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Abstract

Physics-Informed Neural Networks (PINNs) have received increased interest for forward, inverse,
and surrogate modeling of problems described by partial differential equations (PDE). However,
their application to multiphysics problem, governed by several coupled PDEs, present unique
challenges that have hindered the robustness and widespread applicability of this approach. Here
we investigate the application of PINNs to the forward solution of problems involving thermo-
hydro-mechanical (THM) processes in porous media, which exhibit disparate spatial and temporal
scales in thermal conductivity, hydraulic permeability, and elasticity. In addition, PINNs are faced
with the challenges of the multi-objective and non-convex nature of the optimization problem. To
address these fundamental issues, we: (1) rewrite the THM governing equations in dimensionless
form that is best suited for deep-learning algorithms; (2) propose a sequential training strategy that
circumvents the need for a simultaneous solution of the multiphysics problem and facilitates the
task of optimizers in the solution search; and (3) leverage adaptive weight strategies to overcome
the stiffness in the gradient flow of the multi-objective optimization problem. Finally, we apply
this framework to the solution of several synthetic problems in 1D and 2D.
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1. Introduction

Coupled thermo-hydro-mechanical (THM) processes in porous media arise in a wide range
of subsurface applications, including reservoir engineering, geothermal engineering, and deep nu-
clear waste disposal systems, to name a few. In reservoir engineering, such interactions control the
state of subsurface fluids and gases, the performance of production wells, and surface deformation5

[60, 19]. In geothermal systems, the underground heat is transported to the surface through fluid
flow, and optimization of such systems requires a comprehensive THM analysis [45, 46, 48]. Deep
geologic formations have also been proposed as potential sites for nuclear waste disposal, where
their long-term performance and safety require thorough THM considerations [55, 4].
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The mathematical formulation of THM processes results in a system of coupled nonlinear10

partial differential equations (PDEs) that govern the interaction between different components
[54]. Classically, such problems are solved by applying a spatial discretization scheme such as
the finite element or the finite volume methods, a time-integration scheme such as the implicit
or explicit Euler methods, and a linearization scheme such as the Newton’s method [40]. The
resulting coupled system of algebraic equation is often ill-conditioned, a challenge that has sparked15

the development of iterative sequential solvers, whose stability and convergence depend on the
details of the operator splitting and the coupling strength of the multiphysics problem [40, 17, 56,
34].

A recent trend in computational science explores the application of machine learning meth-
ods for the solution of PDEs. Among the different approaches (e.g., [62, 50]), Physics-Informed20

Neural Networks (PINNs), introduced by Raissi et al. [49], provide a unified framework for the
solution and inversion of boundary value problems. A PINN solver uses fully connected neural
networks to approximate the solution variables, and is trained using the strong form of the govern-
ing equations, which are evaluated readily using Automatic Differentiation [5]. This convenience
has made the framework very popular and has been explored extensively for a wide range of prob-25

lems, including fluid mechanics (e.g., [30, 61, 10, 51, 41, 53, 13]), solid mechanics (e.g., [24, 52]),
and heat transfer [9, 42] (for a detailed review see [32]).

As forward solvers, PINNs exhibit limitations for problems developing sharp gradients, or
problems involving coupled PDEs. Therefore, the original version of PINNs has been extended
using domain decomposition approaches [27] or nonlocal formulations [23] to improve their ac-30

curacy. Another remedy has involved the use of adaptive weights on the optimization problem
[28] or new network architectures with feature imbedding [58]. For coupled problems, sequential
training has shown improved performance in the robustness and accuracy of PINNs [39, 22].

The application of PINNs to poromechanics remains very limited. Bekele [7] evaluated the
performance of a PINN solver on the Terzaghi consolidation problem. Fuks and Tchelepi [16]35

simulated two-phase fluid flow with various flux functions that result in shocks and refractions.
In a set of follow-up studies, they also explored inversion of flow parameters without and with
noisy data [14, 15, 2]. Kadeethum et al. [31] considered single-phase fluid flow in deformable
porous media through the lens of Biot’s equations. Bekele [6] applied PINNs for inversion of flow
and deformation data assuming incompressibility of both fluid and solid skeleton. Most recently,40

we presented a sequential training strategy for the solution of multiphase poromechanics using
PINN solvers [22]. None of these studies explore thermo-hydro-mechanical coupling, and this is
therefore our focus here.

In this study, our main objective is solving the coupled equations of heat transfer, fluid flow,
and solid deformation in porous media using PINNs. Here, we extend our previous work on PINN45

solvers for multiphase flow in deformable porous media [22] to also account for thermal coupling.
Therefore, the sequential fixed-stress-split strategy, which has been proposed in the context of tra-
ditional PDE solvers [35], is also employed here to resolve the challenges associated with training
PINNs. We use the dimensionless form of the governing equations, which include the energy
equation, multiphase fluid flow relations, and the linear Navier relation for the elastic deformation50

of the solid phase. We apply the proposed framework to the solution of several benchmark prob-
lems and show that, in the PINN framework, the sequential training leads to improved robustness
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and accuracy compared with the simultaneous-solution formulation [22].

