
Physics-inspired architecture for neural network modeling of forces and
torques in particle-laden flows

Arman Seyed-Ahmadi1,2 & Anthony Wachs2,3

1Department of Statistics, University of British Columbia,
2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada

2Department of Chemical & Biological Engineering, University of British Columbia,
2360 East Mall, Vancouver, BC, V6T 1Z3, Canada

2Department of Mathematics, University of British Columbia,
1984 Mathematics Road, Vancouver, BC, V6T 1Z2, Canada

Abstract

We present a physics-inspired neural network (PINN)model for direct prediction of hydrodynamic forces and
torques experienced by individual particles in stationary beds of randomly distributed spheres. In line with
our findings, it has recently been demonstrated that conventional fully connected neural networks (FCNN)
are incapable of making accurate predictions of force variations in a static bed of spheres [1]. The problem
arises due to the large number of input variables (i.e., the locations of individual neighboring particles)
leading to an overwhelmingly large number of training parameters in a fully connected architecture. Given
the typically limited size of training datasets that can be generated by particle-resolved simulations, the
NN becomes prone to missing true patterns in the data, ultimately leading to overfitting. Inspired by our
observations in developing the microstructure-informed probability-driven point-particle (MPP) model [2],
we incorporate two main features in the architecture of the present PINNmodel: 1) superposition of pairwise
hydrodynamic interactions between particles, and 2) sharing training parameters between NN blocks that
model neighbor influences. These strategies helps to substantially reduce the number of free parameters and
thereby control the model complexity without compromising accuracy. We demonstrate that direct force
and torque prediction using NNs is indeed possible, provided that the model structure corresponds to the
underlying physics of the problem. For a Reynolds number range of 2 6 Re 6 150 and solid volume
fractions of 0.1 6 φ 6 0.4, the PINN’s predictions prove to be as accurate as those of other microstructure-
informed models.

1 Introduction

The astonishingly rapid advancement of computer hardware and growth of computational power over the past
two decades has entirely transformed science and engineering. In fluid dynamics research, high-performance
computing today plays an indispensable role in both the generation and processing of data. While direct nu-
merical simulation tools provide nearly assumption-free models of fluid flow by directly solving the discretized
Navier-Stokes (NS) equations, the cost of resolving all spatio-temporal scales becomes prohibitively high when
multiscale phenomena are present. An important case in point is the numerical modeling of particle-laden flows,
which is notoriously challenging for realistic system sizes due to their well-known multiscale nature, combined
with a lack of scale separation. Particle-resolved direct numerical simulations (PR-DNS) are able to generate
physically accurate results via direct computation of particle-fluid interaction forces and torques from high res-
olution field data. This is practically impossible for many real-world applications of particulate flow systems
which typically contain billions of particles. A viable alternative to PR-DNS is to average NS equations over
length scales larger than the particle diameter d, while still keeping track of particles in a Lagrangian manner

1

ar
X

iv
:2

10
8.

04
95

8v
1

 [
ph

ys
ic

s.
fl

u-
dy

n]
 1

0
A

ug
 2

02
1

[3, 4]. This approach—commonly referred to as the Euler-Lagrange (EL) or point-particle technique—avoids
resolving particle interfaces, albeit at the expense of the need for closure modeling of particle-fluid interactions.
Additionally, sub-grid stresses induced by velocity fluctuations are also filtered as a result of the averaging pro-
cess, which means that their modeling is necessary if physical fidelity is to be maximally retained [4]. It is thus
clear that the reliability of an EL simulation is critically dependent on the accuracy of the employed closure
models for both interphase momentum exchange and the filtered fluid fluctuations.

For a dilute suspension of particles (i.e. φ → 0, with φ being the solid volume fraction) in the Stokes limit
(i.e. Re→ 0, where Re shows the Reynolds number), the Maxey-Riley-Gatignol (MRG) equation [5, 6] yields
accurate predictions of the hydrodynamic forces [7]. This equation generalizes the Faxén’s law for spatially
and temporally varying undisturbed flows, accounting for the quasi-steady, stress divergence, added-mass and
viscous history forces [8]. While the MRG equation is rigorously valid for Re = 0, its applicability can be
extended to higher Reynolds numbers by introducing empirical corrections. The standard drag law of a sphere
given as CD = (24/Re)(1 + 0.15Re0.687) [9] is one such correction for the quasi-steady drag in the MRG
equation for inertial regimes. In addition, shear- and rotation-induced lift forces—i.e. the Saffman [10] and
Magnus [11] forces, respectively—are nonlinear force contributions arising in finite Re regimes which also
need to be modeled. When a suspension of particles can no longer be regarded as dilute, the disturbance created
by a particle is likely to influence the hydrodynamics of another particle due to the relatively small inter-particle
distances. As a result, the flow around particles varies on the scale of the particle diameter, i.e. d ≈ η where η
denotes the length scale of the carrier flow variations. In such a system, the application of the MRG equation
becomes problematic. This is because the force contributions are expressed in terms of the undisturbed flow,
the computation of which is far from trivial in the presence of nearby particles. Moreover, the utilization of the
Faxén’s law in the MRG equation is justified under the assumptions of d � η and Re → 0 [5], both of which
are violated in an inertial suspension of finite-size particles.

The foregoing challenges with the finite-size point-particle approach has led to the development of drag
models that account for the presence of other particles via introducing functional dependence on the solid volume
fraction. While theoretical [12, 13] and experimental [14, 15] models with limited applicability in terms of Re
and φ ranges have been available for decades, several drag correlations have been proposed more recently based
on PR-DNS of stationary arrays of randomly dispersed spheres [16, 17, 18, 19]. Despite their significant practical
utility, correlations of this type are, at best, capable of providing only an average measure of the drag force that
is collectively experienced by the particles. It is now well established that the particle-to-particle variation of
the hydrodynamic forces due to the unique neighborhood of each particle is quite substantial [20], often being
on the scale of the mean drag itself. Furthermore, the lack of a microstructure-dependent contribution precludes
the computation of neighborhood-induced lift and torque altogether. These shortcomings appear to be major
missing pieces of the puzzle when physical fidelity of EL simulations is concerned. It has been shown that
conventional drag models employed in fluidized bed simulations significantly underestimate both the mean drag
[21] and its variance [22, 23], the former being reflected in lower bed height values and the latter in smaller
particle velocity fluctuations compared to PR-DNS.

The first major effort to deterministically account for the neighborhood effects on the hydrodynamic forces
and torques of individual particles in a stationary dense array was the pairwise interaction extended point-
particle (PIEP) model put forth by Akiki et al. [24, 25]. The PIEP model first approximates the undisturbed
flow by linearly superposing the perturbations created by each neighboring particle. The resulting non-uniform
undisturbed flow is then used to obtain various force and torque contributions via the Faxén form of each term.
Akiki et al. [24, 25] showed that the PIEP model is able to predict ≈ 40% − 75% of the force and torque
variations for 0.11 6 φ 6 45 and 40 6 Re 6 173. The PIEP model is a purely physics-based approach that
is constructed exclusively upon physical arguments and first principles of fluid mechanics. Alternatively, the
quest for a microstructure-dependent force/torque model may also be viewed as the problem of mapping a set of

2

inputs x ∈ Rd×N (e.g. neighbor locations) to a related set of outputs y ∈ Rr×N (e.g. force/torques experienced
a particle) via an appropriate function F of unknown parametersw such that y = F(x;w). Note that d and r
denote the dimensions of the input and output spaces, respectively, whereasN shows the number of samples in
the dataset. Having specified a particular structure forF , a data-driven approach typically seeks to fine-tune the
parametersw in a way that the overall error between true values and those predicted by the model is minimized.
An example of the data-driven strategy is the model of Moore et al. [26] which employs a particular functional
form for regression expanded in terms of spherical harmonics, the parameters of which are found through a non-
linear optimization algorithm. They ultimately complement their data-driven model with the original physics-
driven PIEP approach for performance improvements. In our own effort to develop a data-driven neighborhood-
dependent closure model, we proposed the microstructure-informed probability-driven point-particle (MPP)
approach [2]. Using PR-DNS data of stationary arrays of particles, the MPP model first identifies consistent,
non-random patterns of neighboring particle locations according to a selective data filtering strategy. Based on
statistical arguments, these patterns are used to infer physical basis functions to correlate neighbor locations with
hydrodynamic forces and torques. The MPP model was found to have a performance similar to that of the PIEP
hybrid model of [26]. This similarity should not be surprising, given that both models—although in different
ways—take advantage of the important approximation that the influence of individual neighbors on the force or
torque of a test particle can be superposed. Despite being data-driven, both PIEP and MPP models are carefully
formulated to preserve and incorporate physical features of the problem. In fact, most of the modeling effort of
these approaches is expended on the structuring of the model, rather than the procedure for finding unknown
parameters. Recently, Balachandar et al. [1] proposed the concept of superposable wakes. In this approach, they
seek perturbation flows around spheres such that are assumed to be superposable. The superposition of these
unknown perturbation flows are then used to compute forces and torques by utilizing the generalized Faxén’s law.
Finally, the perturbation flows are found by minimization of the error between the predicted forces and torques
and the exact values from PR-DNS. Similar to [26], the form of the unknown functions—perturbation flows in
this case—was assumed to be axisymmetric and hence expandable in spherical harmonics. Interestingly, the
superposable wake model also shows the same performance characteristics as that of the PIEP andMPPmodels.

