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The Fujitsu Digital Annealer is designed to solve fully connected quadratic unconstrained

binary optimization (QUBO) problems. It is implemented on application-specific CMOS

hardware and currently solves problems of up to 1,024 variables. The Digital Annealer’s

algorithm is currently based on simulated annealing; however, it differs from it in

its utilization of an efficient parallel-trial scheme and a dynamic escape mechanism.

In addition, the Digital Annealer exploits the massive parallelization that custom

application-specific CMOS hardware allows. We compare the performance of the

Digital Annealer to simulated annealing and parallel tempering with isoenergetic cluster

moves on two-dimensional and fully connected spin-glass problems with bimodal

and Gaussian couplings. These represent the respective limits of sparse vs. dense

problems, as well as high-degeneracy vs. low-degeneracy problems. Our results show

that the Digital Annealer currently exhibits a time-to-solution speedup of roughly two

orders of magnitude for fully connected spin-glass problems with bimodal or Gaussian

couplings, over the single-core implementations of simulated annealing and parallel

tempering Monte Carlo used in this study. The Digital Annealer does not appear to

exhibit a speedup for sparse two-dimensional spin-glass problems, which we explain

on theoretical grounds. We also benchmarked an early implementation of the Parallel

Tempering Digital Annealer. Our results suggest an improved scaling over the other

algorithms for fully connected problems of average difficulty with bimodal disorder. The

next generation of the Digital Annealer is expected to be able to solve fully connected

problems up to 8,192 variables in size. This would enable the study of fundamental

physics problems and industrial applications that were previously inaccessible using

standard computing hardware or special-purpose quantum annealing machines.

Keywords: optimization, Digital Annealer, custom application-specific CMOS hardware, Monte Carlo simulation,

benchmarking

1. INTRODUCTION

Discrete optimization problems have ubiquitous applications in various fields and, in particular,
many NP-hard combinatorial optimization problems can be mapped to a quadratic Ising model
[1] or, equivalently, to a quadratic unconstrained binary optimization (QUBO) problem. Such
problems arise naturally in many fields of research, including finance [2], chemistry [3, 4], biology
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[5, 6], logistics and scheduling [7, 8], and machine learning
[9–12]. For this reason, there is much interest in solving these
problems efficiently, both in academia and in industry.

The impending end of Moore’s law [13] signals that relying
on traditional silicon-based computer devices is not expected
to sustain the current computational performance growth rate.
In light of this, interest in novel computational technologies
has been steadily increasing. The introduction of a special-
purpose quantum annealer by D-Wave Systems Inc. [14] was
an effort in this direction, aimed at revolutionizing how
computationally intensive discrete optimization problems are
solved using quantum fluctuations.

Despite continued efforts to search for a scaling advantage
of quantum annealers over algorithms on conventional off-the-
shelf CMOS hardware, there is as yet no consensus. Efforts
to benchmark quantum annealers against classical counterparts
such as simulated annealing (SA) [15] have abounded [14, 16–
30]. Although for some classes of synthetic problems a large
speedup was initially found, those problems were subsequently
shown to have a trivial logical structure, such that they can be
solved more efficiently by more-powerful classical algorithms
[31]. To the best of our knowledge, the only known case of
speedup is a constant speedup for a class of synthetic problems
[29] and, so far, there is no evidence of speedup for an
industrial application. The hope is that future improvements
to the quantum annealer and, in particular, to its currently
sparse connectivity and low precision due to analog noise,
will demonstrate the power of quantum effects in solving
optimization problems [32, 33]. With the same goal in mind,
researchers have been inspired to push the envelope for such
problems on novel hardware, such as the coherent Ising machine
[32], as well as on graphics processing units (GPU) [27, 28]
and application-specific CMOS hardware [34, 35]. Similarly,
efforts to emulate quantum effects in classical algorithms—often
referred to as quantum- or physics-inspired methods—run on
off-the-shelf CMOS hardware have resulted in sizable advances
in the optimization domain (see, e.g., [30] for an overview of
different algorithms).

Fujitsu Laboratories has recently developed application-
specific CMOS hardware designed to solve fully connected
QUBO problems (i.e., on complete graphs), known as the Digital
Annealer (DA) [34, 35]. The DA hardware is currently able to
treat Ising-type optimization problems of a size up to 1, 024
variables, with 26 and 16 bits of (fixed) precision for the biases
and variable couplers, respectively. The DA’s algorithm, which
we refer to as “the DA”, is based on simulated annealing, but
differs in several ways (see section 2), as well as in its ability to
take advantage of the massive parallelization possible when using
a custom, application-specific CMOS hardware. Previous efforts
of running simulated annealing in parallel include executing
different iterations in parallel on an AP1000 massively parallel
distributed-memory multiprocessor [36, 37]. In addition to the
DA, a version of the Digital Annealer, which we refer to as “the
PTDA,” and which uses parallel tempering Monte Carlo [38–
42] for the algorithmic engine is now available. In particular, it
has been shown that physics-inspired optimization techniques
such as simulated annealing and parallel tempering Monte Carlo

typically outperform specialized quantum hardware [30] such as
the D-Wave devices.

Much of the benchmarking effort has centered around spin
glasses, a type of constraint satisfaction problem, in part due
to their being the simplest of the hard Boolean optimization
problems. Furthermore, application-based benchmarks from,
for example, industry tend to be structured and, therefore,
systematic benchmarking is difficult. As such, spin glasses have
been used extensively to benchmark algorithms on off-the-
shelf CPUs [43, 44], novel computing technologies such as
quantum annealers [18, 20, 45, 46], and coherent Ising machines
[32]. In this paper, we benchmark the DA and the PTDA on
spin-glass problems, comparing them to simulated annealing
[47] and parallel tempering Monte Carlo with isoenergetic
cluster moves [48, 49] (a variant of Houdayer cluster updates
[50] within the context of optimization and not the thermal
simulation of spin-glass systems), both state-of-the-art, physics-
inspired optimization algorithms. For other alternative classical
optimization techniques used in the literature to solve QUBO
problems, the interested reader is referred to Hen et al. [22],
Mandrà et al. [30], and Rosenberg et al. [51].