2. Non-Isothermal Two-Phase Flow in Porous Media

In this section, we provide the mathematical description of non-isothermal two-phase flow in55

poroelastic media and its dimensionless forms, best suited for machine learning algorithms.

2.1. Balance Laws
The governing equations describing the Thermo-Hydro-Mechanical response of a porous medium

under non-isothermal conditions include linear and angular momentum balance, mass conserva-
tion, and energy balance laws. Under the assumption of quasi-static evolution, the linear momen-
tum balance equation is written as

∇·σ + ρbgd = 0, (1)

in which σ denotes the total Cauchy stress tensor, ρb is the bulk density, and g represents the
gravity acceleration in the direction d. To satisfy the angular momentum balance relation, the
Cauchy stress tensor must be symmetric, i.e., σT = σ.60

Assuming that the fluids are immiscible, the mass conservation law for each phase α takes the
form [29]

dmα

dt
+ ∇·wα = ραfα, (2)

where mα is the mass of fluid phase α per unit bulk volume, wα is the fluid mass flux of phase α,
and fα is a volumetric source term for phase α.

Lastly, considering mθ as energy per unit bulk volume and hθ as the heat flux, the energy
balance equation is expressed as

dmθ

dt
+ ∇·hθ = Gθ, (3)

in which Gθ represents the volumetric heat source.

2.2. Small Deformation Kinematics
Considering the matrix displacement field u and under the assumption of small deformations,

the matrix strain tensor ε can be written as

ε = (∇u+ ∇uT )/2, (4)

which can be decomposed into a volumetric part εv and a deviatoric part e, expressed as

εv = tr(ε), (5)

e = ε− εv
3

1. (6)

3



2.3. Poroelastic Constitutive Relations65

When multiple fluid phases occupy the pore space, there are two approaches to define the pres-
sure: the saturation-averaged pore pressure and the equivalent pore pressure [11]. The accuracy,
convergence, and stability of each definition has been studied in [37]. Here, we use the equivalent
pore pressure concept, defined as [11]

pE =
∑
α

Sαpα − U, (7)

in which Sα and pα are saturation and fluid pressure of phase α, respectively. The interfacial energy
U is expressed, in incremental form, as δU =

∑
α pαδSα. For two-phase flow in porous media,

the wetting phase and nonwetting phases are denoted by w and n, respectively, and therefore the
capillary pressure pc is defined as the pressure difference of nonwetting and wetting fluids, as

pc = pn − pw. (8)

The poroelastic constitutive relation for a two-phase system, considering thermal stresses, is ex-
pressed as

δσ = Kdrεv1 + 3ν∗Kdre− bδpE1− βsKdrδT1, (9)

or equivalently,

σ − σ0 = Kdrεv1 + 3ν∗Kdre− b
∑
α

Sα(pα − pα0)1− βsKdr(T − T0)1, (10)

where bδpE =
∑

α bαδpα, in which b is the Biot’s coefficient, Kdr is the drained bulk modulus,
and βs denotes the thermal expansion coefficient of the solid phase. Parameter ν∗ is defined as
ν∗ = (1 − 2ν)/(1 + ν) with ν as Poisson’s ratio, and therefore, we have the shear modulus as
G = 3/2 ν∗Kdr. The volumetric part of the stress tensor (9) is expressed as

δσv = Kdrεv − bδpE − βsKdrδT . (11)

2.4. Two-Phase Flow Constitutive Relations
The mass flux in eq. (2) is expressed as wα = ραvα, in which vα is the Darcy velocity given

as

vα = − k

µα
krα(∇pα − ραgd), (12)

where k denotes the intrinsic permeability of the porous medium, krα and µα are the relative per-
meability and viscosity of fluid phase α, and pα represents the pressure of fluid phase α.

The mass content of fluid phase α is expressed as

mα = ραSαφ(1 + εv). (13)
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Considering that the fluid content of a representative elementary volume evolves as a function of
the change in volumetric strain, pore pressure and temperature, the variation of fluid content for a
multiphase system is given as [11, 29](

δm

ρ

)
α

= bαεv +
∑
k

Njkδpk − βs,jδT , (14)

in which

Nnn = −φ∂Sw
∂pc

+ φSncn + S2
nN, (15)

Nnw = Nwn = φ
∂Sw
∂pc

+ SnSwN, (16)

Nww = −φ∂Sw
∂pc

+ φSwcw + S2
wN, (17)

N = (b− φ)(1− b)/Ks, (18)
βs,j = Sα((b− φ)βs + φβα), (19)

where cα and βα are compressibility and thermal expansion coefficients of fluid phase α as, re-
spectively.70

2.5. Heat Transfer Constitutive Relations
The energy content mθ and the heat-flux hθ in (3) are expressed as

mθ = (ρC)avgT, (20)
hθ = (ρnCnvn + ρwCwvw)T − λavg∇T, (21)

where (ρC)avg is the average heat capacity,

(ρC)avg = (1− φ)ρsCsT +
∑
α

φSαραCα (22)

with Cs the heat capacity of the solid phase, Cα the heat capacity of fluid phase α, and λavg is the
average thermal conductivity of the porous medium,