An area of active exploration in computational physics of fluids has been the application of machine learning
(ML) techniques to tackle challenging existing problems. ML algorithms are an important category of data-
driven approaches that offer great versatility for the mapping of complex nonlinear relationships without making
strong prior assumptions about the model structure, i.e. the functional forms of the relationships between inputs
and outputs. ML algorithms achieve this level of generality at the expense of their high demand for data and
computational power required for their training. Among the most successful ML algorithms are neural networks
(NN) which have been vastly applied to flow physics problems in turbulence modeling [27, 28, 29, 30, 31, 32],
while less extensively so to direct flow prediction [33, 34, 35, 36, 37], and multiphase flows [1, 38, 39, 40, 41] as
well. The interested reader is referred to [42, 43, 44] for detailed reviews on the state of the art and perspectives
of machine learning applications in fluid mechanics. The present work is inspired by our observation, consistent
with the recent findings of Balachandar et al. [1], that a conventional fully connected NN cannot be successfully
trained for direct prediction of drag variation based on the local neighborhood around each particle. The problem
arises due to the relatively small size of datasets generated fromPR-DNS containing a few thousand data points at
best. For the highly dimensional problem of force/torque prediction based on local microstructure, such datasets
are prohibitively underpopulated to be used by conventional NNs. To remedy the existing issues, we devise
a novel physics-inspired NN point-particle model that utilizes a custom architecture based on the problem’s
physical formulation to effectively guide the training procedure and overcome the high dimensionality issue.
To this end, we incorporate the superposition approximation in the structure of the NN and share the trainable
parameters between the NN blocks, each of which is responsible for taking into account the influence of a single
neighboring particle. In the remainder of this paper, we will first present the configuration of PR-DNS cases,
followed by description of the model formulation and utilized assumptions and constraints. Subsequently, the
structure of the proposed NN architecture is discussed in detail and is contrasted with conventional multilayer

3

φ Re d/∆x L Np

0.1 2 24 25 2984
0.1 10 24 25 2984
0.1 40 24 25 2984
0.1 150 32 25 2984

0.2 2 24 20 3055
0.2 40 32 20 3055
0.2 150 40 20 3055

0.4 2 32 15 2578
0.4 40 40 15 2578
0.4 150 48 15 2578

Table 1: Configurations of PR-DNS cases (adopted from [2]) that are used for data generation in the present study. In the
above table, ∆x shows the grid spacing used by the numerical algorithm to discretize the governing equations Equations (1)
and (2).

NNs. Finally, the performance of the model is evaluated and compared with multilayer NNs, and different
aspects of model interpretability are explored.

2 PR-DNS and data preparation

In this work, we consider stationary random arrays of spheres dispersed in an incompressible Newtonian
fluid, the flow of which is governed by the Navier-Stokes equations given below:

∂u

∂t
+ u ·∇u = −∇p+

1

Re
∇2u, (1)

∇·u = 0, (2)

where u and p show the fluid velocity vector and pressure. The Reynolds number denoted by Re is defined as

Re =
ρUd

µ
=
ρ(1− φ)usd

µ
, (3)

with U and us representing the superficial and average interstitial velocities, whereas ρ, µ show the carrier fluid
density and dynamic viscosity. Physical variables are non-dimensionalized using the particle diameter d as the
length scale, U as the velocity scale and ρU2 as the pressure scale, ρU2d2 as the force scale and ρU2d3 as the
torque scale. Detailed descriptions of the numerical method employed to solve Equations (1) and (2) along with
validation procedures are provided in [2]. Each simulation is carried out in a tri-periodic cubic computational
domain of edge length L, inside of which Np spheres are randomly distributed. The domain size L and the
number of particlesNp are adjusted to achieve the desired solid volume fraction given as φ, while ensuring that
each simulation generates an adequate amount of data. Also, a constant flow rate is imposed in the x direction
to attain the target Re via a dynamically adjusted pressure drop in our numerical algorithm.

The PR-DNS cases that we use in the present study are identical to those in [2]. The configuration of the
respective cases are summarized in Table 1. The dataset for each case of Table 1 is constructed by identifying
and recording the relative position vectors of the 30 closest neighbors of each particle in the array. These position
vectors, together with the average local fluid velocity vector constitute the input variables (i.e. predictors) to our
model, whereas the hydrodynamic force and torque components acting on each particle are the output variables.

4

3 Model formulation

We begin by defining a set of unit vectors for the subsequent development and analysis of the model. In
what follows, êx, êy and êz show unit vectors along the three coordinate directions. Furthermore, êq denotes
the direction of the pressure gradient driving the macroscale flow (i.e. the streamwise direction), whereas ê⊥
represents any unit vector normal to êq. In the present analysis, we take êx to be coincident with êq. The force
and torque on the particle i can be written as

Fi = 〈Fi〉(Re, φ) + ∆Fi(Re, φ, {rj=1, . . . , rj=M}), (4a)
Ti = ∆Ti(Re, φ, {rj=1, . . . , rj=M}), (4b)

where the angular brackets represent averaging over all particles in the array, while ∆Fi and ∆Ti show the
deviations of the force and torque of a particle i from average values, respectively. Also, {rj=1, . . . , rj=M}
symbolizes the collection of position vectors of M influential neighbors relative to the position of particle i.
For each position vector rj , we also define êj to be the unit vector along the direction of rj . The numbering j
of neighboring particles is done according to their distance from particle i, with j = 1 being the closest.

In a sufficiently large array, the lateral components of 〈Fi〉 and all components of 〈Ti〉 will tend to zero.
However, particle-to-particle variation of forces and torques, i.e. ∆Fi and ∆Ti, will be substantial. Conven-
tional drag models provide empirical correlations for the variation of 〈Fi〉 · êq as a function of Re and φ [16,
17, 18, 19]. Similar to our previous effort in developing a microstructure-informed force and torque model [2],
here we focus on the deviations of the hydrodynamic forces and torques from average values. That is, we seek
to approximate the functional dependence of ∆Fi and ∆Ti on {rj=1, . . . , rj=M}, the local microstructure of
each particle. In its most general form, the deviation terms ∆Fi and ∆Ti for particle i can be expressed as the
sum of influences of all other Np − 1 particles within the array, which may be written as

∆Fi =

Np−1∑
j=1

∆Fj→i, (5a)

∆Ti =

Np−1∑
j=1

∆Tj → i, (5b)

recognizing that each influence term is a unique function of the relative positions of itself and all other neighbors,
in addition to the flow regime parameters:

∆Fj→i = fj→i

(
Re, φ, {rk=1, . . . , rk=Np−1}

)
, (6a)

∆Tj→i = gj→i

(
Re, φ, {rk=1, . . . , rk=Np−1}

)
. (6b)

3.1 Pairwise interactions assumption

The general relations above are overwhelmingly complex and thus formidably difficult, if not impossible,
to directly determine for dense, inertial particle-laden flows. An effective approximation that has turned out to
yield reasonably accurate outcomes both for the PIEP [24, 26, 1] and MPP [2] models is to assume pairwise
hydrodynamic interactions. Having specified Re and φ for a certain flow regime, this approximation takes the
influence of each individual neighbor j on the force or torque of particle i to be solely dependent on the location
of the neighbor j. With this major simplification, Equation (6) becomes

∆Fj→i ≈ fj→i(rj), (7a)
∆Tj→i ≈ gj→i(rj). (7b)

5

Figure 1: Visualization of the vectors along which the streamwise (i.e. drag) and lateral force (i.e. lift) and lateral
torque influences due to the neighboring particle j on the reference particle i are directed under the pairwise interactions
assumption.

