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Physics‑informed neural networks applied 
to catastrophic creeping landslides

Abstract In this study, a new paradigm compared to traditional 
numerical approaches to solve the partial differential equation 
(PDE) that governs the thermo-poro-mechanical behavior of the 
shear band of deep-seated landslides is presented. In particular, 
this paper shows projections of the temperature inside the shear 
band as a proxy to estimate the catastrophic failure of deep-seated 
landslides. A deep neural network is trained to find the tempera-
ture, by using a loss function defined by the underlying PDE and 
field data of three landslides. To validate the network, we have 
applied this network to the following cases: Vaiont, Shuping, and 
Mud Creek landslides. The results show that, by creating and train-
ing the network with synthetic data, the behavior of the landslide 
can be reproduced and allows to forecast the basal temperature of 
the three case studies. Hence, providing a real-time estimation of 
the stability of the landslide, compared to other solutions whose 
stability study has to be calculated individually for each case sce-
nario. Moreover, this study offers a novel procedure to design a 
neural network architecture, considering stability, accuracy, and 
over-fitting. This approach could be useful also to other applica-
tions beyond landslides.

Keywords PINNs · Numerical modeling · Landslides · Shear 
band · Temperature

Introduction
Catastrophic rapid landslides have been extensively studied with 
the aim of understanding the failure mechanisms and predict-
ing the time of failure. Early studies focused on extrapolating the 
inverse velocity of the sliding mass to predict the collapse time 
(Voight 1988; Saito 1965, 1969). However, this kind of prediction 
does not consider the mechanisms of failure, and gives a very short 
period of time (minutes) of early warning before the landslide 
collapses catastrophically. Recent studies have shifted the focus 
towards the behavior of the shear band (Kilburn and Petley 2003), 
which is one of the weakest parts of a landslide, as it is where all 
the thermo-mechanical phenomena occurs (Vardoulakis 2002b; 
Veveakis et al. 2010, 2007; Goren and Aharonov 2009). Researchers 
have investigated how external factors, like groundwater changes, 
affect the material behavior of the shear band and its friction coef-
ficient (Alonso and Pinyol 2010; Alonso et al. 2016). Shear bands 
of deep-seated landslides are usually composed of clay or clayey 
materials that can undergo thermal softening and rate harden-
ing (Vardoulakis 2002a, b; Hueckel and Baldi 1990), leading to a 
positive thermal feedback loop that increases the temperature and 
reduces the friction coefficient of the material (Anderson 1980; 
Vardoulakis 2002b; Voight and Faust 1982; Lachenbruch 1980; Rice 
2006). This process can continue until the shearing resistance 

decreases uncontrollably, resulting in a thermal runaway instabil-
ity that can trigger mechanical dissipation without any external 
influence (Gruntfest 1963).

New models have been developed to consider the role of temper-
ature in landslides. Vardoulakis (2002b) presented a mathematical 
model that considers the counterbalance between thermal soften-
ing and rate hardening as the coupling mechanisms affecting the 
clay material of the landslide’s gouge. This model was applied to 
the Vaiont landslide by Veveakis et al. (2007), assuming only the 
maximum loading condition, whose results indicated that the land-
slide collapsed due to the positive thermal feedback loop reaching 
its critical value of basal temperature. Segui et al. (2020) applied 
the same model to two case studies, the Vaiont (collapsed) and 
the Shuping (active) landslides, to evaluate the critical point of 
stability and temperature. Seguí et al. (2021) tested and validated 
the assumption of the temperature’s role through field data col-
lected from the El Forn landslide. In a more recent study, Seguí 
and Veveakis (2022) applied the model to four case studies, map-
ping all of them on a single stability curve (steady-state/bifurcation 
curve), showing its applicability to different deep-seated landslides, 
regardless of the nature of their instability and/or the data available 
(properties of the shear band material and field data).

In summary, these studies have advanced our understanding of 
the role of the basal temperature with the behavior of deep-seated 
landslides. The results of these studies have shown that temperature 
plays a crucial role in the stability of landslides and, that the model, 
which is simplified to the relationship between basal temperature 
and external loading, can be applied to different landslides.