λavg = (1− φ)λs +
∑
α

φSαλα. (23)

2.6. THM Governing Relations
The linear momentum equation can be obtained by replacing (10) into (1) as

Kdr∇εv +
1

2
ν∗Kdr∇(∇·u) +

3

2
ν∗Kdr∇·(∇u)

− b
∑
α

∇(Sαpα)− βsKdr∇T + ρbgd = 0,
(24)
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where ρb is the bulk density,

ρb = (1− φ)ρs + φ(Swρw + Snρn). (25)

Substituting the constitutive relations (14) and (11) into (2), yields the mass conservation equation
for fluid phases in terms of volumetric stress as∑

k

(Njk +
bαbk
Kdr

)
∂pk
∂t

+
bSα
Kdr

∂σv
∂t
− (βs,j − βsbSα)

∂T

∂t

− k

µα
∇·[krα(∇pα − ραgd)]− fα = 0,

(26)

Finally, the governing equation for heat transfer is derived by replacing eqs. (20) and (21) into (3),
as

(ρC)avg
∂T

∂t
+ (ρnCnvn + ρwCwvw)·∇T −∇·(λavg∇T )−Gθ = 0. (27)

2.7. Dimensionless Governing Relations
Considering dimensionless variables for wetting and nonwetting fluid flow under non-isothermal

condition as

t̄ =
t

t∗
, x̄ =

x

x∗
, ū =

u

u∗
, ε̄ =

ε

ε∗
, p̄α =

pα
p∗
, σ̄ =

σ

p∗
, T̄ =

T

T ∗
, (28)

The non-dimensional form of the linear momentum equation and stress-strain relation given in
(24) and (10) are given by:

∇̄ε̄v +
1

2
ν∗∇̄(∇̄·ū) +

3

2
ν∗∇̄·(∇̄ū)− b

∑
α

∇̄(Sαp̄α)−NT∇̄T̄ +
ρb
ρ
Ndd = 0, (29)

σ̄ − σ̄0 = ε̄v1 + 3ν∗ē− b
∑
α

Sα(p̄α − p̄j0)1−NT (T̄ − T̄0)1, (30)

δσ̄v = δε̄v − b
∑
α

Sαδp̄α −NT δT̄ , (31)

where we choose ρ = (1− φ)ρs + 0.5φ(ρw + ρn). The dimensionless form of mass conservation
for fluid phases (26) based on the volumetric stress can be expressed as:∑

k

(Njk +
bαbk
Kdr

)M̄∗A∗
∂p̄k
∂t̄

+D∗α
∂σ̄v
∂t̄
−Q∗α

∂T̄

∂t̄
− µ

µα
∇̄·[krα(∇̄p̄α −

ρα
ρ
Ndd)]− f ∗α = 0, (32)

in which µ is taken as µ = µw + µn. This relation can also be expressed using volumetric strain,
however, it is not useful for us as we follow the sequential stress-split training. The dimensionless
form of Darcy’s law is expressed as:

v̄α = − µ

µα
krα

(
∇̄p̄α −

ρα
ρ
Ndd

)
. (33)
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The energy eq. (27) can be rewritten in the non-dimensional format as:

C∗
∂T̄

∂t̄
+ J∗[

ρnCn

ρC
v̄n +

ρwCw

ρC
v̄w]·∇̄T̄ − F ∗∇̄·(λavg

λ
∇̄T̄ )−G∗θ = 0, (34)

where the dimensionless parameters are

u∗ =
p∗

Kdr

x∗, ε∗ =
u∗

x∗
, NT = βsKdr

T ∗

p∗
, Nd =

x∗ρ

p∗
g,

1

M̄
= 0.5φcw + 0.5φcn +

b− φ
Ks

,
1

M̄∗ =
1

M̄
+

b2

Kdr

, A∗ =
µx∗2

kt∗M̄∗ ,

D∗α = SαD
∗, D∗ =

bµx∗2

Kdrkt∗
, Q∗α = (βs,j − bSαβs)

T ∗µx∗2

t∗kp∗
, f ∗α = fα

µx∗2

kp∗
,

C∗ =
(ρC)avg

ρC
, J∗ =

kp∗t∗

µx∗2
, F ∗ =

t∗λ

ρCx∗2
, G∗θ = Gθ

t∗

T ∗ρC
,

ρC = (1− φ)ρsCs + 0.5φρwCw + 0.5φρnCn, λ = (1− φ)λs + 0.5φλw + 0.5φλn.

(35)

This completes the description of the governing equations for THM coupled processes in a porous
medium.75

3. PINN-Thermo-Hydro-Mechanical Framework

Here, we first summarize the PINN framework for solving boundary value problems and then
apply it to the THM problem governed by the equations in the previous section.

