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One of the most unique physical features of cell adhesion to external surfaces is the active

generation of mechanical force at the cell-material interface. This includes pulling forces generated

by contractile polymer bundles and networks, and pushing forces generated by the polymerization

of polymer networks. These forces are transmitted to the substrate mainly by focal adhesions, which

are large, yet highly dynamic adhesion clusters. Tissue cells use these forces to sense the physical

properties of their environment and to communicate with each other. The effect of forces is

intricately linked to the material properties of cells and their physical environment. Here a review is

given of recent progress in our understanding of the role of forces in cell adhesion from the

viewpoint of theoretical soft matter physics and in close relation to the relevant experiments.
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I. INTRODUCTION

Observations of swimming bacteria, crawling animal cells,

or developing organisms dramatically indicate that physical

force and movement are central to the behavior of biological

systems (Thompson, 1992; Huang and Ingber, 1999; Lecuit

and Lenne, 2007; Kollmannsberger et al., 2011). The func-

tions of cells have evolved in the context of very specific

physical environments leading to a close coupling between

cells and their surroundings (Alberts et al., 2007; Phillips,

Kondev, and Theriot, 2008). This is especially true for animal

cells, which have evolved in the controlled environment

provided by multicellular organisms and therefore appear to
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be more sensitive to environmental cues than, e.g., unicellular

organisms that can sometimes live in very harsh surround-

ings. Therefore it is an essential element of understanding

animal cells to consider their physical interactions with the

environment.

During recent years, it has become increasingly clear that the

cell-material interface determines the behavior and fate of

biological cells to a much larger extent than was formerly

appreciated (Discher, Janmey, and Wang, 2005; Schwarz and

Bischofs, 2005; Vogel and Sheetz, 2006; Discher, Mooney, and

Zandstra, 2009; Geiger, Spatz, and Bershadsky, 2009; Janmey

et al., 2009; Mitragotri and Lahann, 2009; De, Zemel, and

Safran, 2010; Hoffman, Grashoff, and Schwartz, 2011;

Ladoux and Nicolas, 2012; Schwarz and Gardel, 2012). For

example, it has been shown that the differentiation of stem cells

can be guided by the mechanical or adhesive properties of the

substrate (Engler et al., 2006; Fu et al., 2010; Kilian et al.,

2010). Such observations can lead the way to exciting new

applications for regenerative medicine and tissue engineering,

because physical signals are easier to control and can be more

permanent than biochemical or genetic manipulations. On the

scientific side, however, the fundamentals of these processes

are puzzling and not yet well understood, despite their impor-

tance in development, health, and disease (DuFort, Paszek, and

Weaver, 2011; Janmey and Miller, 2011).

From a physical point of view, the most important aspect of

the cellular response to the physical properties of the environ-

ment is the observation that cells show a controlled response

only if they are able to actively generate force and to transmit

this force to the surroundings. This finding makes sense

because cells must actively sense the passive properties of

their environment. For rigidity sensing, for example, cells

must actively strain their surroundings to probe their elastic

properties (similar to a bat that senses the geometry of its

environment by sending out ultrasound). Cells have evolved

special sensory systems for this purpose. For example, it has

been found that the size of the contacts between cells and

their environment grows with physical force (Chrzanowska-

Wodnicka and Burridge, 1996; Choquet, Felsenfeld, and

Sheetz, 1997; Balaban et al., 2001; Riveline et al., 2001;

Tan et al., 2003; Paul et al., 2008; Colombelli et al., 2009;

Trichet et al., 2012). Although this finding makes sense from

a biological viewpoint, it is at the same time puzzling to the

physicist, since in materials science force usually disrupts

adhesion contacts.

Physicists have traditionally been reluctant to study living

systems due to their molecular complexity. However, this has

recently changed in many ways. An important development

that has led to physics approaches to describe cells and tissue

is the maturation of soft matter physics into an independent

and very active field of research. Soft matter physics tradi-

tionally has focused on the properties of liquid crystals,

colloidal dispersions, emulsions, fluid membranes, polymer

gels, and other complex fluids (de Gennes, 1992; Chaikin and

Lubensky, 2000; Jones, 2002; Safran, 2003). These systems

are soft since the interaction energies are of the same order as

the thermal energy. They are thus very sensitive to thermal

fluctuations and concepts from both mechanics and statistical

mechanics must be employed to understand phenomena such

as, e.g., conformational changes of membranes (Seifert,

1997; Powers, 2010) or deformations of polymer networks

(Bausch and Kroy, 2006; Daniel T. N. Chen et al., 2010).

While soft matter physics has established a firm physical

basis of the building blocks of biological cells, their behavior

critically depends on additional elements, most prominently

active remodeling controlled bygenetic and signaling networks.

Meeting the challenge of combining the physics of soft matter

physics with active processes to describe active matter enables

insight intomany biological processes, guides the design of new

types of materials, and further extends the range of phenomena

that can be analyzed by concepts and methods from physics

(Fletcher and Geissler, 2009; MacKintosh and Schmidt, 2010;

Ramaswamy, 2010; Gonzalez-Rodriguez et al., 2012; Huber

et al., 2013; Marchetti et al., 2013).

To understand the physical aspects of cell adhesion, soft

matter physics provides useful model reference systems, such

as the wetting of substrates by droplets (de Gennes, 1985),

adhesion of vesicles made of fluid membranes (Seifert, 1997),

or the adhesion of capsules that comprise thin polymer shells

(Pozrikidis and Pozrikidis, 2003). The challenge is to com-

bine these reference systems with the molecularly specific

and active processes that they support at the cell-material

interface, such as force generation by polymerization

(Mogilner, 2006) or the binding and unbinding of transmem-

brane adhesion receptors (Evans and Calderwood, 2007).

Over the last decade, several soft matter systems have been

revisited with a focus on this particular point of view. The

physical understanding of the properties of active materials is

rapidly growing; particular attention has been paid to active

membranes (Manneville et al., 2001; Gov, 2004) and active

gels (Liverpool and Marchetti, 2003; Kruse et al., 2004;

Julicher et al., 2007; Marchetti et al., 2013).

Cell adhesion is a multiscale problem because the molecu-

lar processes at the cell-material interface are dramatically

amplified on the scale of cells. Cellular processes such as

spreading, adhesion, migration, and proliferation are in turn

dramatically amplified on the scale of tissues (Gonzalez-

Rodriguez et al., 2012). Interestingly, similar concepts have

been successfully applied to different levels in this hierarchy.

In order to address the role of cellular forces in the context of

connective tissue, whose mechanical properties are domi-

nated by the extracellular matrix, one can build on traditional

approaches from condensed matter physics for force-

generating centers in a continuum matrix, such as the theory

of elastic defects and their interactions (Eshelby, 1957, 1959;

Siems, 1968; Wagner and Horner, 1974; Lau and Kohn, 1977;

Safran and Hamann, 1979). Motivated by experimental mea-

surements of cellular traction patterns (Dembo and Wang,

1999; Butler et al., 2002; Schwarz et al., 2002), it was

suggested that the contractile activity of cells can be modeled

as anisotropic force contraction dipoles (Schwarz et al., 2002;

Schwarz and Safran, 2002) and that cell orientation and

positioning can be predicted by minimizing the energy in-

vested by the cell into straining its environment for a given

level of force generation (Bischofs and Schwarz, 2003;

Bischofs, Safran, and Schwarz, 2004). Similar concepts

have been used to predict the contractile action of molecular

motors in the cytoskeleton (Dasanayake, Michalski, and

Carlsson, 2011; Soares e Silva et al., 2011), the orientation

response of single cells to externally applied stress
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(De, Zemel, and Safran, 2007), the collective response of

contractile cells in an elastic medium (Zemel, Bischofs, and

Safran, 2006), the polarization and registry of cells as a

function of external rigidity (Zemel et al., 2010b; Friedrich

and Safran, 2011, 2012), and the growth of tissue where

dividing cells correspond to force dipoles (Ranft et al.,

2010). Thus the concept of force dipoles is very general,

with applications to molecular, cellular, and tissue scales.

However, the details of these different applications strongly

depend on the biological situation of interest.

For epithelial tissue dominated by direct cell-cell contacts,

other approaches are adequate, most prominently vertex

models starting from the fact that cell walls are strongly

contractile (Farhadifar et al., 2007; Hufnagel et al., 2007;

Rauzi et al., 2008; Landsberg et al., 2009; Aegerter-Wilmsen

et al., 2010; Canela-Xandri et al., 2011; Aliee et al., 2012).

Although this situation is somehow reminiscent of foams, due

to the presence of cell proliferation and death we are dealing

with an active material (Shraiman, 2005; Basan et al., 2009;

Ranft et al., 2010). This shows again that, within the over-

arching framework of active materials, different physics con-

cepts have to be used depending on the biological context.

Because biological systems are very complex, meaningful

mathematical models must be selective and focus on phe-

nomena that can be treated in a tractable manner in order to

yield physical insight. The role of forces at the cell-material

interface is certainly a phenomenon which can only be fully

understood with concepts and tools from physics. For future

progress, it is essential to choose the appropriate parameters

and formulate models that are sufficiently simple to be

analyzed in detail, but predictive enough to be verified or

falsified by experiments. A theoretical analysis has many

benefits. Apart from providing deeper insight and quantitative

predictions, it usually reveals relations between quantities or

phenomena that would go unnoticed without a theoretical

model. For example, the interplay between cell adhesion and

mechanics leads to interesting predictions regarding the cou-

pling of cell shape and forces (Bar-Ziv et al., 1999;

Deshpande, McMeeking, and Evans, 2006; Bischofs et al.,

2008; Bischofs, Schmidt, and Schwarz, 2009; Guthardt

Torres, Bischofs, and Schwarz, 2012). A major focus of this

review is to point out the relations between cell shape,

structure, adhesion, and force as they emerge from our grow-

ing physical understanding of the role of physical forces at

the cell-material interface.

This review is organized as follows. We start with a survey

of the relevant soft matter physics that describes and quanti-

fies those parts of cells that are involved in force transmission.

In particular, we review the properties of liquid crystals,

flexible and semiflexible chains and gels, and elements of

elasticity theory for both bulk systems such as elastic solids as

well as for finite-sized systems such as vesicles and capsules.

We then present the minimally required cell biology back-

ground, including a general discussion of the cytoskeleton

and the properties of actin polymers and networks, myosin

molecular motors that endow these networks with active

contractility, and the membrane-based adhesion structures

that connect cells to their environment. The main part of

this review then covers recent developments in the physics

of adherent cells. In the spirit of a multiscale approach, we

start on a relatively small scale with simple models for the

physics of adhesion clusters. We then progress to models for

cell shape and structure, which in turn form the basis for

coarse-grained models for entire cells as force dipoles. In

particular, we use this framework to discuss cell response to

mechanical stress as well as actin network polarization and its

dependence on the elasticity of the underlying matrix. Finally

we address the physics of matrix-mediated cell assemblies

from the viewpoint of cellular forces. We close with some

conclusions and an outlook on future perspectives.

II. PHYSICS BACKGROUND

A. Soft matter in biological systems

This review on physical forces at the cell-material interface

focuses on a view of animal cells as complex, composite, soft

materials comprising fluid membranes that are coupled to two

types of elastic and often contracile polymer networks. Inside

the cell, there exists a highly cross-linked and entangled

network of three different types of polymers (actin filaments,

microtubules, and intermediate filaments) collectively called

the cytoskeleton (CSK). On the outside, the cell is coupled to

another multicomponent, gel-like network (including fibrous

protein components such as collagen or fibronectin) called the

extracellular matrix (ECM). If subjected to mechanical

forces, the biological material initially responds like a passive

elastic body; thus elasticity theory is an essential element of

the physics of cells and tissues. At longer time scales, the cell

responds to mechanical perturbations by actively reorganiz-

ing the structure of its CSK (and, to a certain extent, its ECM

as well).

Experiments suggest that cells in solution respond elasti-

cally up to times on the order of a few seconds (Wottawah

et al., 2005). The same is true for tissue on a time scale of

seconds and minutes (Gonzalez-Rodriguez et al., 2012). The

deformation of an elastic body induces both stress and strain.

For example, for a simple, one-dimensional stretch of an

elastic slab, the stress � is the force per area applied to the

slab on its top and bottom faces, while the strain � is the

resulting relative change in length. (For a more detailed

introduction to the tensorial theory of elasticity see below.)

The simplest constitutive relation that relates stress and strain

is a linear one in which � ¼ E�. The elastic constant E
introduced in this way is known as Young’s modulus and is

often called the stiffness or rigidity. The larger the Young’s

modulus, the more stress is required to stretch the material to

the same extent. Because strain � is dimensionless, the

Young’s modulus has the same physical dimensions as stress

�, that is N=m2 ¼ Pa. Physically this means that the elastic

modulus is a measure of the mechanical energy density of the

system. The corresponding spring constant k ¼ EA=L0 also

depends on two geometrical quantities: the cross-sectional

area A and the rest length L0 of the spring.

For much of our discussion of cell elasticity, it is essential

to note that the elastic modulus of a typical tissue cell is in the

range of 10 kPa. This should be contrasted with the much

higher values of crystal moduli of 100 GPa. With a typical

size of the supramolecular assembly of 10 nm, simple scaling

predicts that the typical energy scale for cells is in the range
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of 10 kPað10 nmÞ3 ¼ 10�20 J, which is close to the thermal

energy scale kBT ¼ 4:1� 10�21 J ¼ 4:1 pN nm. (Here we

used T ¼ 300 K since most of biology operates at room or

body temperature.) Although somehow simplistic, this argu-

ment nevertheless correctly indicates that the cohesive inter-

actions that stabilize cells are weak. These are mainly

electrostatic attractions between charges or charge distribu-

tions (mainly dipoles) that are screened by water and rela-

tively high salt concentration (100 mM corresponding to a

Debye screening length of about 1 nm), hydrogen bridges,

hydrophobic interactions due to the special properties of

water, and entropic forces such as depletion interactions, all

of which operate on an energy scale of a few kBT (Dill and

Bromberg, 2010; Israelachvili, 2011).

The relatively weak cohesive energies are also related to

the large length scales that characterize soft matter, since it is

often the energy density (energy per unit volume) that is

relevant. For example, the large-scale structures of linear

macromolecules (polymers) in solution can be described by

disordered, bloblike structures where the typical blob size

can be hundreds of angstroms (de Gennes, 1979). Water-

amphiphile dispersions can exhibit disordered, spongelike

structures consisting of bilayer sheets of amphiphilic mole-

cules whose sizes can be 100 times the size of an individual

molecule (Schwarz and Gompper, 2002; Safran, 2003). Even

those soft materials that show solidlike elasticity, such as gels

(de Gennes, 1979; Boal and David, 2012) or colloidal crystals

(Pieranski, 1983), have mesh or lattice constants that are in

the range of hundreds to thousands of angstroms. In addition,

the overall weak nature of the interactions (e.g., gels with

dilute cross-links separated by large distances, colloidal par-

ticles with small surface charges) results in shear elastic

constants that can be many orders of magnitude weaker

than those of hard matter. The weak, noncovalent nature of

the interactions in soft matter often competes with the entropy

of the system and leads to large responses and variations in

the structures and phases as the temperature or composition is

varied. The soft matter topics that are most closely related to

cellular forces are liquid crystals, polymers and gels, elastic-

ity and the adhesion of fluid drops, amphiphilic vesicles, and

polymerized capsules.

In practice, the mechanical properties of cells are described

by linear elasticity only in a limited regime, and there exists a

hierarchy of length and energy scales that determine how

cells respond to force. In fact, the viscoelastic response of

cells has been measured using various techniques in different

situations and over a large range of frequencies (Fung, 1993).

These measurements show that cells share many of the

features of the viscoelasticity of in vitro, reconstituted net-

works of biopolymers (Bausch and Kroy, 2006; Daniel T. N.

Chen et al., 2010).

While synthetic soft matter systems are subject and sensi-

tive to thermal disorder, biological cells exhibit far more

noisy behavior (Pearson, 2008) due to the stochastic nature

of many of the biomolecular processes that take place; in our

context such nonthermal noise occurs mainly in the context of

force generation by molecular motors (Howard, 2001) and

actin polymerization (Mogilner, 2006). If these processes are

correlated only on molecular length and time scales, we can

regard them as active white noise with regard to modeling

cellular behavior on much longer scales. In that case, the

molecular processes can be approximated as being delta

correlated in both space and time the results of which

(Haken, 1983) resemble an effective temperature that deter-

mines the width of a Boltzmann-like distribution. However,

this cannot be generalized to the role of an effective tempera-

ture in a true thermodynamic sense (Ben-Isaac et al., 2011).

In particular, the fluctuation-dissipation theorem (Chaikin

and Lubensky, 2000) is not obeyed (Mizuno et al., 2007) as

it is in thermal systems. With these caveats, we use the

concept of effective temperature and the resulting

Boltzmann distribution of cellular energies in situations in

which the molecular noise can be regarded as delta

correlated.

B. Liquid crystals

We begin our review of relevant physical systems with

liquid crystals, which comprise anisotropic (e.g., rodlike)

molecules that can show orientational (nematic) order, but

not necessarily positional (translational) order (de Gennes

and Prost, 1995). At lower temperatures, nematically ordered

systems show a type of one-dimensional (smectic) order in

which the molecules form well-defined layers with the mo-

lecular axis oriented parallel to the layer normal (smectic A).
The layers themselves are fluid with no translational, in-plane

order. The relevance of liquid crystal ordering to cells lies in

the fact that, under external forces (shear flow or elastic

deformation) or in elastic environments of appropriate rigid-

ity, the polymer networks inside cells can show nematic and

even smectic order; these applications are discussed later and

here we outline the relevant liquid crystal physics.

The cooperative, orientational interactions between

rodlike molecules can give rise to phase transitions in which

they all align in a given direction, as in Fig. 1(a) (de Gennes

and Prost, 1995). Such nematic ordering transitions can

arise when the temperature is lowered in systems governed

by microscopic interactions that promote order.

Microscopically, each molecule is characterized by its ther-

mally fluctuating orientation angle �, where the z axis that

(a) (b)

(c) (d)

FIG. 1. Passive bulk soft matter examples that are important

model systems for the understanding of the material properties of

cells and tissues. (a) Liquid crystals often form nematic phases, with

no positional but orientational order. (b) In a dilute polymer

solution, each polymer forms a globule that is well separated

from the other polymers. (c) A cross-linked polymer gel can behave

like an elastic solid but with much weaker rigidity. (d) Lipids self-

assemble into fluid bilayers that at high concentration in turn tend to

self-assemble into stacks, the so-called lamellar phase.
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defines the angle can be defined by convention or by some

macroscopic, symmetry-breaking field such as the (nonspher-

ical) shape of the system. Because the rodlike molecules have

up-down symmetry, the interaction energy cannot be an odd

function of the angle since that changes sign when the rod is

flipped. Instead, the energies must be even functions of �.
These symmetry considerations allow the definition of the

local value of the nematic order parameter Si of a given

molecule labeled by i as

Si ¼ 1
2ð3 cos�i2 � 1Þ: (1)

A simple mean-field theory for nematic ordering was formu-

lated by Maier and Saupe (1959). The Hamiltonian of

the interacting system of rods in which the energy depends

on the local orientations of nearby molecules is replaced

by a one-body approximation Ums in which the energy of a

given molecule is proportional to the product of its order

parameter with the thermal average of the average order

parameter of the system hSi. The mean-field nature of this

assumption lies in the fact that the orientations of neighbor-

ing, interacting molecules are approximated by the average

order parameter

Ums ¼ BhSi
X

i

Si; (2)

where B is a constant that characterizes the interactions. The

order parameter is determined self-consistently from the

statistical mechanical definition of the thermal average in

which the probability distribution is proportional to the

Boltzmann factor exp½�Ums=kBT�:

hSi ¼ 1

Z

Z

d�Si exp½�BhSiSi=kBT�; (3)

where � is the solid angle and the normalization Z is the

average of the exp½�Ums=kBT� over all solid angles.

This approximation correctly predicts a first-order phase

transition at which the average order parameter hSi jumps

from a value of zero to a value of approximately 0.4 when

B=kBT ¼ 4:6. As the temperature is lowered, the order pa-

rameter increases until it reaches its saturation value of unity.

The molecules are still in the fluid state; there is no transla-

tional order, but only orientational order.

C. Semiflexible polymers

Semiflexible polymers (also known as wormlike chains)

(Sait, Takahashi, and Yunoki, 1967; Marko and Siggia, 1995)

are long, one-dimensional chains ofN molecules (monomeric

units) whose intermolecular bonds resist bending; this is in

contrast to flexible chains (de Gennes, 1979), where there is

no energetic penalty for bending (at scales that are compa-

rable to the size of a monomer) and which are completely

governed by entropy. Both types of polymers form globules,

as in Fig. 1(b), but with different typical sizes. The physics of

flexible chains are well known (de Gennes, 1979; Doi, 1996;

Rubinstein and Colby, 2003) and their resistance to changes

of their ‘‘size’’ (end-to-end distance or radius of gyration R)
away from their ‘‘random walk’’ or Gaussian conformation

where R� N1=2 is characterized in a mean-field treatment by

a free energy per chain

f ¼ 3kBT

2

R2

Na2
; (4)

where N is the number of monomers in the chain and a is the

monomer size. Self-avoidance of the chain due to excluded

volume interactions among the monomers leads to additional

interactions and in a mean-field treatment the scaling of R
with N is modified so that R� N3=5. Many biopolymers

including DNA and various cytoskeletal filaments such as

actin and microtubules discussed later are semiflexible and

bend only on length scales of 50 nm (DNA) through micro-

meters (actin) or even millimeters (microtubules), while syn-

thetic polymers such as polystyrene in organic solvents are

flexible and easily bend on nanometric scales.

On a coarse-grained, continuum level the bending resist-

ance of a semiflexible polymer is similar to that of an elastic

rod (Landau and Lifshitz, 1970). Bending is geometrically

characterized by the curvature of the position vector of the

rod ~RðsÞ which is a function of the monomer distance s along
the contour (0 � s � L, where L is the contour length of the

rod). For systems where positive and negative curvatures are

equivalent by symmetry, there can be no terms in the energy

that are linear in curvature, so that in a small curvature

expansion (appropriate when the radius of curvature is

much larger than a monomer size), the energyHb is quadratic

in the chain curvature (Landau and Lifshitz, 1970):

Hb ¼ �

2

Z L

0
ds

�
d2 ~R

ds2

�
2
; (5)

where � is the bending modulus that characterizes the elastic

resistance to bending. The lowest energy deformations of the

rod are the bending modes that do not result in an overall

volume change of the rod and involve only relative extension

and compression of its upper and lower surfaces (Landau and

Lifshitz, 1970). For most purposes one assumes that the rod is

inextensible and neglects any stretching of the center of mass

distances between molecules. This is expressed by the inex-

tensibility constraint that leaves the rod length unchanged:

L ¼
Z L

0
ds

��������

d ~R

ds

��������
(6)

and is equivalent to the requirement that the tangent vector

given by d ~R=ds is a unit vector.