The paper is organized as follows. Section 2 describes the
algorithms we have benchmarked. In section 3 we probe the
advantage of parallel-trial over single-trial Monte Carlo moves
and in section 4 we discuss the methodology we have used
for measuring time to solution. In section 5 we introduce the
problems benchmarked. The experimental results are presented
and discussed in section 6. Finally, our conclusions are presented
in section 7. The parameters used for our benchmarking are given
in Appendix.

2. ALGORITHMS

In this paper, we compare several Monte Carlo (MC) algorithms
and their use for solving optimization problems.

2.1. Simulated Annealing
Simulated annealing (SA) [15] is a generic algorithm with a wide
application scope. The SA algorithm starts from a random initial
state at a high temperature. Monte Carlo updates at decreasing
temperatures are then performed. Note that the temperatures
used follow a predefined schedule.

Algorithm 1 Simulated Annealing (SA)

1: for each run do

2: initialize to random initial state

3: for each temperature do

4: for each MC sweep at this temperature do

5: for each variable do

6: propose a flip

7: if accepted, update the state and effective fields

8: end for

9: end for

10: update the temperature

11: end for

12: end for
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When the simulation stops, one expects to find a low-
temperature state, ideally the global optimum (see Algorithm 1
for details). The high-temperature limit promotes diversification,
whereas the low-temperature limit promotes intensification. To
increase the probability of finding the optimum, this process is
repeated multiple times (referred to as “runs”), returning the
best state found. The computational complexity of each Monte
Carlo sweep in SA is O(N2) for fully connected problems with
N variables, because each sweep includes N update proposals,
and each accepted move requires updating N effective fields, at
a constant computational cost.

2.2. The Digital Annealer’s Algorithm
The DA’s algorithmic engine [34, 35] is based on SA, but differs
from it in three main ways (see Algorithm 2). First, it starts all
runs from the same arbitrary state, instead of starting each run
from a random state. This results in a small speedup due to
its avoiding the calculation of the initial N effective fields and
the initial energy for each run. Second, it uses a parallel-trial
scheme in which each Monte Carlo step considers a flip of all
variables (separately), in parallel. If at least one flip is accepted,
one of the accepted flips is chosen uniformly at random and it
is applied. Recall that in SA, each Monte Carlo step considers
a flip of a single variable only (i.e., single trial). The advantage
of the parallel-trial scheme is that it can boost the acceptance
probability, because the likelihood of accepting a flip out of N
flips is typically much higher than the likelihood of flipping a
particular variable (see section 3). Parallel rejection algorithms
on GPU [52, 53] are examples of similar efforts in the literature to
address the low acceptance probability problem in Monte Carlo
methods. Finally, the DA employs an escape mechanism called a
dynamic offset, such that if no flip was accepted, the subsequent
acceptance probabilities are artificially increased by subtracting
a positive value from the difference in energy associated with a
proposed move. This can help the algorithm to surmount short,
narrow barriers.

Algorithm 2 The Digital Annealer’s Algorithm

1: initial_state← an arbitrary state

2: for each run do

3: initialize to initial_state

4: Eoffset ← 0

5: for each MC step (iteration) do

6: if due for temperature update, update the temperature

7: for each variable j, in parallel do

8: propose a flip using 1Ej − Eoffset
9: if accepted, record

10: end for

11: if at least one flip accepted then

12: choose one flip uniformly at random amongst them

13: update the state and effective fields, in parallel

14: Eoffset ← 0

15: else

16: Eoffset ← Eoffset + offset_increase_rate

17: end if

18: end for

19: end for

Furthermore, the application-specific CMOS hardware allows
for massive parallelization that can be exploited for solving
optimization problems faster. For example, in the DA, evaluating
a flip of all variables is performed in parallel, and when a flip
is accepted and applied, the effective fields of all neighbors are
updated in parallel. Note that this step requires a constant time,
regardless of the number of neighbors, due to the parallelization
on the hardware, whereas the computational time of the same
step in SA increases linearly in the number of neighbors.

In order to understand the logic behind the DA, it is helpful to
understand several architectural considerations that are specific
to the DA hardware. In the DA, each Monte Carlo step takes
the same amount of time, regardless of whether a flip was
accepted (and therefore applied) or not. In contrast, in a CPU
implementation of SA, accepted moves are typically much more
computationally costly than rejected moves, that is,

[

O(N) vs.
O(1)

]

, due to the need to update N effective fields vs. none if
the flip is rejected. As a result, in the DA, the potential boost
in acceptance probabilities (from using the parallel-trial scheme)
is highly desirable. In addition, in the DA, the computational
complexity of updating the effective fields is constant regardless
of the connectivity of the graph. Comparing this with SA, the
computational complexity of updating the effective fields isO(N)
for fully connected graphs, but it is O(d) for fixed-degree graphs
(in which each node has d neighbors). Therefore, running SA on
a sparse graph is typically faster than on a dense graph, but the
time is the same for the DA. For this reason, it is expected that
the speedup of the DA over SA be, in general, higher for dense
graphs than for sparse ones.