3.1. Physics-Informed Neural Networks
In the PINN framework, the unknown solution variables, e.g. temperature or displacement

fields, are approximated using fully connected neural networks, with inputs as spatiotemporal
variables (features) and final outputs as those field variables of interest [49]. For instance, the
unknown temperature field T (x, t) is approximated using a L-layer feed-forward neural network
as

T̂ (x, t) = ΣL ◦ ΣL−1 ◦ · · · ◦ Σ1(x, t), (36)

where T̂ represents an approximation of T . Σl represents a neural network layer, a nonlinear
transformation of inputs, which is expressed mathematically as

ŷl = Σl(x̂l−1) := σl(Wl · x̂l−1 + bl) (37)

where x̂l−1 ∈ RIl and ŷl ∈ ROl are inputs to, and outputs from, layer l with dimensions Il and Ol,
respectively. x̂0 constitutes the main inputs to the network, i.e., (x, t) ∈ RD+1 in this case with
D as the spatial dimension, and ŷl is the final output from the network, i.e., T ∈ R. σl : R→R
represents the activation function; it introduces nonlinearity into the network. Some common
activation functions are Rectified Linear Unit (ReLU), Sigmoid, and Hyperbolic-Tangent (tanh)
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[20]. Wl ∈ ROl×Il and bl ∈ ROi are network parameters for layer l, also known as weights and
biases, and are conveniently collected in θl ∈ RNl with Nl = Ol×Il + Oi as the total number of
parameters of layer l. For convenience, we express the fully-connected neural network, eq. (37),
as

T̂ (x, t) = NT (x, t;θ), (38)

where θ ∈ RN is the set of all N parameters of the network. Since this construct forms a contin-80

uous approximation for the temperature field as a function of x, t, i.e., T̂ (x, t), we can leverage
numerical or analytical differentiation to evaluate a PDE residual. While numerical differentiation
is prone to error, particularly for deep networks, analytical differentiation is readily available using
Automatic-Differentiation [5], a built-in feature of modern DL frameworks such as TensorFlow
[1].85

While data-driven training focuses on finding optimal values for network parameters such
that network outputs match given data, Physics-Informed learning finds a set of parameters that
not only match given data, but also satisfies the underlying physics (in the form of PDEs, initial
and boundary conditions). Therefore, it is inherently a more challenging learning task, which
results in a multi-objective optimization problem. Once trained, such a network tends to be more
predictive than a purely data-driven one. For illustration, let us consider an initial and boundary
value problem, given as

P(T )(x, t)− f(x, t) = 0, where x ∈ Ω, t ∈ Φ,

T (x̃, t) = g(x̃, t), where x̃ ∈ ∂Ω, t ∈ Φ,

T (x, t0) = h(x, t0), where x ∈ Ω, t = t0,

(39)

in which P represents a partial differential operator, T is the unknown temperature field, f(x, t)
is a source term, and Ω ∈ RD and Φ ∈ R denote spatial and temporal domains, respectively.
The boundary conditions are specified by g(x̃, t) with x̃ as the boundary collocation points, and
h(x, t0) represents the initial condition.

In the PINN framework, the unknown variable T is approximated using a neural network
(eq. (38)). The loss function is then constructed based on the linear combination of the above-
mentioned constraints. In other words, it penalizes the network for deviation from the exact so-
lution of PDEs with respect to boundary/initial conditions. Given T̂ (x, t) as the approximate
solution, the loss function is expressed as

L(x, t;θ) = λ1

∥∥∥PT̂ (x, t)− f(x, t)
∥∥∥

Ω×Φ

+ λ2

∥∥∥T̂ (x̃, t)− g(x̃, t)
∥∥∥
∂Ω×Φ

+ λ3

∥∥∥T̂ (x, t0)− h(x, t0)
∥∥∥

Ω×Φ0

(40)

with λi as the weight (penalty) of each term in the loss function. The notation ‖◦‖ represent the90

mean-squared error norm (MSE) commonly used for PINN solvers. The loss function represents
the error in the approximation by the neural network. If the problem involves both Dirichlet and
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Neumann boundary conditions, the second term of the loss function consists of two separate terms
with distinct weights for each one.

As the last step, the solution to the desired boundary value problem (39) is identified by min-
imizing the total loss function (40) on a set of M collocation points, X ∈ RM×D,T ∈ RM×1.
Consequently, the final optimization problem is expressed as:

θ∗ = arg min
θ∈RN

L(X,T;θ), (41)

where θ∗ represent the optimal network parameters. The collocation points X,T are randomly95

selected inside the domain and on the boundary. Different optimization methods can be used
[43], with the Adam optimizer being the most common [38]. Both full-batch and mini-batch
optimization strategies are applicable. In the latter, one must ensure that each mini-batch contains
uniform samples for the full spatio-temporal domain. In addition, the loss penalty terms λi can be
selected based on adaptive strategies [59, 22].100

3.2. PINN-THM Framework
For the poroelasticity formulation above with two-phase immiscible flow under non-isothermal

condition, the unknown solution variables in 2D are ux, uy, pw, pn, and T . As it is common in
the FEM context, instead of pn we choose the capillary pressure pc = pn − pw as the unknown
solution variable. Given that p and T are coupled with the volumetric strain εv (eq. (31)), and also
considering that the derivatives of multi-layer neural network takes very complicated forms, we
also take the volumetric strain as an unknown so that we can better enforce the coupling between
fluid pressure, temperature, and volumetric strains. This introduces an additional PDE for the
volumetric strain, expressed as

ε̄v − ∇̄ · ū = 0. (42)