In equilibrium, a semiflexible polymer represented by such

a rod undergoes thermally driven motion that is resisted by

the bending energy. The inextensibility constraint makes this

problem difficult to treat exactly (Sait, Takahashi, and

Yunoki, 1967; Marko and Siggia, 1995; Rubinstein and

Colby, 2003). For small deformations of a chain oriented in

the z direction, one can approximate s � z and describe the

chain position by ~R ¼ ðXðzÞ; YðzÞ; zÞ. The deformations can

be resolved into their Fourier components XðqÞ ¼
R
dzXðzÞeiqz that are the normal modes which diagonalize

the bending Hamiltonian. Using the equipartition theorem

one finds that hjXðqÞj2i ¼ kBT=�q
4 and one can show that the

tangent vectors t̂ ¼ d ~R=dz of neighboring points are nearly

equal with

h½t̂ðzÞ � t̂ð0Þ�2i � kBT
Z

dq
1� cosðqzÞ

�q2
� kBT

�
z: (7)
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The tangent correlations diverge as the distance between the

points along the rod increases and for large z this invalidates
the approximation of small fluctuations and inextensibility

(equivalent to a unit tangent vector). However, one can find

the value of z at which the tangent correlations first become of

order unity; this defines the persistence length (Rubinstein

and Colby, 2003; Phillips, Kondev, and Theriot, 2008) � of

the chain and one finds � � �=kBT. At scales smaller than the

persistence length, the chain shows rigid-rodlike behavior

with relatively small bending fluctuations; at longer scales,

the fluctuations are large and a random walk (or excluded

volume random walk) picture is more appropriate.

D. Polymer gels

While single cytoskeletal proteins such as actin filaments

or microtubules can be modeled as semiflexible polymers, the

CSK often contains cross-linked assemblies (gels) compris-

ing these proteins, as in Fig. 1(c). The assemblies can be

networklike (macroscopically isotropic) or ordered into

bundlelike filaments. Here we review the response of semi-

flexible polymers to applied, static forces that stretch the

chains and determine the regimes in which the chains respond

linearly or nonlinearly to applied force.

For simplicity, we focus on a chain whose projected length

is less than or of the order of its persistence length. In the

context of a cross-linked gel, the projected length is deter-

mined by the distance between the cross-links, assuming

permanent cross-links at whose positions the polymer is

rigidly held fixed. The dissociation of the cross-links disrupts

the network and can lead to nonelastic (e.g., viscous flow)

response to stress; however, we focus on the early-time (tens

of seconds and possibly more in strongly adherent cells)

behavior where the network response to force is elastic in

nature (Wottawah et al., 2005). We consider the elastic

response of a single, semiflexible polymer. Naively, one

might think that this response will be typical of a polymer

segment in the gel whose projected length is the average

spacing between cross-links; the distribution of cross-links

in the gel implies a distribution of polymer segment lengths

between cross-links. This would indeed be true for affine

deformations in which each chain is stretched in the same

proportions as the macroscopically applied stress or strain.

However, for large deformations, where the elastic response

is highly nonlinear, the distribution of stresses among the

chains with varying segment lengths can be length dependent;

the stresses will not be affine and it is harder to associate the

gel with the response of one chain of average segment length

(Head, Levine, and MacKintosh, 2003a, 2003b; Wilhelm and

Frey, 2003; Heussinger and Frey, 2006; Heussinger, Schaefer,

and Frey, 2007).

Before treating the case of semiflexible polymers, we

briefly derive the elastic modulus that characterizes the

response of flexible polymers to applied forces (so-called

rubber elasticity). The modulus is completely determined

by the changes in the chain entropy that are due to the

applied strain �i ¼ �i � 1 (i ¼ x, y, z) that changes the

macroscopic dimensions of the sample from ðLx; Ly; LzÞ to
ð�xLx; �yLy; �zLzÞ. Incompressibility of the chains and sol-

vent implies that the volume must remain unchanged, so that

the product �x�y�z ¼ 1. The free energy per chain in the

unstressed system is given by Eq. (5) and for affine strains

where ~R ¼ ðX; Y; ZÞ ! ð�xX; �yY; �zZÞ, the free energy per

chain becomes

f ¼ kBT

2
ð�2

x þ �2
y þ �2

z � 3Þ: (8)

We consider a uniaxial deformation in the x direction, �x ¼ �

and by incompressibility �y ¼ �z ¼ 1=
ffiffiffiffi

�
p

. The force applied

to a single chain is @f=@Lx and the stress in the entire system

of chains � is the total force applied per unit area � ¼
�kBTð�2 � 1=�Þ, where � is the number of chain segments

per unit volume. For small deformations � � 1, an expansion
of the expression for � shows that the stress is proportional to

the product of the strain and �kBT, similar to the pressure of

an ideal gas. For large strains, the stress is nonlinearly related

to the strain but this arises from the incompressibility condi-

tion and not from any specific properties of the chains.

Fluctuations of the cross-links further reduce the strain

(Rubinstein and Colby, 2003).

Semiflexible chains have a more complex response to

applied forces and one can use the model described above

to predict their stress-dependent elastic modulus. When semi-

flexible chains are stretched near their limit, the additional

force to stretch them further tends to diverge and this results

in an elastic modulus that is intrinsically stress dependent.

One considers a Hamiltonian that includes the bending en-

ergy as well as an energy that tends to equalize the projected

length Lp and contour length L¼RLp

0 dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þX0ðzÞ2þY0ðzÞ2
p

.

This arises from a tension (energy per unit length) � that

couples to the difference L� Lp. In the approximation that

the fluctuations are small, one can expand the square root to

obtain

H�¼
�

2

Z L

0
dz½X00ðzÞ2þY00ðzÞ2�2þ�

2

Z L

0
dz½X0ðzÞ2þY0ðzÞ2�2:

(9)

Using equipartition of the Fourier modes of the chain fluctu-

ations (Landau and Lifshitz, 1970; Safran, 2003) one can

calculate (Mackintosh, 2006) 	‘, which is the increase in the

chain extension compared to its zero-tension, fluctuating

value:

	‘ ¼ L2

6�

�

1þ 3


2�
� 3 cothð
 ffiffiffiffi

�
p Þ



ffiffiffiffi
�

p
�

; (10)

where � ¼ �L2=�
2 is a dimensionless measure of the

applied force and � is the persistence length defined above.

For small forces 	‘� �L4=��; the excess strain 	‘=L is

proportional to the force and the system is harmonic. For

large forces, 	‘ approaches the value for full extension of

	‘0 ¼ L2=ð6�Þ and the difference 	‘0 � 	‘� 1=
ffiffiffi
�

p
. This

nonlinear relationship between extension and applied force

expresses the fact that, as the chain approaches its maximum

extension, a very large force must be applied. The measured

elastic constant of the cross-linked, semiflexible polymer gel

is then stress dependent as discussed in the context of actin

gels.
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E. Elements of elasticity

In the previous discussion, we employed scalar definitions

of the stress and strain developed in an elastic system that is

subject to applied forces. While liquids and gases also resist

compression, they do not show an elastic response to external

forces that act only to change the shape of the system; such

forces (per unit area) that do not induce any volume change

are called shear stresses. The elastic response (restoring

force) to shear stresses is characteristic of solids. Cross-linked

gels, while being disordered, are indeed classified as solids

since they resist shape changes and can be described by

elasticity theory. This is true when the cross-links are perma-

nent, or very long lived; otherwise, one must deal with time-

(or frequency-)dependent elastic constants (Fung, 1993; Boal

and David, 2012). Biological gels are typically not perma-

nently cross-linked (Lieleg et al., 2008) and at long times one

expects liquidlike flow instead of an elastic response to shear

forces. This indeed is the time regime in which the CSK is

modeled (Liverpool and Marchetti, 2003; Kruse et al., 2004;

Julicher et al., 2007; Marchetti et al., 2013) as an active gel

that flows in response to internal forces generated by cell

activity which is fueled by energy consumption. Here we

restrict our focus to the early-time (tens of seconds) behavior

of the CSK (Kollmannsberger and Fabry, 2011), where the

cross-linkers still maintain the elastic response of the CSK to

both internal and external forces. The elastic approach is also

more appropriate for the ECM which remodels much less

than the CSK.

In the presence of external or internal forces that are not

part of the elastic network themselves (including thermal

forces that change the positions of the particles), and in a

continuum picture, the material particles that comprise an

elastic system are assumed to be displaced from their equi-

librium positions by a smooth displacement field ~uð~rÞ where
~r ¼ ðr1; r2; r3Þ ¼ ðx; y; zÞ. The elastic energy arises from in-

terparticle interactions and is thus a function not of ~uð~rÞ, but
of its spatial gradients that represent changes in the relative

positions of the particles. This is true in the absence of any

external ‘‘pinning’’ forces for which translations of the sys-

tem [where ~uð~rÞ is constant] have no energy cost. The elastic

energy is thus a function of the strain tensor uij defined

(Landau and Lifshitz, 1970) as

uij ¼
1

2

�
@uið~rÞ
@rj

þ @ujð~rÞ
@ri

þ @ulð~rÞ
@ri

@ulð~rÞ
@rj

�

; (11)

where summation over the repeated index l is implied. The

nonlinear term on the right can be neglected for small strains.

The local change in a small length element dx is dxð1þ uxxÞ
so that the local volume change (given by the product dxdydz
minus the initial volume) is determined to first order in the

strain by trðuijÞ ¼ uii ¼ uxx þ uyy þ uzz. These are coupled

to isotropic compressions or expansions while shear forces

that change the shape of the system couple to the off-diagonal

strain components such as @ux=@y that represent changes in

the interparticle spacing in the x direction that vary in the y
direction.

Displacing the particles from their equilibrium positions

creates strains that are resisted by internal restoring forces

that originate in the intermolecular interactions (and in the

case of polymeric gels, entropy) that provide shape memory

and hence elasticity. The forces that arise from the elasticity

are described by a stress tensor �ijð~rÞ. This is the force per

unit area in the i direction that acts on the surfaces whose

normal is in the j direction of an infinitesimal volume ele-

ment. The pressure is the negative of one-third of the trace of

the stress. In the absence of motion, the difference of the

stresses on two surfaces separated by a distance d~r is attrib-

uted to the presence of a local force density ~fð~rÞ within that

volume element so that (Landau and Lifshitz, 1970), in

equilibrium, fið~rÞ ¼ �Pj@�ij=@rj. It is important to note

that the force per unit volume fi is attributed to forces that are
not included in the system’s elastic response and arise either

from active internal elements or from macroscopic forces that

act on the system boundaries. In the absence of such forces,

mechanical equilibrium thus dictates that the divergence of

the stress tensor vanishes.

For an isotropic body, rotational symmetry implies that

there are two tensor components that must be considered for

the strain and stress: (i) the trace that describes the local

volume change u0ð~rÞ ¼ uijð~rÞ	ij or the hydrostatic pressure

��0ð~rÞ=3 ¼ ��ijð~rÞ	ij=3 (where one sums over the re-

peated index), and (ii) the traceless shear, defined as usijð~rÞ ¼
uijð~rÞ � ð1=3Þu0ð~rÞ	ij with a similar expression for the shear

stress. Since the internal forces that resist deformations can

also include thermal effects at the intramolecular level (such

as changes in the conformations of polymers in gel networks),

one considers the elastic free energy per unit volume (Landau

and Lifshitz, 1970) fe. The free energy associated with elastic
deformations is a scalar and can be written from the following

symmetry considerations. (i) The free energy depends only on

the strains and not on the displacements. (ii) There is no term

linear in strain since the deformation free energy represents

an expansion about equilibrium where the free energy is

minimal. (iii) The free energy is a scalar and cannot depend

on the coordinate system. Since u0iju
s
ij ¼ 0, the free energy

written up to quadratic order in the strains can contain only

terms with ðu0ijÞ2 and usiju
s
ij:

fe ¼
K

2

�
X

i

uii

�
2
þ�

X

ij

�

uij �
1

3
	ij

X

l

ull

�
2
; (12)

where uij denotes the local strain uijð~rÞ. The first term

accounts for the free energy associated with volume

changes and is proportional to the bulk modulus K, while

the second term accounts for the shear response, proportional

to the shear modulus �. These two elastic constants that

have the dimensions of energy per unit volume (the same

as pressure, measured in Pa) are material dependent

and can also be expressed (in three dimensions) by the

Young’s modulus E ¼ 9K�=ð3Kþ�Þ and Poisson ratio

 ¼ ð3K � 2�Þ=2ð3K þ�Þ. As mentioned, the Young’s

modulus is the elastic constant that appears naturally for a

one-dimensional stretching experiment. Tensorial elasticity

shows that, even in the simplest case of linear isotropic

elasticity, two elastic constants exist, with the Poisson ratio

acting as a second elastic constant that accounts for how

different dimensions are coupled to each other. The

Young’s modulus can show tremendous variation depending

on the strength of the interparticle interactions and the typical
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particle spacing: diamond or carbon sheets have E� TPa,
metals have E� 100 GPa, and rubber has E�MPa, while
tissue cells typically have E� 10 kPa. The large differences
between the rigidities of molecular and cellular systems are

mostly determined by the different length scales involved: the

modulus (with dimensions of energy per unit volume) scales

as the inverse of the cube of the characteristic length that

determines the interactions. Materials whose cohesive energy

is due to interatomic or intermolecular interactions on the nm

scale can therefore have elastic moduli that are 6 orders of

magnitude larger than the biopolymer gels that comprise the

CSK or ECM where the cross-link distance can be 100 nm or

more. For incompressible materials K=� ! 1 and  ! 1=2,
while in the opposite limit of highly compressible materials

 ! �1. Most biological gels are fairly incompressible due

to the presence of water that solubilizes the biopolymeric

elastic elements, with  in the range of 1=3 to 1=2.
The strains in an elastic material result in forces that tend

to restore the equilibrium, unstrained state. These are most

conveniently given by the stress tensor �ij (force per unit

area) that is derived from derivative of the free energy with

respect to the strains (analogous to force given by the deriva-

tive of the energy with respect to displacement): �ij ¼
@fe=@uij. This relationship implies that the elastic deforma-

tion energy per unit volume can also be written as

fe ¼
1

2

X

ij

�ijuij: (13)

Using the expression for the force balance in mechanical

equilibrium, Eq. (13) for the free energy (for small strains),

and the relationship between stress and strain, one finds

fið~rÞ ¼ � @�ijð~rÞ
@rj

¼ � ~E

�


1� 2

@u‘‘
@ri

þ @uij

@rj

�

¼ �
~E

2

�
@2ui
@r2j

þ 1

1� 2

@2uj

@ri@rj

�

; (14)

where ~E ¼ E=ð1þ Þ and a summation is implied by re-

peated indices. The second and third equalities in Eq. (14) are

obtained from the definitions of the stress and strain tensors.

The solution of such linear differential equations with a

source term [the internal force distribution ~fð~rÞ] is given by

the convolution of the source (the force at position ~r0) with the
Green’s function Gijð~r; ~r0Þ of the system (Arfken and Weber,

1995). In our case this predicts the displacement

uið~rÞ ¼
Z

d~r0Gijð~r; ~r0Þfjð~r0Þ: (15)

The Green’s function itself is given by the solution of Eq. (14)

for uið~rÞ for the case of a delta-function, point force located

at ~r0. For an infinite elastic domain, the Green’s function

depends only on ~R ¼ ~r� ~r0 and is written as (Landau and

Lifshitz, 1970)

Gijð ~RÞ ¼
1

8
 ~Eð1� ÞR

�

ð3� 4Þ	ij þ
RiRj

R2

�

: (16)

While the angular dependence is complex and resembles that

of an electric dipole, the distance dependence of 1=R is

similar to the potential due to a point charge. Similar to

electrostatics, elastic stresses and strains due to localized

forces are long ranged. As we see later, this allows cells to

communicate with each other and with the boundaries of their

physical environment over relatively large distances.

F. Adhesion of vesicles and capsules

Until now we have discussed bulk phases of soft matter and

biomaterials. We next address finite-sized model systems that

can account for some aspects (mainly passive responses) of

cells, namely, fluid droplets, elastic spheres, vesicles, and

capsules, as in Fig. 2. We consider the case where these

bodies are in contact with an attractive surface that favors

adhesion. While fluid droplets and elastic spheres are both

chemically homogeneous, with the same chemical species at

both the surface and in the bulk, vesicles and capsules (also

known as polymerized vesicles) are characterized by surfaces

whose composition differs from that of the bulk. Vesicles

typically consist of fluid, amphiphilic bilayers that enclose a

spherical water core. Although the thermodynamic stable

phase is usually the lamellar phase depicted in Fig. 1(d),

vesicles are metastable over very long time scales and ubiq-

uitous in biological systems. The bilayers respond to forces

that couple to their curvature (bending response). The sur-

faces of capsules are typically thin polymer films with both

bending and elastic responses. Because of their membrane-

like nature that is sensitive to bending and/or elastic forces,

the adhesions of vesicles and capsules are interesting refer-

ence cases for the adhesion of cells.

The interface of a fluid droplet is defined as the region

where two coexisting phases overlap (e.g., fluid and vapor).

The interfacial energy therefore scales to first order with the

product of the geometrical area and the surface tension �
(Safran, 2003). The interfacial Hamiltonian is simply

Ui ¼ �
Z

dA: (17)

Variation of this surface functional with a Lagrange parame-

ter �p that enforces the conservation of volume (�p simply

(a)

(c)

(b)

(d)

FIG. 2. Simple soft matter models relevant to the passive features

of cell adhesion to a flat substrate. (a) A liquid droplet adhering to a

surface is governed by surface tension. (b) A solid elastic sphere

gains adhesion energy by forming a contact region whose size is

determined by the balance of the adhesion and shear deformation

energies. (c) A closed shell of a fluid, lipid bilayer (vesicle) is

governed by bending energy. (d) A polymeric capsule has both

bending and stretching energy; their interplay can lead to buckling

in the contact area.
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corresponds to the pressure difference between the inside and

outside of the sphere) yields the Laplace law H ¼ �p=ð2�Þ,
where H ¼ ð1=R1 þ 1=R2Þ=2 is the mean curvature of the

surface and R1 and R2 are the two principal radii of curvature

(Safran, 2003). For a free droplet, the solution will be simply

a sphere, with the mean curvature H ¼ 1=R everywhere. For

an adherent droplet, the Laplace law is valid for the free part

of the droplet, which therefore will be a spherical cap of

radius R as in Fig. 2(a). The exact dimensions of this spheri-

cal cap are determined by the overall volume and the contact

angle �, which in turn is determined by the interfacial en-

ergies according to Young’s law:

cos� ¼ �SG � �SL

�
; (18)

where �SG is the interfacial energy between the substrate and

the gas phase and �SL is the interfacial energy between the

substrate and the liquid phase, respectively. The contact angle

according to Young’s law also determines the direction in

which the interface is pulling as expressed by its surface

tension. With a typical contact angle around 90�, the pulling
force is mainly normal to the substrate. The horizontal com-

ponent of this pulling force is balanced by the surface en-

ergies associated with adhesion.

A filled elastic sphere of homogeneous composition and

with radius R that adheres to a surface forms a finite-sized

contact region of radius a as in Fig. 2(b). The size of the

adhesion region is determined from the balance of the gain in

adhesion energy per unit area W and the elastic energy

penalty from the deformation that accumulates in the sphere

due to the shape change upon adhesion. For a material that

obeys linear elasticity, this depends on the Young’s modulus

E and the Poisson ratio . The balance of the adhesion and

elastic forces is treated in contact mechanics and was first

solved by Johnson, Kendall, and Roberts (JKR theory)

(Johnson, Kendall, and Roberts, 1971; Johnson, 1985), who

calculated

a3 ¼ 9
ð1� 2Þ
2E

R2W: (19)

Thus, the linear dimension of the adhesion area increases with

adhesion energy (due to the gain in adhesion energy) and

decreases with Young’s modulus (since it tends to oppose the

shape deformation induced by the attractive adhesion en-

ergy). Note that these calculations assume only normal

forces. Contact mechanics predicts that in order to detach

the elastic sphere in the normal direction, a critical force

Fc ¼ 3W
R=2 is required, which surprisingly depends only

on the adhesion energy and is independent of the elastic

constants. For an elastic sphere pushed onto the substrate

by a normal force, one has the Hertzian stress profile �ðrÞ ¼
�0½1� ðr=aÞ2�1=2, where r is the radial coordinate. In marked

contrast to this, the JKR solution, which applies to a self-

adhered elastic sphere, has an additional contribution

½1� ðr=aÞ2��1=2 that diverges at the boundary. The localiza-

tion of the stress to the boundary makes the contact prone to

fracture from the periphery due to crack nucleation.

In contrast to droplets and elastic spheres, the interfacial

energy of vesicles and capsules is determined by the force

response of the molecules on the surface. For thin, elastic

shells (capsules) that obey linear, isotropic elasticity with

bulk Young’s modulus E and Poisson ratio , there are three
main deformation modes: out of plane bending as well as in-

plane shear and stretching. The bending energy reads

Ub ¼ 2�
Z

dAH2; (20)

where H is the mean curvature as above and � is the bending

rigidity which is related to the elastic properties of the

material by � ¼ Eh3=12ð1� 2Þ (Landau and Lifshitz,

1970). A simple material law for the in-plane contributions

is (Lim H.W. et al., 2002)

Up ¼
Z

dA

�

�
ð�1 � �2Þ2
2�1�2

þ K

2
ð�1�2 � 1Þ2

�

; (21)

where � and K are two-dimensional shear and bulk moduli,

respectively, which are related to the three-dimensional

moduli by multiplication by the shell thickness h; here �i ¼
1þ uii are the principal extension ratios.

For vesicles, comprising amphiphilic bilayers that are

generally fluid, the in-plane deformations are not relevant

for two reasons. Because of the fluid nature of the lipid

bilayer, the shear modulus vanishes, and the bulk modulus

is so large that the system is effectively incompressible.