The other important implication of the pairwise interactions assumption is that the flow disturbance created by
a single neighbor around particle i will be symmetric about the plane that contains êx and êj . As a result,
streamwise and lateral components of each force influence fj→i(rj) cannot have a component normal to that
plane, and hence must lie in the same geometrical plane as the one formed by the vectors êx and êj . The force
influence fj→i(rj) can therefore be decomposed as

fj→i(rj) = ∆Dj(rj)êx + ∆Lj(rj)êL,j , (8)

where

êL,j =
êx × (êx × êj)

‖êx × (êx × êj)‖
. (9)

As for the torque influence, ∆Tj→i will neither have a streamwise nor a lateral component along êL,j under
the assumption of pairwise interactions, due to the same flow symmetry argument. Therefore, ∆Tj→i · êL = 0
and ∆Tj→i · êx = 0, and the torque influence can be written as

gj→i(rj) = ∆Tj(rj)êT,j , (10)

where the direction of the lateral component is similarly dictated by the disturbance flow symmetry and is given
as

êT,j =
êx × êj
‖êx × êj‖

. (11)

A depiction of the relevant vectors in a pairwise configuration is given in Figure 1.

3.2 Unified function representation

In Equations (8) and (10), the unknown functions∆Dj(rj), ∆Lj(rj) and∆Tj(rj) are assumed to be distinct
functions for each neighbor j. However, such a dependence on the neighbor order may not be crucial or even
necessary for a successful modeling effort. One reason is that since each function is dedicated to a different
neighbor, the range of their inputs (i.e. rjs) would be different and minimally overlapping. This suggests the
possibility of using a single function that handles all rjs regardless of their particular order. In the context of
regression, this would be equivalent to using a global regression function for the entire range of values instead
of using piecewise functions for each particular range. The other reason originates from our observations of
probability distribution maps (PDFs) pertaining to different neighbors in [2]. We found that despite the PDFs

6

(a)
Hidden layers

Input layer

Output layer

N
ei

g
h

b
or

 1
N

ei
g

h
b

or
 M

(b)

Figure 2: (a) Structure of a typical fully connected neural network model, (b) the schematic view of a single neuron

expectedly covering different regions of space around the reference particle owing to their different distancing,
the overall qualitative patterns were strikingly similar. This was why we were able to use global PDFs for all
neighbors without any remarkable loss of accuracy in the model compared to using separate PDFs for each
neighbor.

The unified function representation approach is similar, but not identical to the order invariance approx-
imation employed by Moore et al. [26]. In [26], the dependency of force and torque influence functions on
the neighbor number is removed, and a PDF inferred from the training data is used as a weighting function to
account for the differences in the strengths of effects due to different neighbors. In the proposed model here, the
ordering of the neighbors is implicitly accounted for by the approximating influence functions. The problem
hence reduces to the estimation of the three unknown scalar functions ∆D(rj), ∆L(rj) and ∆T (rj). Con-
sequently, the final form of the total streamwise and lateral force and torque contributions to deviations from
average values can be written as

∆Fi =

Np−1∑
j=1

∆D(rj)êx + ∆L(rj)êL,j , (12a)

∆Ti =

Np−1∑
j=1

∆T (rj)êT,j , (12b)

with êL,j and êT,j given in Equations (9) and (11).

4 Neural network model

Artificial NNs are arguably the most widely used machine learning method, known for their potential to
approximate any arbitrarily complex nonlinear function [45]. A schematic view of a typical NN structure is
shown in Figure 2. The main component of NNs are nodal processing units called “neurons”, which are con-
ceptually inspired by their biological counterparts, but with no direct correspondence of any kind. The neurons
are usually stacked up in the form of sequential layers as can be seen in Figure 2a. The lines between pairs of
neurons represent connections with unique weighting parameters associated with them, shown as wl

p,q in Fig-
ure 2b. Each neuron in layer l receives inputs xl−1q from neurons in the preceding layer l − 1, and computes a
weighted sum of the incoming data. A bias term blp is then added to the sum, and the resulting value is passed

7

through an activation function Φ, the nonlinearity of which enables the NN to approximate nonlinear mappings.
The outcome of operations done by neuron p in layer l, i.e. xlp is given as

xlp = Φ

(∑
q

wl
p,qx

l−1
q + blp

)
. (13)

The training phase of a NN is the process through which optimal values for the weights and biases are found.
The process begins with random (or in some cases prescribed) initialization of weights and biases in the first
iteration. Raw data is then taken via the input layer, where the information merely gets relayed to the next layer
without any operations being performed. The data undergoes successive transformations in the intermediate
layers—also known as hidden layers—until it reaches the output layer, thus completing a single feed-forward
step. The predicted values generated by the NN are then compared with the expected target values in the dataset
by a so-called loss or cost function. The actual training of the network takes place in the back-propagation step
[46], where the gradient of the loss function with respect to the weights and biases of the network are efficiently
computed using the chain rule. These gradients are utilized by an optimization algorithm, e.g. gradient descent
or its variants, to adjust the weights and biases such that the loss function is minimized. Owing to their highly
flexible nature, NNs are prone to overfitting and lack of generalizability. A model that suffers from overfitting
exhibits high prediction power on the training dataset, but performs poorly when presented with unseen data. In
such a case, the model is complex enough that it merely memorizes the training dataset without identifying the
true underlying patterns. It is common practice in training NNs to split the dataset into training and validation
sets in order to be able to detect overfitting. The model is trained using the former, while tested on the latter to
ensure similar performance on both sets. Various regularization strategies that control model complexity exist to
prevent overfitting, such as parameter norm penalties and the dropout technique [47]. A NN model may also be
regularized by devising particular architectures correspondent to the target problem to be solved, or by imposing
problem-specific cost functions that ensure the satisfaction of governing laws and constraints. This matter will
be discussed further in the subsequent sections.

For the problem of interest in this work, the input data consists of the components of position vectors per-
taining toM influential neighbors that surround a test particle (shown as {rx,j , ry,j , rz,j} for each neighbor j in
Figure 2a), whereas the outputs are either hydrodynamic force or torque components (shown in Figure 2a only
as {∆Fx,i,∆Fy,i,∆Fz,i} for brevity). For a NN that is to supposed to perform regression, a standard choice for
the loss function is the mean squared error (MSE) of the predicted output with respect to the expected value.
For a given dataset and network configuration, the loss function based on the MSE is defined as

L(w, b) =
1

Np

∑
i

(∆Fi,NN −∆Fi,DNS)2 , (14)

wherew and b denote the weights and biases matrices, respectively. Note that for a model with multiple outputs,
the final loss value may be obtained by summing individual losses for each component in L.

4.1 Fully connected NN architecture

The most basic type of NNs is one that has multiple layers of neurons stacked sequentially between the input
and output layers. The characteristic feature of such NNs is that each node within the network is connected
to each and every other adjacent node as shown in Figure 2a, hence explaining the origin of the term fully- or
densely-connected used to describe these NN structures. From the modeling perspective, the problem of force
and torque prediction based on local neighborhood is a fairly complex one: the underlying mapping function
is expected to be nonlinear and it typically requires the positions of ≈ 10 − 20 neighbors as input for accurate
approximations [26, 2]. For such a high-dimensional problem governed by potentially complex nonlinear func-
tions, a FCNN needs to be sufficiently flexible to be able to model the intricacies of the target function. Even

8

Fully connected layers

Output layer

Fully connected layers
Input layer

Output layer

N
ei

g
h

b
or

 1
N

ei
g

h
b

or
 j

N
ei

g
h

b
or

 M

Projection Step

or

Figure 3: A schematic view of the architecture of the proposed physics-inspired neural network model. The diagram to
the left of the dashed vertical line shows the model design when lift or torque is predicted. When prediction of drag is
desired, the projection step is trivial and hence unnecessary, leading to a simplified structure shown to the right of the
vertical dashed line.

though the desired flexibility can be readily achieved by deepening and widening the network (i.e. increasing
the number and the width of the hidden layers), successful training becomes seriously impeded in this scenario.
Balachandar et al. [1] have recently shown that a FCNN cannot be directly trained on limited PR-DNS data
for accurate prediction of hydrodynamic forces. This is consistent with and confirmed by our experiments with
FCNNs, as will be later discussed in Section 5. With the growing number of training parameters (i.e. weights
and biases), a limited dataset generated from expensive PR-DNS becomes insufficient for effective learning of
generalizable patterns in the data, often resulting in either inability to minimize the loss function altogether or
severe overfitting. Moreover, as the input space dimensions increase, exponentially more data is required to
maintain a constant data density due to the curse of dimensionality [48].

Overcoming the foregoing challenges requires special designing of the NN structure and tailoring it to the
particular problem at hand. In fact, a great part of the success of NNs in general domains is owed to the spe-
cialized architectures of these models for particular tasks. Remarkable examples are convolutional NNs which
are capable of handling high-dimensional data for image recognition [49], whereas long short-term memory
NNs are designed for modeling sequential data such as time series [50]. When physical systems are concerned,
domain knowledge needs to be incorporated in the way an ML model is constructed and trained to ensure that
physical constraints and governing laws are properly enforced. Such prior knowledge can be embedded in ML
models in the form of observational, structural and learning biases [51]. Promising examples in fluid mechanics
are implicit enforcement of invariances and symmetry [52] especially in turbulence modeling [32, 53], or direct
embedding of governing equations as regularization mechanisms for penalizing the loss function [54, 37].