We find that this strategy, which has a long history in FEM modeling of quasi-incompressible
materials, improves the training [63, 25]. Therefore, the neural networks for the dimensionless
form of these variables are,

ūx̄ : (x̄, ȳ, t̄) 7→ Nūx̄(x̄, ȳ, t̄;θūx̄), (43)
ūȳ : (x̄, ȳ, t̄) 7→ Nūȳ(x̄, ȳ, t̄;θūȳ), (44)
p̄w : (x̄, ȳ, t̄) 7→ Np̄w(x̄, ȳ, t̄;θp̄w), (45)
p̄c : (x̄, ȳ, t̄) 7→ Np̄c(x̄, ȳ, t̄;θp̄c), (46)
ε̄v : (x̄, ȳ, t̄) 7→ Nε̄v(x̄, ȳ, t̄;θε̄v), (47)
T̄ : (x̄, ȳ, t̄) 7→ NT̄ (x̄, ȳ, t̄;θT̄ ), (48)

where θα highlights that these networks have independent parameters. Given the general PDEs of
THM modeling in eqs. (29), (32) and (34), below we summarize the loss functions for 1D prob-
lems, to avoid very long equations. Considering the three coupled constituents, i.e., matrix de-
formation, two phase flow relations, and heat transfer, we end up having three loss functions
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associated with each of these, as

Ls = λ1

∥∥∥∥∂ε̄v∂x̄ + 2ν∗
(
∂2ūx̄
∂x̄2

)
− b∂(Snp̄n + Swp̄w)

∂x̄
−NT

∂T̄

∂x̄
+
ρb
ρ
Nd dx̄

∥∥∥∥
+ λ2 ‖ūx̄ − ũx̄‖+ λ3 ‖σ̄x̄x − σ̃x̄x‖ ,

Lf = λ4

∥∥∥∥∥∑
k

(Nwk +
bwbk
Kdr

)M̄∗A∗
∂p̄k
∂t̄

+D∗w
∂σ̄v
∂t̄
−Q∗w

∂T̄

∂t̄
− µ

µw
krw

(
∂2p̄w
∂x̄2

)
− f ∗w

∥∥∥∥∥
+ λ5

∥∥∥∥∥∑
k

(Nnk +
bnbk
Kdr

)M̄∗A∗
∂p̄k
∂t̄

+D∗n
∂σ̄v
∂t̄
−Q∗n

∂T̄

∂t̄
− µ

µn
krn

(
∂2p̄n
∂x̄2

)
− f ∗n

∥∥∥∥∥
+ λ6 ‖p̄w − p̃w‖+ λ7 ‖p̄n − p̃n‖+ λ8 ‖q̄wx̄ − q̃wx̄ ‖+ λ9 ‖q̄nx̄ − q̃nx̄‖ ,

LT = λ10

∥∥∥∥C∗∂T̄∂t̄ + J∗
[
ρnCn

ρC
v̄nx +

ρwCw

ρC
v̄wx

]
∂T̄

∂x̄
− F ∗ ∂

∂x̄

(
λavg

λ̄

∂T̄

∂x̄

)
−G∗θ

∥∥∥∥
+ λ11

∥∥∥T̄ − T̂∥∥∥+ λ12

∥∥q̄Tx̄ − q̃Tx̄ ∥∥ ,

(49)

and the total loss is evaluated as the summation of these three terms,

L = Ls + Lf + LT . (50)

Here, ◦̃ refers to the boundary or initial values for each term. Optimizing the total loss function,
eq. (50), is referred as the simultaneous solution strategy. We find, however, that this is a challeng-
ing many-objective optimization problem with many hyper-parameters to tune, which did not lead
to successful results for the problems reported in the next section.105

An alternative solution strategy is to train each loss term individually and iterate sequentially
until convergence. This is a common solution strategy in the FEM community, where different
operator splits can be adopted depending on which problem is solved first [3, 36, 35, 34]. Here, we
follow our earlier work on the use of sequential-stress-split. Therefore, in the most general case,
we first solve for temperature, followed by solving the two-phase flow equations to evaluate the110

pressure of the wetting and nonwetting phases, and finally solving the linear momentum equation
for the displacements. The algorithm is summarized in Algorithm 1. While this strategy worked
well for the problems explored in the next section, there could be problems that would benefit
from alternative training and optimization strategies.

4. Applications115

In a recent study, we validated the sequential PINN-poroelasticity solver for modeling isother-
mal fluid flow in deformable porous media by simulating various reference problems [22]. Here,
we focus on the additional energy equation, and consider four reference problems:

1. One-dimensional heat-conduction in a soil-column in which we solve for temperature only.
2. One-dimensional non-isothermal consolidation under fully saturated conditions by solving120

for temperature, pressure, and displacement.
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Algorithm 1 Sequential fixed-stress-split algorithm for PINN-THM framework
1: X,T← Sample uniformly spatial and temporal domains.
2: θnT̄ ,θ

n
p̄w ,θ

n
p̄c ,θ

n
ūx̄ ,θ

n
ūȳ ,θ

n
ε̄v ← Initialize randomly using Glorot scheme.