Therefore, only the bending energy is relevant; the form of

the bending energy is the same as in Eq. (20), but the origin of

the bending energy depends on the molecular characteristics;

for systems with long chain molecules, the entropy, which is a

function of chain length, can play an important role (Safran,

1999). The typical bending rigidity of amphiphilic lipids that

comprise biological membranes is � ¼ 20 kBT. A detailed

shape analysis of the bending Hamiltonian equation (20) and

its extensions to account for each of the monolayers that

comprise the bilayer has shown that free vesicles can adopt

a large variety of often surprising shapes (Canham, 1970;

Helfrich, 1973; Seifert, Berndl, and Lipowsky, 1991; Miao

et al., 1994; Seifert, 1997). In order to calculate vesicle shape

upon adhesion, as in Fig. 2(c), one must consider the com-

petition of the bending energy with the adhesion energy

where W is the adhesion energy per unit area (Seifert and

Lipowsky, 1990; Seifert, 1997). For weak adhesion or small

radii of curvature, the bending energy dominates and the

vesicle maintains it spherical shape without deforming to

adhere to the surface. However, in the case of strong adhesion

WR2
0=� � 1 (where R0 is the equivalent sphere radius de-

fined by the vesicle volume V ¼ 4
R3
0=3), the vesicle shape

effectively approaches a spherical cap with a well-defined

contact radius. In this case, the adhesion forces will again be

mostly normal and localized to the rim of the adhesion region.

As we see later, an important aspect of cell adhesion is that

adhesion molecules are mobile in the lipid bilayers and can

form local clusters. This has indeed been demonstrated ex-

perimentally in vesicular systems by incorporating such ad-

hesion molecules within the lipid bilayers (Albersdorfer,

Feder, and Sackmann, 1997). Theoretical models have shown

that membrane fluctuations lead to an effective attractive

interaction between the adhesion molecules which can ex-

plain this clustering (Zuckerman and Bruinsma, 1995;

Lipowsky, 1996; Menes and Safran, 1997; Weikl and

Lipowsky, 2001; Smith and Seifert, 2005; Smith et al.,
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2008) and there is experimental evidence that indeed this

mechanism also operates in biological cells (Delano-Ayari

et al., 2004). However, despite the presence of this local

clustering, the contact zone of vesicles that adhere to a

surface through specific adhesion molecules tends to remain

rather homogeneous.

In contrast to vesicle adhesion, capsule adhesion also

involves in-plane elastic energies. It is well known that, in

particular, the stretching energy cannot be neglected when

dealing with the shape of capsules, because the ratio of

stretching and bending energies for spherical shells scales

as ðR=hÞ2 (where R is the radius of curvature and h is the shell

thickness) and is therefore always large (Landau and Lifshitz,

1970). An important consequence of this fact is that thin

elastic capsules buckle inward when a critical pressure of

pc � Eðh=RÞ2 is exceeded (Landau and Lifshitz, 1970). In

general, the interplay between stretching and bending (pos-

sibly complemented by sheet adhesion to itself) leads to a

very rich phase diagram of possible shapes (Knoche and

Kierfeld, 2011). A rich variety of phenomena also arises for

forced crumpling of planar sheets such as paper or graphene

(Lobkovsky et al., 1995; Vliegenthart and Gompper, 2006a)

or closed shells such as ping pong balls, fullerenes, or virus

capsids (Schwarz, Komura, and Safran, 2000; Vliegenthart

and Gompper, 2006b). For red blood cells, one must combine

the elasticity of thin shells with the bending energy; one then

finds good agreement between simulated and observed

shapes, both for free cells (Lim H.W. et al., 2002) and for

cells in hydrodynamic shear flow (Noguchi and Gompper,

2005).

Because attraction to a flat substrate results in deformations

that are similar to those induced by external pressure or forces,

adhesion also can lead to the inward buckling of an adherent

capsule as in Fig. 2(d) (Fery and Weinkamer, 2007). A com-

puter simulation for spherical shells adhering to a flat substrate

has shown that, as the adhesion energy increases, the shell first

flattens like an elastic sphere, then buckles in a radially sym-

metric manner, and finally develops a polygonal adhesion

region through the formation of elastic ridges running in

parallel to the substrate (Komura, Tamura, and Kato, 2005).

This shows that capsules in adhesion can develop very inho-

mogeneous adhesion regions and suggests that interfacial

stresseswillmainly be localized at the rimof the adhesion area.

Here we focused on the competition of adhesion and

deformation energies in determining the shapes of adhering

bodies as relevant background to understand the specific

features of cell adhesion. As seen in the next section, how-

ever, cell adhesion is characterized by additional and mainly

active features that do not exist in the passive systems dis-

cussed so far. Adherent cells tend to develop very inhomoge-

neous contact areas, with adhesion molecules strongly

clustered along the periphery of the adhesion region. In

particular, the inward buckling characteristic for homogene-

ously adhering capsules is not observed for cells. The stress

localization expected for capsules is weakened by remodeling

processes at the cell periphery, which are, in turn, closely

coupled to the growth and stabilization of the adhesions. Most

importantly, the adhesion structures of cells are extremely

dynamic, with a constant flow of material from the cell

periphery toward the cell center.

III. BIOLOGY BACKGROUND

A. Actin cytoskeleton and cell adhesion

Cells are the smallest units of life and widely vary in their

shape, structure, and function (Bray, 2001; Alberts et al.,

2007; Phillips, Kondev, and Theriot, 2008; Boal and David,

2012). For simplicity we focus here on animal cells, thereby

excluding, e.g., bacteria, protists, and plant cells from our

discussion. Typical cell sizes are of the order of tens of

micrometers and there are roughly 1014 cells in humans.

They can be classified into 200 major cell types ranging

from connective tissue cells through epithelial and muscle

cells to nerve cells (Alberts et al., 2007). All cells in an

organism carry the same genome, but as a result of differen-

tiation, different cell types have different gene expression

patterns, i.e., different cell types produce different proteins. If

viewed from the point of view of soft materials, however, all

animal cells are similar, including a spatial organization

determined by lipid bilayers and the polymer networks of

the cytoskeleton.

Figure 3 shows a schematic representation of the main

structural elements of an animal tissue cell in suspension. The

cell is separated from its surroundings by a plasma mem-

brane, which is a bilayer that comprises different lipid mole-

cules and is enriched by additional components such as

cholesterol. The plasma membrane is fluid in nature (no fixed

topological relations of neighboring molecules, flow under

FIG. 3 (color online). Schematic drawing of an animal cell in

suspension. Such a cell is essentially round due to its effective

surface tension. Important cellular organelles responsible for its

internal structure and mechanical properties include (1) the plasma

membrane, a lipid bilayer that envelopes the entire cell and carries

different proteins, including transmembrane receptors; (2) other

membrane structures (thin lines) such as the two membranes around

the nucleus containing the genes, the endoplasmic reticulum, the

Golgi apparatus, and different kinds of vesicles; (3) the actin cortex,

a thin shell comprising a polymer network underlying the plasma

membrane; and (4) the microtubule system (thick lines), a system of

relatively stiff polymers that radiate outward from the microtubule

organizing center that is attached to the nucleus.
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shear deformations) and acts as a carrier for a large variety of

membrane-bound proteins and sugars. Underneath the plasma

membrane is the actin cortex, a relatively thin (100 nm)

dynamic layer of cross-linked actin filaments whose me-

chanical properties dominate the elastic response in reaction

to deformations of the cell. The plasma membrane and the

actin cortex are coupled through a variety of linker molecules

that are separated by relatively large distances, so that the

membrane between them can fluctuate relatively freely, lead-

ing to the phenomenon of membrane flickering. The cyto-

plasm of the cell refers to the cellular volume (excluding the

nucleus containing the generic material in the form of DNA)

delimited by the plasma membrane. It contains several organ-

elles important for cell function, including a variety of addi-

tional membrane systems (such as the endoplasmic reticulum

and the Golgi apparatus) and polymer networks. There are

three important types of polymer networks, based on actin

filaments, microtubules, and intermediate filaments (Howard,

2001; Alberts et al., 2007; Phillips, Kondev, and Theriot,

2008; Boal and David, 2012). Collectively, they are called

the cytoskeleton. For a cell in suspension, only the micro-

tubule network is well developed in the cytoplasm.

Animal cells in suspension are usually round as depicted in

Fig. 3, indicating an effective surface tension arising from the

combined effect of plasma membrane and actin cortex. The

round shape of a cell changes once it adheres to an external

surface. If a cell encounters an external surface covered with

specific ligand, it undergoes a multistep process that deter-

mines whether or not it eventually will adhere (Bershadsky,

Balaban, and Geiger, 2003; Cohen et al., 2004). In general,

cells use different mechanisms to avoid nonspecific adhesion

(e.g., due to van der Waals forces), including a repulsive sugar

layer anchored in the membrane (glycocalix) as well as the

steric (entropic) repulsion due to membrane fluctuations

(Safran, 2003). Adhesion is induced only if it is promoted by

specific molecular signals that are found on the substrate. The

specificity of cell-matrix adhesion is implemented by trans-

membrane adhesion receptors (in humans, these aremainly the

24 variants of the integrin family), which bind to complemen-

tary ligands of the extracellular matrix (including collagen,

fibronectin, vitronectin, and laminin). Similar to passive

vesicles or capsules, the early stages of cell adhesion and

spreading can be strongly determined by viscoelastic pro-

cesses, e.g., the deformation of the rim of the developing

contact region (Cuvelier et al., 2007). Later stages are more

strongly determined by remodeling of the cytoskeleton and the

establishment of localized sites of specific adhesion. During

the remodeling process, the actin system is organized into

additional networks extending throughout the cytoplasm.

Because these networks are cross-linked, the actin cytoskele-

ton provides the cell with elastic restoring forces that resist

shear deformations and is thus essential in determining the

shape, stability, and mechanical response of cells. While the

volume of a cell tends to stay constant during adhesion and

spreading, the surface can increase by up to 50%,which occurs

via the flattening of the undulated membrane as well as by the

addition of new lipid material (Gauthier et al., 2011).

Figure 4 schematically depicts the actin structures that are

typically developed during cell adhesion and spreading. In

contrast to Fig. 3, we do not depict the microtubule system

here, because it has only a supportive function in this context

(its main function here is to coordinate processes involved in

active transport and cell migration). The main mechanism

that leads to outward expansion of the plasma membrane and

thus to the development of a contact area with the substrate is

the rapid polymerization of an actin network at the cell

periphery (lamellipodium). Lamellipodia grow through the

elementary processes of actin filament polymerization,

branching, capping, and cross-linking (Pollard and Borisy,

2003; Pollard and Cooper, 2009; Ridley, 2011), which have

been extensively modeled (Mogilner, 2006; Pollard and

Berro, 2008). The most common structure of the lamellipo-

dium seems to be a treelike (dendritic) network with a 	35�

orientation relative to the leading edge of the cell membrane

due to the 70� angle in the protein complex Arp2=3 connect-

ing branched-off daughter filaments to mother filaments

(Svitkina and Borisy, 1999). The exact organization of the

lamellipodium varies as a function of cell type, motility state,

and external signals (Urban et al., 2010; Weichsel et al.,

2012). One of the most important aspects of lamellipodia

growth is its force-velocity relation, for which conflicting

experimental evidence exists (Marcy et al., 2004; Parekh

et al., 2005; Prass et al., 2006) and which has been treated

by various modeling approaches (Carlsson, 2003; Lee and

Liu, 2009; Schreiber, Stewart, and Duke, 2010; Weichsel and

Schwarz, 2010; Camps, Mahadevan, and Joanny, 2012;

Zimmermann et al., 2012).

Other types of actin structures that develop in cell adhesion

are bundles and networks that are contractile due to the action

of molecular motors that tend to slide actin filaments relative

to each other. If the filaments are sufficiently anchored to their

surroundings, they can no longer move; thus, instead of

motion, tension is developed in the actin bundles or network

by the forces exerted by the molecular motors. In adhesive

cells, this is mainly achieved by the molecular motor protein

myosin II. In contrast to muscle, where myosin assembles in

groups of hundreds of motors, in the cytoskeleton of non-

muscle cells, it organizes into myosin minifilaments that

typically contain only dozens of nonskeletal myosins II mole-

cules (Verkhovsky and Borisy, 1993). The most prominent

myosin-based contractile structures in adhesion-dependent

cells are stress fibers (Pellegrin and Mellor, 2007; Burridge

FIG. 4 (color online). Schematic drawing of an adherent animal

cell. Such a cell typically has the shape of a fried egg, with the

nuclear region protruding in the middle while the rest of the cell

remains relatively flat. As opposed to Fig. 3 for a freely suspended

cell, here we do not depict the membrane or microtubule systems. In

addition to the actin cortex, the actin cytoskeleton now forms

several additional subsystems that extend throughout the cytoplasm.

We do depict a dendritic actin networks that pushes outward against

the plasma membrane (lamellipodium) and contractile actin filament

bundles (stress fibers) that are anchored to the cellular environment

through transmembrane receptors that bind extracellullar ligands.
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and Wittchen, 2013) shown schematically as thick lines in

Fig. 4. One can distinguish different types of stress fibers

(Hotulainen and Lappalainen, 2006). Dorsal stress fibers

connect to an adhesion site at one end and have their other

end connected to other actin structures in the cell that are far

from the substrate. Ventral stress fibers are connected to

adhesion sites at both of their ends and thus run parallel to

the substrate. In contrast to dorsal and ventral stress fibers,

transverse arcs are usually not straight, are not connected to

adhesion sites, and typically extend parallel to the leading

edge. Stress fibers are thought to serve as the main sources of

cellular forces that are exerted on the substrate, since their

end points are often found at large adhesion sites that corre-

late with large forces (Balaban et al., 2001). Laser cutting

experiments demonstrated that stress fibers are under large

tension, since they retract over large distances when being cut

(Kumar et al., 2006; Colombelli et al., 2009). Stress fibers are

distinguished from retraction fibers, which are noncontractile

actin bundles that specifically serve to anchor the cell to the

ECM during cell division (Thery et al., 2007).

The lamellipodium and stress fibers are actin assemblies

that create pushing and pulling forces, respectively; hence,

they are the two main force-generating mechanisms for cells

that adhere to flat substrates. Although its effect is rather

indirect, the plasma membrane plays an important role in this

context. Apart from acting as host for the transmembrane

receptors from the integrin family, it also controls the poly-

merization of the lamellipodium and the contraction of the

stress fibers by triggering biochemical signals that regulate

these processes (Ridley, 2011). Equally important, the plasma

membrane plays an important role in the overall force balance

in the cell, since its tension and curvature elasticity provide

the counterforces to actin-generated forces that tend to extend

and deform the membrane. An imbalance in these forces is

especially important in cell migration (Lauffenburger and

Horwitz, 1996; Fletcher and Theriot, 2004).

In Fig. 5, we schematically show the overall force balance

in the cell. To first order, the lamellipodium can be depicted

as a compressed spring that pushes outward on the cell

membrane and inward on the focal adhesion. The stress fibers

appear as stretched springs that pull inward on the adhesion.

In stationary or slowly migrating cells the sites of adhesion

are typically located in between the polymerization-

dominated lamellipodium and the myosin-dominated con-

tractile structures that are located closer to the cell body

(lamella); thus, both processes effectively lead to inward-

directed forces on the substrate. For a strongly polarized,

stationary cell, the traction force pattern therefore resembles

a pair of oppositely directed forces (pointing from each side

of the cell toward the cell body) of equal magnitude. As we

see later, this concept of a contractile force dipole (Schwarz

et al., 2002; Schwarz and Safran, 2002) is very powerful

when describing cellular forces on a coarse-grained scale.

The pulling of the force dipole on the substrate leads to

compression below the cell body and elongation away from

the cell as schematically depicted by the springs in the

substrate.

The counterforces exerted by the substrate on the cell

originate in the substrate elasticity that resists deformation

by the cellular forces (in physiological tissue, this is the

elasticity of the ECM). The substrate resistance can reorgan-

ize the cellular cytoskeleton and change the size of the

adhesive regions. The feedback between the cellular and

substrate elastic forces means that cellular structure and

function can be very sensitive to the elasticity and, in par-

ticular, to the rigidity of the substrate (Discher, Janmey, and

Wang, 2005; Schwarz and Bischofs, 2005). For example,

cells tend to migrate from softer to more rigid substrates

and to have larger adhesive regions and overall spread area

on more rigid substrates (Pelham and Wang, 1997; Lo et al.,

2000; Engler, Bacakova et al., 2004; Trichet et al., 2012).

Moreover, the outside-in forces from the substrate that can

modify the cytoskeletal organization can also have genetic

implications. In particular, it was found that skeletal muscle

cells differentiate optimally on substrates with rigidities of

11 kPa (Engler, Griffin et al., 2004) and that stem-cell fate

strongly depends on substrate rigidity (Engler et al., 2006).

The fluid nature of the plasma membrane means that it is

only indirectly involved in force generation. Transmission of

forces and, in particular, the sensitivity to shear requires a

solidlike structure. In cells, the structural elements that give

the cell its shape integrity and its ability to respond to and to

transmit forces reside in the cytoskeleton. In addition to this

role, the cytoskeleton is also important in anchoring organ-

elles such as the Golgi apparatus in their place in the cell, in

determining the organized changes that take place during cell

division, in regulating the imbalance of internal forces that

results in cell motion, and in providing a scaffold for signal-

ing processes inside cells. Since in this review we focus on

force-generating processes during cell adhesion, we are

mainly concerned with the actin cytoskeleton. In cell

adhesion most forces generated in the actin cytoskeleton

are balanced over the sites of adhesion; thus, our second

major focus area is the physics of adhesion sites.

B. Actin filaments and their assemblies

Most studies of cellular forces focused on their origin in

the actin cytoskeleton. This motivates our emphasis on the

dynamics and larger-scale structural organization of this

important cytoskeletal component. Actin (in both monomeric

and polymeric forms) comprises between 5% and 10% of the

FIG. 5. Scheme for the overall force balance in an adherent cell.

There are two actin-based processes that contribute to force gen-

eration at the cell-material interface. Contraction by myosin II

motors in actin networks and bundles corresponds to a stretched

spring pulling inward in the cell center. Lamellipodium growth

against the membrane corresponds to a compressed spring pushing

outward at the cell periphery. The entire system is constrained by

the cell envelope. Because of the position of the adhesion sites, a

contractile force dipole emerges as the effective traction pattern on

the substrate. This leads to deformation of the substrate (compres-

sion below the cell body, and elongation away from the cell).
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protein in eukaryotic cells and is of great importance in cell

structure and motility (Fletcher and Mullins, 2010; Stricker,

Falzone, and Gardel, 2010). We begin with a discussion of the

growth of actin polymers. In contrast to self-assembling,

equilibrium polymerization, these are catalyzed by the bind-

ing of adenosine triphosphate (ATP) to monomeric (globular)

actin (G actin). While many synthetic polymers are nonpolar,

actin polymers are chiral with each macromolecule compris-

ing two helical, interlaced strands of monomeric subunits.

The two-filament assembly is thus polar so that the two ends

are therefore not equivalent; hence polymerization rates at

one end are not necessarily equal to those at the other. Actin

polymerization is therefore a polar, energy-consuming, non-

equilibrium process (Phillips, Kondev, and Theriot, 2008).

A dynamical model for the growth of an actin filament

takes into account that the polymer is polar and the dynamics

of association of monomers at the two ends differ. That is,

kþ;�
on and kþ;�

off are, respectively, the rates for monomers to

associate with þ (generally growing) or � (generally shrink-

ing) ends and to dissociate from those ends. For equilibrium

polymerization the association or dissociation energy itself

must be the same at either end since, although the monomers

are asymmetric at the two ends, the molecular bonds that are

formed are the same. Hence, by detailed balance, kþoff=k
þ
on ¼

k�off=k
�
on. Thus, for such equilibrium polymers one can show

that (Phillips, Kondev, and Theriot, 2008) there is no state in

which one end is growing and the other is shrinking; the

polymer either grows or shrinks from both ends—albeit with

different on and off rates for the two ends of polar chains.

However, for the polymerization of actin in cells, detailed

balance does not apply and a richer set of behaviors is found

as we now discuss.

In living systems, polymerization is often a dynamic pro-

cess that involves chemical changes that may differ at the two

ends of a polar chain such as actin so that the polymerization

and depolymerization rates differ. The chemical changes are

catalyzed by an input of energy from the conversion of ATP

(adenosine triphosphate with three phosphate bonds) to ADP

(adenosine diphosphate with two phosphate bonds) (Alberts

et al., 2007; Phillips, Kondev, and Theriot, 2008). This

conversion is known as hydrolysis since one phosphate group

dissociates from ATP to remain solubilized in water; the

breaking of one of the phosphate bonds releases about

ð10–20ÞkBT of energy since the hydration bonds between

ADP and water and the released phosphate group and water

are energetically more favorable than the bonds between the

phosphate bonds in ATP. The energy released by hydrolysis

of ATP can be used to modify the conformations of mole-

cules, such as actin that is bound to ATP in its lowest energy

state. The resulting conformational changes result in in-

creased or decreased bonding of the molecules to other

molecules; in the case of actin, hydrolysis destabilizes poly-

merization at its plus end.

The nonequilibrium nature of actin polymerization in cells

is related to the conformational changes in the monomers that

are catalyzed by ATP; G-actin monomers bound to ATP join

the plus end of the actin polymer (Alberts et al., 2007;

Phillips, Kondev, and Theriot, 2008). Within a time of about

2 s, however, ATP is hydrolyzed to form ADP which reduces

the binding strength of the monomers in the chain, thus

destabilizing the polymer. There is therefore a nonequilib-

rium competition between growth and shrinkage of the poly-

mer. Note that, in solution, the G-actin monomers that have

dissociated from the chain can dissociate from ADP and

reassociate with ATP to rejoin the polymer; this turnover

makes the process highly dynamic. Since the actin polymer

is polar due to its double helical structure, the growth and

shrinkage at the þ and � ends is different, and, in principle,

one would need four rate constants to describe the on and off

rates of the ATP- and ADP-bound monomers at each of the

ends. Filaments elongate about 10 times faster at theirþ ends

compared with their � ends and this leads to an apparent

motion of theþ end known as treadmilling (Phillips, Kondev,

and Theriot, 2008). Typical values (Boal and David, 2012) are

kþon=k
�
on � 10 for ATP-bound actin and about 70 for the

predominant situation of ATP-bound actin at the þ end and

ADP-bound actin at the � end. The ratio kþoff=k
�
off � 5 for

ATP-bound actin at the þ end and ADP-bound actin at the

� end, with typical values of koff � 0:3–7:0 s�1 depending

on which end is being considered and whether the actin is

ATP or ADP bound. One can show (Phillips, Kondev, and

Theriot, 2008) that there is a monomer concentration range

for which the þ ends are growing while the � ends are

shrinking. Note that the treadmilling velocity can be finite

while the total filament length remains the same. Whether the

filament can move or not depends on its environment; for

example, treadmilling actin filaments in the vicinity of the

cell membrane have their motion impeded by the restoring

forces (due to surface tension and curvature energy) of the

membrane. This then leads to flow of the actin in the direction

opposite to treadmilling, that is, away from the cell mem-

brane (retrograde flow) as can be measured with speckle

fluorescence microscopy (Ponti et al., 2004).