4.2 Physics-inspired NN architecture

In the present work, we propose a specialized NN architecture that incorporates the simplifying approxima-
tions presented in Section 3; namely, the pairwise interactions and unified function representation assumptions.
Strictly speaking, the physics-inspired neural network (PINN) specifically represents Equation (12), the struc-
ture of which is depicted in Figure 3. The PINN implements the two model approximations as follows: 1) With
this architecture, instead of simultaneously feeding the relative positions of all influential neighbors to a single

9

FCNN, separate NN blocks are responsible for handling the influences of individual neighbors. These influ-
ences are then summed up to give the total effect of the neighborhood of a particle. 2) The training parameters
(weights and biases) are shared between the NN blocks (shown in light blue in Figure 3), constraining them to
approximate a single unified function for all neighbors. Consequently, the flow of data in the PINN is as follows:

i) The components of the position vector of each neighbor j, i.e. rx,j , ry,j and rz,j are fed to its correspond-
ing NN block.

ii) The information is processed in the NN blocks through multiple layers of densely connected neurons, the
parameters of which are shared among them. A single scalar output is generated by summing the outputs
of the last layer to represent each of the three functions ∆D(rj), ∆L(rj) and ∆T (rj) in Equation (12).

iii) The resulting scalar values generated in the preceding step are then multiplied by appropriate direction
vectors; namely, êx, êL,j and êT,j for the streamwise and lateral forces (i.e. drag and lift, respectively) as
well as the lateral torque. This is done to generate the force and torque influence vectors of Equation (12),
each of which is then projected onto the x, y and z directions.

iv) The output layer is set to have a linear activation function and no bias parameter. This means that this
layer is merely responsible for computing a weighted sum of the force/torque influences that it receives
from the network pathway of each neighbor, as shown in the diagram in Figure 3. This completes one
feed-forward pass of the PINN.

In the training phase, the outputs generated in the last step above are compared with the PR-DNS values, and
back-propagation scheme adjusts the parameters of the PINN using the gradients of the loss function. The feed-
forward and back-propagation steps are iteratively repeated until stopping conditions (e.g. maximum number of
iterations) are met.

The PINN structure described above is deliberately designed to introduce significant structural bias into the
model, corresponding directly to the physical formulation of the problem. Specifically, the proposed architecture
reduces the potential NN modeling complexity in two distinct ways. First, each NN block always handles only
3 input variables pertaining to a single neighboring particle, regardless of the number of included neighbors
in the model. Since the pairwise interactions assumption ignores second- and higher-order interactions, the
PINNmapping function that represents such a simplification becomes substantially less complex, and thus more
amenable to modeling. Second, all NN blocks share the same set of parameters, meaning that a single unified
influence function is approximated for all neighbors regardless of their distance. This feature is reminiscent
of parameter sharing of convolving filters in CNNs, which is a crucial technique for complexity reduction.
Consequently, while the former strategy simplifies the nature of the mapping function itself, the latter reduces
the number of such mappings to unity on justified grounds. As we will see in the next section, the proposed
PINN demonstrates strong performance for all considered cases. This will be contrasted with the FCNN model
that fails to provide accurate predictions of forces and torques in most scenarios and ultimately suffers from
overfitting.

4.3 Influence of local average velocity

We pointed out in [2] that even though the immediate neighborhood of a particle determines the major part
of the force and torque variance of individual particles, not every group of particles is exposed to the same
mesoscale flow. Consider a particular arrangement of particles that in one instance is fully exposed to a channel
of flow, while another instance of the same arrangement is partly shielded from the flow by an upstream group
of particles. In this scenario, the undisturbed flow seen by a particle in the former group would be different

10

than that seen by a particle in the latter group, despite the arrangement being identical. Obviously, the average
macroscale flow is the same for all particles only on the scale of the entire bed, which means that capturing this
effect requires the inclusion of the influence of all particles in the bed for predicting force and torque of each
particle. Our present model cannot capture this effect directly even if allNp−1 neighbors of each particle were
included in the training process. Modeling such a highly nonlinear, high dimensional functional dependence
goes beyond the underlying assumptions of the proposed PINNmodel. Consequently, we adopt the same strategy
as in [2] so as to partly capture the foregoing effects. To this end, we compute the local volume-averaged velocity
around each particle within the bed, and add that as an additional predictive input feature to the NN models (see
[2] for details of the averaging process). In terms of the NN structure, this is achieved by supplying the average
velocity components as scalar inputs to the output layer of the NNmodels in Figures 2 and 3with linear activation
functions. Similar to the findings of [2], improvement in performance appears to be most pronounced in case
of drag prediction, with the increasing of R2 ranging from ∆R2 ≈ 0.05 to 0.15 for φ = 0.1 and φ = 0.4,
respectively.

4.4 Hyper-parameters and implementation

So far, the overall structures of both types of NN models are described in Sections 4.1 and 4.2. There are
a number of choices that need to be made with regards to the specific configuration of each model by deciding
the values of model hyper-parameters. We have found in our experiments with the PINN model that best results
are achieved with two hidden layers for the NN blocks, each consisting of 10-15 neurons. In case of the FCNN
model, no significant improvement was observed between having one or more hidden layer. The addition of
more layers in the case of FCNN leads to the faster deterioration of the FCNN model’s predictions. Moreover,
the computationally efficient Adam optimizer [55] with a learning rate between 0.001 and 0.01 is used for the
minimization process. The maximum number of allowable epochs (i.e. one complete pass through the entire
dataset) is set to 2000, with a batch size of 100. Furthermore, among various existing choices for the activation
function, the hyperbolic tangent seems to be preferable for most regression models and is therefore employed for
the present work. Finally, we use the k-fold cross-validation technique [48] to monitor the model for possible
overfitting. The k-fold method works by first partitioning the dataset into k segments or folds. The model is
then iteratively validated with each fold while being trained on the remaining k − 1 folds. In this manner, the
entire dataset is both trained on and validated against, and the model becomes robust to particular choices of the
training and validation sets. As for the results, we will report model performance measures that are averaged
over all rounds of the cross-validation.

The NN models presented in this work are implemented using TensorFlow [56], which is Google’s free
and open-source library for training deep NNs. In doing so, we used the Keras [57] functional API in Python
which enabled us to employ a customized architecture for the PINN model. The codes and datasets of this
work are publicly available and can found through the following link: https://github.com/armanawn/
PINN-force-torque-model.

5 Results and discussion

In this section, we first present a performance comparison between the FCNN and PINN architectures for
a few representative cases, and then report the full performance results and analysis for the developed PINN

11

https://github.com/armanawn/PINN-force-torque-model
https://github.com/armanawn/PINN-force-torque-model

(a)

0 5 10 15 20
M

-0.3

0

0.3

0.6

R
2

∆Fx, (Re, φ) = (40, 0.1)
(b)

0 5 10 15 20
M

0

0.2

0.4

0.6

0.8
∆FL, (Re, φ) = (40, 0.2)

(c)

0 5 10 15 20
M

0

0.2

0.4

0.6

0.8
∆TL, (Re, φ) = (40, 0.4)

FCNN, training
FCNN, test
PINN, training
PINN, test

Figure 4: The performance of the PINN and FCNNmodels in predicting drag, lift and torque in terms of the coefficient of
determination, R2 for different values ofM , i.e. the number of included neighbors in the training process. The Reynolds
number in all cases is fixed at Re = 40, whereas the solid volume fraction takes on the values of φ = 0.1, 0.2 and 0.4.

model. The performance is quantified in terms of the coefficient of determination defined as

R2 = 1−

N∑
i=1

(∆FModel,i −∆FDNS,i)
2

N∑
i=1

(∆FDNS,i − 〈∆FDNS,i〉)2
, (15)

which gives the ratio of the variance explained by the model to the total variance that exist in the data. Also,
N denotes the number of samples used to obtain the value of R2. According to Equation (15), R2 = 0 means
that the model is entirely incapable of explaining variations from the mean, which corresponds to a model that
merely predicts the average values of the target variable (e.g. classical drag correlations). On the other hand, a
model that is able to perfectly predict the variations of the target variable would yield R2 = 1.