The latter model by Vardoulakis (2002b), Veveakis et al. (2007), 
and Segui et al. (2020) proposed a partial differential equation  
(PDE) that is able to capture the interplay between the external load-
ing (e.g., groundwater variations) and the basal (shear band mate-
rial) temperature through the heat diffusion equation in dimen-
sionless form. This equation depends on two parameters: the basal 
temperature and the Gruntfest number (Gruntfest 1963). These two 
parameters are plotted in a steady-state curve, which is also called 
a bifurcation curve, calculated through the heat diffusion equation 
in dimensionless form as steady-state, and applying the pseudo-
arc-length continuation method. This PDE allows us to map the 
behavior of the landslide, in time, on the bifurcation curve, thus 
forecasting when the landslide will turn unstable (i.e., transitioning 
from secondary to tertiary phase) and collapse catastrophically. As 
mentioned above, the constitutive model considers that the shear 
band material behaves as rate hardening and thermal softening:
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where � is the temperature, t is time, z is the thickness of the shear 
band, and Gr is the Gruntfest number, which is the ratio of the 
mechanical work that is transformed to heat over the materials heat 
diffusion capacity. Gr contains information about the basal mean 
shear stress (including the effects of groundwater evolving in time), 
thermal conductivity, shear band thickness, and reference shear 
strain rates, among other parameters (see Segui et al. 2020 and 
Veveakis et al. 2007 for more information about the mathematical 
model). It is, therefore, a convenient way to encapsulate multiple 
data which benefits the work in this paper, as will be shown later.

Equation 1 is complex to solve, and current solutions involve 
using the pseudo-arc-length continuation method with spectral 
elements, using Fourier transforms instead of finite elements or 
other more traditional approaches (Veveakis et al. 2010; Chan and 
Keller 1982; Segui et al. 2020).

Artificial neural networks offer an alternative solution for mak-
ing timely predictions and comparing them with observations. 
These networks have the potential to solve differential equations 
due to their universal approximation features (DeVore 1998; Tariyal 
et al. 2016; Hangelbroek and Ron 2010). To approximate the solution 
of a complex PDE, two essential factors are needed. The first one 
is a parameterized function that is both easy to train and evaluate, 
and robust enough to approximate the solution of a complex PDE. 
Modern deep neural network models (LeCun et al. 2015) provide 
these functions, which are made up of a number of linear trans-
formations and component-wise non-linearities. Because of recent 
developments in paralleled hardware and automatic differentiation 
(Bergstra et al. 2010; Baydin et al. 2018; Ermoliev and Wets 1988), 
deep neural network models with numerous parameters can be 
trained and assessed rapidly. The other essential component is a 
loss objective or function. A loss function, when reduced, promotes 
that the parameterized function is a satisfactory approximation 
solution of the PDE.

This approach is now known as physics-informed neural net-
works (PINNs). It has been applied to numerous forms of PDEs, 
representing different phenomena in physics and engineering (see 
Raissi et al. 2019). Critical to this approach is the use of automatic 
differentiation (AD) which has made a significant contribution 
to enable this approach, as shown by Griewank (1989). It allows 
obtaining derivatives of the output variable, with regard to the 
input parameters. Other methods of calculating the derivatives suf-
fer from rounding-off errors and, therefore, leading to inaccuracies 
(Baydin et al. 2018). This drawback of other approaches is avoided 
in PINNs, by using modern graph-based implementations, such 
as TensorFlow (Abadi et al. 2016) or PyTorch (Paszke et al. 2017). 
Using this automatic differentiation, exact expressions with float-
ing values are applied, and no approximation error is found. In 
PINNs, the solution of the PDE is predicted without the need for an 
additional model, by including the PDE in the neural network loss 
function. Hence, during learning, the neural network (NN) learns to 
minimize the residual of the PDE by using the learned input param-
eters. Boundary and initial conditions are also included in the loss 
function in different ways to complete the boundary value problem.

The advantage is that PINN models may be used as a surrogate 
model for a range of input parameters, allowing for real-time simu-
lations. PINNs also have other several advantages over the finite 
element method and other surrogate models: it does not require 
a mesh-based spatial discretization or laborious mesh generation; 

the derivatives of the solutions are available after training; it sat-
isfies the strong form of the differential equations at all training 
points with known accuracy, and it allows data and mathemati-
cal models to be integrated within the same framework (Pang and 
Karniadakis 2020).