2.3. Parallel Tempering With Isoenergetic
Cluster Moves
In parallel tempering (PT) [38–42, 54] (also known as
replica-exchange Monte Carlo), multiple replicas of the
system are simulated at different temperatures, with periodic
exchanges based on a Metropolis criterion between neighboring
temperatures. Each replica, therefore, performs a random walk
in temperature space, allowing it to overcome energy barriers
by temporarily moving to a higher temperature. The higher-
temperature replicas are typically at a high enough temperature
that they inject new random states into the system, essentially re-
seeding the algorithm continuously, obviating (at least partially)
the need to perform multiple runs. PT has been used effectively
in multiple research fields [41], and often performs better than
SA, due to the increased mixing.

The addition of isoenergetic cluster moves (ICM) [48, 50] to
PT, which flip multiple variables at a time, can allow for better
exploration of the phase space, but only if the variable clusters
do not span the whole system [48, 49]. ICM is a generalization
of Houdayer’s cluster algorithm, which was tailored for two-
dimensional spin-glass problems [50]. To perform ICM, two
copies (or more) of the system are simulated at the same
temperature. The states of those two replicas are then compared,
to find a cluster of variables (i.e., a connected component) that
are opposite. In the case of QUBO problems, opposite variables
are defined as having a product of zero. Finally, the move is
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applied by swapping the states of the opposite variables in the two
replicas. The total energy of the two replicas is unchanged by this
move, such that it is rejection free. The combination of PT and
ICM, PT+ICM (also known as borealis; see Algorithm 3 [49]),
has been shown to be highly effective for low-dimensionality
spin-glass-like problems [20, 30, 55], but it does not provide a
benefit for problems defined on fully connected graphs. This can
be understood by noting that when the clusters span the system,
ICM essentially results in swapping the states completely.

Algorithm 3 Parallel Tempering with Isoenergetic Cluster Moves (PT+ICM)

1: initialize all replicas with random initial states

2: for each MC sweep do

3: for each replica, for each variable do

4: propose a flip

5: if accepted, update the state and effective fields

6: end for

7: for each pair of sequential replicas do

8: propose a replica exchange

9: if accepted, swap the temperatures between the replicas

10: end for

11: perform ICM update, swapping the states of a cluster of variables that have

opposite states in the two replicas; update the states and the effective fields for

both replicas

12: end for

2.4. The Parallel Tempering Digital
Annealer’s Algorithm
Because the DA’s algorithm is based on SA, and given the
often superior results that PT gives over SA (see, e.g.,
[30]), Fujitsu Laboratories has also developed a Parallel
Tempering Digital Annealer (PTDA). We had access to an
early implementation of a PTDA. In the PTDA, the sweeps
in each replica are performed as in the DA, including the
parallel-trial scheme, parallel updates, and using the dynamic
offset mechanism, but the PT moves are performed on a
CPU. The temperatures are set automatically based on an
adaptive scheme by Hukushima et al. [56]. In this scheme,
the high and low temperatures are fixed, and intermediate
temperatures are adjusted with the objective of achieving
an equal replica-exchange probability for all adjacent
temperatures. Having equal replica-exchange acceptance
probabilities is a common target, although other schemes
exist [42].

The next generation of the Digital Annealer is expected
to be able to simulate problems on complete graphs up to
8, 192 variables in size, to have faster annealing times, and to
perform the replica-exchange moves on the hardware, rather
than on a CPU. This is significant, because when performing a
computation in parallel, if a portion of the work is performed
sequentially, it introduces a bottleneck that eventually dominates
the overall run time (as the number of parallel threads is
increased). Amdahl’s Law [57] quantifies this by stating that if
the sequential part is a fraction α of the total work, the speedup is
limited to 1/α asymptotically.

3. PARALLEL-TRIAL VS. SINGLE-TRIAL
MONTE CARLO

To illustrate the advantage of parallel-trial Monte Carlo updates
as implemented in the DA over single-trial Monte Carlo updates,
let us calculate their respective acceptance probabilities. The
acceptance probability for a particular Monte Carlo move is
given by the Metropolis criterion A(1Ei,T) ≡ e−1Ei/T , where
1Ei denotes the difference in energy associated with flipping
variable i, and T is the temperature. The single-trial acceptance
probability is then given by

Ps(T) =
1

N

∑

i

A(1Ei,T) , (1)

where N is the number of variables. In contrast, the parallel-trial
acceptance probability is given by the complement probability of
not accepting a move,

Pp(T) = 1−
∏

i

[

1−A(1Ei,T)
]

. (2)

At low temperatures, we expect the acceptance probability
to reach zero, in general. In the limit A→ 0, a first-order
approximation of the parallel-trial acceptance probability gives

Pp(T) ≃
∑

i

A(1Ei,T) . (3)

This indicates that in the best case, there is a speedup by a
factor of N at low temperatures. In contrast, at a high enough
temperature, all moves are accepted, hence A→ 1. In this limit,
it is clear that both the single-trial and parallel-trial acceptance
probabilities reach 1, so parallel-trial Monte Carlo does not have
an advantage over single-trial Monte Carlo.

To quantify the difference between parallel-trial and single-
trial Monte Carlo, we perform a Monte Carlo simulation
at constant temperature for a sufficiently large number
of sweeps to reach thermalization. Once the system has
thermalized, we measure the single-trial and parallel-trial
acceptance probabilities at every move. This has been repeated
for a number of sweeps, and for multiple temperatures and
multiple problems.

The results of such an experiment are presented in Figure 1,
for problems of size N = 64 of the four problem classes
described in detail in section 5. The problem classes include two-
dimensional (2D) and fully connected [Sherrington–Kirkpatrick
(SK)] spin-glass problems with bimodal and Gaussian disorder.
The results for all the problem classes except for the 2D-
bimodal class follow the expected pattern of the acceptance
probabilities reaching zero at low temperatures and one at
high temperatures. In the 2D-bimodal case, there is a huge
ground-state degeneracy, such that even at the ground state
there are single variables for which a flip does not result
in a change in energy. This results in a positive single-trial
acceptance probability even at very low temperatures. For the
same reason, the parallel-trial probability reaches one even for
very low temperatures.