5.1 Performance comparison of FCNN and PINN models

We have previously mentioned that FCNNs cannot be trained on small datasets in a direct manner to ac-
curately predict hydrodynamic forces and torques, due to the high dimensionality and the strong nonlinearities
of the problem. In Figure 4, the coefficient of determination is shown as a function of the number of included
neighbors. For the sake of conciseness, the modeling accuracy for drag, lift and torque is demonstrated only for
Re = 40 and various solid volume fractions, but our observations and conclusions also apply toRe = 2, 10 and
150. We can see throughout all graphs how FCNNs fail to provide generalizable predictions as the number of
included neighbors increases, whereas the accuracy of the PINN predictions improves with the addition of more
neighbors to the modeling process. Notably, inclusion of more neighbor influences never leads to overfitting,
but rather to an ultimate saturation of accuracy. This is the advantageous consequence of parameters sharing be-
tween NN blocks that decouples the number of trainable parameters in the model from the number of included
neighbors. Figure 4a shows that while the coefficient of determination for the test set steadily increases and
reachesR2 ≈ 0.71 for drag in case of the PINN model, the FCNNmodel peaks atR2 ≈ 0.28 with the inclusion
ofM = 2 neighbors. The lines shown in red that indicate the training and test set performance of the FCNN
model begin to diverge at this point. The R2 associated with the test set experiences an almost monotonic drop
beyond this point, showing a characteristic manifestation of overfitting. In the case of drag, theR2 of the FCNN
drops below zero forM ≥ 7, meaning that the mean drag value is a better prediction of the drag compared to
the output of the FCNN model. Balachandar et al [1] also found negative values ofR2 for the prediction of drag
with M = 25; however, they do not report R2 for smaller M . The scenario is qualitatively the same for the

12

φ Re ∆Fx ∆FL ∆TL

0.1 2 0.81 0.77 0.89
0.1 10 0.82 0.78 0.86
0.1 40 0.70 0.73 0.74
0.1 150 0.61 0.66 0.65

0.2 0.2 0.68 0.57 0.74
0.2 2 0.73 0.68 0.88
0.2 40 0.71 0.67 0.76
0.2 150 0.61 0.56 0.56

0.4 2 0.61 0.51 0.72
0.4 40 0.66 0.58 0.69
0.4 150 0.52 0.53 0.59

Table 2: Performance of the PINN model in terms of the coefficient of determination R2

prediction of the lateral force and torque, as can be seen in Figures 4b and 4c, respectively. Quantitatively, we
find that the FCNN model performs better in predicting the lateral loads compared to the drag, attaining a max-
imumR2 of≈ 0.4 and≈ 0.5 for lift and torque withM = 3 and 4, respectively. Nevertheless, the PINN model
consistently achieves 50% to 70% higher R2 in comparison with the FCNN model, with no sign of overfitting.

The behavior of the FCNN and PINN models in terms of their performance versus the number of included
neighbors for drag, lift and torque merits further elaboration. Regardless of the case, we have seen that the
FCNN model always suffers from overfitting whenM is increased beyond a certain number. Unlike the PINN,
the FCNN model does not assume any particular structure for the functional dependence of the hydrodynamic
forces and torques on the local neighborhood. As more neighboring particles are included in the model, the
FCNN needs to become increasingly more intricate so as to be capable of handling complex interactions be-
tween the input variables. This can be achieved by employing more hidden layers, and more neurons in each
layer. Despite being theoretically flexible enough to approximate any arbitrarily complex functional dependence,
training a FCNN of such complexity on a small dataset remains unfeasible in practice. Consequently, the added
complexity benefits an elaborate FCNN only to memorize the given dataset instead of learning generalizable
patterns. The overfitting behavior observed in Figure 4 is a manifestation of the foregoing discussion. The PINN
model, on the other hand, seems to be immune to overfitting thanks to a successful regularization strategy for
controlling model complexity; namely, its structural bias. In this case, the physical formulation of the problem
(see Section 3) incorporated in the architecture of the PINN effectively guides the training procedure. Never-
theless, a clear upper bound for the performance of the PINN model is evident in Figure 4. In contrast to the
case of a FCNN, this seeming saturation of performance of the PINN is a theoretical limit rather than a prac-
tical one, as for the FCNN. The proposed structure of the PINN follows a physical formulation which assumes
binary hydrodynamic interactions between the particles. This means that the particular formulation presented
in Section 3 only considers direct, first-order influences of the neighboring particles on the force or torque of a
reference particle, and neglects any indirect, higher-order interactions. In this sense, the performance limit that
we observe is not surprising, but expected indeed.

5.2 Overall performance of the PINN model

The performance of the PINN model is evaluated for all cases in Table 1 in terms of the coefficient of
determination, and the results are presented in Table 2. Moreover, correlation plots are also generated for three

13

(a)

3.0 1.5 0.0 1.5 3.0

∆Fx,DNS

3.0

1.5

0.0

1.5

3.0
∆
F
x
,P
IN
N

R 2 = 0.70

Re= 40, φ= 0.1
(b)

1.0 0.5 0.0 0.5 1.0

∆FL,DNS

1.0

0.5

0.0

0.5

1.0

∆
F
L
,P
IN
N

R 2 = 0.67

Re= 40, φ= 0.2
(c)

1.0 0.5 0.0 0.5 1.0

∆TL,DNS

1.0

0.5

0.0

0.5

1.0

∆
T
L
,P
IN
N

R 2 = 0.69

Re= 40, φ= 0.4

Figure 5: Correlation plots generated after training the PINNmodel to predict drag, lift and torque atRe = 40 and various
solid volume fractions. The coefficient of determination, R2 for each case is also given. The red dashed line represents an
ideal fit.

cases in Figure 5, representing modeling results for drag (Figure 5a), lift (Figure 5b) and torque (Figure 5c) at
Re = 40 and various φ. The horizontal and vertical axes of each plot show the values obtained from PR-DNS
(i.e. exact values) and PINNmodel, respectively. Each data point on the plots represents the prediction result for
a single sample in the dataset. The red dashed line indicates an ideal, perfect model where the predictions of the
PINNmodel are equal to those given by PR-DNS. Therefore, the closer the data points are to the red dashed line,
the better the performance of the model. The PINN model is evidently capable of explaining about two thirds
of the total particle-to-particle variation in the drag, lift and torque values. In general, predictions are of higher
accuracy for the torque, drag and lift in descending order. Moreover, higher R2 values are typically associated
with regimes with smaller Reynolds numbers and lower solid volume fractions. It is remarkable that the range
ofR2 values and their variance between cases show striking resemblance to those obtained with the MPP model
[2]. Furthermore, the peak values of R2 that are obtained here and those reported for the PIEP model [24, 26]
are also very similar. We can explain this by pointing to the fact that despite being derived in fundamentally
different ways, all three models (i.e. PIEP, MPP and PINN) incorporate the same central assumption of pairwise
interactions. Obviously, the extent to which this assumption compromises the model accuracy depends on the
regime and the force or torque component to be modeled.

A number of interesting conclusions may be drawn from the presented results:

• First-order effects captured by the pairwise interactions approximation explain the greater part of the total
particle-to-particle variation of forces and torques, even in the most convective and densest flow regimes.
Even though this assumption is strictly valid for Re = 0, it still retains its predictive value albeit to a
limited extent.

• Prediction of the hydrodynamic lift and torque requires the inclusion of far fewer neighbors compared
to the case of drag (e.g. M = 4–7), rendering the influences much more local. A similar observation
was also made with the MPP model [2]. This is linked to the fact that the flow is highly convective in
the main flow direction. The induced wakes and the streamwise velocity deficit extend several diameters
away from each particle, in contrast to the variations of the transverse velocity components as shown in
[24]. Similarly, the torque variation depends on the perturbation vorticity which also has a limited zone
of influence. As a result, a high-accuracy prediction of the drag always requires at least 25 neighbor
locations to be included in the modeling. Expectedly, we have found that this effect is more prominent
for higher Re and smaller φ, owing to the stronger convective effects and less frequent wake disruption

14

(a)

4 2 0 2 4
rx

4

2

0

2

4
r L

∆Fx, (Re, φ) = (40, 0.1)

-3

-1.5

0

1.5

3

(b)

3.0 1.5 0.0 1.5 3.0
rx

3.0

1.5

0.0

1.5

3.0
∆FL, (Re, φ) = (40, 0.2)

-1.6

-0.8

0

0.8

1.6

(c)

1.5 0.0 1.5
rx

1.5

0.0

1.5

∆TL, (Re, φ) = (40, 0.4)

-1

-0.5

0

0.5

1

Figure 6: Scalar output of the NN blocks show in Figure 3 after training of the PINN force and torque model at Re = 40
and various φ. Note that these plots are obtained by taking the azimuthal average of of the NN block outputs over several
planes that contain the streamwise direction vector êx. The black disk shows the location of a test particle, whereas the
white annular band asserts that particles cannot overlap. The white dashed circles in each plot show the distance of the
farthest neighbor to the reference particle.

by neighboring particles, respectively.