As mentioned previously, PINNs have been applied to a vari-
ety of problems, including fluid mechanics (Cai et al. 2022; Wu 
et al. 2018; Jin et al. 2021), solid mechanics (Haghighat et al. 2021; 
Rezaei et al. 2022; Harandi et al. 2023), heat transfer (Niaki et al. 
2021; Cai et al. 2021b), and soil mechanics (Bandai and Ghezzehei 
2021; Amini et al. 2022), including multiple ground-based problems 
(Amini et al. 2022). However, they have not been applied, to the 
authors knowledge, within the landslides field, more specifically to 
catastrophic deep-seated landslides, where the formulation of Eq. 1 
allows us to apply this approach.

In this paper, thus, we present a new way of integrating a com-
plex PDE into PINN to reproduce the behavior of deep-seated 
landslides. We provide field and calculated data from the Vaiont, 
Shuping, and Mud Creek landslides. We have chosen these three 
landslides to prove the validity of the model and the application of 
PINN for landslides that have collapsed due to different triggering 
factors, as Vaiont and Mud Creek, and active landslides, as Shuping. 
Also, it is important to notice that for these three landslides, the 
field and experimental data are not always available, and we have 
been able to simplify or generalize some of the needed parameters 
to solve the PDE, therefore, presenting a novel way to analyze the 
stability of deep-seated landslides in a quicker way that could be a 
very useful tool of early warning system.

Case studies
Three deep-seated landslides are used in this study: Vaiont, Shup-
ing, and Mud Creek, which are briefly explained below. Detailed 
descriptions of the case studies can be found in Seguí (2020), Segui 
et al. (2020), Seguí and Veveakis (2022), Handwerger et al. (2019), 
and Alonso et al. (2016). The description below is simplified to the 
different trigger mechanisms, landslide volumes, and failure stages, 
to highlight the various conditions that can be covered. Interest-
ingly for this paper, Fig. 1 shows the Gruntfest number calculated 
for each case study, as a function of dimensionless time (Seguí 2020; 
Seguí and Veveakis 2022). As will be shown later, the different order 
of magnitude, comparing Shuping (still in secondary creep) with 
Mud Creek and Vaiont (collapsed) could be a problem that will be 
overcome to obtain a good generalization. Table 1 presents a sum-
mary of the characteristics of each case study.

Vaiont, Italy

The Vaiont landslide was an ancient landslide reactivated by the 
filling process of a dam constructed nearby (Semenza and Melidoro 
1992). While the dam was working, the field data was showing that 
when the water level of the dam increased, the landslide accelerated. 
Thus, the engineers of the dam were controlling the accelerations of 
the landslide by reducing the water level of the dam (Muller 1964; 
Müller 1968). That happened because the material of the sliding 
mass was mainly calcarenite and limestone with high permeability 
(Ferri et al. 2011). On October 9th, 1963, the landslide catastrophically 
failed, mobilizing approximately 270 Mm3 of rock mass over a depth 
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of 150 m (Muller 1964; Müller 1968). The material reached velocities 
in excess of 20 m/s resulting in a tsunami that over-topped the dam 
causing significant destruction downstream and 2000 casualties.

Shuping, China

The Shuping landslide was reactivated by the construction of the 
Three Gorges Dam in China. Additionally to the reservoir water 
level, the area is also subject to long periods of rainfall, which has 
been highlighted as another possible factor for triggering (Huang 
et al. 2016; Segui et al. 2020). The lithology of the area is mainly 
sandy mudstone and muddy sandstone (Wang et al. 2017). The 
thickness of the landslide is between 30 and 70 m and has a calcu-
lated volume of 27 Mm3 . Conversely to Vaiont, this landslide acceler-
ates during reservoir lowering and slows down during filling (Segui 
et al. 2020; Huang et al. 2016). The difference possibly resides in 
the different permeability of they layers of the sliding mass (Segui 
et al. 2020).

It is important to highlight that the Shuping landslide has not yet 
failed catastrophically, as indicated by the low Gruntfest numbers 
shown in Fig. 1. The fact that it shows also a different behavior (in 
terms of groundwater) to Vaiont reinforces the ability to capture 
different phenomena with this model.