3: n← 1
4: σ̄0

v , T̄
0 ← 0

5: while err > TOL do
6: θnT̄ ← Optimize LT for θT̄ over X,T, p̄n−1.
7: T̄ n ← Evaluate T̄ using θnT̄ .
8: θnp̄w ,θ

n
p̄c ← Optimize Lf for θp̄w ,θp̄c over X,T, σ̄n−1

v , T̄ n.
9: p̄nw, p̄

n
c ← Evaluate p̄w, p̄c using θnp̄w ,θ

n
p̄c .

10: θnūx̄ ,θ
n
ūȳ ,θ

n
ε̄v ← Optimize Ls for θūx̄ ,θūȳ ,θε̄v over X,T, p̄n, T̄ n.

11: σ̄nv ← Evaluate σ̄v using θnūx̄ ,θ
n
ūȳ ,θ

n
ε̄v .

12: θn ← {θnT̄ ,θ
n
p̄w ,θ

n
p̄c ,θ

n
ūx̄ ,θ

n
ūȳ ,θ

n
ε̄v} as the collection of all parameters.

13: err← ‖θn − θn−1‖/‖θn‖ with ‖ ◦ ‖ as the L2 norm.
14: n← n+ 1
15: end while

3. One-dimensional non-isothermal consolidation under unsaturated conditions, by solving the
full set of coupled equations, as summarized in Algorithm 1.

4. Two-dimensional non-isothermal injection-production in a rigid fully-saturated domain, by
solving for temperature and pressure.125

The problems are all solved using SciANN [21], a Keras/TensorFlow API for physics-informed
machine learning, developed by the authors, and shared in SciANN’s github repository. 1

4.1. Conduction With and Without Convection
As the first problem, let us consider a 0.1 m saturated column of soil, which has been pre-

viously considered by Iranmanesh et al. [26], as shown in Figure 1. For simplification, we ig-130

nore the solid deformation (E = ∞), also we assume incompressible solid and fluid phases, i.e.,
Ks = Kw =∞, and neglect the gravity term. As material properties, the porosity and Biot co-
efficient are φ = 0.5, b = 1. The intrinsic permeability is set to k = 1.98×10−5 m2. The fluid
viscosity is taken as µf = 10−3 Pa · s. The density of solid and fluid phases are ρs = 2000 kg/m3,
ρf = 1000 kg/m3. The homogeneous thermal conductivity of the medium is taken as λavg = 2.6 J/s ·m · ◦C,135

and the heat capacity as Cs = Cf = 0.201 J/kg · ◦C. The effect of thermal expansion coefficient
is ignored, i.e., βs = βf = 0.

To assess the impact of convection and conduction on heat transfer, we consider three cases.
Initial temperature and pressure for all cases are set to T = 0 ◦C, p = 0 Pa. For all cases, the
boundary conditions are T = 100 ◦C at the top surface and T = 0 ◦C at the bottom surface. For140

case (I), the pressure boundary conditions at both ends of the column are set as p = 0 Pa, which
implies that heat transfer occurs via conduction only (no fluid flow). For case (II), the top surface is

1https://github.com/sciann/sciann-applications
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Figure 1: One-dimensional soil column with impervious, isolated, and displacement-free side faces.

set to p = 1 Pa and the bottom face is fixed at p = 0 Pa, in which, convection helps the conduction
to transfer more energy. For case (III), the top pressure is set to p = 0 Pa while the bottom pressure
is p = 1 Pa, in which, convection and conduction compete to neutralize each other.145

In this example, due to the relatively high permeability of the medium, the fluid flow reaches
the steady-state conditions quickly, therefore it can be considered time-independent, and pressure
takes a linear distribution. Therefore, here, we only solve the energy equation with a constant
pressure gradient and the results are compared with those obtained by a classical FEM solution
using COMSOL.150

Figure 2 shows the distribution of temperature over the sample’s height for all three cases at
different times. In case (I), conduction creates a constant heat gradient in the domain. In case
(II), convection accelerates conduction to facilitate energy transfer, so the average temperature is
higher than in case (I). In case (III), convection opposes the energy transfer through conduction,
so the temperature is lower than in the other cases. The results confirm that the energy relation is155

correctly implemented and PINN results are accurate.
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Figure 2: PINN’s temperature solution (solid lines) vs. COMSOL’s solution (symbols) as a function of height at
different times, for the conduction problem with and without convection.
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4.2. Non-isothermal Consolidation of a Saturated Soil Column
As a second problem, we model the consolidation of a saturated soil column under non-

isothermal conditions. This is one of the reference problems that has been considered extensively
for validating numerical solvers [44, 40, 17]. Here, the reference solution is generated based on160

the results by Lewis et al. [40]. Solid and fluid phases are considered incompressible, and the
gravity term is ignored. The soil column (see Figure 1) has a height of 7 m, subjected to the initial
conditions T = 0 ◦C, p = 0 Pa, u = 0 m. The boundary conditions include the sudden application
of a compressive stress 1000 Pa on the top surface. Furthermore, the temperature and pressure at
the top surface are prescribed as T = 50 ◦C and p = 0 Pa. Heat flux, fluid flow, and the displace-165

ment of the bottom surface of the column are prescribed to be zero. These boundary conditions
simulate the drainage of the sample from its top surface after loading.