The larger-scale organization of actin can take several

forms. In vitro studies have shown (Tempel, Isenberg, and

Sackmann, 1996) that in some cases, alpha-actinin cross-

linkers can result in relatively thick actin bundles; in other

cases, a cross-linked, isotropic gel is formed. The detailed

phase diagram depends on both the actin and cross-linker

concentration (Zilman and Safran, 2003). In vivo, many

proteins can become involved in actin bundling which is

utilized by the cell in maintaining relatively stable (Gov,

2006), fingerlike protrusions called microvilli. These proteins

also participate in more dynamical protrusions called filopo-

dia (Mogilner and Rubinstein, 2005) that exert polymeriza-

tion forces on the cell membrane and play a role in cellular

motion and shape changes. Actin bundling is also an impor-

tant characteristic of stress fibers (Hotulainen and

Lappalainen, 2006) that typically range over some fraction

of the cell size and provide structural stability to the cell

while transmitting contractile forces to its surroundings.

Because of the dynamics of the cross-links and the tread-

milling of actin, the cytoskeleton can be remodeled and is

therefore not permanently cross-linked. However, experi-

ments in which cells are subject to time-varying strains that

cause cytoskeleton reorganization show that the overall time

scale for reassembly and reorientation of stress fibers can be

several hours (Brown et al., 1998; Wang et al., 2001;

Jungbauer et al., 2008). Entropic fluctuations occur on a

time scale shorter than 0.01 s (Deng et al., 2006), while on
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longer time scales the elastic response to time-varying strain

has been characterized as glassy. We first consider the elastic

modulus of actin networks in vitro (Boal and David, 2012) on

time scales shorter than those at which the shear modulus

vanishes due to the cross-link disconnections (Lieleg et al.,

2008); on these time scales, the system in some average sense

can be regarded as being permanently cross-linked.

The simplest model for the elastic constant of a perma-

nently cross-linked polymeric network predicts a shear modu-

lus �� �kBT, where � is the number density of cross-links

(Rubinstein and Colby, 2003). The typical spacing between

cross-links with a 1:100 ratio of linker to actin monomers is

of the order of 0:1 �m. This yields a shear modulus of about

1 J=m3 at room temperature which is equivalent to 1 Pa. The

measured value (Janmey et al., 1990) in the presence of the

cross-linker ABP (actin binding proten) (at a ratio of ABP:

actin of the order of 1:100) is about 1 order of magnitude

larger and is sensitive to the length of the actin segments; the

observations also depend on the history of the sample, since

shear can disrupt actin filaments and give misleadingly low

values for the modulus. Higher values of the modulus than

expected from simple considerations of cross-linked polymer

networks can be due to the stiffening effects of the cross-links

themselves, the semiflexible (as opposed to Gaussian) nature

of biopolymers such as actin, and to nonlinear shear stiffen-

ing. On the other hand, the analogy with permanently cross-

linked gels must be reconsidered in light of the finite lifetime

of the cross-links. Alpha actinin has a dissociation rate of

about 1 s�1 (Xu, Wirtz, and Pollard, 1998; Gardel, Kasza

et al., 2008) which may explain why in vitro experiments

using this cross-linker (Lieleg et al., 2008) in actin gels yield

a low frequency elastic modulus of about 1 Pa only at the very

highest cross-linker concentrations (alpha-actinin:actin ratios

of 1:15). The dissociation rate may be different in different

geometries; in isotropically cross-linked gels, the cross-

linkers can more effectively dissociate compared with their

relatively tighter packing in actin bundles where neighboring

filaments are nearby. The dissociation rate is also strongly

temperature dependent and of course very different for differ-

ent cross-linkers (Xu, Wirtz, and Pollard, 1998).

In addition to the finite residence time of the cross-linkers

at the network junctions, another important difference be-

tween the elastic modulus of cross-linked biopolymers such

as actin and synthetic polymer gels is the observation that the

actin cytoskeleton shows a nonlinear elastic response in a

nonperturbative manner (Gardel et al., 2004; Storm et al.,

2005). For small stresses, the elastic stress in actin gels is

proportional to the strain, while for larger stresses, of the

order of 0.2 Pa, the effective modulus varies as the 3=2 power
of the applied stress due to the entropically dominated me-

chanical response of semiflexible polymers of finite extensi-

bility as described above (Storm et al., 2005). This entropic

nonlinearity is particularly interesting because the strains

may still be relatively small (Gardel et al., 2004; Storm

et al., 2005) even though the medium responds very non-

linearly; this is quite different from analytical nonlinearities

(e.g., due to additional quadratic terms in the stress-strain

relationship or due to geometrical nonlinearity) that arise

when the strains become large in nonpolymeric systems.

Interestingly, cells can regulate the regime in which they

function by changing their internal stress state through varia-

tion of the activity of molecular motors. Since the cell elastic

modulus is of the order of 1–10 kPa (reflecting the types of

stresses that cells can maintain), the cytoskeletal elastic

response can easily operate in the nonlinear regime. Finally

we note that many other important biopolymers (Storm et al.,

2005; Klotzsch et al., 2009) also show similar nonlinear

response, including collagen which is an important part of

the ECM.

C. Actomyosin contractility

In Sec. III.B, we summarized the properties of cross-linked

actin gels based on information obtained from in vitro experi-

ments. However, one important aspect regarding actin net-

works and bundles in cells is the fact that these networks are

under tension due to the contractile activity of myosin motors

(Howard, 2001). Contractile actin networks (Mizuno et al.,

2007; Koenderink et al., 2009; Kohler, Schaller, and Bausch,

2011; Soares e Silva et al., 2011; Murrell and Gardel, 2012)

and bundles (Thoresen, Lenz, and Gardel, 2011, 2013) have

recently been reconstituted in biomimetic assays. In cells, the

myosin motors generate internal forces in the actin network

which are transmitted to its surroundings due to the ‘‘glue’’

the cell produces in the form of proteins that assemble into

focal contacts or focal complexes (Geiger, Spatz, and

Bershadsky, 2009). The production of force is a nonequilib-

rium process that requires energy input via ATP hydrolysis

that causes conformational changes in the myosin molecular

motors (Howard, 2001). The internal forces generated by

molecular motors that act upon the cross-linked actin assem-

blies in cells distinguish them from ‘‘dead,’’ nonactive gels

and allows cells to pull on their environment and on each

other. Motor activity also means that the cell can exert forces

on itself and this, along with polymerization of actin, plays an

important role in cell motility. Motors can also influence the

conformations of the actin filaments in a manner that has to

do with the motor and motor-actin dynamics. The stochastic

nature of the motor-actin coupling in which the motor is

associated with the actin for a finite time (Howard, 2001;

Boal and David, 2012) after which it can detach and diffuse

affects the fluctuations of the filaments. These motor-driven

fluctuations are distinct from the thermal fluctuations of the

actin that are driven by Brownian motion of its aqueous

environment (Mizuno et al., 2007; MacKintosh and

Schmidt, 2010). This leads to a breakdown of the

fluctuation-dissipation theorem that relates the thermal fluc-

tuations of an equilibrium system to its response to a deter-

ministic force as discussed in Sec. II on the physics

background.

Because stress fibers are an important element of the force-

generating apparatus of cells adhering to flat substrates, a

large variety of models has been developed to describe their

physical properties. Dynamical models show that actin fila-

ments can be sorted by myosin II motors into a tensile state

(Kruse and Julicher, 2000a, 2003; Ziebert and Zimmermann,

2004; Yoshinaga et al., 2010; Stachowiak, Matthew et al.,

2012). Models for mature fibers are often motivated by

perturbation experiments on stress fibers, such as studies of

contraction dynamics after activation (Peterson et al., 2004) or
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relaxation dynamics after laser cutting (Kumar et al., 2006;

Colombelli et al., 2009). They usually assume a sarcomeric

organization of the stress fiber (Friedrich et al., 2012) and

couple elastic, viscous, and contractile elements in a unit cell

(Besser and Schwarz, 2007; Luo et al., 2008; Stachowiak,

Matthew and O’Shaughnessy, 2008, 2009; Russell et al.,

2009; Besser et al., 2011). Recently it was demonstrated that

such sarcomeric models predict some of the central physical

properties of reconstituted contractile actin bundles (e.g.,

retraction velocity is proportional to length) (Thoresen,

Lenz, and Gardel, 2013). On a very coarse-grained scale,

such one-dimensionalmodels can be regarded asmore detailed

versions of the force-dipole model introduced in Fig. 5. In

particular, they usually obey force balance on the substrate by

construction. These types of one-dimensional models can also

be used to predict the cellular response to substrate stiffness

(Mitrossilis et al., 2009; Besser and Schwarz, 2010; Marcq,

Yoshinaga, and Prost, 2011; Crow et al., 2012).

An important reference case for the physics of stress fibers

is sarcomeric muscle, in which actin filaments, passive cross-

linkers, and myosin II motors are arranged in a very ordered

fashion. The action of myosin II molecular motors can be

modeled either with a generic two-state theory (Julicher and

Prost, 1995; Placais et al., 2009) or with more detailed cross-

bridge models that go back to the seminal work of Huxley

(Huxley, 1957; Duke, 1999; Vilfan and Duke, 2003; Erdmann

and Schwarz, 2012), where the cross bridges refer to the

actomyosin coupling. This model accounts for the fact that

a myosin II motor loaded with ATP goes through a cycle

where it first weakly binds to the actin filament. Release of

the inorganic phosphate (after hydrolysis of ATP to ADP)

causes the myosin motor to make a power stroke that creates

force and motion. Finally, after the release of the ADP and

binding of a new ATP molecule, the myosin II motor unbinds

from the filament and is ready for the next motor cycle. The

effective force-velocity relation has been measured both in

the context of muscle (Pate et al., 1994) and in single-

molecule experiments (Veigel et al., 2003). At vanishing

force, the motors move with an ATP-dependent free velocity

of about 1 �m=s. As the external counterforce increases, the
velocity of the motor along the filament drops in a hyperbolic

manner, until it vanishes at a stall force of a few pN. This

close coupling between force and sliding velocity was first

noted by Hill in 1938, who described it using a phenomeno-

logical equation (called the Hill equation), which can be

explained in detail by the cross-bridge models (McMahon,

1984; Howard, 2001). Alternatively, as we see later, Hill-type

relations can be used directly as an assumption in coarse-

grained models. In particular, such a model has been used to

argue that rigidity sensing is based on the same principles

similar to muscle contraction (Mitrossilis et al., 2009).

Contractility is also observed in biological systems with no

apparent sarcomeric order. For example, the contractility of the

actin ring during cell division may rely on depolymerization

forces (Pinto et al., 2012). It has been shown theoretically that,

in one-dimensional actin bundles containing myosin, contrac-

tility can occur even in the absence of spatial organization of

the bundle, due to bundle shortening (Kruse and Julicher,

2000b; Kruse, Zumdieck, and Julicher, 2003). The existence

of net contractility is related to the assumption that a myosin

motor which binds to or arrives at the plus end (but not at the

minus end) of a filament remains attached for some time. This

model does not contain additional cross-linkers (similar to

Z bodies found in sarcomeres) that may tend to associate

with only one end of the polar actin molecules. Another recent

suggestion (Lenz et al., 2012) for how contractility can arise in

bundles without sarcomeric order is based on the asymmetric

response of the filaments to longitudinally applied stresses,

e.g., a tendency to yield under compression while resisting

extension. Such buckling has been observed in in vitro experi-

ments containing actin, smooth muscle myosin, and ATP. We

note that additional cross-linkers, such as those found in

sarcomeres and possibly stress fibers, that may break the

symmetry were not included.Whether stress fibers, contractile

rings, or smooth muscle fibers are ordered and function in a

manner similar to sarcomeres should be investigated by future

experiments. The sarcomeric order discussed below in terms of

smectic ordering of force dipoles is meant to apply to nascent

muscle cells where striations have indeed been observed

(Engler, Griffin et al., 2004; Friedrich et al., 2011). In a

somewhat similar manner, striations have also been reported

in studies of nonmuscle stress fibers (Peterson et al., 2004).

Here the microscopic, antiparallel arrangement of adjacent

actin polymers was not directly observed, but the striations

measured suggest a sarcomeric analogy.

D. Focal adhesions

Understanding the mechanical response of stationary cells

involves analysis of the internal elastic response of contractile

cells as well as their mechanical coupling to their surround-

ings. While the response of cells to external forces or other

mechanical perturbations can necessitate the disassembly and

rebuilding of the actin cytoskeleton, the stable coupling of the

cell to the surrounding elastic matrix is due to sites of

adhesion called focal adhesions that connect the actin cytos-

keleton to transmembrane adhesion receptors from the integ-

rin family. These are then connected, on the extracellular

side, to the substrate or extracellular matrix.

In contrast to the adhesion of passive vesicles or capsules,

the spatial distribution of the adhesion structure of cells is

very heterogeneous. It is mainly localized at the cell periph-

ery, because it is strongly coupled to the growth processes of

the lamellipodium. Figure 6 depicts the spatial coordination

between the growth of adhesions and the actin cytoskeleton.

Nascent adhesions are initiated close to the leading edge and

then move toward the cell center. This movement is mainly

driven by the flow of actin away from the leading edge

(retrograde flow) due to the counterforces exerted on the

polymerizing actin by the membrane. As they move toward

the cell center, the small adhesions either mature into

micrometer-sized focal adhesions or decay again. This switch

typically occurs near the lamellipodium-lamella boundary,

where a more condensed and myosin II-rich actin network

replaces the dendritic network of the lamellipodium (Schwarz

and Gardel, 2012; Shemesh, Bershadsky, and Kozlov, 2012).

Whether the adhesion grows and matures or whether it decays

is strongly coupled to the mechanics of the system. The

adhesions are stable only if sufficient force is exerted upon

them and this is not possible on very soft substrates. This
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force is mainly applied by contractile stress fibers and net-

works connecting them to the focal adhesions in the lamella,

although the force resulting from retrograde flow also might

play an important role. Because focal adhesions are con-

nected to the matrix, these forces are transmitted to the

substrate and can be measured there with traction force

microscopy on flat elastic substrates (Dembo and Wang,

1999; Butler et al., 2002; Schwarz et al., 2002; Sabass

et al., 2008; Plotnikov et al., 2012; Legant et al., 2013) or

with fields of elastic pillars (Tan et al., 2003; Saez et al.,

2005; Trichet et al., 2012). These studies have shown that

force and protein assembly are linearly coupled at focal

adhesions, resulting in a constant stress for adhesions of about

5 nN=nm2 ¼ 5 kPa (Balaban et al., 2001; Tan et al., 2003).

For elastic substrates, recently it was suggested that this

relation holds only for growing adhesions (Stricker et al.,

2011). For pillar assays, recently it was reported that there

exists a constant stress, but that it depends on extracellular

stiffness due to global feedback (Trichet et al., 2012). At any

rate, the typical stress at single focal adhesions is close to the

value of the physiological stiffness of matrix and cells; this

suggests that these forces are used for mechanosensing in the

physiological environment of the cell.

The detailed molecular organization of focal adhesions is

an active area of research that is challenging due to the large

number (more than 180) of different components that are

involved (Zaidel-Bar et al., 2007; Kuo et al., 2011). Recent

progress includes the use of electron tomography (Patla et al.,

2010) and superresolution microscopy (Shtengel et al., 2009)

to discern focal adhesion structure at scales smaller than

the optical resolution, and the use of high throughput

RNA-interference screens to dissect the regulatory hierarchy

of focal adhesions (Prager-Khoutorsky et al., 2011).

Kinetic models have been used to describe the temporal

and spatial coordination of the different components

(Civelekoglu-Scholey et al., 2005; Macdonald, Horwitz,

and Lauffenburger, 2008; Hoffmann and Schwarz, 2013).

Figure 7 shows a schematic representation of a focal adhe-

sion. In general, focal adhesions have a layered structure

determined by the two-dimensional nature of the plasma

membrane. The transmembrane adhesion receptors of the

integrin family consists of two subunits, with relatively large

headpieces that bind to the matrix and relatively small cyto-

plasmic tails. In the absence of special signals, the integrins

have a low affinity for matrix binding. However, due to

inside-out signaling (related to the cytoskeletal forces), the

integrins can become activated and are then primed for matrix

binding. This in turn leads to stabilization of the intracellular

part of the adhesion complex that through the binding of a

variety of cytoplasmic proteins forms a two-dimensional

plaque that reinforces the attachment of the cytoskeleton

and the integrin layer. One of the main molecules responsible

for cross-linking neighboring integrins is talin (Alberts et al.,

2007), which extends over 60 nm. Since talin also binds actin,

it connects the integrins in the focal adhesion to the actin

cytoskeleton. As the adhesion matures, this cross-linking is

strengthened by additional proteins such as vinculin and

paxillin, whose recruitment seems to be increased by force.

Focal adhesions act not only as mechanical linkers that

anchor the cell to its substrate, but also as prominent signaling

centers that activate biochemical signaling molecules that

diffuse into the cytoplasm and toward the nucleus (Zaidel-

Bar et al., 2007; Vogel and Sheetz, 2009). In our context, the

most important signaling molecules are the small GTPases

from the Rho family (Rho, Rac, and Cdc42) that regulate the

assembly and activity of the actomyosin system. Each of these

molecules acts like a molecular switch which is activated by

exchanging guanosine diphosphate (GDP) by guanosine tri-

phosphate (GTP) (analogous to ADP to ATP conversion); the

active form then diffuses in the cytoplasma and activates

downstream targets. For example,mature adhesions are known

for Rho signaling, which upregulates both actin polymeriza-

tion (through the formin mDia1) and contractility of non-

muscle myosin II motors (through the Rho-associated

kinase, ROCK). Moreover, many signaling molecules respon-

sible for cell migration, differentiation, and fate are localized

to focal adhesions, most prominently the focal adhesion kinase

FAK, which is known to be important in many types of cancer

(Mitra, Hanson, and Schlaepfer, 2005).

LP

LM

FIG. 6 (color online). Spatial organization of focal adhesion

growth and the actin cytoskeleton. The actin lamellipodium (LP)

is assembled at the leading edge and flows from there toward the

cell center. Small adhesions are formed along the way and mature

into focal adhesion as they move with the actin flow. At the

boundary with the myosin-dominated lamella (LM), only a few

mature focal adhesions persist; those are stabilized by large con-

tractile forces which are mainly due to the activity of myosin II

minifilaments in stress fibers.

FIG. 7 (color online). Schematic view of a focal adhesion. The

transmembrane adhesion receptors from the integrin family (a

heterodimer with two subunits) bind to the extracellular matrix

(for example, collagen) on the outside and are cross-linked by

cytoplasmic proteins such as talin in the inside. Talin binds to actin

and this binding is further strengthened by proteins such as vinculin.

The contractility of the actin cytoskeleton is determined by the

activity of myosin II minifilaments.
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Adhesion proteins localized to focal adhesions coexist with

the same proteins in relatively dilute solution in the cytoplasm

or the membrane. The domains as a whole have relatively long

lifetimes (tens of minutes) which suggests that the two coex-

isting phases might be at equilibrium. However, fluorescence

studies (Wolfenson et al., 2011) show that the adhesions

continuously exchange proteins with the cytoplasm even

though the large-scale composition and structure seem to

remain unchanged. Thermodynamic equilibrium dictates

much larger domain sizes (or no domains at all) and why the

adhesions are stable on the micrometer scale is not obvious

(Lenne and Nicolas, 2009). This puzzle might be resolved by

noting that in addition to diffusion, energy-consuming, active

processes may transport free proteins from the dilute phase in

the cytoplasm or membrane to the adhesion sites. These active

processes involve molecular motor proteins and are highly

regulated by the cell (Kawakami, Tatsumi, and Sokabe,

2001). This suggests that nonequilibrium effects may be im-

portant in stabilizing these finite-size domains, similar to the

situation with treadmilling actin filaments.

Naively, one might try to understand cellular adhesions by

analogy with physical adhesion (e.g., of a synthetic vesicle

coated with ligands that are attracted to an appropriate sur-

face, see Sec. II.F). However, while physical adhesion is a

passive process, cell adhesion involves molecular motors that

generate internal stresses. Force generation consumes ATP

and results in the fact that, in addition to passive contacts that

result in forces mainly directed in the normal direction, cells

also exert contractile forces that act mainly in the lateral

direction, i.e., parallel to the substrate. These contractile

forces have been observed in experiments that measure sur-

face deformation (Dembo and Wang, 1999; Butler et al.,

2002; Schwarz et al., 2002; Tan et al., 2003; Saez et al.,

2005; Sabass et al., 2008). Although recent experiments also

provided evidence for vertical forces (Hur et al., 2009;

Delano-Ayari, Rieu, and Sano, 2010), most of these experi-

ments were done with rather weakly adhering cells, which

share some similarities with the passive reference cases dis-

cussed above (droplets, vesicles, capsules). Thus on a planar

substrate it is the actively generated and often tangential

forces that are used by the cell to regulate its response to

the physical environment. This conclusion is supported by the

fact that use of the myosin blocker blebbistatin not only leads

to the disappearance of these forces, but also eliminates the

cellular response to stiffness. Thus the main challenge is to

understand how actively generated forces allow the cell to

probe the physical properties of its environment.

IV. PHYSICS OF CELL-MATRIX ADHESIONS

A. Physical motivation

As explained in Sec. III.D, cell adhesion does not occur

homogeneously at the cell-material interface, but instead is

characterized by the local assembly of specific adhesion

molecules into supramolecular adhesion sites, the so-called

focal adhesions. For cell adhesion to a flat substrate, these

focal adhesions are mainly situated at the cell periphery.