Frontiers in Physics | www.frontiersin.org 4 April 2019 | Volume 7 | Article 48

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Aramon et al. Physics-Inspired Optimization for Quadratic Unconstrained Problems

FIGURE 1 | Mean single-trial and parallel-trial acceptance probabilities (P ) vs.

the temperature (T ), for four problem classes: (A) 2D-bimodal, (B)

2D-Gaussian, (C) SK-bimodal, and (D) SK-Gaussian. Error bars are given by

the 5th and 95th percentiles of the acceptance probabilities in the

configuration space. A constant-temperature Monte Carlo simulation has been

run for 105 sweeps to thermalize, after which the acceptance probabilities are

measured for 5 · 103 sweeps. For each problem class, the simulation has been

performed on 100 problem instances of size N = 64 with 10 repeats per

problem instance. The horizontal dashed lines show the minimum and

maximum attainable probabilities, zero and one, respectively. Acceptance

probabilities for the parallel-trial scheme approach unity as a function of

simulation time considerably faster than in the single-trial scheme.

To quantify the acceptance probability advantage of parallel-
trial over single-trial updates, it is instructive to study the
parallel-trial acceptance probability divided by the single-trial
acceptance probability, as presented in Figure 2. For all problem
classes except 2D-bimodal, the advantage at low temperatures
is indeed a factor of N, as suggested by dividing Equation 3
by Equation 1. As explained above, in the 2D-bimodal case
the single-trial acceptance probability is non-negligible at low
temperatures, leading to a reduced advantage. It is noteworthy
that the advantage of the parallel-trial scheme is maximal at low
temperatures, where the thermalization time is longer. As such,
the parallel-trial scheme provides an acceptance probability boost
where it is most needed.

4. SCALING ANALYSIS

The primary objective of benchmarking is to quantify how
the computational effort in solving problems scales as the
size of the problem (e.g., the number of variables) increases.
The algorithms we consider here are all stochastic, and a
common approach to measuring the scaling of a probabilistic
algorithm is to measure the total time required for the
algorithm to find a reference energy (cost) at least once with
a probability of 0.99. The reference energy is represented
by the optimal energy if available or, otherwise, by the
best known energy. We denote this time to solution by

FIGURE 2 | Ratio of the mean parallel-trial acceptance probability (Pp) to the

mean single-trial acceptance probability (Ps) vs. the temperature (T ), for four
problem classes: (A) 2D-bimodal, (B) 2D-Gaussian, (C) SK-bimodal, and (D)

SK-Gaussian. A constant-temperature Monte Carlo simulation has been run

for 105 sweeps to thermalize, after which the acceptance probabilities are

measured for 5 · 103 sweeps. For each problem class, the simulation has been

performed on 100 problem instances of size N = 64 with 10 repeats per

problem instance. The upper horizontal dashed line indicates N, the number of

variables, which is the expected theoretical value of the ratio at low

temperatures, as given by Equation 3 divided by Equation 1. The lower

horizontal line indicates the minimum value of the ratio, which is one.

“TTS,” and explain how it is calculated in the rest of
this section.

We consider the successive runs of a probabilistic algorithm
as being a sequence of binary experiments that might succeed
in returning the reference energy with some probability. Let
us formally define X1,X2, . . . ,Xr as a sequence of random,
independent outcomes of r runs (experiments), where
P(Xi = 1) = θ denotes the probability of success, that is, of
observing the reference energy at the i-th run. Defining

Y =

r
∑

i=1

Xi (4)

as the number of successful observations in r runs, we have

P(Y = y|θ , r) =

(

r

y

)

(1− θ)r−yθy. (5)

That is, Y has a binomial distribution with parameters r and θ .
We denote the number of runs required to find the reference
energy with a probability of 0.99 as R99, which equals r such that
P(Y ≥ 1|θ , r) = 0.99. It can be verified that

R99 =
log(1− 0.99)

log(1− θ)
(6)

and, consequently, that

TTS = τR99, (7)
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where τ is the time it takes to run the algorithm once. Because
the probability of success θ is unknown, the challenge is in
estimating θ .

Instead of using the sample success proportion as a point
estimate for θ , we follow the Bayesian inference technique
to estimate the distribution of the probability of success for
each problem instance [22]. Having distributions of the success
probabilities would be helpful in more accurately capturing
the variance of different statistics of the TTS. In the Bayesian
inference framework, we start with a guess on the distribution
of θ , known as a prior, and update it based on the observations
from consecutive runs of the algorithm in order to obtain the
posterior distribution. Since the consecutive runs have a binomial
distribution, the suitable choice of prior is a beta distribution
[58] that is the conjugate prior of the binomial distribution.
This choice guarantees that the posterior will also have a beta
distribution. The beta distribution with parameters α = 0.5 and
β = 0.5 (the Jeffreys prior) is chosen as a prior because it is
invariant under reparameterization of the space and it learns the
most from the data [59]. Updating the Jeffreys prior based on the
observations from consecutive runs, the posterior distribution,
denoted by π(θ), is π(θ) ∼ Beta(α + y,β + r− y), where r is the
total number of runs and y is the number of runs in which the
reference energy is found.

To estimate the TTS for the entire population of instances
with similar parameters, let us assume that there are I instances
with the same number of variables. After finding the posterior
distribution πi(θ) for each instance i in set {1, 2, . . . , I}, we use
bootstrapping to estimate the distribution of the q-th percentile
of the TTS. This procedure is described in Algorithm 4.