The material properties of the solid phase include E = 6 × 106 Pa, ν = 0.4, φ = 0.5, and
b = 1. The fluid flow parameters are given as k = 4.64×10−17 m2 and µf = 10−3 Pa · s. The
solid and fluid densities are ρs = 2000 kg/m3 and ρf = 1000 kg/m3, respectively. The heat trans-170

fer parameters are considered as λavg = 9.68×10−3 J/s ·m · ◦C, (ρCavg) = 167360 J/m3 · ◦C,
βs = 9×10−7 1/◦C, βs = 0.0 1/◦C, as detailed by Lewis et al. [40].
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Figure 3: PINN solutions, i.e., temperature, pressure, and vertical displacement plots (solid lines), and comparison
against the reference solution reported by [40] (symbols) for the problem of non-isothermal consolidation through a
saturated soil column. The horizontal axis indicates time, and each color represents a different depth.

The PINN solutions are plotted in Figure 3, with the heights calculated from the bottom of
the column, which are in agreement with those reported by Lewis et al. [40]. The temperature
and pressure are both subject to a sudden change at the initial time. The pressure rises quickly175

across the sample, while the temperature increases more gradually. As the increased pressure
dissipates from the sample and before the temperature rises to its maximum value, there is a time
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at which compaction is maximum (around 1,000 days), followed by a thermal rebound over time
until steady-state conditions are reached. Therefore, before 1,000 days, the deformation process
is dominated by the applied stress and pore pressure dissipation, while afterwards it is mostly180

controlled by the temperature increase.

4.3. Thermoelastic Consolidation of an Unsaturated Stratum
As the next problem, let us consider thermoelastic consolidation of an unsaturated subsur-

face stratum, which includes two-phase fluid flow under non-isothermal conditions in deformable
porous media [18, 40, 12, 57]. Dakshanamurthy and Fredlund [12] investigated the influence of185

various parameters including fluid compressibility moduli, air phase constitutive relation, thermal
parameters, and permeability. They also modeled it under both isothermal and non-isothermal con-
ditions and considering consolidation and swelling. Gawin et al. [18] considered phase change,
and they modeled the consolidation of the stratum for different types of boundary conditions.
Schrefler et al. [57] simulated consolidation and swelling conditions, without phase-change con-190

siderations. Here, we use the setup reported by [33] without including the phase-change effects.
We consider the top 10 cm of a stratum, i.e., L = 10 cm, which experiences environmental

changes that include a temperature increase of 15 ◦C and a capillary pressure increase of 140 kPa.
These sudden changes result in the heat and mass transfer in the porous medium similar to a
drying process. The initial conditions for the stratum capillary pressure, water pressure, and tem-195

perature include pc = 280 kPa, pg = 102 kPa, T = 10 ◦C, respectively, which are in equilibrium
with the solid phase stresses. The boundary conditions include pc = 420 kPa, pg = 102 kPa, and
T = 25 ◦C at the top surface, due to the environmental changes. The bottom surface is considered
impermeable, and its displacement is fixed. Gravity effects are also ignored here.

Material properties include the elastic modulusE = 60 MPa, the Poisson ratio ν = 0.2857, the
porosity φ = 0.5, and Biot modulus b = 1. The bulk moduli are considered asKs = 0.14×1010 Pa,
Kw = 0.43 × 1013 Pa, and Kg = 0.1 × 106 Pa for solid, water, and gas phases, respectively. The
fluid flow parameters are taken as k = 6×10−15 m2 and µw = µg = 10−3 Pa · s. The densities are
ρs = 1800 kg/m3, ρw = 1000 kg/m3, and ρg = 1.22 kg/m3. The thermal conductivity coefficient
is considered as λavg = 0.458 J/s ·m · ◦C, with the heat capacity as Cs = 125460 J/kg · ◦C,
Cw = 4182 J/kg · ◦C, and Cg = 1000 J/kg · ◦C. In addition, the thermal expansion coefficients
are given as βs = 9×10−7 1/◦C, βw = 6.3×10−6 1/◦C, and βg = 3.3×10−3 1/◦C, as considered
by Khoei et al. [33]. To describe the flow of two immiscible fluids through the porous media, the
Brooks-Corey [8] relations for saturation and relative permeability of fluid phases are used:

pc = pbSe
−1/λ, krw = Se

(2+3λ)/λ, krg = (1− Se)2(1− Se(2+λ)/λ), Se =
Sw − Srw
1− Srw

,

in which Se denotes the effective saturation, and krw and krg are the relative permeabilities of water200

and gas phases, respectively. Finally, the pore size distribution and the residual water saturation
parameters are λ = 2.308 and Srw = 0.3216, respectively, and the capillary entry pressure is taken
as pb = 133.813 kPa.
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Figure 4: PINN solutions, i.e., capillary pressure, temperature, and vertical displacement (left column, dashed lines)
and comparison against the FEM solutions reported by Khoei et al. [33] (right column, solid lines) for the problem of
thermoelastic consolidation of an unsaturated stratum. The horizontal axis indicates the depth of the stratum. Different
colors show the solution at different times.