During the last decade, it was shown that the protein assem-

bly that comprises the focal adhesion is strongly coupled to

mechanical force. Experimental studies inducing changes in

mechanical stress at adhesions used shear flow (Davies,

Robotewskyj, and Griem, 1994; Zaidel-Bar et al., 2003),

optical tweezers (Choquet, Felsenfeld, and Sheetz, 1997),

micromanipulators (Riveline et al., 2001; Paul et al., 2008;

Heil and Spatz, 2010), laser nanosurgery (Kumar et al., 2006;

Lele et al., 2006; Colombelli et al., 2009), or pharmacologi-

cal drugs (Chrzanowska-Wodnicka and Burridge, 1996; Kuo

et al., 2011; Wolfenson et al., 2011) to perturb and hence

study the nature of these contacts. In all cases, it was observed

that focal adhesions respond to changes in mechanical load

by growth as evidenced by changes in focal adhesion mor-

phology and size. Quantitative correlation indicated a linear

relation between force and adhesion size (Balaban et al.,

2001; Tan et al., 2003), although the history of the adhesion

and global determinants also play an important role (Stricker

et al., 2011; Trichet et al., 2012).

From the physical viewpoint, it is interesting to note that

tensile mechanical deformation, such as the shear induced by

the tangential displacement of a pipette, leads to growth of

focal adhesions in the direction of applied force (Riveline

et al., 2001). Deactivation of actomyosin contractility reduces

the adhesion size and eventually leads to its complete dis-

ruption (Balaban et al., 2001). Other forces, such as hydro-

dynamic flow (Zaidel-Bar et al., 2003) or stretching forces

applied to the substrate (Kaunas et al., 2005), also cause

growth of focal adhesions in the direction of the force. The

anisotropy of focal adhesion growth under force is charac-

terized both by overall growth of the adhesion (in which the

number of molecules involved increases) and by treadmilling

(or sliding) of the center of mass of the adhesion toward the

direction of the applied force. These anomalies cannot be

explained with standard models of nucleation and growth of

molecules adsorbed from solution onto surfaces. The role of

force in stabilizing and promoting growth of focal adhesions

(FAs) has been discussed from several different points of

view with a focus on predictions of the growth of focal

adhesions in the direction of actomyosin or externally applied

forces (Bershadsky, Kozlov, and Geiger, 2006).

However, before discussing the growth response of focal

adhesions under load, it is instructive to consider why this

response evolved in the first place. From the physical point of

view, it seems obvious that in this way the system avoids

material failure. In general, failure under mechanical load is

a phenomenon relevant to many systems of practical interest

and on widely different scales, from muscle proteins (on the

nanometer scale) through bone on a centimeter scale to bridges

and buildings (on the meter scale) and earthquakes (on the

kilometer scale) (Buehler and Keten, 2010). In contrast to the

macroscopic systems considered in traditional fracture me-

chanics, biomolecular adhesions do not usually break at sharp,

deterministic stability thresholds, but can unbind and rebind

from the surface to which they adhere in a stochastic manner.

This important observation is related to the weak interaction

scales relevant to soft matter comparedwith hardmatter. Thus,

if one considers the stability of such assemblies (defined by

either their average lifetime or fracture strength), one must

include stochastic effects, in contrast with traditional fracture

mechanics of macroscopic systems where these effects are not

relevant. Before we address the issue of growth, we therefore
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first consider the stability of adhesion clusters under load from

the viewpoint of stochastic processes.

B. Stability of stationary adhesion clusters under force

We begin our discussion with physical considerations of

the stability of stationary adhesion clusters of constant size.

This crucial issue was first addressed in the seminal work of

Bell (1978). An adhesion cluster is modeled as a collection of

Nt molecules near an adhesive surface, of which, at a given

time t, a number NðtÞ are bound and a number Nt � NðtÞ are
unbound as shown in Fig. 8. Each of the bonds can break with

a rupture rate koff and each of the unbound molecules can

bind with a rebinding rate kon. Unbinding is assumed to

increase with force F as koff ¼ k0e
F=F0 , where F0 denotes a

molecular-scale force (typically of the order of pN). While

Bell used this expression as a phenomenological ansatz, it

was later motivated by Kramers theory (Hanggi, Talkner, and

Borkovec, 1990) for thermally assisted escape from a meta-

stable state (Evans and Ritchie, 1997; Evans and Calderwood,

2007). Here the basic idea is that force lowers the height Eb of

the transition state barrier. Because the escape rate scales as

expð�Eb=kBTÞ, adding a force term to the energy changes the

escape rate by a factor expðFxb=kBTÞ, where xb is the posi-

tion of a sharp transition state barrier. Indeed this viewpoint

has been verified by dynamic force spectroscopy (Evans and

Calderwood, 2007). For the rebinding rate, Bell assumed a

value that is force independent. Note that this assumption

does not reflect detailed balance (in which the ratio kon=koff is
exactly equal to a Boltzmann factor related to the energy

difference between the bound and unbound states). Thus,

this model is one that is truly dynamic and can thus represent,

e.g., different routes for binding and unbinding.

For the following, it is helpful to introduce the dimension-

less time � ¼ k0t, force f ¼ F=Fb, and rebinding rate � ¼
kon=k0. Assuming a constant force f equally applied to all

bound molecules, the following rate equation predicts the

number of closed bonds:

dN

d�
¼ �Nef=N þ �ðNt � NÞ: (22)

While the second term representing rebinding is linear in the

number of bonds, the first term representing forced unbinding

is highly nonlinear and therefore leads to interesting feedback

effects. As one bond opens, the remaining closed bonds must

compensate to carry the additional load. Thus the coupling

through force leads to a highly cooperative system. A bifur-

cation analysis of its steady-state behavior shows that the

system is unstable (no steady-state solution exists) when the

force exceeds a critical value fc. This saddle-node bifurcation
occurs when (Bell, 1978)

fc ¼ Ntplnð�=eÞ; (23)

where the product logarithm plnðaÞ is defined as the solution

of xex ¼ a. Therefore an adhesion characterized by a finite

number of bonded molecules is stable only up to a critical

force fc. For small rebinding rate �, the critical force scales

linearly with �. Thus an adhesion cluster is completely

unstable if the rebinding rate is zero; for finite rebinding

the cluster stability (i.e., the number of bonds formed) grows

in proportion to the degree of rebinding. For large rebinding

rates, the scaling becomes logarithmic; that is, once the

rebinding rate exceeds the force-free unbinding rate, very

large changes in � are required to change the cluster stability

in a significant manner.

The analysis of Bell immediately shows that, due to the

finite lifetime of single biomolecular bonds, adhesion clusters

can be stable under force only if rebinding takes place.

However, Eq. (22) is a mean-field description and does not

include fluctuation effects, which are expected to be highly

relevant in the biological context, both for the small precur-

sors of focal adhesions and for possible subclusters that may

exist within focal adhesions. Moreover, a description based

on multiple bonds is required to treat more detailed situations

of biological interest as discussed below. The natural exten-

sion of the mean-field approach of Bell is a one-step master

equation in the number i (0 � i � Nt) of bonded molecules

(Erdmann and Schwarz, 2004a, 2004b). Thus the probability

piðtÞ that i bonds are formed at time t evolves in time

according to

dpi

dt
¼ rðiþ1Þpiþ1þgði�1Þpi�1�½rðiÞþgðiÞ�pi: (24)

The two positive terms represent the tendency for the number

of bonds in state i to increase due to the dissociation of a

formed bond in state iþ 1 and the formation of a new bond in

state i� 1, respectively. The two loss terms represent bond

dissociation in state i (that contributes to state i� 1) as well
as the formation of a new bond (which changes the state from

i to iþ 1), respectively. The rates corresponding to the Bell

model Eq. (22) are

rðiÞ ¼ ief=i; gðiÞ ¼ �ðNt � iÞ: (25)

As in Eq. (23), the first (rupture) term leads to strong cooper-

ativity between the different bonds. The Bell equation (22) is

recovered from the dynamic, stochastic model equation (24) if

one calculates the average number of formed bondsN ¼ hii in
the limit of large system size (Kramers-Moyal expansion).

In contrast to the deterministic equation for the first mo-

ment, Eq. (22), which predicts infinitely long cluster lifetimes

below the stability threshold, Eq. (23), the stochastic model

F

k koffon

FIG. 8. Minimal model for an adhesion cluster under force: Nt

adhesion receptors are arranged along the membrane. Because of

this geometry, they share the load. At any time, NðtÞ bonds are

closed and Nt � NðtÞ bonds are open. The applied force F is equally

distributed over the closed bonds due to the parallel architecture

Fbond ¼ F=NðtÞ. A bond dissociates with a force-dependent unbind-

ing rate koffðFbondÞ. The molecule can rebind with a constant rate

kon. Adapted from Erdmann and Schwarz, 2004a.
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equation (24) predicts finite lifetimes for any value of the

force. The average lifetime of a cluster with i ¼ Nt bonds at

time t ¼ 0 can be identified with the mean time T for this

cluster to stochastically evolve to the state i ¼ 0 (no bound

molecules). For a one-step master equation, this mean first

passage time can be easily calculated (van Kampen, 1992):

T ¼
XNt

i¼1

1

rðiÞ þ
XNt�1

i¼1

XNt

j¼iþ1

Qj�1
k¼j�i gðkÞ

Qj
k¼j�i rðkÞ

: (26)

The first term in Eq. (26) is the result of vanishing rebinding

� ¼ 0. For small force f < 1, it is analogous to the simple

case of proportional (or radioactive) decay (for �¼f¼0, one
basically deals with the stochastic version of dN=d� ¼ �N).

Using that approximation one finds that the cluster lifetime

scales as T � lnNt; that is, the cluster size Nt has only a

relatively weak effect on the stability of the cluster, because

the bonds dissociate in parallel with no cooperativity. Finite

force exponentially decreases the lifetime due to the Bell

equation. The second term in Eq. (26) increases the lifetime

as a polynomial of order Nt � 1 in � and approximately

exponentially with increasing cluster size Nt. For Nt ¼ 2,
Eq. (26) reads

T ¼ 1
2ðe�f=2 þ 2e�f þ �e�3f=2Þ: (27)

This simple but instructive formula shows how force f ex-

ponentially suppresses the cluster lifetime, while rebinding �
increases it in a polynomial fashion.

In order to study the cluster lifetime as a function of force,

in Fig. 9 we plot T as calculated from Eq. (26) as a function of

f=Nt for � ¼ 1 and different values of the cluster size Nt. For

small force f < Nt, the mean lifetime increases exponentially

with the cluster size Nt. For large force f > Nt, rebinding

becomes irrelevant and all the curves for different values

of Nt are very similar. One interesting aspect here is the

transition region, which is characterized by strong amplifica-

tion (a small change in force f has a strong effect on the mean

lifetime T). This transition region corresponds to the stability

threshold from Eq. (23) (vertical line). Above this threshold, a

deterministic lifetime can be defined by numerically solving

Eq. (22) with Nð0Þ ¼ Nt and solving for the time at which

N ¼ 1 (this replaces the criterion i ¼ 0 from the stochastic

case, which cannot be used in the deterministic case due to

exponential approach of N ¼ 0). The result (dashed line)

corresponds well to the mean cluster lifetime from the sto-

chastic model, but diverges at the threshold.

Equation (26) can be used to make interesting estimates for

experimental situations of interest. For example, in the case of

zero rebinding rate (� ¼ 0) and zero applied force (f ¼ 0),
for a single bond lifetime of 1 s (k0 ¼ 1=s), a cluster lifetime

T of 1 min could be achieved only with the absurdly large

number of 1026 bonds; this is because in this case the cluster

lifetime scales only logarithmically with cluster size.

However, for a finite rebinding rate of � ¼ 1 (kon ¼ k0, still
at zero force), only Nt ¼ 10 bonds are necessary, because the
lifetime scales strongly with rebinding rate T � �Nt�1.

Increasing the dimensionless force to f ¼ 10 (corresponding

to 40 pN for Fb ¼ 4 pN) would decrease the lifetime to T ¼
0:05 s, because T is an exponentially decreasing function of

f. To reach a cluster lifetime of 1 min in this case, the cluster

size must be increased to 50 or the rebinding rate must be

increased by a factor of 10.

One of the strongest advantages of the stochastic model is

that it can be used to simulate single trajectories, which share

many similarities with experimental realizations of individual

experiments. In Fig. 10 we show selected simulated trajecto-

ries for forces below [Fig. 10(a)] and above [Fig. 10(b)] the

critical force. We note that failure is rather abrupt due to

cooperative effects: once sufficiently many bonds have bro-

ken, e.g., due to a fluctuation that leads to a smaller number of

bonds, the force on the remaining ones is so high that rebinding

becomes very unlikely and the cluster fails in a cascade of

dissociated bonds that leads to rupture of the adhesion cluster

(cascading failure). Interestingly, this effect is not apparent if

one calculates only the averages, which are shown as lines.We

further note that, even below the stability threshold in

Fig. 10(a), small clusters are likely to fail due to the finite

probability for a devastating fluctuation that takes the system

to a state with a small number of closed bonds. Above the

threshold in Fig. 10(b), clusters of any size are unstable.

The conceptual framework introduced by Bell shows how

an adhesion site can at the same time be highly dynamic and

yet be stable up to some maximal force: while some bonds

can dissociate and then rebind, the remaining adhesion bonds

allow the transfer of force from the cell to the substrate. The

simple model also shows that this mechanism leads to strong

cooperativity, because each bond that forms or breaks leads to

a fast redistribution of the force, thereby affecting all the

other bonds. The same cooperative mechanism operates in

many other biologically relevant situations, e.g., during force

generation in muscle (Huxley, 1957; Duke, 1999) or during

cargo transport by multiple molecular motors (Klumpp and

Lipowsky, 2005; Gurin et al., 2010). The stochastic extension

of the Bell model demonstrates that adhesions are not only

unstable for large applied forces, but are also unstable at

small sizes for which fluctuations to smaller numbers of

closed bonds can be detrimental.

C. Adhesion between moving surfaces

Adhesion not only occurs via molecular binding of two

stationary surfaces, but also frequently bridges two surfaces
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FIG. 9. Average cluster lifetime T for Nt ¼ 1, 2, 5, 10, 15, and 25

(from bottom to top) as a function of F=FbNt for kon ¼ k0 as

follows from Eq. (26). The vertical line is the critical force predicted

by Eq. (23) and the dashed line is the lifetime predicted by Eq. (22).

Adapted from Erdmann and Schwarz, 2004b.
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that move relative to each other. This is especially relevant for

matrix adhesion underneath the cellular lamellipodium,

where actin retrograde flow can transport individual binding

molecules from the cell edge toward the cell body and where

nascent adhesions form and mature in the region between the

cell and the substrate. It has been found experimentally that in

this case a biphasic relation exists between the traction force

on the substrate and the flow velocity in the cell: while the

traction force and flow velocity are linear proportional in

the case of mature adhesions, they are inversely related in

the case of fast flow over nascent adhesions (Gardel, Sabass

et al., 2008). Experimentally, the threshold value of the

velocity at which this change occurs has been found to be

10 nm=s and to be insensitive to various perturbations of the

cellular system. Surprisingly, the simple conceptual frame-

work introduced above for stationary adhesion sites can be

extended to explain these experimental findings (Srinivasan

and Walcott, 2009; Li, Bhimalapuram, and Dinner, 2010;

Sabass and Schwarz, 2010).

Figure 11 shows the minimal model for the situation of

interest. The upper surface moves with a velocity v relative to

the lower surface. Each bond is modeled as a spring with

spring constant � that immediately gets elongated with ve-

locity v once it is formed. In contrast to the minimal model

for a stationary adhesion cluster (see Fig. 8), there are two

essential differences. First, the governing model parameter is

the relative velocity v rather than the external force F. This
also implies that different bonds are not coupled by force and

a theoretical description can be constructed using a single

bond model. Second, each bond is characterized by its dy-

namic length, namely, its extension compared with the case of

zero velocity, which we denote by x. This is in addition to the
property of the bonds to dynamically form or dissociate. We

therefore now introduce a probability that depends on both

time and bond elongation pbðx; tÞ that describes the like-

lihood that at time t a given bond is closed and has elongation
x. The complementary probability that the molecule is dis-

sociated is not related to the elongation x and we denote it by
puðtÞ. From normalization we get

puðtÞ ¼ 1�
Z þ1

�1
dxpbðx; tÞ ¼ 1� PbðtÞ; (28)

where we introduced the abbreviation PbðtÞ for the overall

probability of a bond to be closed with some elongation x.
When we assume harmonic springs with spring constants �,
the average traction on the substrate is determined by the first

moment of pbðx; tÞ:

FT ¼ Nt�
Z þ1

�1
dxxpbðxÞ: (29)

We next consider the evolution equation for pbðx; tÞ. In
contrast to the equation for the fraction of bound bonds for the

stationary adhesion cluster, Eq. (22), we now have a con-

vective derivative that accounts for the change in extension

due to the fact that the molecules (one end of which are fixed

to the moving surface) are moving with velocity v:

@pb

@t
þ v

@pb

@x
¼ �pbkoff þ ð1� PbÞkon	ðxÞ: (30)

Here pu has been replaced by the right-hand side of Eq. (28).

The delta function represents the assumption that a new bond

forms with vanishing elongation x. For the single bond un-

binding rate koff and rebinding rate kon, we make assumptions

similar to those made for the bonds in a stationary cluster,

namely, a Bell model koff ¼ k0e
rx for the unbinding rate and a

constant rebinding rate kon ¼ const. Here the reactive com-

pliance r ¼ �=Fb is a typical inverse length scale of the bond.

With these simple forms of the rates, the steady state with

@pb=@t ¼ 0 can be calculated analytically (Srinivasan and

Walcott, 2009; Sabass and Schwarz, 2010).

We first note that because bonds form with vanishing

elongation and are then stretched by the motion of the upper

surface (so that the elongation is positive), the probability of

negative elongation vanishes, pbðx < 0Þ ¼ 0 (the time t does
not appear because we consider steady state). From Eq. (30)

we see that for x ¼ 0 we have
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FIG. 10. Selected trajectories simulated with the stochastic master

equation model. Rebinding rate � ¼ 1. (a) Force below threshold

f=Nt ¼ 0:25. Small clusters (Nt ¼ 10 and 100) are unstable due to

fluctuations. (b) Force above threshold f=Nt ¼ 0:3. Now all cluster

sizes are unstable. Lines are first moments. Adapted from Erdmann

and Schwarz, 2004a.
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FIG. 11. Minimal model for an adhesion cluster that bridges two

surfaces that move relative to each other with velocity v. Here we

discuss this case in the limit of continuous ligand and receptor

coverage. The situation described here is very similar to sliding

friction as usually studied for macroscopic objects.

1346 Ulrich S. Schwarz and Samuel A. Safran: Physics of adherent cells

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



pbð0Þ ¼ p0 ¼ ð1� PbÞ
kon
v

¼ ð1� PbÞ
�r

V
; (31)

where we defined a dimensionless velocity V ¼ rv=k0 and

� ¼ kon=k0 is the dimensionless rebinding rate defined

above. For x > 0, Eq. (30) is solved by

pbðxÞ ¼ p0e
1=Vð1�erxÞ: (32)

Therefore, the probability for a bond (with probability p0 at

x ¼ 0) to be elongated by an amount x decays faster

than exponentially as x increases. After calculating Pb from

Eq. (32), one finds the traction force from Eq. (29) in dimen-

sionless form:

fT ¼ rFT

�
¼ Nt

Mð1=VÞ
E1ð1=VÞ þ ðV=�Þe�1=V

; (33)

where we used two special functions, the exponential integral

E1ðxÞ and a Meijer G function MðxÞ defined by

E1ðxÞ ¼
Z 1

0
dye�xey ; MðxÞ ¼

Z 1

0
dyye�xey : (34)

In Fig. 12, we plot this result for the traction force fT as a

function of the velocity V for three different values of the

rebinding rate �. One sees that the relation is biphasic: the

traction force first increases linearly with velocity, but then

decays again after going through a maximum value. The

symbols in Fig. 12 are the results of computer simulations

for stochastic models with the same number of bonds (Sabass

and Schwarz, 2010). The analytical result from Eq. (33)

agrees with the experimental observation of a biphasic rela-

tion in retrograde flow (Gardel, Sabass et al., 2008). The fit of

the model to the data can be improved by making more

specific assumptions like catch bonding (Li, Bhimalapuram,

and Dinner, 2010). For small flow V < 1, the model predicts a

linear relation between flow speed and traction force as

observed for flow over mature adhesions:

Ft ¼
Ntkon

kon þ k0
�
v

k0
: (35)

Therefore, in this regime the traction force is simply the sum

of the spring forces for the typical extension x ¼ v=k0 which
is reached when a bond is elongated due to a velocity v
applied for a time 1=k0. The prefactor represents the equilib-
rium number of bonds that were formed, that is, the number

of springs carrying force. For large force V > 1, bond rupture
predominates which does not allow transmission of appre-

ciable levels of force. In that case, the velocity and traction

force are inversely related as observed for fast flow over

nascent adhesions. The crossover between proportional and

inverse regimes occurs when V � 1, that is v ¼ k0=r. With a

typical unstressed unbinding rate of k0 ¼ 1 Hz and a typical

reactive compliance of r ¼ �=Fb ¼ 0:5 nm�1, this predicts

v ¼ 2 nm=s on the order of the experimentally observed

values of 10 nm=s.
The concept of friction was discussed in the biological

context before (Tawada and Sekimoto, 1991; Marcy et al.,

2007). Moreover, the biphasic relation between flow and

traction has been noted before in a nonbiological context

for sliding friction mediated by discrete microscopic bonds

(Schallamach, 1963; Filippov, Klafter, and Urbakh, 2004).

The large velocity regime suggests the possibility of an

instability: as the velocity increases, the traction force de-

creases, thus leading to an even larger velocity. In order to

investigate this point in more detail, a dynamical model for

flow over adhesion sites is required. A simple model moti-

vated by the typical conditions at the lamellipodium is to

assume that the actin cytoskeleton is driven by a constant

driving force FD (representing both the push of the polymer-

izing actin network away from the leading edge and the pull

by the myosin motors toward the cell body). This force is

balanced by the frictional force with the substrate and an

intracellular viscous force representing dissipative processes

in the lamellipodium. Thus the force balance reads

FD ¼ FTðvÞ þ �v (36)

with FTðvÞ from Eq. (33). In Fig. 13, we numerically invert

this equation to plot the velocity v as a function of the

driving force FD. One sees that the nonlinear relation from

Eq. (33) leads to a region of bistability: there is an interval of

intermediate driving force for which two values of the veloc-

ity are stable. In practice, this will lead to stochastic switching

γ γ γ

fT

V

FIG. 12. Biphasic relation between dimensionless flow V and

dimensionless traction force ft predicted by the minimal model

for cluster size Nt ¼ 25 and for different values for the rebinding

rate. Symbols are the results of stochastic simulations with Nt single

bonds. Adapted from Sabass and Schwarz, 2010.
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FIG. 13. The nonlinear relation between the flow velocity v and

the traction force FT from Fig. 12 leads to a region of bistability for

the flow velocity v as a function of the driving force FD. Parameters

Nt ¼ 25, � ¼ 10, and �k0=� ¼ 0:03.
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between periods of slow and fast flow, a phenomenon which

is known as stick-slip motion in sliding friction and which can

be easily verified using stochastic simulations (Sabass and

Schwarz, 2010). Indeed this irregular kind of motion has been

observed for filopodia retraction and has been successfully

simulated with a detailed stochastic model which also in-

cluded the effect of stochastic force generation by myosin II

motors (Chan and Odde, 2008).