• The preceding point also shows more clearly why the FCNN model performs much worse in predict-
ing drag compared to predicting either lift or torque. That is, the lateral force and torque of a particle
are inherently influenced by fewer neighbors due to the dominance of the streamwise flow. Since the
peak performance is attainable by fewer neighbors, the FCNN would be able to provide relatively better
predictions before becoming excessively complex with the inclusion of more neighbors.

5.3 Interpretability of the PINN model

In addition to being generalizable, it is crucial for ML models of physical systems to be interpretable [42].
The PINN model developed in this paper achieves full interpretability, as its NN architecture represents the
physical formulation of the problem (see Section 3). In fact, the output of each NN block in Figure 3 shows the
scalar contribution of a neighboring particle to the deviation of the force or torque value of a test particle from
the average, as a function of the neighbor location. In other words, the NN blocks approximate the functional
form of the scalar functions ∆D(rj), ∆L(rj) and ∆T (rj) in Equation (12). This is opposed to the case of the
FCNN model, where it is not known on any level how an output is generated, or what the components of the
NN model correspond to. In order to demonstrate the interpretability of the PINN model, we show in Figure 6
the output of the NN blocks after training the model for predicting drag, lift and torque at Re = 40 and various
solid volume fractions. This is done by disconnecting the model at the summation junction in Figure 3, and
extracting the outputs for arbitrary sets of rx, ry and rz values. Note that each NN block takes as input the x, y,
and z relative coordinates of a neighbor j and outputs a scalar value. Since the visualization of contour values
of a function in three dimensions is not feasible, we have computed the values of the function on several planes
that contain êx and averaged the resulting values in the azimuthal direction. This results in two-dimensional
contour plots shown in Figure 6. It is also for this reason that the distances in the transverse direction are shown
as rL rather than ry or rz . We should point out that the output of the NN blocks on each plane is not fully
axisymmetric, even though the contours shown in Figure 6 appear to be so owing to the averaging operation.
This is due to the fact that there is no axisymmetry-enforcing mechanism in the model, neither is the dataset
dense enough for the NN to learn the expected axisymmetry. This matter will be discussed later in this section.

The patterns observed in Figure 6 are reminiscent of the force maps of [26], influence maps of [1], as well
as probability distribution maps of [2], indicating that the PINN model has successfully learned the physical

15

patterns in the dataset. In Figure 6a, the extended wake effect in the streamwise direction is prominently seen
when the PINN is trained to predict drag. If a neighbor is located upstream of a test particle, the shielding effect
substantially diminishes the drag experienced by the test particle, even when the separation distance between the
two particles is large. Similarly, the increased pressure region in front of a downstream neighbor acts to decrease
the fore-aft pressure difference of the test particle [20], hence decreasing its drag. Moreover, we have shown
in [2] that increased drag is associated with the lateral positioning of the neighboring particles, which can also
be clearly identified in the positively valued areas located laterally with respect to the test particle in Figure 6a.
In Figure 6b, it can be seen that neighbors positioned laterally and downstream of the test particle induce a
positive contribution to lift, whereas those located laterally and upstream create weaker negative contribution.
It is important to note that the actual vectorial contribution of each neighbor is obtained by multiplying the
scalar values given by the NN blocks by its corresponding influence vector, êL,j in this case. This means that
even though the upper and lower lateral downstream areas of force influence in Figure 6b are both positive, a
neighbor located in the region with rL > 0 induces a lift force in the negative rL direction, and vice versa. It is
also worth mentioning that a neighbor j located downstream of the test particle with rL = 0 would induce a zero
lift influence, since êx × êj = 0 and hence êL,j = 0. Finally, the NN block output for the torque in Figure 6c
shows positively valued regions immediately upstream and downstream of the test particle, accompanied by
strong negatively valued areas that are positioned laterally. This pattern is in general qualitative accordance
with our results in [2], although the strong negative areas are specific to the highest solid volume fraction of
φ = 0.4 shown here. The positively valued area downstream of the test particle is out of the range of neighbor
distances that the model is trained for, and is thus an artifact.

A point worth further discussion is the explicit enforcing of different types of symmetry present in the physics
of the problem. Wementioned earlier that the functional forms learned by the PINNmodel are not automatically
axisymmetric; a condition that arises from the pairwise interactions assumption. One way to achieve symmetry
and rotational invariance is data augmentation, which has been utilized in ML models of turbulence [52, 32].
In order to achieve rotational symmetry along an arbitrary axis (i.e. axisymmetry), the training dataset can be
rotated a certain number of times about the desired axis, and the resulting transformed data are added to the
original dataset. In this manner, the ML algorithm encounters the same data in various transformed coordinates
and is therefore better guided to respect the rotational symmetry in the problem. With our PINNmodel, the data
augmentation technique with 10 to 30 rotations about the flow direction does result in improved—yet far from
perfect— axisymmetry of the NN block outputs, as well as a marginal performance enhancement. Nevertheless,
the computation costs grow significantly with more rotations and hence prohibited further experimentation.
Another conceivable method for enforcing axisymmetry would be to use the automatic differentiation technique
[58] in order to mathematically impose the axisymmetry condition, i.e. to explicitly enforce the vanishing of
the azimuthal gradient of the resulting NN block functions. This strategy is not implemented here, but seems to
be a promising alternative for exploration in future works.

More insight into the PINN model’s interpretability can also be gained through the inspection of the weights
in the output layer connections in Figure 3. Since the influence of each neighboring particle is separately handled
by the model, the weight parameters in the last layer are each dedicated to the influence of a single neighbor.
Given the linear activation function of the output layer, the final predicted value of the PINN is the weighted sum
of individual neighbor influences. Therefore, the magnitude of each weight parameter, denoted by wj , of the
neighbor j reflects the importance of its contribution to the total force or torque deviation. In Figure 7, we show
the values of weights in the output layer after training the PINN for force and torque prediction at Re = 40 and
various φ. In all cases, the decreasing trend of wjs with j is a clear evidence of the fact that neighbors located
farther away have less influence on the force and torque deviation experienced by the test particle. Furthermore,
wj vanishes almost completely for j > 25 for this particular flow regime, whereas wj>8 ≈ 0 in case of the
lateral torque indicating a much smaller radius of influence. These results corroborate the observations made
in Figure 4; adding more neighbors located farther way to the model is unlikely to significantly enhance the

16

(a)

0 5 10 15 20 25 30

j

0

0.1

0.2

0.3

0.4
w
j

∆Fx, (Re, φ) = (40, 0.1)

(b)

0 5 10 15 20 25 30

j

0

0.1

0.2

0.3

∆FL, (Re, φ) = (40, 0.2)

(c)

0 5 10 15 20 25 30

j

0

0.15

0.3

0.45

∆TL, (Re, φ) = (40, 0.4)

Figure 7: Weighting parameters pertaining to the output layer of the PINN, after the training process for drag, lift and
lateral torque. The Reynolds number is fixed at Re = 40, whereas the solid volume fraction is varied from 0.1 to 0.4. The
horizontal axis, j, identifies the number of the neighboring particle.

model performance due to their diminishing influence. Note that in Figure 7 the value ofM (i.e. the number of
included neighbors) is fixed, whereasM is variable in Figure 4 and a different set of wj results from training
with a particular value ofM .

6 Concluding remarks

It is without doubt that computational methods have played a central role in shaping our understanding
of multiphase flows. Today, the most complex scenarios of particle-laden flows involving the interaction of
thousands of particles with each other and with the carrier fluid are accurately simulated using the PR-DNS
technology. Nonetheless, PR-DNS is computationally intensive, and large-scale modeling of dense fluid-particle
systems occurring in industrial or natural settings using PR-DNS is out of reach for the foreseeable future.
The Euler-Lagrange technique provides a viable alternative by averaging the governing equations of the fluid
phase and treating particles as point sources and sinks of momentum, leading to substantial reduction of the
computational costs. The averaged equations, nevertheless, need to be supplemented with an appropriate closure
law that accounts for the momentum exchange between the fluid and solid particles. Classical drag correlations
proposed in the past based on PR-DNS of stationary arrays of particles only provide the average drag as a
function of the Reynolds number and solid volume fraction. However, the force acting on each individual
particle is also a function of the unique neighborhood of each particle. Furthermore, the average nature of the
conventional closure laws precludes the computation of microstructure-induced lift and torque. A number of
important efforts have been recently made to address this problem via the development of physics- and data-
driven microstructure-informed models [24, 26, 2, 1].