Algorithm 4 Estimating the Distribution of the q-th Percentile of the TTS

1: fix the number of bootstrap resamples to B (B = 5000)

2: for b = 1, . . . ,B do

3: sample I instances with replacement

4: for each sampled instance j do

5: sample a value, pjb, from its posterior probability πj(θ)

6: calculate R99,jb = log(1− 0.99)/ log(1− pjb)

7: end for

8: find the q-th percentile of the set {R99,jb} and denote it by R99,qb

9: end for

10: consider the empirical distribution of (τR99,q1, . . . , τR99,qB) as an

approximation of the true TTSq distribution

The procedure for deriving the TTS is slightly different for the
DA and the PTDA. The anneal time of the algorithmic engine of
the DA is not a linear function of the number of runs for a given
number of sweeps.We therefore directly measure the anneal time
for a given number of iterations and a given number of runs
where the latter is equal to the R99. Each iteration (Monte Carlo
step) in the DA represents one potential update and each Monte
Carlo sweep corresponds to N iterations.

It is important to note that the correct scaling is only observed
if the parameters of the solver are tuned such that the TTS is
minimized. Otherwise, a suboptimal scaling might be observed
and incorrect conclusions could be made. Recall that the TTS
is the product of the R99 and the time taken per run τ . Let us

consider a parameter that affects the computational effort taken,
such as the number of sweeps. Increasing the number of sweeps
results in the algorithm being more likely to find the reference
solution, hence resulting in a lower R99. On the other hand,
increasing the number of sweeps also results in a longer runtime,
increasing τ . For this reason, it is typical to find that the TTS
reaches infinity for a very low or very high number of sweeps, and
the goal is to experimentally find a number of sweeps at which the
TTS is minimized.

5. BENCHMARKING PROBLEMS

A quadratic Ising model can be represented by a Hamiltonian
(i.e., cost function) of the form

H = −
∑

(i,j)∈E

Jijsisj −
∑

i∈V

hisi . (8)

Here, si ∈ {−1, 1} represent Boolean variables, and the problem
is encoded in the biases hi and couplers Jij. The sums are over the
vertices V and weighted edges E of a graph G = (V ,E). It can be
shown that the problem of finding a spin configuration {si} that
minimizes H, in general, is equivalent to the NP-hard weighted
max-cut problem [60–63]. Spin glasses defined on nonplanar
graphs fall into the NP-hard complexity class. However, for the
special case of planar graphs, exact, polynomial-time methods
exist [64].

The algorithmic engine of the Digital Annealer can optimize
instances of QUBO problems in which the variables xi take values
from {0, 1} instead of {−1, 1}. To solve a quadratic Ising problem
described by the Hamiltonian represented in Equation 8, we can
transform it into a QUBO problem by taking si = 2xi − 1.

In the following, we explain the spin-glass problems used
for benchmarking.

2D-bimodal—Two-dimensional spin-glass problems on a
torus (periodic boundaries), where couplings are chosen
according to a bimodal distribution, that is, they take values
from {−1, 1} with equal probability.
2D-Gaussian—Two-dimensional spin-glass problems where
couplings are chosen from a Gaussian distribution with a
mean of zero and a standard deviation of one, scaled by 105.
SK-bimodal—Spin-glass problems on a complete graph—also
known as Sherrington–Kirkpatrick (SK) spin-glass problems
[65]—where couplings are chosen according to a bimodal
distribution, that is, they take values from {−1, 1} with
equal probability.
SK-Gaussian—SK spin-glass problems where couplings are
chosen from a Gaussian distribution with a mean of zero and
a standard deviation of one, scaled by 105.

In all the problems, the biases are zero. The coefficients of the 2D-
Gaussian and SK-Gaussian problems are beyond the precision
limit of the current DA. In order to solve these problems using the
DA, we have used a simple scheme to first scale the coefficients
up to their maximum limit and then round to the nearest
integer values. The maximum values for the linear and quadratic
coefficients are given by the precision limits of the current DA

Frontiers in Physics | www.frontiersin.org 6 April 2019 | Volume 7 | Article 48

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Aramon et al. Physics-Inspired Optimization for Quadratic Unconstrained Problems

hardware, that is, 225 − 1 and 215 − 1, respectively. The problem
instances are not scaled when solving them using SA or PT
(PT+ICM).

Our benchmarking experiment has been parameterized by
the number of variables. Specifically, we have considered
nine different problem sizes in each problem category and
generated 100 random instances for each problem size. We
have used the instance generator provided by the University
of Cologne Spin Glass Server1 to procure the 2D-bimodal
and 2D-Gaussian instances. SK instances with bimodal and
Gaussian disorder have been generated as described above. Each
problem instance has then been solved by different Monte
Carlo algorithms. Optimal solutions to the 2D-bimodal and
2D-Gaussian problems have been obtained by a branch-and-
cut [66] technique available via the Spin Glass Server 1. The
SK problems are harder than the two-dimensional problems
and the server does not find the optimal solution within the
15-min time limit. For the SK-bimodal and the SK-Gaussian
problems with 64 variables, we have used a semidefinite branch-
and-bound technique through the Biq Mac Solver [67] and
BiqCrunch [68] to find the optimal solutions, respectively.
For problems of a size greater than 64, the solution obtained
by PT with a large number of sweeps (5 · 105 sweeps) is
considered a good upper bound for the optimal solution. We
refer to the optimal solution (or its upper bound) as the
reference energy.

6. RESULTS AND DISCUSSION

In this paper, we have used an implementation of the
PT (and PT+ICM) algorithm based on the work of Zhu
et al. [48, 49]. The DA and PTDA algorithms are run on
Fujitsu’s Digital Annealer hardware. For the SA simulations
we have used the highly optimized, open source code by
Isakov et al. [47].