D. Load localization and fracture in adhesions

The view of focal adhesions as bond clusters is a very

flexible conceptual basis that can be applied to more specific

situations of interest. As an instructive example, we discuss

its extension to include the role of elasticity of the anchoring

bodies. This subject is important because cells have been

shown to respond very strongly to changes in cellular and

environmental stiffness, mainly through changes in the stabil-

ity of their adhesion sites. We consider the situation depicted

in Fig. 14 as analyzed by Qian, Wang, and Gao (2008). A

single adhesion site of size 2a is located between two elastic

half-spaces, one representing the cell (C) and the other the

substrate (S). The cell has Young’s modulus EC and Poisson’s

ratio C, while the substrate is characterized by ES and S.

The two half-spaces are pulled apart by a pair of equal and

opposite forces (a force couple) of magnitude F, acting in the
plus and minus z directions. The density of ligands in the

adhesion is � ¼ 1=b2. By considering cylindrical geometry

and a section of thickness b in the y direction, the model

is reduced to one lateral dimension whose coordinate is

denoted by x. The number of bonds in the adhesion is Nt ¼
�2ab ¼ 2a=b. As above, we ask how the cluster stability is

affected by force, for example, by calculating the mean

cluster lifetime T or the critical force Fc as a function of

the model parameters.

In order to treat themechanical aspects of themodel, we use

continuum mechanics. As is common in contact mechanics,

we define an effective elastic modulus E
 that accounts for

both the cell and substrate by

1

E
 ¼
1� 2

C

EC

þ 1� 2
S

ES

: (37)

The adhesion cluster is loaded by interfacial stress �ðxÞ that
acts in the normal direction; the force determining the rupture

rate of a single bond located at xwould then be�ðxÞb2.We first

consider the case when all the molecules are bonded to the

lower surface. Then �ðxÞ ¼ ��uðxÞ, where � is the spring

constant of a single bond as before and uðxÞ is the bond

extension. From continuum mechanics, which shows that

stress and strain propagate with an elastic Green’s function

that decays in space as 1=r (Landau and Lifshitz, 1970), the

following equation can be derived for �ðxÞ:
d�ðx̂Þ
dx̂

¼ 2�




Z 1

�1

�ðŝÞ
x̂� ŝ

dŝ: (38)

Here we used dimensionless variables and defined the stress

concentration index � as

� ¼ a��

E
 : (39)

Thus the stress concentration index is linearly proportional to

the adhesion size, bond stiffness, and bond density, and in-

versely proportional to the effective elastic modulus.

Equation (38) can be solved in two limiting cases of

immediate interest. For � ! 0, we find that �ðxÞ is a constant
independent of x. Thus for rigid surfaces, the elastic model

reduces to that of stationary adhesions introduced above; in

that case, small clusters are the most unstable. For � ! 1,

Eq. (38) is solved by

�ðxÞ ¼ F


ab

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðx=aÞ2
p : (40)

Thus, the stress distribution at the edge becomes singular,

similar to that of a crack. A numerical solution shows that, in

general, the interfacial stress is distributed rather uniformly

for � smaller than 0.1, and becomes localized to the adhesion

rim for � larger than 1. Because the cracklike distribution

leads to cascading failure from the rim, large adhesions will

be unstable since they give rise to a large stress concentration

index according to Eq. (39). Thus, both very large and very

small clusters are predicted to be unstable, suggesting that

intermediate cluster sizes have the longest lifetimes.

E. Adsorption kinetics for growing adhesions

Up to now, our discussion has centered on the physical

limits for the stability of adhesion clusters under conditions in

which forces tend to destabilize the bonds that are formed.

We have seen that force, adhesion cluster size, surface mo-

tion, and elasticity define clear limits for the physical stability

of adhesion sites. We now address the question of how

biological FAs can protect themselves against these limiting

factors. The main mechanism which seems to have evolved in

this regard is growth under force, which we now discuss.

We begin with a generic treatment of adsorption kinetics

that are governed by the chemical potential differences of

molecules in the solution and those adsorbed to the adhesion

on the substrate. If the FA is under conditions close to

F

F

2a
E

c c

b

,ν

E
s s
,ν

FIG. 14. Model of an adhesion cluster loaded by equal and

opposite forces of magnitude F, each applied to an elastic half-

space. EC and C denote the Young’s modulus and Poisson’s ratio of

the cell, and ES and S denote those of the substrate. 2a and b are

the linear dimensions of the adhesion cluster and the distance

between receptor-ligand bonds, respectively.
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equilibrium and if the growth is reaction limited as opposed

to diffusion limited, the growth dynamics of the adhesion

depend on the dimensionless chemical potential difference

(in units of kBT) between molecules in solution and those

adsorbed to the FA. The dimensionless, local (fractional) area

coverage by these molecules is denoted by �ð~rÞ which is also
time dependent: d�ð~rÞ=dt ¼ ð1=�Þ½�b ��að~rÞ� (Diamant

and Andelman, 1996), where t is the time variable and � is

a characteristic time; since � and � are dimensionless each

side of the equation scales as the inverse of a time. Here � is

the attempt time for molecules near the surface to adsorb, and

�b and �að~rÞ are the dimensionless chemical potentials (in

units of kBT) of molecules in the bulk cytoplasm and the FA,

respectively. When �a <�b adsorption is locally favored

and the local concentration of adsorbed molecules grows in

time. We classify the chemical potential of molecules in the

FA by terms with different symmetries with respect to the

external force and afterward discuss the molecular origins of

these terms in different models. We therefore write

@�ð~rÞ
@t

¼ 1

�
f�b � ½�‘ð ~fÞ þ�ið�ð~rÞÞ þ�fð ~f;�ð~rÞÞ�g:

(41)

The term �‘ð ~fÞ depends on the CSK force ~f, but not on the

local, dimensionless, local area fraction covered by adhesion

molecules �ð~rÞ. It originates in those terms derived from the

derivative of the free energy with respect to �ð~rÞ that are

independent of � and are thus not cooperative in nature. The

next term depends on the local concentration (and hence

reflects cooperativity of the adhesion molecules) but not on

the force, while the last term depends on both.

The local, chemical interaction (ligand binding) of the

adsorbing molecules with the surface �‘ð ~fÞ includes the

effects of force-induced changes in the single-molecule con-

formations. Since the chemical potential is a scalar quantity

while the force ~f is a vector, symmetry dictates that to

quadratic order in the force (which is assumed to be small)

it must have the form �‘ ¼ �0 þ �h ~f � ~di þ �f2, where �0

is force independent and � and � are constants. The angle

bracket h ~f � ~di denotes an average over all the orientations of

a vector that resides in the adsorbed molecule ~d to which the

force (possibly) couples; this coupling results in a conforma-

tional and hence in an energy change. If the adsorbing

molecules are oriented at a fixed angle relative to the CSK

force, this term will depend only on the magnitude of the

CSK force.

The mutual, force independent, interactions of the mole-

cules that assemble in the FA are reflected in the term�ið�ð~rÞÞ
and are derived from the functional derivative of the interac-

tion free energy with respect to �ð~rÞ (Safran, 2003). For

convenience, one can consider a Ginzburg-Landau expression

for the free energy for interacting molecules that nucleate a

condensed phase in equilibrium with a ‘‘gas’’ (low concentra-

tion) phase of adsorbates on the surface (Safran, 2003). In

order to obtain an analytical solution it is convenient (but not

necessary in general) to focus on values of � that are close to

the critical value �c at which the condensation first occurs as

the temperature is lowered (Safran, 2003) as the system pa-

rameters approach a critical value (which for simple systems

can be the critical temperature but for more complex systems

can depend on the interaction energies, effective temperature,

and other parameters). The chemical potential�i ¼ 	F0=	c
is derived from a free energy (in units of kBT) of the form

F0 ¼
Z

dxdy

�

� 1

2
��2 þ 1

4
c�4 þ 1

2
Bðr�Þ2

�

; (42)

where � ¼ ���c, � is the deviation from criticality [for

simple systems �� ðTc � TÞ=Tc], c is a number of order unity,

and B is proportional to the attractive interaction between the

molecules (Safran, 2003).

We note that the scalar nature of the chemical potential

means that the lowest order term in �f must be the dot

product of two vectors: the local force and the gradient of

the adhesion molecule density so that �f is proportional to
~f � r�ð~rÞ. Such a term cannot be derived from the direct

functional derivative of a free energy that is only a function of
~f and c ð~rÞ and its derivatives. However, as discussed in the

context of the molecular models, the adsorption may be

coupled to other degrees of freedom in the system such as

its mechanical properties (e.g., strain, anchoring to the sub-

strate). These can give rise to terms in the free energy that are

manifestly and linearly force dependent and that can equili-

brate more quickly than the adsorption. The discussion below

of the microscopic models demonstrates that this coupling

can effectively yield the term ~f � rc ð~rÞ, written here from

symmetry considerations alone.

With these expressions for the various contributions to the

chemical potential, one can analytically solve Eq. (41) in one

dimension in terms of� ¼ ���c, where �c is the average

concentration of the coexisting high and low density phases

on the surface (i.e., the adhesion and a low density gas of

isolated, surface adsorbed molecules). The protein assembly

grows (Besser and Safran, 2006) in the direction of the force

with a profile given by �ðx; tÞ ¼ �ðx� vtÞ with the growth

velocities at the front and back related to the characteristic

velocity v0 ¼ �=�, where � is the correlation length that

characterizes the interface width �2 � B=�. In the limit of

small chemical potential differences between the molecules

in solution and those in the FA, we can calculate the velocities

of the front (closer to the pulling direction) and back of the

adhesions as shown pictorially at the bottom of Fig. 15:

vfront ¼ þv0��ðfÞ þ f�;

vback ¼ �v0��ðfÞ þ f�;

vtot ¼ vfront � vback ¼ v0��ðfÞ;
(43)

where ��ðfÞ ¼ �b ��0 � �h ~f � ~di � �f2. The term f�
arises from the symmetry-breaking term in the chemical

potential ~f � rc ð~rÞ. One considers the case where �0 >�b,

� < 0, and�> 0 [so that��ðfÞ> 0], favoring adsorption for
some range of force, but not for forces that are too small or too

large; the quadratic term in f inhibits growth when the force

becomes too large. Note that the overall growth velocity of the

adhesion depends on the homogeneous activation term but is

independent of the symmetry-breaking term ~f � rc ð~rÞ. These
findings indicate that both force-induced activation modes are

required to explain the anisotropic growth of focal adhesions:

the homogeneous activation term alone could not explain the

anisotropy of the aggregation,whereas the symmetry-breaking

term alone could not account for overall adhesion growth.
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The stress dependence of the velocity is shown in Fig. 15

for a rigid substrate. As expected, this model accounts for

both the growth and sliding of the adhesion, based on a

treadmilling mechanism. This treadmilling mechanism was

recently observed experimentally (de Beer et al., 2010). In

addition, the theory also predicts a range of stress in which

the adhesion indeed grows. Furthermore a regime where the

front and back edges move apart is predicted; this was also

recently reported (Heil and Spatz, 2010; de Beer et al., 2010).

F. Force-induced growth of adhesions

We now discuss two classes of models that motivate the

general treatment presented here from more molecular con-

siderations to explain the stability and growth of focal adhe-

sions under CSK force: (i) microscopic models that motivate

the nucleation and growth picture described above, and (ii) an

analogy to force-induced polymerization that takes into ac-

count the imbalance of CSK stresses and adhesion molecule

anchors. These two approaches differ in several aspects, the

most important of which is whether the symmetry breaking

exists already at the genesis of the adhesion [model (ii)] or

whether it is a spontaneous consequence of force applied to

an adhesion [model (i)] with no intrinsic asymmetry in its

internal structure. The first class of models that are based on

nucleation and growth is supported by experiments that

suggest that focal adhesion growth occurs primarily at the

front and back of the plaque (Heil and Spatz, 2010; de Beer

et al., 2010). As explained, the second class of models would

allow for adhesion molecules to accrue all along the plaque.

On the other hand, experiments also show that the focal

adhesion is not symmetric; the front is acted upon by the

CSK stress fibers while the back is facing the lamellipodium.

This provides support for the intrinsic asymmetry of binding

and force that is the basis for the second class of models. All

of these models focus on forces that are tangential to the

substrate, appropriate to stress fibers near the basal cell

surface. Adhesion growth induced by forces normal to the

surface has been modeled by Walcott et al. (2011). Their

results and related experiments show that, for normal forces,

adhesion nucleation and decay depends sensitively on the

substrate stiffness; however, the growth and decay dynamics

themselves are stiffness independent.

1. Symmetry breaking due to activation of mechanosensors

(within the adhesion) by force

The model introduced by Nicolas and co-workers (Nicolas,

Geiger, and Safran, 2004; Besser and Safran, 2006; Nicolas

and Safran, 2006a; Nicolas, Besser, and Safran, 2008) as-

sumes that the dynamics of FA is governed by the activation

of mechanosensitive units that are part of the adhesion. Since

the molecules in the FA are attached both to the matrix and to

the CSK, they sense variations of mechanical stresses in the

cell as well as the local, elastic properties of the extracellular

matrix. The symmetry breaking occurs spontaneously, with-

out introducing an adhesion geometry that desymmetrizes the

front and back. Instead, the adhesion treadmills or slides in

the direction of the force because the force itself is a vector

that breaks symmetry via the term in the chemical potential
~f � rc ð~rÞ, where it couples to the concentration gradients in

an asymmetric manner at the front and back of the adhesion.

The model includes two modes of deformation (Nicolas

and Safran, 2004): (a) the stretching of the individual mole-

cules of FA assembly by the CSK force, which corresponds to

a shear deformation of the FA, and (b) the effect of compres-

sion induced by lateral compressions (due to forces tangential

to the substrate); this is a cooperative effect involving the

displacements of neighboring molecular units (Ali et al.,

2011). The compressive mode is asymmetric in its response

to a local, tangential stress since the back edge of the FA is

expanded while the front edge is compressed. Assuming that

compression induces adhesion growth (i.e., lowers the ad-

sorption free energy of molecules in solution that contact the

substrate) and that expansion induces desorption, the front of

the adhesion may grow, while the back may shrink. This

results in a treadmilling of the adhesion and an apparent

motion in the direction of the force. In contrast to this, the

stretching mode is symmetrical in response to the tangential

stress; both the back and front edges are activated with

identical probabilities. If the stretching results in conforma-

tions that stabilize adsorbed molecules, this will result in

the growth of the front of the adhesion in the direction of

the force and in the growth of the back of the adhesion in the

opposite direction; the net result will be an overall growth of

the size of the adhesion. It should be noted that activation

of the adhesion molecules is expected to require tensile

forces. In a picture in which the mechanosensor is a single

molecule, it is not obvious how these forces can arise from

compression at the front edge of the adhesion. However, if

one associates the mechanosensor with a complex assembly

of molecules that include the integrins and the protein plaque,

then reorientation and interactions may indeed give rise to

molecular extensions in the direction perpendicular to the

compression, e.g., by the tendency for a molecular assembly

to conserve its volume. These effects may activate adsorption

even in the absence of externally generated tensile forces. FA

growth as a function of substrate rigidity can be predicted if

one assumes that the adsorption is partially controlled by the

energy invested by the CSK in deforming the substrate; this of

course depends on the size and nature of the adhesion. For

soft substrates, the substrate is deformed over a thickness

related to the adhesion size. This limits the maximal size of

the adhesion due to the stresses and strains that the CSK

forces induce in the underlying matrix via the coupling by the

FA (Nicolas, Besser, and Safran, 2008).

FIG. 15 (color online). Calculated velocities of the front (closer to

the direction of the pulling force in this figure, to the right) and back of

the adhesion for a rigid matrix. Courtesy of A. Nicolas and adapted

from Besser and Safran, 2006 and Nicolas, Besser, and Safran, 2008.
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A related point of viewwas recently presented byGarikipati

and collaborators (Olberding et al., 2010) who used a general

thermodynamic argument to motivate the symmetry-breaking

term in �f. Instead of assuming that the adhesion molecules

are activated to adsorb near regions of compression and desorb

near regions of expansion as in Nicolas and Safran (2006a) and

Nicolas, Besser, and Safran (2008), the ‘‘negative work’’ done

by the CSK pulling forces is included in the energetics at the

outset. The resulting energy is decreased when the adhesion

moves in the direction of the force (toward the nucleus); this

apparent sliding occurs by the adsorption of molecules at the

edge of the adhesion that is closest to the nucleus (or direction

of applied force) and desorption at the other end. We note that

this mechanism can lead to growth all along the adhesion

surface and not just at the edges as discussed in relation to

the work of Shemesh et al. (2005).

Another model that focuses on the integrin binding with the

adhesion was suggested by Deshpande and co-workers

(Deshpande, McMeeking, and Evans, 2006, 2007; Pathak

et al., 2008; McGarry et al., 2009) who developed a thermody-

namically motivated computational approach that has three

essential features: (i) coexistence of both low and high affinity

integrins in thermodynamic equilibrium, (ii) mobility of the

low affinity integrins within the plasma membrane, and

(iii) mechanical equilibrium of the contractile forces generated

by the stress fibers—these forces affect the free energies of the

integrins and give rise to a coupled thermomechanical response.

An initial prediction based on this is the correlation of the

distributions of the normalized focal adhesion densities (as

parametrized by the high affinity integrin concentration) and

contours of the stress-fiber density. However, this model does

not contain spontaneous symmetry breaking and the growth of

adhesions in the direction of the applied force requires the

ad hoc inclusion of anisotropic activation signals.

Another recent model of focal adhesion growth focuses on

the bond attachment-reattachment dynamics previously dis-

cussed and combines this with considerations related to clus-

tering. The stochastic elastic model combines theory and

Monte Carlo simulations (Gao, Qian, and Chen, 2011) and

suggests that FA growth is self-limiting since growth eventu-

ally leads to cracklike delamination failure near the adhesion

edges. Very soft substrates tend to diminish the adaptive

capability of cells by suppressing bond rebinding irrespective

of the cytoskeleton stiffness, which may prevent short-lived,

small focal contacts from maturing into stable FA.

2. Symmetry breaking due to the geometrical structure of the

adhesion

The model introduced by Kozlov and co-workers (Shemesh

et al., 2005) uses a general thermodynamic argument to write

�f ¼ � ~f � ~d, where ~f is the force applied by the CSK to one

adhesion molecule and ~d is a particular bond in the molecule

that is stretched by that force. In the one-dimensional version

of the model described by Shemesh et al. (2005), the force and

bond are in the same directions. This energy represents the

negative work done by the CSK against the adhesion when an

additional protein is allowed to adsorb. In the absence of this

additional protein, the adhesion is stretched and deformed by

the CSK force; the presence of an additional protein adsorbed

from solution relaxes this deformation to some extent and thus

lowers the free energy of the adhesion, hence the negative sign

in the expression for �f.

To predict the growth of the adhesion in the direction of the

applied force, several assumptions are made. First, the FA is

assumed to be capable of adsorbing and releasing adhesion

molecules at every point along its surface; this differs from

models of polymerization where the monomer exchange

occurs only at the ends of a linear polymer. For the FA plaque,

plausibility of this unusual property has some experimental

support (von Wichert et al., 2003). However, other studies

have shown that the growth primarily occurs at the two ends

of the adhesion and not uniformly along its surface (Heil and

Spatz, 2010; de Beer et al., 2010). Second, the pulling forces
~f are assumed to be applied to the FA surface at discrete

points that are distributed along the FA length with a particu-

lar density. Finally, the FA plaque is taken to be anchored to a

rigid external substrate by discrete linkers spread over the

adhesions length with a density that differs from the density

of the pulling forces. This intrinsic asymmetry in the geome-

try of the adhesion leads to its asymmetric growth.

The interplay between the distribution of the pulling forces

and the anchors leads to an inhomogeneous stretching stress

within the FA and, consequently, to an uneven distribution of

the chemical potential �f along the adhesion. Hence, the

tendency to assemble or disassemble can vary along the FA

resulting in different regimes of the overall molecular ex-

change between the FAand the adhesionmolecules in solution.

The model predicts different modes of the FA assembly that

are largely consistent with the experimentally observed FA

behavior. As a function of the chemical potential difference,

the FA can exhibit unlimited growth, complete disintegration,

or reach a stable force-dependent steady-state dimension. The

sliding of the adhesion in the direction of the force is explained

by an explicit symmetry breaking introduced in this model due

to an imbalance of local forces and anchors; this requires

additional specific modifications of the generic model and

may be due to the presence of the lamellipodium on the far

side (close to the cell membrane) of the adhesion and the stress

fibers on its near side (closer to the nucleus). In contrast to other

models of FA mechanosensing, the thermodynamic model

does not require any special conformational changes of pro-

teins upon force application. At the same time, the model

assumes that the FA plaque is an elastic body able to accumu-

late mechanical stresses. Moreover, the plaque must possess

a mechanism to accommodate new FA proteins without

undergoing stretch-induced rupture. This may require the

presence of delicate molecular mechanisms having properties

similar to those of the members of the formin protein family

(Kovar, 2006), which are able to maintain a stable connection

to an associated protein complex (the growing ends of actin

filaments) and at the same time, enable insertion of the new

protein monomers into the complex and stabilization of the

growing structure.

V. CELL SHAPE AND FORCES

A. Physical motivation

We now move from the level of cellular adhesions to the

level of whole cells and address the question of how the

forces in an adherent cell are balanced over the entire cell.

Ulrich S. Schwarz and Samuel A. Safran: Physics of adherent cells 1351

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



From Sec. IV, we learned that cells adhere through relatively

few but stable sites of focal adhesion. At the same time, they

tend to be very contractile provided that the environment is

sufficiently rigid to balance these forces. The interplay be-

tween contractility and spatially localized adhesions leads to

interesting phenomena which can be understood best by first

considering the shape of the cells.