Mud Creek, USA

Mud Creek was a landslide that like Vaiont catastrophically col-
lapsed on May 20th of 2017 in California (USA) (Handwerger et al. 
2019). The thickness of the sliding was 20 m and involved approxi-
mately 60 Mm3 that collapsed towards the sea and completely dam-
aged a coastal road (Handwerger et al. 2019). The triggering mecha-
nism of the failure of this landslide was mainly continuous heavy 

rainfalls during days that lead to an excessive pore water pressure 
inside the sliding mass (Handwerger et al. 2019).

PINNS basics and problem application
All neural networks consider three main general aspects: net-
work architecture, loss functions, and training. These aspects are 
explained below, in the context of our application. A more detailed 
theoretical and methodological explanation for each aspect can 
be found, for example, in Haghighat and Juanes (2021) and Raissi 
et al. (2019).

Network architecture

The typical architecture of PINNs uses feed-forward neural net-
works (Schmidhuber 2015) (FFNNs), as presented in Fig. 2. It has 
Z as an input tensor and u as an output tensor, and it includes 
network trainable parameters, such as weights, W, and biases, b. In 
the application to Eq. 1, the input Z consists of three variables: z, t, 
and Gr. The output tensor u is the temperature, �.

When deciding an architecture of NN, a decision needs to 
be made on the number of layers and the number of neurons in 
each layer. The number of hidden layers is an arbitrary, but very 
important aspect. It can be chosen based on the number of col-
location points and the number of input and output parameters, 
but its selection remains largely a trial-and-error process. In some 
implementations, this number is considered a hyper-parameter, and 
therefore, can be fine-tuned during training. Equally, it can also be 
included as an additional variable so that its value is part of the 
learning process. However, the consensus is not clear as to what 
approach is more adequate, and therefore, lacking an established 
and rigorous way to do it, we propose later a systematic framework 
to choose what we consider a novel contribution to our paper.

(a) (b) (c)

Fig. 1  Gruntfest number in time with time-dependent external loadings history for different case studies (Seguí 2020; Seguí and Veveakis 
2022). a The Vaiont landslide (Italy) that collapsed in 1963. b The Shuping landslide in the Three Gorges Dam (China) that remains active. c 
The Mud Creek landslide in California (USA) that collapsed in 2017

Table 1  Case study summary

Landslide Volume (1E6m3) Thickness (m) Potential cause

Vaiont 270 150 Reservoir water level rise leading to reactivation

Shuping 27 30–70 Three Gorges Dam reservoir filling

Mud creek 60 20 Collapse due to a long period of heavy rainfall
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In this type of fully connected neural network, neurons in a layer 
have no connection to each other (Bishop and Nasrabadi 2006). 
These FFNNs can be shown mathematically as shown in Eq. 2:

where Z0 = X is the input layer and uk is the output layer. The values 
of the output layer are approximated as a function of the weights, 
W, and biases, b. Each connection between a neuron in layer k-1 and 
another neuron in layer k is assigned a weight W and a bias term 
b. Taking the weighted sum of its inputs, Zk − 1 , as well as a bias 
term, it delivers the output through an activation function � that 
accommodates non-linearity (Sibi et al. 2013).

Loss function

In traditional FFNNs, the loss function can be calculated by mini-
mizing the square of the difference of the predicted and given out-
puts (Schmidhuber 2015), or the so-called mean square error MSE 
(Eq. 3).

where n is the total number of collocation points, and Y and Y  are 
the ground truth values and the predicted values, respectively. As 
previously mentioned, in PINNs, the physics are included by adding 
the PDE to the loss function. Therefore, the total loss, L , becomes:

where Ldata is the loss function calculated from data points as in tra-
ditional FFNNs, and LPDE is the loss function from considering the 
physics using the PDE and the initial value. Generally, this will also 
involve adding boundary condition losses, but these do not apply 
to the problem we are solving here. Hence, the PDE loss function is:

Then, we can write Eq. 1 into the mean squared error loss function as:

(2)u
k = �

k(Wk
Z
k− 1 + b

k), k = 1, ...,K

(3)MSE =

n∑

i= 1
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i
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i
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(4)L = Ldata + LPDE

(5)LPDE = L
�
+ L

�0

The losses related to the initial condition are calculated as:

Finally, the network is trained by minimizing the losses for a differ-
ent set of hyper-parameters, � , at the collocation points, X:

Training

Training is the third critical part of the PINNs. One of the critical 
parameters in the process of training PINNs is the activation func-
tion, which should be chosen considering the partial differential 
equation and the physical output quantities. After considering dif-
ferent activation functions, and comparing the final value of the 
loss function, we observed that tanh gave the best results with the 
lowest loss function. We also used tanh, sigmoid, swish, and softplus, 
although this comparison is not included in the paper. The tanh 
activation function can be defined as:

We used the available algorithms in Keras (Chollet et al. 2015) and 
Adam’s optimization scheme (Kingma and Ba 2014) within the 
SciANN (Haghighat and Juanes 2021) framework for training. Due 
to the lack of a systematic approach, we defined the learning rate by 
using trial and error. The learning rate is a hyper-parameter worth 
tuning because of the use of the stochastic gradient descent algo-
rithm. We reached the conclusion that 0.001 is a suitable value for 
the learning rate since the optimizer can reach the minimum value 
slowly, while avoiding getting stuck in local minima. It also needs 
to be considered that adaptive learning is included in SciANN, and 
the optimizer (in our case, Adam) reduces the value of the learning 
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Fig. 2  A schematic of single neural network architecture with space, time, and Gruntfest number as input features (z; t; Gr). And the tempera-
ture, � , as output with optimization of the total loss function, consisted of loss terms for the governing equation
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rate in case it is necessary. Hence, this value was not critical for this 
implementation.

Different hyper-parameters and architectures are investigated 
in this study. The hyper-parameters in the algorithm, which had a 
noticeable influence during the training of this problem, are batch-
size, activation function, and number of epochs. Batch size is the 
number of collocation points from a data set, used to determine 
one gradient descend update (Ruder 2016). The batch size also 
influences the computational cost. This means that, for a larger 
batch size, the training becomes faster because fewer iterations 
are needed for one epoch to round the training on a data set. The 
minimum batch size is 1, which corresponds to a full stochastic 
gradient descent optimization. In this work, several different batch 
sizes were considered to find the best and optimal value, which in 
this case was 64.

The second important hyper-parameter is the number of 
epochs. At each epoch, before a new round of training (epoch) 
starts, the data set can be shuffled leading to an updated param-
eter. This occurs when the batch gradients are calculated on a new 
batch and therefore, it is affected by the number of batches. In 
PINNs, a value of 5000 epochs was used in several studies (Raissi 
et al. 2019; Niaki et al. 2021) and we have used it here after trial and 
error, using as criteria a predefined low-value of the loss function, 
as recommended by Raissi et al. (2019). In many cases, the total 
loss converges to a constant value after 3000 epochs. Shuffling of 
collocation points was also used during the training.

Since the aim of this study is to minimize the loss function, and 
since the optimizer is non-convex, the training needs to be tested 
from different starting points and, at the same time, with different 
directions. In this way, weights and biases are evaluated by mini-
mizing the loss function, and patience is a limit that monitors the 
optimizer intended to stop the training.

Over-fitting during the training (Hawkins 2004) is always a con-
cern, especially for forecasting unseen cases. Since the number of 
collocation points in this study is small, the over-fitting is exam-
ined by splitting the collocation points into three sets: train, test, 
and validation. Since validation data are available during training, 
the accuracy and loss function can be plotted in Keras (Chollet 
et al. 2015) for examination. This offers a great advantage to control 
over-fitting. If during training, the loss function increases, or the 
model starts to lose test accuracy, then the model is over-fitted.

There are several methods to train PINNs. In this research, cal-
culated data from Segui et al. (2020) and Seguí and Veveakis (2022) 
are used for training, which is presented in the next section.

Synthetic data and network architecture

Synthetic data
The purpose of PINNs is to generate a model with good generali-
zation properties. Initially, one typically trains the model by only 
using the PDE, without any data. In our case, the results of training 
without data were not satisfactory; hence, this approach was dis-
carded. This is due to the complexity contained by the Gr, which is 
not captured when considering only the PDE. Hence, training with 
data was necessary.

Figure 3 shows the results where the training and testing have 
been performed individually for each case. As expected, the results 
are very close to the initial data, when training in the same case. 
Note that the architecture used for this case is 4 hidden layers and 
10 neurons for each one. As Fig. 3 shows, this is not the optimal 
architecture; however, the temperature calculated reproduces the 
behavior of the ground truth with minor discrepancy.

By using an optimal architecture with 3 layers and 20 neurons 
each, the results reproduce the ground truth with more accuracy, 
as shown in Fig. 4. However, one must understand that this is using 
training data selected randomly along the entire time domain (i.e., 
there is future prediction ability, but only interpolation) and within 
the same case study.