The temperature, capillary pressure, saturation, and displacement profiles at different times
are shown in Figure 4. Because the evolutions of heat transfer and fluid flow are strongly coupled,205

and capillary effects also introduce strong nonlinearity, the multi-objective optimization is very
challenging. Despite this challenging setup, the PINN-THM results are in agreement with those
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reported by Khoei et al. [33] and the subtle differences can be attributed to the phase-change
effect, which is ignored by the PINN solver. The simulations show how the sudden change in the
temperature and capillary pressure at the top surface develops through the domain until it reaches210

steady-state conditions, and how this results in the displacement of the porous layer.

4.4. Injection-Production Within a Rigid Reservoir
As the last application example, let us consider the application of the proposed approach for

fluid flow and heat transfer within a two-dimensional reservoir of dimensions 25 m × 25 m. The
reservoir is assumed to be fully saturated, and the solid phase deformation is ignored, as considered215

by Pao et al. [47]. The initial pressure and temperature are set to 50 MPa and a reference value of
0 ◦C, respectively. Fluid injection takes place at the bottom-left corner, where a constant pressure
equal to the initial pressure and a constant temperature 75 ◦C are imposed. Fluid production takes
place at the top-right corner, where the pressure is prescribed to a reference value of 0 MPa. All
other faces are considered impervious and thermally isolated, as shown in Figure 5.220

Figure 5: Geometry and boundary conditions of the injection-production in a rigid reservoir

The density and viscosity of water are taken as ρw = 1000 kg/m3 and µw = 0.5× 10−3 Pa · s.
The density of the solid is taken as ρs = 1800 kg/m3, and the porosity of the medium is taken as
φ = 0.1867. Compressibility of the solid and fluid phases are cs = 1.45 × 10−8 1/Pa and cw =
4.35× 10−8 1/Pa, respectively. The thermal conductivity of the mixture is considered constant, as
λavg = 5 W/kg · ◦C. Specific heat capacity of rock and water is assumed to be Cs = 200 J/kg · ◦C225

and Cw = 4184 J/kg · ◦C. The intrinsic permeability and thermal expansion coefficient for rock
and water are k = 0.09 × 10−14 m2, βs = 9 × 10−7 1/◦C, and βw = 6.3 × 10−6 1/◦C. In this
example, the high pressure gradient between the injection and production areas accelerates the
heat transfer through conduction.
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Figure 6: PINN solution (solid lines) along the domain diagonal (line A-B in Figure 5) of the two-dimensional
injection/production problem and comparison against reference results from COMSOL (symbols). Grey dashed box
highlights the sequence of transfer learning. Red dashed box highlights the final PINN solutions for pressure and
temperature along the diagonal. (a) PINN solution for pressure at different times without the use of transfer learning.
(b-d) Pressure evolution by first solving an injection-production problem with 5m length (b), then transferring the
weights to solve an injection-production problem with 2m length, and finally transferring the network parameters to
solve the actual injection/production problem with 1m length. (e) Temperature evolution along the A-B diagonal line
at different times, after transfer learning.

Due to the combination of boundary conditions, i.e., partly Neumann and partly Dirichlet, and230

the small injection and production lengths, we experienced that the PINN solver fails to find an
accurate solution, regardless of the adaptive-weighting strategy used, as shown in Figure 6-a. We
associate this behavior with the small injection-production regions and the sharp gradients in the
vicinity of the transition point from Dirichlet- to Neumann-type boundary conditions. To resolve
this, we used a remedy based on transfer learning. We first used a milder condition of picking an235

injection/production length of 5 m, to pre-train the network parameters. We then transferred the
trained parameters to an intermediate problem with 2 m injection-production lengths and finally
back to the original one with 1 m length and re-performed the training. This transfer-learning
progress is shown in Figure 6-b to d (inside the grey dashed box). The final results of pressure
and temperature histories along the diagonal are plotted in Figure 6-d-e, which are in good agree-240

ment with the reference solution from COMSOL. The field plots for temperature and pressure
distribution at different times are shown in Figure 7.
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Figure 7: PINN’s 2D plots for pressure and temperature over time for 1m injection/production length with transfer
learning.

5. Conclusions

In this study, we have employed the PINN framework to simulate thermo-hydro-mechanical
(THM) phenomena in porous media. Governing laws consist of linear momentum, mass conser-245

vation, and energy balance. Darcy’s and Fourier’s laws are employed to describe the fluid flow and
heat transfer, respectively. Due to the complexity in optimizing the deep neural network for such a
multiphysics system, we used a sequential training strategy. We applied the framework to several
benchmark problems and reported good agreement with reference solutions. The combination of
a sequential training strategy, a dimensionless formulation, adaptive weight methods, and transfer250

learning resulted in a good performance of PINN for simulating THM problems.
While the PINN solver described above succeeded at simulating THM problems, we found

that the network training was challenging, and slow compared with FEM solvers—suggesting that
the training time remains a bottleneck of the framework. Thus, we believe that the PINNs might
be better suited for solving inverse problems or for building surrogate models.255
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