Depending on cell type and environment, cells adopt a

large variety of different shapes (Bray, 2001; Mogilner and

Keren, 2009; Kollmannsberger et al., 2011). For cells in the

human body, for example, we observe such diverse shapes as

the biconcave disk of the red blood cell, the invaginated

shapes of single fibroblasts in connective tissue, the polygo-

nal shapes of cells in densely packed epithelial tissue, and the

highly branched networks formed by neurons in the brain. In

fact the term cell was coined by Robert Hooke who in his

1665 book Micrographia was the first to report on the many

shapes visible under the microscope. He chose this term cell

because the near rectangular shapes of the building blocks of

cork reminded him of monk cells in a monastery. Because of

the evolutionary process, the shape of cells is closely related

to their function. For example, red blood cells are optimized

to squeeze through narrow capillaries, fibroblasts are suffi-

ciently contractile to deform and remodel extracellular ma-

trix, epithelial cells pack tightly to seal certain regions, and

neurons form a highly connected communication network.

In 1917 D’Arcy Thompson suggested in his book On

Growth and Form that the shapes of cells and organisms

must be closely related to physical forces (Thompson,

1992). The interest in shape somehow declined in the wake

of the molecular revolution in biology, but has recently been

reinvigorated by the finding that cell shape strongly effects

cellular function. By using microcontact printing of adhesive

patterns to constrain cells into predefined shapes, it has been

shown that it is not the total amount of adhesive ligand

available to the cell, but rather its spatial distribution that

determines cell fate (Chen et al., 1997). In fact, relatively

little ligand is sufficient to ensure cell survival if it is arranged

in such a way as to allow the cell to spread over a large area

on the substrate. In contrast, a cell constrained to occupy a

small area or volume goes into programmed cell death even if

many ligands are available in that small space. More recently,

it has also been shown that stem-cell differentiation depends

on cell shape (Kilian et al., 2010).

During the last decade, the use of micropatterned sub-

strates has developed into a standard technique employed to

investigate many details of the spatial organization of cells.

For example, it was shown that the spatial coordination of

lamellipodia (Parker et al., 2002), stress fibers (Thery et al.,

2006), spindle formation (Thery et al., 2007; Fink et al.,

2011), and cell-cell adhesions (Tseng et al., 2012) strongly

depends on the geometry of the extracellular environment.

Moreover, micropatterned substrates can also be used to

quantitatively analyze cell shape. It has long been noticed

that on flat substrates most tissue cell types adopt shapes that

are indicative of cell contraction, often characterized by

invaginations between pinning sites (Zand and Albrecht-

Buehler, 1989). The tendency to invaginate becomes even

more pronounced when the actin cytoskeleton is disrupted,

which leads to a raylike morphology of adhering cells

(Bar-Ziv et al., 1999). Recently micropatterning and image

processing have been combined to quantitatively study the

relation between cell shape and adhesive geometry (Bischofs

et al., 2008).

In general, many of the observed cell shapes can be under-

stood with concepts borrowed from soft matter physics. The

round shape of cells in solution, the invaginated shapes of

single tissue cells on flat substrates, and the foamlike packing

of cells in epithelial tissue point to a strong role of cellular

tension; see Figs. 16(a)–16(c). Tension also plays an impor-

tant role in many dynamical situations, such as the pearling of

cell extensions after changes in pressure (Pullarkat et al.,

2006) or cell elasticity (Bar-Ziv et al., 1999), as in

Fig. 16(d). Tensions that contract cell-cell junctions have

emerged as a key factor that determines the dynamics of

tissues (Farhadifar et al., 2007; Lecuit and Lenne, 2007;

Paluch and Heisenberg, 2009; Aliee et al., 2012). However,

in order to quantitatively explain the experimental data for

single cells, tension arguments must be combined with ele-

ments of elasticity (Bar-Ziv et al., 1999; Bischofs et al.,

2008). During recent years, different modeling approaches

have been suggested to describe the interplay between

myosin II contractility which is balanced by elastic forces

exerted by the cytoskeleton and the adhesions (that couple to

the substrate). In the following we discuss and compare some

of the suggested approaches. This then forms a basis that

allows us to consider even more coarse-grained models of

cells (cellular force dipoles) in the next section.

B. Contour models for cell shape

Because adhering cells on flat substrates spread to become

very thin compared with their lateral extensions, it is appro-

priate to describe them as approximately two-dimensional

objects; see Fig. 17(a). The simplest approach is to focus only

on cell shape and to consider only the two-dimensional

contour ~rðsÞ describing the cell boundary with s (which has

units of length) defined as the distance coordinate along the

contour. At any point s along the boundary, we define the

tangent vector ~tðsÞ ¼ ½d~rðsÞ=ds�=jd~rðsÞ=dsj and the normal

(a) (b)

(c) (d)

FIG. 16. Cell shapes are often dominated by tension. (a) Single

cells in solution are usually round. (b) Isolated tissue cells like

fibroblasts commonly show an invaginated shape between distinct

sites of adhesion. (c) Epithelial cells in closely packed tissue are

usually polygonal, in both two and three dimensions (here a

polyhedron is schematically depicted for the 3D case).

(d) Cylindrical cell extensions such as axons tend to pearl when

the tension is increased.
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vector ~nðsÞ perpendicular to it. These two unit vectors are

connected by the geometrical relation d~tðsÞ=ds ¼ ~nðsÞ=RðsÞ,
where RðsÞ is the local radius of curvature. We first consider

the simplest model geometry possible, namely, a contour

which is pulled in toward the cell in the region between

two adhesion points, as shown in Fig. 17(b). We relate this

to the forces that arise from actomyosin contractility in cells.

We begin with the most elementary example, the simple

tension model, in which these forces arise from the energies

associated with changes in the contour length and surface

area. In the simple tension model, a constant surface tension

� pulls in the contour (thereby reducing the surface area) and

is balanced by the effects of a constant line tension � which

tends to straighten the contour (thereby reducing the line

length); see Fig. 17(b). The surface tension acts on a line

element and points in the normal direction, leading to a force
~F ¼ � ~nðsÞds, while the line tension acts on every point of the
contour and in the tangential direction with a force ~T ¼ �~tðsÞ.
This situation is depicted in Fig. 17(c). The force balance on a

contour element ds then leads to a Laplace law:

~F ¼ ~Tðsþ dsÞ � ~TðsÞ ) � ~n ¼ �
d~t

ds
¼ �

R
~n ) R ¼ �

�
:

(44)

Note that this result is expected from dimensional analysis.

The simple tension model thus predicts that the contour forms

perfect circular arcs, which indeed is often observed in cell

experiments. In Figs. 18(a) and 18(b), this is demonstrated for

cells on a dot micropattern and on a pillar array, respectively.

Note that, due to its local nature, the simple tension model

does not obey total momentum conservation that is expected

for a closed system like a single cell.

The last equality in Eq. (44) resembles the Laplace law

R ¼ ð2�Þ=�p for a sphere (e.g., a soap bubble) whose

surface is contracted by a surface tension � and stabilized

by a pressure difference �p (compare Sec. II.F). We note that

in three dimensions � and � (related to line and surface) are

replaced by � and �p (related to surface and volume),

respectively, and that a factor of 2 appears (compare

Sec. II.F). These two effects obviously result from the differ-

ent dimensionalities. However, a more fundamental differ-

ence is the fact that while the sphere stabilizes itself without

any need for attachment, the simple tension model for the

invaginated contour makes sense only in the presence of the

two adhesion sites. Without the adhesions, both tensions

would work in the same direction and the contour would

simply contract to a point.

In single cells adhered to a flat substrate, the two tensions

have contributions from different processes. The surface

tension � mainly results from the pull of the myosin motors

in the actin cytoskeleton (including the actin cortex), but can

also have a contribution from the tension in the plasma

membrane. The line tension � is expected to primarily arise

from the elastic pull of the thick and contractile actin bundles

lining the cell periphery. If cells are treated with pharmaco-

logical drugs that disrupt the actin cytoskeleton, they tend to

invaginate more strongly, indicating that effectively the line

tension � is reduced more than the surface tension � (Bar-Ziv

et al., 1999; Bischofs et al., 2008).

Interestingly, very strong invaginations necessarily lead to

tubelike extensions connecting the retracted cell body to the

sites of adhesions (here we assume a three-dimensional view-

point again). A cylindrical tube in which the surface tension is

the only relevant force undergoes a Rayleigh-Plateau insta-

bility (Safran, 2003). Thus one also expects pearling of the

cellular tubes. Indeed this is exactly what has been observed

experimentally (Bar-Ziv et al., 1999) once the elasticity of the

tube is suppressed, similar to the pearling which can be

induced, for example, in axons, by changing the osmotic

pressure (Pullarkat et al., 2006).

For contractile cells, the force due to the surface tension

� is mainly balanced by the elasticity of the actin cortex

d

L

R

n(s)ds

t(s)λ

σF=

T=

(b)
σ λ

λ

(a)

(c) (d)

FIG. 17. Simple tension model for cell shape on a flat substrate.

(a) The cell is very flat and therefore effectively two dimensional.

The outlined region is shown in (b) with more detail. (b) Along the

contour between two neighboring adhesion sites, surface tension �

pulls inward, while line tension � pulls tangentially. (c) Along the

contour, surface tension and line tension pull in normal and

tangential directions, respectively. For a circular arc, radius R,

contour length L, and spanning distance d are geometrically related

to each other. (d) For a house-shaped cell, all arcs have the same

radius, although the spanning distance is larger on the diagonals.

Also shown are the traction forces derived from the shape model.

Adapted from Bischofs, Schmidt, and Schwarz, 2009 and Guthardt

Torres, Bischofs, and Schwarz, 2012.

(a) (b)

FIG. 18 (color online). (a) House-shaped cell on an adhesive

micropattern created by microcontact printing. Note the circular

arcs with radii that are larger at the two diagonals. From Fig. 1(B)

from Bischofs et al., 2008. (b) Cell on a pillar array that allows a

simple readout of local forces from measurements of the deflection

of each pillar. Circular arcs describe most of the cell contour, but

not, for example, at the upper left corner, where an internal fiber

distorts the contour. From Bischofs, Schmidt, and Schwarz, 2009.
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underlying the plasma membrane. Experimentally, it was

found that thinner tubes are unstable whereas thicker ones

are not. This can be explained as follows. One considers

a cylindrical tube with undulations by defining a local

radius that varies along the tube axis in the z direction:

RðzÞ ¼ R0 þ �R cosð2
z=�Þ. There are two energy contri-

butions, the change in surface energy and an elastic energy

that includes bending and stretching energies. Using the

constraint of volume conservation the sum of these two

energies reads (Bar-Ziv et al., 1999)

Et ¼ �
1

4
u2ðk2 � 1Þ þ 1

4

3ER0

1þ 
u2: (45)

Here k ¼ 2
R0=� and u ¼ �R=R0 are the dimensionless

wave number and amplitude of a perturbation of wave vector

k, respectively, while E and  are the Young’s modulus and

Poisson’s ratio of the cortex, respectively. Because both terms

have the same scaling with u, these terms cannot determine

the amplitude. However, the wavelength at which the system

is unstable is determined by this expression. The first term

can become negative for large wavelengths k < 1. In this

case, the energy is negative if the tension exceeds a critical

threshold of

�c ¼
3ER0

1þ 
(46)

which increases with R0. This makes thicker tubes more

stable than thinner ones as observed experimentally.

The pearling study indicates that in cellular systems ten-

sion and elasticity are strongly coupled. A similar result was

obtained by a quantitative study of cell shape on micropat-

terned substrates (Bischofs et al., 2008). Although this analy-

sis revealed that invaginations of the cell contour are usually

close to circular as predicted by the Laplace law from

Eq. (44), it also showed that the arc radius R varies with

the spanning distance d (defined in Fig. 17) between the two

neighboring adhesion sites, while the Laplace law predicts a

constant radius independent of spanning distance. Again this

can be explained by an elastic analysis, the tension-elasticity

model (Bischofs et al., 2008). The circular nature of the arcs

suggests that a modified Laplace law must hold. While the

surface tension � is expected to be determined mainly by

myosin motor activity in the bulk cytoskeleton and therefore

should be the same and constant for all arcs, the line tension �
might be determined locally by the mechanics of the periph-

eral bundles. The simplest possible model is to take into

account the fact that the actin cortex, localized near the

line, can behave elastically. The line tension then has a

contribution from the stretching of this cortex relative to its

relaxed state:

� ¼ EA
L� L0

L0

; (47)

where the product of three-dimensional modulus E and cross-

sectional area A is the effective one-dimensional modulus of

the bundle, and L and L0 are its actual stretched length and

relaxed length, respectively. Together with the geometrical

relation

sin

�
L

2R

�

¼ d

2R
(48)

between the contour length L, radius R and spanning distance

d [compare Fig. 17(c)], one obtains a self-consistent equation

for the arc radius R:

R ¼ EA

�

�
2R

L0

arcsin

�
d

2R

�

� 1

�

: (49)

The simplest model assumption for the resting length is

L0 ¼ d. A numerical solution of Eq. (49) shows that R is a

monotonically increasing function of d as observed experi-

mentally. For small invaginations d=R � 1 and one can

expand Eq. (49) to obtain

R ¼ ðEA=24�Þ1=3d2=3: (50)

Thus R increases with the contour rigidity EA and spanning

distance d, but decreases with increasing surface tension �.
Note that compared with the Laplace law from Eq. (44), one

still has an inverse relation between radius and surface ten-

sion, but now with a different exponent.

C. Whole-cell models

As shown in Fig. 18, contour models can also be used to

analyze the shape of whole cells that are characterized by

geometrically prominent features like circular arcs. One

model class that addresses whole cells by construction are

cellular Potts models, which have been successfully used to

evaluate and predict cell shape on dotlike micropatterns

(Vianay et al., 2010), with an example shown in Fig. 19(a).

In essence, the cellular Potts model is very similar to the

simple tension model, because its main ingredient is tension

at the interface. There are many situations of interest, how-

ever, for which such a simple approach is not sufficient to

account for cell behavior. One example is the case where the

actin cytoskeleton locally reorganizes into contractile bundles

(in addition to those that line the cell periphery). However, a

theory based only on structural elements visible with standard

microscopy procedures might not be sufficient as many ob-

servations in single cell experiments point to the existence of

a much finer-scale network of additional fibers that coexist

with the stress fibers. The natural theoretical framework for

studying this situation is continuum mechanics. Although

FIG. 19 (color online). Two model approaches for whole cells.

(a) Cellular Potts models use spins on a lattice to simulate the

contour between the cell and its surroundings. From Vianay et al.,

2010. (b) Finite element methods (FEM) can be used to implement

any material law of interest. Contractility is implemented by

thermoelasticity. The vector field represents the direction and

activation level of stress fibers. From Deshpande, McMeeking,

and Evans, 2006.
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traditionally used mainly to address the mechanics of macro-

scopic objects like growing tissue (Ambrosi et al., 2011),

different continuum mechanics approaches have recently

been developed to describe the shapes and forces of adherent

cells (Kollmannsberger et al., 2011). In particular, the power-

ful framework of the finite element method (FEM) was

adopted for this purpose. A detailed FEM model integrating

mechanical and biochemical aspects was developed that is

able to explain many details of cell adhesion (Deshpande,

McMeeking, and Evans, 2006, 2007; Pathak et al., 2008;

McGarry et al., 2009). Here we discuss this model as one

representative example that demonstrates how a detailed

whole-cell model can be constructed. Note that this kind of

model ensures total momentum conservation by construction.

As before, the nearly flat adherent cell is treated as an

effectively two-dimensional object. In continuum elasticity

theory, this corresponds to a plane stress approximation for

thin elastic films in which the stress is approximately constant

across the film in the z direction (Landau and Lifshitz, 1970).

The stress in the cell is assumed to have both active and

passive contributions that are additive:

�ij¼�ijþ
�

E

ð1�2Þð1þÞ�kk	ijþ
E

1þ
�ij

�

: (51)

The first term represents active, contractile stresses �ij. The

second term represents the passive elasticity of the cell, which

here is assumed to have a linear elastic response. E and  are

the Young’s modulus and Poisson ratio of the cell, respec-

tively, and �ij is the strain tensor. If required, this constitutive

law can be easily replaced by a more complicated one, e.g.,

the Neo-Hookean model for nonlinear materials.

We now outline how the active stress�ij can be related to the

kinetics of contractile, actomyosin stress fibers (Deshpande,

McMeeking, and Evans, 2006, 2007; Pathak et al., 2008;

McGarry et al., 2009). Because stress fibers are essentially

one-dimensional objects, the corresponding theory is a scalar

one. At any position of the two-dimensional cellular domain,

one assumes a distribution of stress fibers to exist, which points

in the direction parametrized by the angle�. Next one defines a

direction-dependent activation level �ð�Þ for stress fibers

(0 � � � 1) where the time derivative of the activation level

is determined by the following first-order kinetics:

_�ð�Þ¼ ½1��ð�Þ�expð�t=�Þ
�kf
�
�
�

1� �ð�Þ
�0ð�Þ

�

�ð�Þ
�kb
�
:

(52)

The first term describes stress-fiber formation with a dimen-

sionless rate �kf. In addition, the model assumes a temporal

decay that accounts for the finite time scale � over which a

biochemical signal activates the formation of stress fibers (for

example, the influx of calcium ions or the effect of a contractile

agent. The second term describes stress-fiber dissociation with

a dimensionless rate �kb. Because the formation term decays in

time, the systemwill, in principle, eventually relax to vanishing

activation. However, if the system is able to reach maximal

stress �0, then the decay does not take place. Because one

typical starts with the initial conditions � ¼ 0 and � ¼ 0, the
system will develop an appreciable level of stress-fiber activa-

tion only if it is able to build up sufficient levels of stress in a

certain direction on the time scale of the decaying activation

signal. In the framework of the FEM, this strongly depends on

the mechanical boundary conditions, thus making the cell

model very sensitive to external mechanical cues. Motivated

by models for muscle, the tension �ð�Þ in the stress fiber and
the rate of strain _�ð�Þ in the fiber are assumed to obey a Hill-

like relation (compare Sec. III.C). For a fiber of constant length

_� ¼ 0, a constant stall tension is assumed. As the velocity of

fiber shortening increases _� < 0, the tension drops toward zero.
For fiber lengthening _� > 0, the tension remains constant at the

level of the stall tension.

In order to connect the tensorial model for passive elasticity

and the scalar model for stress fibers, homogenization tech-

niques are used to construct the active stress tensor�ij from the

scalar stress �ð�Þ and the scalar rate of strain _�ð�Þ from

the strain tensor �ij. In Fig. 19(b) a typical outcome is shown

for the simulations of a square cell which adheres at its four

corners. One clearly sees that stress fibers develop in the

diagonal directions and along the boundaries in agreement

with experimental observations. However, the model does not

allow for the crossing of stress fibers in the cell center due to the

averaging procedure for the order parameter field. Moreover,

there are clear differences between these simulations and the

contour models discussed above: the cell shape is much less

invaginated and the free boundaries are relatively flat, mainly

because the passive cell elasticity resists compression.

The active stress �ij introduced in Eq. (51) can be imple-

mented in FEM software by using established routines for

thermal cooling. In general, the analogy between cellular

contractility and thermoelasticity is very instructive and has

also been used to evaluate stresses in cell monolayers. For

example, it has been shown that, the proliferation pattern in

cell monolayers on patterned substrates correlates with the

stress distribution in the thin contractile layers (Nelson et al.,

2005). An analytically solvable thermoelastic model has been

used to explain why stress and strain are localized at the

periphery of such monolayers (Edwards and Schwarz, 2011).

Combining such calculations and experiments, it has been

shown that for larger cell colonies, the traction pattern of the

monolayer is increasingly dominated by the tensional ele-

ments (Mertz, Banerjee et al., 2012), and that these collective

effects disappear if cell-cell adhesion is disrupted in the

monolayer (Mertz, Che et al., 2013).

The FEM model for single cells shows that tension in

contractile cells must be balanced by structural elements

that can carry a compressive load, such as microtubules.

Indeed buckling of microtubules has been observed in many

different contexts within cells (Brangwynne et al., 2006) and

has been shown to occur for pico-Newton forces in in vitro

assays (Dogterom and Yurke, 1997). This proves that micro-

tubules are indeed load-carrying elements in the cell. It was

suggested early on that the balance between contraction in the

actomyosin system and compression of the microtubules is

essential for the mechanical stability of cells and implements

an architectural principle known as tensegrity (Ingber, 1993;

Stamenovic and Ingber, 2009). As cells adhere to substrates,

the contractile forces are then increasingly balanced by sites of

adhesion (Stamenovic et al., 2002). Because microtubules

alone would not be able to carry the large load developed

by adherent cells, the establishment of large adhesions seems
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to be a necessary condition for the development of contrac-

tility in adherent cells. In contrast to FEM models that couple

continuum elasticity to discrete, actively contractile stress

fibers, the tensegrity models consider discrete structural ele-

ments such as compression struts connected by tensed cables

as a model of single stress fibers (Luo et al., 2008). Because

they model discrete elements and do not require homogeni-

zation, tensegrity models can be compared more directly with

experiments, for example, when cutting discrete elements

with lasers (Kumar et al., 2006; Luo et al., 2008).

Given the success of the contour models in explaining the

appearance of circular arcs of adherent cells, it is interesting to

ask if whole-cell models can predict the same shapes. Recently

it was suggested that this can indeed be achieved by modeling

cells as actively contracting cable networks (Bischofs et al.,

2008; Guthardt Torres, Bischofs, and Schwarz, 2012). This

approach combines elements fromFEMand tensegritymodels.

It considers the extreme case in which contractile forces are

balanced by the stretch response of the cytoskeletal polymers

and by forces from the elastic environment that couple to the

cell at the adhesion sites. The model does not include any

compressive response from within the cell or any area conser-

vationbecause it is assumed that cytoplasm is not constrained to

the 2D plane; the rest of the 3D cell therefore acts as a reservoir

for adhesion area. A 2D mechanical network is constructed

which consists of a set of nodes locally connected by mechani-

cal links. If the links are taken to be linear springs, the network

propagates compression similar to the FEMmodel.However, if

the links are taken to be cables, only tension and not compres-

sion is propagated. This representation is appropriate to the

polymeric nature of the cytoskeleton, whose filaments tend to

buckle or depolymerize under compressive strain (Coughlin

and Stamenovic, 2003). In principle, contraction can be mod-

eled by reducing the relaxed length of the springs or cables.