However, this approach hardly helps to generalize the behavior 
of all (unseen) case studies. As shown in Fig. 5, we have trained the 
model with two of the cases and tested the model on the third one. 
We repeat this for all three combinations (Fig. 5). As can be seen, 
the results are not as satisfactory. Critically, the model is not capa-
ble of forecasting the Shuping landslide behavior. This means that 
generalizing, by training the model with just one landslide, does not 
represent the behavior of the rest of the case studies.

Therefore, the next option is to resort to more data or create 
synthetic data. This approach has been followed by several authors 
(Bandai and Ghezzehei 2021; Cai et al. 2021a; Jagtap et al. 2022). 
Hence, this method has been implemented in our study, to define 
the best hyper-parameters and the optimal network architecture. 
The adequacy of this approach to represent real case studies is pre-
sented in the next section.

The synthetic data was generated by using the observations 
from Segui et al. (2020) and Veveakis et al. (2007). Those studies 
show that the Gruntfest number follows a sinusoidal wavy, increas-
ing, pattern. This sinusoidal pattern is related to seasonal ground-
water variation, which leads to an increase in the temperature of 
the shear band, and an acceleration of the sliding mass (Cecinato 

(a) (b) (c)

Fig. 3  Normalized temperature evolving in time for the three case studies applying the architecture of 4[10]. Here, the training and the test-
ing have been performed individually for each case study. Note that the ground truth data is from Segui et al. (2020) and Seguí and Veveakis 
(2022): a ground truth and architecture data of the Vaiont landslide, b ground truth and architecture data of the Shuping landslide, c ground 
truth and architecture data of the Mud Creek landslide
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et al. 2008; Seguí et al. 2021). This behavior can be mathematically 
expressed as follows:

(10)Gr = 0.8t + exp(t)(0.07sin(c ∗ t)) 0 < t < 1

where Gr is the Gruntfest number and t is the time. The equation is 
defined so that the maximum value of Gr is 0.88, as the critical value 
stated by Segui et al. (2020). Meaning that, once the system reaches 
and overcomes this value, the system becomes unconditionally 

(a) (c)(b)

Fig. 4  Normalized temperature in time for the three case studies with architectures of 3[20]. The training and the testing have been per-
formed individually. Note that the ground truth data is from Segui et al. (2020) and Seguí and Veveakis (2022): a Ground truth and architec-
ture data of the Vaiont landslide, b ground truth and architecture data of the Shuping landslide, c ground truth and architecture data of the 
Mud Creek landslide

(a) (b)

(c) (d)

(e) (f)

Fig. 5  Normalized temperature in time for the three case studies by training two different cases and testing on the other one. Note that the 
ground truth data is from Segui et al. (2020) and Seguí and Veveakis (2022). a Training the model with the Vaiont and Shuping landslides. b 
Testing of the Mud Creek landslide by the training of a. c. Training the model with the Vaiont and Mud Creek landslides. d Testing of the 
Shuping landslide by the training of c. e. Training the model with the Shuping and Mud Creek landslides. f Testing of the Vaiont landslide  
by the training of e 
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stable and the landslide enters the point of no return (i.e., tertiary 
creep and catastrophic collapse) (Segui et al. 2020). c covers the 
number of cycles or seasonal changes that the landslide experi-
ences. Hence, by using an appropriate number of cycles and forc-
ing it to fail by reaching a Gr equal to or higher than 0.88, we can 
control that all possible behaviors are generally covered in the syn-
thetic data. A value of c equal to 32 is used, which corresponds to 
five seasonal changes, taken as the behavior of the Shuping land-
slide, which is the case study with more years of data. The tempera-
ture is calculated by using the method presented by Vardoulakis 
(2002b), Veveakis et al. (2007), Segui et al. (2020), Seguí et al. (2021), 
and Seguí and Veveakis (2022). The generated synthetic data are 
shown in Fig. 10a.

A critical aspect of using PINNs is the normalization of the data, 
in particular, in those cases where the variables show large differ-
ences in scale. For example, the Gruntfest number in Shuping only 
varies between 0.038 and 0.044, whereas in Vaiont it reached the 
critical value of 0.88. Equally, the time is also at a different scale. 
Hence, we normalized all of the input and output variables between 
0 and 1. Without this normalization, none of the architectures and 
attempts was successful. In any event, this is generally a good prac-
tice (Haghighat and Juanes 2021; Raissi et al. 2019).