The DA solves only a fully connected problem where the
coefficients of the absent vertices and edges in the original
problem graph are set to zero. In our benchmarking study,
we have included both two-dimensional and SK problems
to represent the two cases of sparsity and full connectivity,
respectively. Furthermore, we have considered both bimodal and
Gaussian disorder in order to account for problems with high or
low ground-state degeneracy. The bimodal disorder results in an
energy landscape that has a large number of free variables with
zero effective local fields. As a result, the degeneracy of the ground
state increases exponentially in the number of free variables,
making it easier for any classical optimization algorithm to reach
a ground state. Problem instances that have Gaussian coefficients
further challenge the DA, due to its current limitations in terms
of precision.

In what follows, we discuss our benchmarking results,
comparing the performance of different algorithms using two-
dimensional and SK spin-glass problems, with bimodal and
Gaussian disorder. We further investigate how problem density

1http://informatik.uni-koeln.de/spinglass

affects the DA’s performance. The parameters of the algorithms
used in this benchmarking study are presented in Appendix.

6.1. 2D Spin-Glass Problems
Figure 3 illustrates the TTS results of the DA, SA, PT+ICM,
and PTDA for 2D spin-glass problems with bimodal and
Gaussian disorder. In all TTS plots in this paper, points
and error bars represent the mean and the 5th and 95th
percentiles of the TTS distribution, respectively. PT+ICM has
the lowest TTS for problems with bimodal and Gaussian
disorder and has a clear scaling advantage. In problems
with bimodally distributed couplings, although SA results
in a lower TTS for small-sized problems, the DA and SA
demonstrate similar TTSs as the problem size increases.
The performance of both SA and the DA decreases when
solving harder problem instances with Gaussian disorder, with
significantly reduced degeneracy of the ground states. However,
in this case, the DA outperforms SA even with its current
precision limit.

The PTDA yields higher TTSs than the DA in both cases
of bimodal and Gaussian disorder, likely due to the CPU
overhead of performing parallel tempering moves. Considering
the number of problems solved to optimality, the PTDA
outperforms the DA when solving 2D spin-glass problems with
bimodal couplings; however, as shown in Figure 3, the PTDA
solves fewer problems with Gaussian disorder.

In order to estimate the q-th percentile of the TTS
distribution, at least q% of problems should be solved to their
corresponding reference energies. If there is no point for a
given problem size and an algorithm in Figure 3, it means
that enough instances have not been solved to their reference
energies and we therefore could not estimate the TTS percentiles.
Increasing the number of iterations to 107 in the DA and
the PTDA, we could not solve more than 80% of the 2D-
Gaussian problem instances with a size greater than or equal to
400. Therefore, to gather enough statistics to estimate the 80th
percentile of the TTS, we have increased the number of iterations
to 108 in the DA. However, because of the excessive resources
needed, we have not run the PTDA with such a large number
of iterations.

2D-Bimodal

In Figure 4A, we observe that for a given problem size and
number of sweeps, the DA reaches higher success probabilities
than SA. As the problem size increases, the difference between
the mean success probability curves of the DA and SA becomes
less pronounced. Figure 4B illustrates the success probability
correlation of 100 problem instances of size 1, 024. The DA yields
higher success probabilities for 52 problem instances out of 100
instances solved.

For 2D-bimodal problems, the boost in the probability of
updating a single variable due to the parallel-trial scheme is
not effective enough to decrease the TTS or to result in better
scaling (Figure 3A). Since both the DA and SA update at most
one variable at a time, increasing the probability of updating
a variable in a problem with bimodal disorder, where there
are a large number of free variables, likely results in a new
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FIGURE 3 | Mean, 5th, and 95th percentiles of the TTS distributions (TTS50 and TTS80) for (A) 2D-bimodal and (B) 2D-Gaussian spin-glass problems. For some

problem sizes N, the percentiles are smaller than the symbols.

FIGURE 4 | (A) Mean success probabilities (P ) of 2D-bimodal instances vs. the number of Monte Carlo sweeps (S ) for different problem sizes N solved by the DA and

SA. The error bars are not included, for better visibility. (B) Success probability correlation plot of 100 2D-bimodal instances with N = 1, 024 variables, where the

number of sweeps is 104 for SA and the number of iterations is 107 for the DA. Because each sweep corresponds to N = 1, 024 iterations, the number of sweeps is

≃ 104 for the DA, as well.

configuration without lowering the energy value (see section 3
for details).

2D-Gaussian

The performance of the DA and SA significantly degrades
when solving the problems with Gaussian disorder, which are
harder; however, the DA demonstrates clear superiority over
SA. Figure 5 shows the residual energy (E), which is the
relative energy difference (in percent) between the lowest-energy
solution found and the reference-energy solution, for the largest
problem size, which has 1, 024 variables. We observe that the
DA outperforms SA, as it results in a lower residual energy for
a given number of Monte Carlo sweeps (S ≤ 105). Furthermore,
Figure 6 illustrates that the parallel-trial scheme is more effective
for this class of problems, which could be due to the decrease in

the degeneracy of the ground states. In Figure 6A, we observe
that the difference between mean success probabilities, for a
problem of size 144 with 104 Monte Carlo sweeps, is larger
compared to the bimodal disorder (Figure 4A). The success
probability correlation of 100 2D-Gaussian problem instances
with 400 variables in Figure 6B further demonstrates that the
DA reaches higher success probabilities, which results in a lower
TTS (Figure 3B).

6.2. SK Spin-Glass Problems
We have solved the SK problem instances with the DA, SA,
PT, and the PTDA. As explained in section 2, for the fully
connected problems, the cluster moves have not been included in
PT because the clusters of variables span the entire system. Our
initial experiments verified that adding ICM to PT increases the
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computational cost without demonstrating any scaling benefit for
this problem class.

