2 = −2.0 ×
10−3 cm2/s; for TA branch c1 = 5.23 × 105 cm/s, c2 = −2.26 × 10−3 cm2/s.
The Matthiessen’s rule is used to estimate the effective relaxation time
by combining different scattering processes62, including the impurity
scattering, umklapp (U) and normal (N) phonon-phonon scattering,
τ�1 ¼ τ�1

impurity þ τ�1
U þ τ�1

N ¼ τ�1
impurity þ τ�1

NU, where the relaxation time
formulas and coefficients10 are given in Table 3. We note that the
dispersion and relaxation times can also be from first-principles
calculations for each discrete mode63. The PINN implementation will
not change.
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