Remark 1  At the same time, the use of data-driven neural net-
works (DDNN) is common in a lot of fields of study, and the authors 
also considered this approach at the beginning of the research on 
landslides. PINN is basically an add-on to the DDNN approach to 
improving the performance of the network, by adding physical con-
straints. The DDNN approach showed promising results when we 

trained one case and tested it on the same case. However, in terms 
of generalization and extrapolation for other cases, it is not always 
robust and stable.

A DDNN neural network approach was conducted to train the 
synthetic data with 4 layers and 20 neurons, and the three case stud-
ies were predicted based on this model. The results are presented in 
Fig. 6, which show a good prediction for synthetic data (seen data 
set), and poor quantitative results for the other case studies (unseen 
data set). This shows the effectiveness of physics in improving the 
performance of the neural network.

Network architecture sensitivity analysis

In this section, we present an approach to select the network archi-
tecture by using a sensitivity analysis, where we considered the 
number of neurons and the number of hidden layers. We performed 
all of our training on the generated synthetic data, which contains 
1510 collocation points. We always kept 10% of the data for testing 
after each training, and determine the convergence of the network 
in terms of over-fitting. We used the network hyper-parameters and 
activation function shown in the “Training” section.

To study the optimal network architecture, the criteria we 
used from the sensitivity analysis were three-fold: minimizing 
the loss function, reducing the standard deviation (stability) of 
network prediction for the unseen cases (which is due to the ran-
dom processes associated with different initial values of weights 
and biases for each network), and avoiding over-fitting.

Figure 7 shows the standard deviation, based on 5 realizations, 
in the y-axis and the error in the x-axis. The error is calculated 

(a) (b)

(c) (d)

Fig. 6  Normalized temperature in time calculated by the network for the three case studies. This normalized temperature has been calcu-
lated by training the synthetic data with a DDNN approach with 4 layers and 20 neurons in each layer. Note that the ground truth data is from 
Segui et al. (2020) and Seguí and Veveakis (2022). a Fit of the ground truth (generated data) and calculated by the DDNN network synthetic 
data. b Fit of the ground truth data of the Vaiont landslide and the calculated data by the DDNN network. c Fit of the ground truth data of the 
Shuping landslide and the calculated data by the DDNN network. d Fit of the ground truth data of the Mud Creek landslide and the calculated 
data by the DDNN network
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as the mean absolute difference of the forecast values to the 
ground truth. It only shows combinations of layers and neurons 
(layers[neurons]), where over-fitting was not observed. The 
number of neurons was kept equal for all hidden layers, which 
is common for different implementations of PINNs (Haghighat 
et al. 2021; Raissi et al. 2019). The plotted values in Fig. 7 show the 
results for the three case studies.

Based on the results of the sensitivity analysis, the Vaiont case 
shows the highest stability of the network (i.e., each time the net-
work is trained, the results are the same) among all cases. However, 
the accuracy of Vaiont almost remains constant throughout the dif-
ferent architectures. The case of Shuping is the most sensitive case 
to the architecture, and the standard deviation of different network 
architectures changed significantly. The case of Mud Creek shows 

the best accuracy of all cases. In general, the more neurons, the 
more accurate and network stable the results are. The upper bound 
of neurons is provided by the over-fitting consideration.

After examining all the cases, we conclude that the best two 
architectures are (1) using 3 hidden layers and 20 neurons per layer 
and (2) 4 hidden layers with 16 neurons each. We repeated the train-
ing with these architectures to calculate the value of the total loss 
function and validate our conclusion. Both networks show a good 
convergence in terms of the loss function, which is demonstrated 
in Fig. 8, and also confirms that the PDE is satisfied.