The statistics of the TTS distribution of the DA, the PTDA,
and the SA and PT algorithms are shown in Figure 7A for SK-
bimodal problem instances. Comparing the DA to SA and PT,
we observe that the DA yields a noticeable, consistent speedup
of at least two orders of magnitude as we approach the largest
problem size. In the fully connected problems, accepting a move

FIGURE 5 | Mean, 5th, and 95th percentiles of the residual energy (E ) vs.

number of Monte Carlo sweeps (S ) for 2D-Gaussian problem instances with

N = 1, 024 variables solved by the DA and SA. As the number of Monte Carlo

sweeps approaches infinity, the residual energy of both algorithms will

eventually reach zero. We have run SA for up to 106 sweeps and the DA for up

to 108 iterations (108/1024 ∼ 105 sweeps). Therefore, the data up to 105

sweeps is presented for both algorithms. We expect that by increasing the

number of iterations to 109 (106 sweeps) in the DA, the residual energy would

further decrease.

and updating the effective local fields in a CPU implementation
of a Monte Carlo algorithm is computationally more expensive
than for sparse problems.

Figure 7A shows that each algorithm has solved at least 80%
of the SK instances for all problem sizes. We attribute this to the
fact that the reference energy for the complete graph problems is
an upper bound on the exact optimal solution. We do not know
how tight the upper bound is, but it represents, to the best of our
knowledge, the best known solution.

To obtain insights on scaling, for each algorithm, we have
fit an exponential function of the form y = 10α+βN , where y
and N are the means of the TTS distribution and the number
of variables, respectively. Figure 7B shows the 90% confidence
interval of the estimated scaling exponent β for the algorithms
based on the statistics of the 50th and the 80th percentiles of
the TTS distribution. For the 50th percentile, we observe that the
PTDA yields superior scaling over the other three algorithms for
the problem class with bimodal disorder. For the 80th percentile,
there is not enough evidence to draw a strong conclusion
on which algorithm scales better because the 90% confidence
intervals of the estimated scaling exponents overlap. However,
the PTDA has the lowest point estimate.

For the DA, SA, and PT algorithms, we have searched over
a large number of parameter combinations to experimentally
determine a good set of parameters (see Appendix) while the
parameters of the PTDA have been determined automatically by
the hardware. We have further experimentally determined the
optimal number of sweeps for all four algorithms. However, we
do not rule out the possibility that the scaling of the algorithms
might be suboptimal due to a non-optimal tuning of parameters.
For example, the scaling of the PTDAmight improve after tuning
its parameters and PT might exhibit better scaling using a more
optimized temperature schedule.

Figure 8 illustrates the TTS statistics and the confidence
interval of the scaling exponent for SK-Gaussian problem

FIGURE 6 | (A) Mean success probabilities (P ) vs. the number of Monte Carlo sweeps (S ) for 2D-Gaussian problem instances with N = 144 and N = 400 variables

solved by the DA and SA. The error bars are not included, for better visibility. (B) The success probability correlation of 100 2D-Gaussian instances with N = 400

variables. The data points are obtained considering 106 and 2.5 · 105 Monte Carlo sweeps for SA and the DA, respectively.
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FIGURE 7 | (A) Mean, 5th, and 95th percentiles of the TTS distributions (TTS50 and TTS80) for fully connected spin-glass problems with bimodal disorder. For some

problem sizes, the percentiles are smaller than the symbols. (B) The 90% confidence interval of the estimated scaling exponent β based on the mean of the TTS50
and TTS80 for the SK-bimodal problem class. The label below each rectangle represents the TTS percentile on which the confidence interval is based. For each

algorithm, the five largest problem sizes have been used to estimate the scaling exponent by fitting a linear model to log10 TTS. The R
2 of the fitted model is greater

than or slightly lower than 90% for each algorithm.

instances solved by the DA, SA, PT, and the PTDA. We observe
that the DA continues to exhibit a constant speedup of at least
two orders of magnitude over the other algorithms, with no
strong scaling advantage, in solving spin-glass problems with
Gaussian disorder.

The DA vs. SA

The DA results in lower TTSs than SA for both SK-bimodal and
SK-Gaussian problem instances. The reasons for this behavior
are two-fold. First, the anneal time for the DA is independent
of the number of variables and the density of the problem,
whereas the computation time of a sweep in SA increases with
the problem size and the problem density. Second, as shown
in Figure 9, the parallel-trial scheme significantly improves the
success probability in fully connected spin-glass problems of size
1, 024 with both bimodal and Gaussian disorder. As expected, the
boost in the low-degeneracy problem instances (with Gaussian
coefficients) is higher.

Although the confidence intervals of the scaling exponents
overlap, considering the statistics of the TTS80, the DA yields
lower point estimates than SA for SK-bimodal and SK-Gaussian
problems. In particular, β = 0.0021(7) [0.0019(3)] for the
DA with bimodal [Gaussian] disorder, whereas β = 0.0027(6)
[0.0028(5)] for SA with bimodal [Gaussian] disorder, thus
providing a weak scaling advantage.

Our results on spin-glass problems with Gaussian disorder
further indicate that the 16-bit precision of the hardware used
in this study is not a limiting factor because the DA outperforms
SA on instances of these problems. Since there is a high variance
in the couplers of spin-glass instances with Gaussian disorder,
we expect that the energy gap between the ground state and
the first-excited state is likely greater than 10−5 and, as a
result, the scaling/rounding effect is not significant [69]. Our

experimentation data on the prototype of the second-generation
Digital Annealer, which has 64 bits of precision on both biases
and couplers, also confirms that the higher precision by itself
does not have a significant impact on the results presented in this
paper. We leave a presentation of our experimental results using
the second-generation hardware for future work.