This paper presents a novel approach towards the direct modeling of hydrodynamic forces and torques in
stationary beds of spheres using ML techniques. The tremendous success of ML algorithms in general pattern
recognition tasks in the past few years has attracted significant interest in computational fluid dynamics research
for the application of these methods to challenging problems in the field, including turbulence and reduced-order
flow modeling. The present work was motivated by the findings of [1] that a conventional multilayer perceptron
(i.e. fully connected NN) cannot be trained to give accurate predictions of the forces experienced by individual
particles in a fixed bed of spheres. We remedy this issue by developing a NN model that incorporates—and
essentially imitates—the physical formulation of the problem in its architecture, unlike a typical FCNN that is
unaware of the physical nature of the problem at hand. Our physics-inspired NN model achieves substantial
performance improvement over a conventional FCNN, while also enjoying full interpretability. To this end,
we invoke the pairwise interactions assumption that considers the influence of each neighbor on the force or

17

torque of a test particle separately. The individual neighbor influences are ultimately superposed in order to
obtain the total force or torque deviation from the mean value. Of particular importance is that this assumption
pre-determines the direction of each influence vector. We embed the pairwise interactions assumption in the
structure of the PINN by dedicating a NN block of fully connected layers that receives the position vector of a
single neighbor as input and outputs a scalar value, multiplication of which by the already known influence vector
yields the contribution of that particular neighbor. In this manner, the NN block is forced to learn the functional
form of the neighbor influences according to the structure and constraints imposed on the model. The total
force or torque deviation is then obtained by computing the weighted sum of the individual influences of each
neighbor. In addition to the pairwise interactions assumption, we also reduce the model complexity by sharing
parameters between the NN blocks, which results in a unified functional representation of the force and torque
influences. This is essentially a strategy similar to that employed in CNNs tomanage complexity and enhance the
generalizability of NN models. While handling inputs (i.e. position vectors) associated with different neighbors
separately, parameter sharing results in the training of one, rather than several, unified functional form for the
dependence of influences on the neighbor position.

The results show that the PINN model’s predictions are on average as accurate as those of the MPP [2] and
PIEP [24], both of which similarly assume binary hydrodynamic interactions between particles, and hence only
account for first-order effects of the local microstructure. We record the coefficient of determination R2 of the
PINNmodel ranging from 0.51 to 0.89, with averages of 0.68, 0.64, and 0.73 for the drag, lift and lateral torque,
respectively. The PINN model also proves to generalize well with the effective prevention of overfitting: the
model does not grow in complexity with the inclusion of more neighbors in the training process, as directly
opposed to the FCNN model. In line with [1], we also demonstrate that the FCNN model fails to provide
accurate predictions and inevitably suffers from overfitting when more than 3 − 4 neighbors are used in the
training process. The worst case scenario pertains to the case of drag prediction where a maximum R2 of 0.28
was achieved with the FCNN model, whereas higher values of R2 reaching 0.39 for lift and 0.52 for lateral
torque were recorded in selected cases. We attribute the better accuracy of the FCNN in the latter cases to the
fact that the lift and torque of a test particle are less prone to long-range interactions compared to drag. In other
words, their variations are explained by taking a smaller number of neighbors into account, thus yielding better
predictions before the FCNNmodel becomes overfitted. In addition to enforcing governing laws and constraints,
an important hallmark of the effort to make ML algorithms aware of the underlying problem physics is to make
such models interpretable, as contrasted with the black-box nature of a conventional multilayer perceptron. In
the proposed PINN model, we have essentially achieved interpretability down to the level of the NN blocks that
represent the functional form of neighbor influences. We have presented the intermediate outputs of the model
generated by the NN blocks and demonstrated their correspondence to the governing fluid-particle physics,
along with potential strategies for improvement. Finally, we also showed how the weighting parameters of the
connections in the output layer reflect the relative importance of each neighbor’s influence on the force and
torque variation of a test particle.

In conclusion, we recognize that this model can only be as accurate as the assumptions based on which it
is constructed. While being able to explain approximately two thirds of the total force and torque variation
is considered a substantial improvement over classical closure laws, the performance reports of the present
work and previous microstructure-informed models in [24, 25, 26, 2, 1] hint that we might have reached the
maximum accuracy that can be achieved with models based on pairwise interactions. Further enhancement
in model accuracy is only conceivable if second- and possibly higher-order interactions are accounted for in
more sophisticated models. Furthermore, another limiting factor is that current models are obtained based on
data from simulations of stationary beds of spheres. In a time-dependent suspension of moving particles the
interactions become even more complicated, as linear and angular velocities and accelerations of neighbors
would also each play a role. Nevertheless, in such a scenario a PR-DNS can be run for extended periods of
time in order to aggregate thousands of snapshots, which can then serve to significantly augment the dataset for

18

training more complex ML models. While several possibilities are yet to be explored in future research on force
and torque modeling, recent developments in the field appear to be very promising in high-fidelity up-scaling
of PR-DNS using EL techniques.

Acknowledgments

We greatly appreciate the financial support of the Natural Sciences and Engineering Research Council of
Canada (NSERC) via their Discovery Grant Program. This research was enabled by support provided by Com-
pute Canada (http://www.computecanada.ca) through Anthony Wachs’s 2020 Computing Resources for
Research Groups allocation qpf-764-ac.

References
[1] S. Balachandar, W. C. Moore, G. Akiki, and K. Liu. “Toward particle-resolved accuracy in Euler–Lagrange simulations of

multiphase flow using machine learning and pairwise interaction extended point-particle (PIEP) approximation”. In: Theoretical
and Computational Fluid Dynamics 34.4 (June 2020), pp. 401–428.

[2] A. Seyed-Ahmadi and A. Wachs. “Microstructure-informed probability-driven point-particle model for hydrodynamic forces
and torques in particle-laden flows”. In: Journal of Fluid Mechanics 900 (Aug. 2020).

[3] T. B. Anderson and R. Jackson. “Fluid Mechanical Description of Fluidized Beds. Comparison of Theory and Experiment”. In:
Industrial & Engineering Chemistry Fundamentals 8.1 (Feb. 1969), pp. 137–144.

[4] J. Capecelatro and O. Desjardins. “An Euler–Lagrange strategy for simulating particle-laden flows”. In: Journal of Computa-
tional Physics 238 (2013), pp. 1–31.

[5] M. R. Maxey and J. J. Riley. “Equation of motion for a small rigid sphere in a nonuniform flow”. In: Physics of Fluids 26.4
(1983), p. 883.

[6] R. Gatignol. “The Faxén formulas for a rigid particle in an unsteady non-uniform Stokes-flow”. In: Journal de Mécanique
théorique et appliquée 2.2 (1983), pp. 143–160.

[7] S. Balachandar and J. K. Eaton. “Turbulent Dispersed Multiphase Flow”. In: Annual Review of Fluid Mechanics 42.1 (Jan.
2010), pp. 111–133.

[8] S. Subramaniam and S. Balachandar. “Towards Combined Deterministic and Statistical Approaches to Modeling Dispersed
Multiphase Flows”. In: Droplets and Sprays : Applications for Combustion and Propulsion. Springer Singapore, 2018, pp. 7–
42. isbn: 978-981-10-7449-3.

[9] L. Schiller andA.Naumann. “Über die grundlegendenBerechnungen bei der Schwerkraftaufbereitung”. In: Z. Vereines Deutscher
Inge. 77 (1933), pp. 318–321.

[10] P. G. Saffman. “The lift on a small sphere in a slow shear flow”. In: Journal of Fluid Mechanics 22.2 (1965), pp. 385–400.
[11] J. Seifert. “A review of the Magnus effect in aeronautics”. In: Progress in Aerospace Sciences 55 (Nov. 2012), pp. 17–45.
[12] G. K. Batchelor. “Sedimentation in a dilute dispersion of spheres”. In: Journal of Fluid Mechanics 52.02 (Mar. 1972), p. 245.
[13] A. Sangani and A. Acrivos. “Slow flow through a periodic array of spheres”. In: International Journal of Multiphase Flow 8.4

(1982), pp. 343–360. issn: 0301-9322.
[14] C. Y.Wen and Y. H. Yu. “Mechanics of fluidization”. In: Chemical Engineering Progress Symposium Series 62 (1966), pp. 100–

111.
[15] R. Di Felice. “The voidage function for fluid-particle interaction systems”. In: International Journal of Multiphase Flow 20.1

(Feb. 1994), pp. 153–159.
[16] R. Beetstra, M. A. van der Hoef, and J. A. M. Kuipers. “Drag force of intermediate Reynolds number flow past mono- and

bidisperse arrays of spheres”. In: AIChE Journal 53.2 (2007), pp. 489–501.
[17] S. Tenneti, R. Garg, and S. Subramaniam. “Drag law for monodisperse gas–solid systems using particle-resolved direct nu-

merical simulation of flow past fixed assemblies of spheres”. In: International Journal of Multiphase Flow 37.9 (Nov. 2011),
pp. 1072–1092.