To further examine the robustness of these two network archi-
tectures (Fig. 8), we calculate the 95% confidence range of each 
network. As presented in Fig. 9, the repeated training on synthetic 
data shows satisfactory performance in terms of the calculated loss 

Fig. 7  Comparison of mean absolute error and standard deviation of the different network architectures by training the synthetic data and 
forecasting the three case studies. (Black) the Vaiont landslide results, (red) the Shuping landslide results, and (blue) the Mud Creek landslide 
results. (Round) 3 hidden layers network, (triangle) 4 hidden layers, (square) 5 hidden layers

(b)(a)

Fig. 8  Evolution of the different loss functions in the training of the network for synthetic data. The graphs also include the total loss, the loss 
from temperature ( � ), and the loss from the governing equation (Eq. 5). a Joint network architecture applying 3 layers and 20 neurons. b Joint 
network architecture applying 4 layers and 16 neurons
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function. The network stability training is considered satisfactory 
and, based on this training, we calculate the basal temperature of 
the three landslides.

Remark 2  To address the computational efficiency of each training 
procedure, with Intel Xeon CPU @2.20 GHz, 13 GB RAM, the average 
time required to complete one epoch of 3 layers and 20 neurons, 
with an average epoch time of 0.1 s. The second configuration com-
prised four layers and 16 neurons, resulting in an average epoch 
time of 0.16 s. It is worth noting that the total training time can be 
influenced by multiple factors, such as batch size and the number 
of epochs. By varying these parameters, it is possible to alter the 
overall duration of the training process.

Results and discussion
Figure 10 shows the results of the calculated temperature, using 
only the synthetic data as training inputs, and the network archi-
tectures chosen in the previous section. These results expand 
on the parametric studies, and are validated by the fitting of the 
ground truth data from Segui et al. (2020, 2021), and Seguí and 
Veveakis (2022), with low absolute mean error as shown in Fig. 7. 
Moreover, we have validated the network in terms of trends and 
times at which changes occur. By training the proposed synthetic 
data, we are able to forecast the point of instability (i.e., when the 
landslide reaches the point of no return and enters the tertiary 
creep) of the landslide in both Vaiont and Mud Creek cases. At 
the same time, since the created synthetic data considers multiple 

(a) (b)

Fig. 9  Evolution of the 95% total loss confidence band of training the synthetic data for a network architecture 3[20] and b network architec-
ture 4[16]

(a) (b)

(c) (d)

Fig. 10  Normalized temperature in time calculated by the network for the three case studies. This normalized temperature has been calcu-
lated by training the synthetic data for two different network architectures 3[20] and 4[16]. Note that the ground truth data is from Segui 
et al. (2020) and Seguí and Veveakis (2022). a Fit of the ground truth (generated data) and calculated by the network synthetic data. b Fit of 
the ground truth data of the Vaiont landslide and the calculated data by the network. c Fit of the ground truth data of the Shuping landslide 
and the calculated data by the network. d Fit of the ground truth data of the Mud Creek landslide and the calculated data by the network
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seasonal changes, it could closely represent the real behavior of 
the Shuping landslide, although the network underestimates 
the temperature for the larger peak. The results of the network 
architecture with 3 layers and 20 neurons were slightly closer to 
the ground truth data. Since the suggested synthetic data can 
be regenerated for more seasonal changes, it is expected that by 
re-training the model, the core temperature of the shear band 
in other cases of deep-seated landslides could be also achiev-
able. This is extremely important for practical purposes, if such a 
model is going to be used. For example, the model does not seem 
to reproduce the exact maximum temperature for all three cases. 
However, the calculated temperature by the network reproduces 
the changes of the landslide’s behavior in time.

Conclusions
In this study, we have presented a physics-informed neural net-
work framework for modeling large deep-seated landslides. The 
proposed PINN is a feed-forward neural network that tackles the 
solution of the partial differential equation. Physics-informed 
neural networks are promising tools for solving PDEs in multiple 
domains, including landslides.

In this study, we have considered three different case studies 
of deep-seated landslides triggered by different phenomena with 
different data available, and we have trained the network based on 
field data. Since the range of each input variable varies, data nor-
malization has become crucial to achieve a more optimal training 
and forecast the behavior of each landslide.

Moreover, in this study, we have presented different network 
architectures, as well as different hyper-parameters. Showing that 
the combination of the number of layers and the number of neu-
rons play an important role to  reach an accurate solution (i.e., 
reproducing the real behavior of the landslide). We have also 
explored the best solution to minimize the mean absolute error 
for the three case studies and its robustness (to cater to the ran-
dom process). The results presented in this paper show that a good 
generalization can be achieved, which can help significantly in the 
development of real-time monitoring and early warning systems 
for catastrophic deep-seated landslides.
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