6.3. Spin-Glass Problems With Different
Densities
Our results for the two limits of the problem-density spectrum
suggest that the DA exhibits similar TTSs to SA on sparse
problems, and outperforms SA on fully connected problems
by a TTS speedup of approximately two orders of magnitude.
To obtain a deeper understanding of the relation between the
performance and the density, we have performed an experiment
using random problem graphs with nine different densities. For
each problem density, 100 problem instances with 1, 024 variables
have been generated based on the Erdős–Rényi model [70], with
bimodally distributed coupling coefficients, and zero biases. The
parameters of the DA and SA have been experimentally tuned for
each of the nine problem densities (see Appendix).

Figure 10 shows the statistics of the TTS of the DA and SA for
different problem densities. The TTS results for 2D-bimodal (d =
0.4%) and SK-bimodal (d = 100%) for a problem size of 1, 024,
representing the limits of the density spectrum, are also included.
The DA has lower TTSs than SA for all problem densities except
for the sparsest problem set—2D-bimodal. Not enough 2D-
bimodal instances were solved to optimality using the DA and
SA in order to estimate the statistics of the TTS80 distributions.

Figure 11 shows the success probabilities of 100 spin-glass
problem instances of size 1, 024 with different densities solved
by the DA and SA. The DA has higher success probabilities than
SA by a statistically significant margin for all of the densities
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FIGURE 8 | (A) Mean, 5th, and 95th percentiles of the TTS distributions (TTS50 and TTS80) for fully connected spin-glass problems with Gaussian disorder. For some

problem sizes, the percentiles are smaller than the symbols. (B) The 90% confidence interval of the estimated scaling exponent β based on the mean of the TTS50
and TTS80 for the SK-Gaussian problem class. The label below each rectangle represents the TTS percentile on which the confidence interval is based. For each

algorithm, the five largest problem sizes have been used to estimate the scaling exponent by fitting a linear model to log10 TTS. The R
2 of the fitted model is greater

than or slightly lower than 90% for each algorithm.

FIGURE 9 | Success probability correlation (P ) of 100 SK instances of size

1, 024 with bimodal and Gaussian disorder. The number of Monte Carlo

sweeps in SA is 104 and the number of iterations in the DA is 107,

corresponding to ≃ 104 Monte Carlo sweeps.

except for the sparsest problem set—2D-bimodal. We interpret
these results as being due to both the increase in the success
probabilities from using a parallel-trial scheme and the constant
time required to perform each Monte Carlo step on the DA
hardware architecture.

7. CONCLUSIONS AND OUTLOOK

In this work we have compared the performance of the Digital
Annealer (DA) and the Parallel Tempering Digital Annealer
(PTDA) to parallel tempering Monte Carlo with and without
isoenergetic cluster moves (PT+ICM and PT, respectively) and

FIGURE 10 | Mean, 5th, and 95th percentiles of the TTS distributions (TTS50
and TTS80) for spin-glass problems with different densities (d).

simulated annealing (SA) using random instances of sparse
and fully connected spin-glass problems, with bimodal and
Gaussian disorder.

Our results demonstrate that the DA is approximately two
orders of magnitude faster than SA and PT in solving dense
problems, while it does not exhibit a speedup for sparse problems.
In the latter problem class, the addition of cluster updates to the
PT algorithm is very effective in traversing the energy barriers,
outperforming algorithms that act on a single flip neighborhood,
such as the DA and SA. For dense problems, the efficiency of the
cluster moves diminishes such that the DA is faster, due to the
parallel-trial scheme combined with the massive parallelization
that is possible on application-specific CMOS hardware. Our
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FIGURE 11 | Success probabilities (P ) of 100 spin-glass problem instances

with different densities solved by the SA and the DA algorithms. The number of

Monte Carlo sweeps in SA is 104 and the number of iterations in the DA is

107, corresponding to ≃ 104 Monte Carlo sweeps.

results further support the position that the DA has an advantage
over SA on random spin-glass problems with densities of 10%
or higher.

In section 3 we demonstrate that parallel-trial Monte Carlo
can offer a significant boost to the acceptance probabilities
over standard updating schemes. Furthermore, we show that
this boost vanishes at high temperatures and is diminished for
problems with high ground-state degeneracy. Our benchmarking
results further support the view that the parallel-trial scheme
is more effective in solving problems with low ground-state
degeneracy because an accepted move is more likely not
only to change the state configuration, but also to lower the
energy value.

In the current early implementation of the PTDA, the
TTS is higher than it is likely to be in the future, due to
the CPU overhead in performing PT moves. However,
the PTDA algorithm demonstrates better scaling than
the other three algorithms for a fully connected spin-
glass problem of average computational difficulty, with
bimodal couplings.

In the next generation of the Digital Annealer, the hardware
architecture is expected to allow the optimization of problems
using up to 8192 fully connected variables. In addition, the
annealing time is expected to decrease, and we conjecture
that the TTS might decrease accordingly. Finally, we expect
the replica-exchange moves in the PTDA to be performed
on the hardware, which could improve the performance of
the PTDA.

Our results demonstrate that pairing application-specific
CMOS hardware with physics-inspired optimization methods
results in extremely efficient, special-purpose optimization

machines. Because of their fully connected topology and
high digital precision, these machines have the potential to
outperform current analog quantum optimization machines.
Pairing such application-specific CMOS hardware with a
fast interconnect could result in large-scale transformative
optimization devices. We thus expect future generations
of the Digital Annealer to open avenues for the study of
fundamental physics problems and industrial applications
that were previously inaccessible with conventional
CPU hardware.
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