[18] Y. Tang, E. A. Peters, J. A. Kuipers, S. H. Kriebitzsch, and M. A. van der Hoef. “A new drag correlation from fully resolved
simulations of flow past monodisperse static arrays of spheres”. In: AIChE Journal 61.2 (Oct. 2015), pp. 688–698.

[19] S. Bogner, S. Mohanty, and U. Rüde. “Drag correlation for dilute and moderately dense fluid-particle systems using the lattice
Boltzmann method”. In: International Journal of Multiphase Flow 68 (Jan. 2015), pp. 71–79.

[20] G. Akiki, T. L. Jackson, and S. Balachandar. “Force variation within arrays of monodisperse spherical particles”. In: Physical
Review Fluids 1.4 (Aug. 2016).

[21] S. H. L. Kriebitzsch, M. A. van der Hoef, and J. A. M. Kuipers. “Fully resolved simulation of a gas-fluidized bed: A critical test
of DEM models”. In: Chemical Engineering Science 91 (Mar. 2013), pp. 1–4.

19

http://www.computecanada.ca

[22] A. Esteghamatian, M. Bernard, M. Lance, A. Hammouti, and A. Wachs. “Micro/meso simulation of a fluidized bed in a homo-
geneous bubbling regime”. In: International Journal of Multiphase Flow 92 (June 2017), pp. 93–111.

[23] A. Esteghamatian, A. Hammouti, M. Lance, and A. Wachs. “Particle resolved simulations of liquid/solid and gas/solid fluidized
beds”. In: Physics of Fluids 29.3 (Mar. 2017), p. 033302.

[24] G. Akiki, T. L. Jackson, and S. Balachandar. “Pairwise interaction extended point-particle model for a random array of monodis-
perse spheres”. In: Journal of Fluid Mechanics 813 (Jan. 2017), pp. 882–928.

[25] G. Akiki, W. Moore, and S. Balachandar. “PairwiSe-Interaction Extended Point-Particle Model For Particle-Laden Flows”. In:
Journal of Computational Physics (Sept. 2017).

[26] W. C. Moore, S. Balachandar, and G. Akiki. “A hybrid point-particle force model that combines physical and data-driven
approaches”. In: Journal of Computational Physics 385 (May 2019), pp. 187–208.

[27] C. Xie, J. Wang, and W. E. “Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of
turbulence”. In: Physical Review Fluids 5.5 (May 2020), p. 054606.

[28] X. I. A. Yang, S. Zafar, J.-X. Wang, and H. Xiao. “Predictive large-eddy-simulation wall modeling via physics-informed neural
networks”. In: Physical Review Fluids 4.3 (Mar. 2019).

[29] A. Beck, D. Flad, and C.-D. Munz. “Deep neural networks for data-driven LES closure models”. In: Journal of Computational
Physics 398 (Dec. 2019), p. 108910.

[30] C. Xie, J. Wang, K. Li, and C. Ma. “Artificial neural network approach to large-eddy simulation of compressible isotropic
turbulence”. In: Physical Review E 99.5 (May 2019).

[31] K. Fukami, K. Fukagata, and K. Taira. “Super-resolution reconstruction of turbulent flows with machine learning”. In: Journal
of Fluid Mechanics 870 (May 2019), pp. 106–120.

[32] J.-L. Wu, H. Xiao, and E. Paterson. “Physics-informed machine learning approach for augmenting turbulence models: A com-
prehensive framework”. In: Physical Review Fluids 3.7 (July 2018).

[33] S. Lee and D. You. “Data-driven prediction of unsteady flow over a circular cylinder using deep learning”. In: Journal of Fluid
Mechanics 879 (Sept. 2019), pp. 217–254.

[34] V. Sekar and B. C. Khoo. “Fast flow field prediction over airfoils using deep learning approach”. In: Physics of Fluids 31.5 (May
2019), p. 057103.

[35] P. A. Srinivasan, L. Guastoni, H. Azizpour, P. Schlatter, and R. Vinuesa. “Predictions of turbulent shear flows using deep neural
networks”. In: Physical Review Fluids 4.5 (May 2019).

[36] M. Leer and A. Kempf. “Fast Flow Field Estimation for Various Applications with A Universally Applicable Machine Learning
Concept”. In: Flow, Turbulence and Combustion 107.1 (Dec. 2020), pp. 175–200.

[37] M. Raissi, Z. Wang, M. S. Triantafyllou, and G. E. Karniadakis. “Deep learning of vortex-induced vibrations”. In: Journal of
Fluid Mechanics 861 (Dec. 2018), pp. 119–137.

[38] L. He and D. K. Tafti. “A supervised machine learning approach for predicting variable drag forces on spherical particles in
suspension”. In: Powder Technology 345 (Mar. 2019), pp. 379–389.

[39] Y. Jiang, J. Kolehmainen, Y. Gu, Y. G. Kevrekidis, A. Ozel, and S. Sundaresan. “Neural-network-based filtered drag model for
gas-particle flows”. In: Powder Technology 346 (Mar. 2019), pp. 403–413.

[40] M. Ma, J. Lu, and G. Tryggvason. “Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly
system”. In: Physics of Fluids 27.9 (Sept. 2015), p. 092101.

[41] M. Ma, J. Lu, and G. Tryggvason. “Using statistical learning to close two-fluid multiphase flow equations for bubbly flows in
vertical channels”. In: International Journal of Multiphase Flow 85 (Oct. 2016), pp. 336–347.

[42] S. L. Brunton, B. R. Noack, and P. Koumoutsakos. “Machine Learning for Fluid Mechanics”. In: Annual Review of Fluid
Mechanics 52.1 (Jan. 2020), pp. 477–508.

[43] K. Duraisamy, G. Iaccarino, and H. Xiao. “Turbulence Modeling in the Age of Data”. In: Annual Review of Fluid Mechanics
51.1 (Jan. 2019), pp. 357–377.

[44] M. P. Brenner, J. D. Eldredge, and J. B. Freund. “Perspective on machine learning for advancing fluid mechanics”. In: Physical
Review Fluids 4.10 (Oct. 2019), p. 100501.

[45] K. Hornik, M. Stinchcombe, and H.White. “Multilayer feedforward networks are universal approximators”. In:Neural Networks
2.5 (Jan. 1989), pp. 359–366.

[46] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by back-propagating errors”. In: Nature 323.6088
(Oct. 1986), pp. 533–536.

[47] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.org. MIT Press, 2016.
[48] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer New York, 2009.
[49] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep Convolutional Neural Networks”. In: Ad-

vances in Neural Information Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.Weinberger. Curran
Associates, Inc., 2012, pp. 1097–1105.

[50] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. In: Neural Computation 9.8 (Nov. 1997), pp. 1735–1780.
[51] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S.Wang, and L. Yang. “Physics-informedmachine learning”. In:Nature

Reviews Physics (May 2021).
[52] J. Ling, R. Jones, and J. Templeton. “Machine learning strategies for systems with invariance properties”. In: Journal of Com-

putational Physics 318 (Aug. 2016), pp. 22–35.

20

http://www.deeplearningbook.org

[53] J. Ling, A. Kurzawski, and J. Templeton. “Reynolds averaged turbulence modelling using deep neural networks with embedded
invariance”. In: Journal of Fluid Mechanics 807 (Oct. 2016), pp. 155–166.

[54] M. Raissi, P. Perdikaris, and G. Karniadakis. “Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations”. In: Journal of Computational Physics 378 (Feb. 2019),
pp. 686–707.

[55] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: (2017). arXiv: 1412.6980 [cs.LG].
[56] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org.

2015.
[57] F. Chollet et al. Keras. https://keras.io. 2015.
[58] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. “Automatic Differentiation in Machine Learning: A Survey”.

In: Journal of Machine Learning Research 18.1 (Jan. 2017), pp. 5595–5637. issn: 1532-4435.

21

https://arxiv.org/abs/1412.6980
https://keras.io

	1 Introduction
	2 PR-DNS and data preparation
	3 Model formulation
	3.1 Pairwise interactions assumption
	3.2 Unified function representation

	4 Neural network model
	4.1 Fully connected NN architecture
	4.2 Physics-inspired NN architecture
	4.3 Influence of local average velocity
	4.4 Hyper-parameters and implementation

	5 Results and discussion
	5.1 Performance comparison of FCNN and PINN models
	5.2 Overall performance of the PINN model
	5.3 Interpretability of the PINN model

	6 Concluding remarks
	References