However, this does not represent the properties of actin bundles

contracted by myosin II minifilaments, which do not have a

well-defined reference state, but contract in a Hill-type fashion

until a certain stall force is reached. A simple way to achieve

this feature is to add a pair of constant forces (force dipole) to

each network link, thus creating permanent contraction be-

tween two connected nodes. With these very simple prescrip-

tions, actively contracting cable networks can be simulated. In

Fig. 20(a), we demonstrate that contracting spring networks do

not result in the circular arc morphology, but rather show a flat

contour as does the FEM model. Circular arcs appear for

actively contracting cable networks, independent of network

topology; compareFigs. 20(b) and20(c).Dependingon the link

density at the boundary, this translates directly into an effective

tension � that acts within the network. Figure 20(d) demon-

strates that the arc radius R scales with network tension � as

predicted by the tension-elasticity model (TEM); see Eq. (50).

Here different symbols correspond to different network top-

ologies and the three sets of curves correspond to three different

spanning distances d. Solid lines correspond to the numerical

solution of Eq. (49) while dashed lines are the analytical results

from Eq. (50). Deviations between computer simulations and

TEM occur only at very large tensions.

The continuum mechanics approaches described here are

especially suited to investigate static situations relevant to

mature cell adhesion; however, to treat cell migration, one

must consider a dynamically changing cell shape. A natural

framework for this is hydrodynamics in the overdamped

limit, since cellular flows are characterized by very small

Reynolds numbers. For example, the shape of migrating

keratocytes was investigated by a hydrodynamic model

representing the flux of newly polymerized actin networks

(Barnhart et al., 2011). Here the shear and compressive forces

in the viscoelastic fluid are balanced by forces arising from

myosin contractility and flow over adhesion sites. Membrane

tension enters as a boundary condition. A similar approach is

taken by active-gel theory, which can be considered as a

hydrodynamic theory for polarized active gels (Julicher

et al., 2007) that is based only on the symmetries and

conservation laws of the system and is independent of any

particular molecular model. Alternative approaches are level

set (or phase field) models (Shao, Rappel, and Levine, 2010;

Ziebert, Swaminathan, and Aranson, 2012) or models incor-

porating discrete elements such as single focal adhesions and

stress fibers (Shemesh et al., 2009; Loosli, Luginbuehl, and

Snedeker, 2010; Shemesh, Bershadsky, and Kozlov, 2012).

D. Force from shape

The various elastic forces predicted from the shape models

can be verified with experimental measurements, e.g., for

cells on soft elastic substrates or on pillar arrays. The simplest

possible evaluation can be obtained by comparing measure-

ments with the simple tension model (Bischofs, Schmidt, and

Schwarz, 2009). We discuss the forces one might expect for

different adhesion geometries. Typical micropatterns can be
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FIG. 20 (color online). (a) A spring network which is constrained

to be located at the four adhesion points indicated (and in which the

equilibrium spring length is smaller than the distance between

neighboring adhesion points divided by the number of springs along

that line), relaxes to a shape similar to the FEM model—that is, one

with relatively flat free edges. Note also the variation in force along

the boundary indicated by the colors. (b) An actively contracting

cable network results in circular arcs and shows hardly any variation

in force along the boundary. (c) The results do not depend on

network topology as shown here for a disordered network. (d) Arc

radius R depends on network tension � as predicted by the tension-

elasticity model. Adapted from Guthardt Torres, Bischofs, and

Schwarz, 2012.
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circular islands, rectangular islands, islands with concave

parts (such as U, Y, or X shapes), or dot patterns. For a

circular island of radius R, both tensions pull in the same

direction and the boundary force per length is simply �þ
�=R [compare the force balance given in Eq. (44)]. For a

rectangular island, the inward force per unit length is simply

� along the flat parts of the perimeter, because here contri-

butions from the curvature and hence from the line tension �
vanish. At the corners, however, the situation is reversed. We

calculate the corresponding force by approximating the cor-

ner by an arc with radius � and then taking the limit of a sharp

corner:

~F ¼ lim
�!0

Z ’=2

�’=2

�

�þ �

�

�

~nð�Þ�d� ¼ 2� cos

�
�

2

�

~nb; (53)

where � is the opening angle, ’ ¼ 
��, and ~nb points in

the direction of the bisecting line. We thus see that the surface

tension does not contribute because it is associated with a line

element. The interpretation of Eq. (53) is very simple: the

force at the corner is simply the vectorial sum of two forces of

magnitude � pulling along the two incoming contour lines.

For very small opening angle �, these two forces pull in the

same direction and one obtains the maximal value 2�.
The same line of reasoning can now also be used to predict

forces for free contours as they appear on concave and dot

patterns. Again the forces at the adhesion sites directly

depend only on the line tension �. However, now the surface

tension � enters indirectly as it determines the arc shape and

therefore the effective angle of the arc that pulls on the

contact. We consider three neighboring adhesion sites where

the two spanning distances d are identical and with an open-

ing angle �. The force can then be calculated to be

~F ¼ 2�

�

� sin

�
�

2

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
q

cos

�
�

2

��

~nb; (54)

where � ¼ �d=2� can be interpreted as a dimensionless

measure of the strength of the inward pull or of the dimen-

sionless spanning distance d. In the limit � ¼ 0, the contour
becomes straight and we recover the result from Eq. (53) for

pinned straight edges. For finite values of �, however, the
edge is curved and the spanning distance d and surface

tension � enter through the arc shape. The larger the spanning

distance d, the larger the surface tension � or the more acute

the opening angle �, the steeper the inward pull and the

closer the force comes to its maximal value 2�. At the critical
parameter value �c ¼ sinð�=2Þ, the two arcs actually touch

each other and pearling is expected to occur as explained

above.

These results suggest a simple procedure to estimate forces

from shape; see Fig. 18(b). Using pillar assays or micro-

patterned elastic substrates, one could look for images of

cells in which two circular arcs meet at the same adhesion

point. In this case, the traction force at this adhesion point is

the vectorial sum of the two arc forces. The direction of each

of these forces follows from fitting a circle to the arc; the

force magnitude is simply the line tension �i. Because the

same surface tension acts on both arcs, from the Laplace law

Eq. (44) we have R1=R2 ¼ �1=�2. Therefore, one only needs

to calibrate the force at one adhesion to obtain the force of the

others from geometrical considerations. Applying this proce-

dure to an experiment with a pillar array [see Fig. 18(b)]

resulted in a value of � ¼ 2 nN=�m. This tension value is

higher than the lysis tension of lipid membranes and presum-

ably corresponds to the actin cortical tension generated by

myosin motors. Interestingly, a very similar value has been

reported for the effective tension in a cell monolayer (Mertz,

Banerjee et al., 2012). The procedure outlined here also

shows that forces measured on the substrate might be sub-

stantially smaller than the forces that act within cells, because

it is only the vectorial sum of the internal force which is

transmitted to the substrate as in the example treated here of

the sum of two forces from two adjacent arcs.

VI. ACTIVE RESPONSE OF CELLS

A. Mechanical response of force dipoles

In this section we focus on active cell mechanics due to the

presence of actomyosin force dipoles; since cellular contrac-

tility is due to ATP-dependent conformational changes of

myosin, these nonequilibrium processes are denoted as ac-

tive. The concept of force dipoles is useful at multiple scales.

At the level of the entire cell, the overall force balance in the

cell suggests a coarse-grained picture in which a contractile

cell is modeled as a pair of equal and opposite forces (con-

traction force dipole), as shown in Fig. 5 and suggested

experimentally (Schwarz et al., 2002). Indeed each of the

whole-cell models discussed in Sec. V suggests such an

approach. The same argument also applies within a cell to

individual molecular force generators in the actin CSK of

tissue cells, namely, myosin II minifilaments; see Fig. 7. In

either of these two scenarios, all internally generated stresses

must balance due to momentum conservation and thus the

force monopole term in a force dipolar expansion is expected

to vanish, leaving the force-dipole term as the leading con-

tribution. The overall force exerted by the cell depends on the

arrangement of its internal force dipoles which in turn is a

function of cell shape as discussed in Sec. V. Transmission of

these internal forces to the cellular environment occurs via

the adhesions discussed in Sec. IV.

The stress generated by cellular force dipoles is balanced

by the elastic restoring force of the medium (the CSK in the

case of actomyosin minifilaments together with the matrix

and substrate or the matrix and substrate alone in the case of a

coarse-grained force dipole that represents the entire cell).

This is illustrated in Fig. 21 for the case of a cell in an elastic

medium. (In Fig. 5, we presented a more detailed representa-

tion of the internal structure of the cell; we now focus on the

effective force dipole arising from this configuration of

forces.) The situation depicted in Fig. 21 has been analyzed

with calculations carried out at varying levels of detail, e.g.,

in Schwarz, Erdmann, and Bischofs (2006), Schwarz (2007),

Mitrossilis et al. (2009), Walcott and Sun (2010), Zemel et al.

(2010b), and Marcq, Yoshinaga, and Prost (2011).

In general, these studies have validated the following simple

physical picture (Schwarz, Erdmann, and Bischofs, 2006). By

measuring how much force or work it requires to achieve a

certain deformation, the cell can sense the stiffness of its

environment. Because cells themselves are soft objects,

Fig. 21 also shows that the cell tends to deform not only the
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environment, but also itself. For two springs in series, the

inverse of the effective spring constant is the sum of the inverse

spring constants. Therefore, if the environment is very stiff, the

cell deforms only itself and cannot sense its surroundings. On

the other hand, if the environment is very soft, the cell can

easily deform it, but does not build upmuch force and therefore

does not gain much information; in particular, any positive

feedback triggered by mechanosensors will not work well.

Therefore the best working or set point for a cell seems to be

a situation in which the two stiffnesses of cell and environment

are nearly matched. Indeed it was found experimentally that

cells tend to match their stiffness to that of the environment

(Solon et al., 2007).

In this section, we discuss how active force generators such

as myosin II minifilaments in the actin cytoskeleton or entire

contractile cells in an elastic matrix interact with their me-

chanical environment. The deformations induced in the ma-

trix by cell activity allow us to deduce effective interactions

between the force dipoles themselves via their mutual effects

on the elastic environment. In the case of individual acto-

myosin minifilaments modeled as force dipoles, the elastic

environment includes the CSK of the cell itself (in addition to

its surroundings), while in the case of entire, contractile cells

modeled as force dipoles, the elastic environment is the

matrix or substrate. The elastic properties of the environment

can be easily controlled in experiments so that predictions

and measurements of their role in modulating cellular force-

dipole assemblies provide insight into these fundamental

processes.

In order to obtain analytical insight, linear elasticity theory

is applied to an isotropic medium (or substrate) to model the

mechanical properties of cells and their environment (Landau

and Lifshitz, 1970), although later on, we comment on pos-

sible extensions to more detailed models for the elasticity of

biomaterials, including nonlinear elasticity. Alternatively one

could also employ more microscopic models for the propa-

gation of stress and strain in polymer networks (Head,

Levine, and MacKintosh, 2003a, 2003b; Wilhelm and Frey,

2003; Heussinger and Frey, 2006; Heussinger, Schaefer, and

Frey, 2007), but this may preclude the insight gained by the

use of elastic theory generalized to include force dipoles. In

the framework employed here, cytoskeletal force generators

(e.g., actomyosin minifilaments or entire cells) are viewed as

active, elastic inclusions in (or on) a homogeneous and iso-

tropic medium. This suggests the use of Eshelby’s theory of

elastic inclusions that was originally developed in the context

of materials science (Eshelby, 1957, 1959). In the limit in

which the inclusions are much smaller than the length scales

of interest, one can use the theory of elastic point defects,

which also originated in materials science, and has been used

extensively to model the elastic interactions of hydrogen in

metal (Siems, 1968; Wagner and Horner, 1974).

There are a few important assumptions made in the

following treatment of force dipoles and cellular-matrix

elasticity: (i) The buildup of force occurs on short enough

time scales (tens of seconds) for which the CSK responds

elastically to internal forces and does not flow. This was

discussed previously in a comparison of elastic versus flow-

ing gel models of the CSK. Even if the matrix flows on

larger time scales, the cell will react on a shorter time scale

by building up new forces via a remodeled CSK. Elastic

relaxation after pharmacological inhibition of actomyosin

contractility, laser cutting, or disruption of adhesion (e.g.,

by trypsination) proves that adherent cells and matrix are

continuously under elastic stress. (ii) The matrix-induced

forces that act to organize the cytoskeleton arise from the

potential energy that accounts for the deformation of the

matrix by the dipoles. In this sense, matrix can refer either to

those parts of the CSK not included in the actomyosin

dipoles themselves and/or to the surrounding matrix or

substrate. However, these forces are taken to determine

only the organization of the dipoles (e.g., nematic or smectic

order) but not their existence or magnitude which depends in

a more complex manner on nonequilibrium cellular activity.

These same forces would be present and act on artificial

force dipoles were they present in the CSK, matrix, or

substrate. (iii) The time scale on which elastic signals are

propagated in the CSK or matrix or substrate is faster than

internal relaxation times due to dissipation arising from

internal viscosity or fluid flow; for experimental measure-

ments of these time scales see Fig. 3 of Kollmannsberger and

Fabry (2011). This allows us to predict force-dipole organi-

zation by elastic forces from energetic or force balance

arguments. We recognize that this is a crude approximation

that must be tested under various circumstances; a dynami-

cal theory of elastic signal propagation in the CSK or matrix

or substrate is a topic of current research. (iv) The theories

below focus on cytoskeletal force generation and predict

dipole arrangements for a fixed cell shape. Experiments

that measure the response of cells to time-varying stresses

show (Faust et al., 2011) that cell shape follows cytoskeletal

reorientation by several hours.

B. Force dipoles and their interactions

A simplified model of a contractile actomyosin unit (or in a

coarse-grained picture, an entire, polarized cell) is that of a

source of two equal and opposite forces ~F, separated by a

nanoscale (or, for cells, micrometer scale) distance ~d. By
analogy with electrostatics, these are termed force dipoles.

The dyadic product of the force and the distance defines a

local elastic dipole Pij ¼ diFj. In contrast to electric dipoles

that are vectors given by products of the scalar charge and

the distance, the elastic dipole is a tensor. In a continuum

FIG. 21. Two-spring model for cell-substrate interactions. In ad-

dition to springs that characterize the cellular and substrate defor-

mations, the cell exerts active, contractile forces shown by the

double arrows. This simple cartoon shows that cells can measure

the stiffness of their environment, which is, however, convoluted

with their own stiffness. In contrast to Fig. 5, here we do not

consider compression of the substrate, because we consider only the

far field.
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representation, valid for scales much larger than jdj, one
considers a coarse-grained force density ~fð~rÞ (which is not

the same as the local force ~F) whose average in some small

volume vanishes (since the forces are equal and opposite) but

whose first moment with ~r is finite. The local force density is

written as the sum of two, localized force distributions with

opposite signs whose centers are separated by a distance ~d.

One expands these distributions for small values of ~d relative

to the distance ~r at which the strains and stresses are mea-

sured and finds that the net force is related to derivatives of

the localized force distributions. Using this approximation for

the force density and defining the local dipole tensor density

pij (local force-dipole tensor per unit volume), one can

show that

@pijð~rÞ=@rj ¼ �fið~rÞ: (55)

Using this relationship between the force density and the

divergence of the dipole density in Eq. (15) and performing

an integration by parts (with the assumption that the surface

terms vanish or are accounted for explicitly) shows that the

strain is related to the dipole density by

uijð~rÞ ¼
Z

d~r0Gil;k0jð~r; ~r0Þpklð~r0Þ; (56)

where the two indices in G after the comma indicate deriva-

tives with respect to r0k and rj, respectively. Equations (13),

(55), and (56) and further partial integrations demonstrate

that the deformation energy of the medium acted upon

by localized elastic dipoles can be written as an effective

interaction of those dipoles. This is important since if the

dipoles are free to arrange themselves to minimize the de-

formation energy (e.g., if the cell activity tends to minimize

the energy expended in deforming the CSK or the matrix),

their spatial arrangement can be deduced from their interac-

tions, perhaps also accounting for noise which can in some

cases be modeled as an effective temperature as discussed in

Sec. II on physics background.

For translationally invariant systems where the Green’s

function depends on the difference ~r� ~r0, the total deforma-

tion energy of the medium is

Fe ¼
1

2

Z

d~rd~r0pijð~rÞGil;k0jð~r� ~r0Þpklð~r0Þ: (57)

In this case, one can also write the interaction energy in terms

of the Fourier transforms of the dipole density and the

Greens’ function:

Fe ¼
1

2

Z

d ~qpijð ~qÞGil;kjð ~qÞpklð� ~qÞ; (58)

where Gil;kjð ~qÞ ¼ G0ðqkqj=q2Þ½	il þ qiql=2q
2ð1� Þ� fol-

lows from the exact (Kelvin) solution for a full elastic space

andG0 is a constant proportional to 1=E. In the presence of an
externally imposed strain ueijð~rÞ (in addition to the strains

induced by the internal force dipoles), one can use Eq. (12) to

show (Bischofs, Safran, and Schwarz, 2004) that the interac-

tion energy of the dipoles with the external strain is

Fe ¼
Z

d~rpijð~rÞueijð~rÞ: (59)

The theory described here is relatively simple to use for the

case of dipoles in an infinite medium. It can be applied to an

entire contractile cell that is placed in one region of a much

larger elastic environment (as a model of an infinite medium).

However, when the force-dipole concept is used to account

for the interactions of actomyosin minifilaments within one

cell which itself is an elastic medium, the situation is more

complex. The cell itself can be situated in (or on) an elastic

matrix (substrate) whose rigidity can be different from that of

the cell. The resulting Green’s function then depends on the

cell shape and both the cell and matrix elastic constants. The

same complications can also arise in the case of entire con-

tractile cells modeled as effective force dipoles (Schwarz and

Safran, 2002; Bischofs and Schwarz, 2003; Bischofs, Safran,

and Schwarz, 2004; Zemel, Bischofs, and Safran, 2006) that

are placed in an elastic matrix which itself is surrounded by

another material with different elastic properties. This may be

applicable to models of cells in tissues that are contained

within the extracellular matrix that itself is coupled to another

elastic medium in which the tissue resides. In this case as

well, it is necessary to consider the shape and elastic bound-

ary conditions in order to predict the interactions among the

cells that lead to their self-assembled structures (Zemel and

Safran, 2007).

The real-space solution of the elastic deformation of such a

composite medium was considered by Eshelby (1957, 1959)

who calculated the strain inside of an ellipsoidal inclusion

embedded in a three-dimensional elastic matrix. Although

these inclusions do not actively produce forces, they can exert

stresses on their surroundings as the temperature is changed

and the inclusion thermally expands or contracts in a manner

that is larger or smaller than that of the matrix. The Eshelby

results can be mapped to the strain experienced either by an

entire contractile cell modeled in a coarse-grained manner or

by individual actomyosin force dipoles (Zemel and Safran,

2007; Zemel et al., 2010b) within a cell embedded in a three-

dimensional matrix. Once the local strain due to a given

dipole distribution is known, the dipole interactions are given

by the product of the local dipole density and the local strain.

Later in this review, we consider specific predictions for the

orientational and spatial organization of force dipoles in

cellular systems and summarize the results obtained from

the Eshelby theory. However, this theory with its focus on

the real-space boundary conditions is complex (Eshelby,

1957, 1959; Mura, 1991) and is also specific to systems of

ellipsoidal inclusions whose dimensionality is the same as

that of the surrounding matrix. This is not quite the case

studied experimentally where well-spread (nearly two-

dimensional) cells are plated on semi-infinite, elastic sub-

strates, although recent experiments (Rehfeldt et al., 2012)

show that the behaviors of thick substrates and of 3D sur-

roundings are very similar. Thus, to provide a simpler and

more intuitive theory of deformation induced interactions of

elastic dipoles that are relevant to cells on semi-infinite

substrates we review here a simplified model (Friedrich and

Safran, 2012) that can be solved using Fourier methods.

C. Elastic model for cells on a substrate

The particular scenario that we focus on here is that of

actomyosin minifibrils modeled as force dipoles within a cell

that is spread and adhered to an elastic substrate. The theory

predicts the conditions under which the elastic interactions of
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these dipoles with both the cellular CSK and the substrate

mediate dipole-dipole interactions that tend to orient the

minifilaments. In this simplified model, the spread cell ad-

heres to the upper free surface of the substrate, which is taken

to lie in the z ¼ 0 plane, of a semi-infinite (z < 0) substrate as
in Fig. 22 (Friedrich and Safran, 2012). The thickness of the

cell may vary as a function of position and is denoted by

hSðx; yÞ. Here h denotes the height of the contractile region of

the cell, while the function Sðx; yÞ specifies variations of cell
thickness within the cell and is zero outside the cell. Thus, the

dimensionless function Sðx; yÞ characterizes the shape of the

cell. The integral
R
dxdySðx; yÞ ¼ A defines a weighted cell

area A (which is related to the volume of the cell by A ¼
V=h) and a characteristic length scale L ¼ A1=2 of the spread

cell. For simplicity, the discussion is restricted to cell shapes

that are symmetric with respect to each of the x and y axes.

In this case, the Fourier transform Sð ~qÞ ¼ ð2
Þ�1 �
R
dxdySðx; yÞ expð�iqxx� iqyyÞ of the shape function is

real and has typical dimensions A or L2. There are three

important moments of the cell-shape function defined by

J n ¼ 1

L

Z

d2 ~qqjSð ~qÞj2 exp½2inwð ~qÞ�; (60)

where wð ~qÞ ¼ tan�1ðqy=qxÞ and n ¼ 0, 1, 2. These moments

are dimensionless and depend only on the shape of the cell.

They play a role similar to that of the shape-dependent

depolarization factors in electrostatics (Beleggia, De Graef,

and Millev, 2006) or the Eshelby tensor in Eshelby’s theory of

elastic inclusions (Eshelby, 1957; Mura, 1991; Beleggia, De

Graef, and Millev, 2006). For cells with mirror symmetry

(considered here for simplicity), the moments J n are real. J 1

characterizes cell-shape anisotropy and is zero for radially

symmetric cells.

The discrete actomyosin contractile elements are charac-

terized, in a coarse-grained description, by a bulk force-

dipole density pijð~rÞ with units of energy per unit volume.

A mean-field approximation regards these dipoles as being

uniformly distributed within the cell with a mean force-dipole

density �pij. The upper surface of the cell is stress free, and for

a cell whose thickness is much smaller than its lateral extent,

the stresses and force dipoles with components in the

z direction can be neglected [for details, see Friedrich and

Safran (2012)]. To highlight the symmetries of the problem,

one can decompose the mean dipole density tensor �pij into an

isotropic part that is analogous to a hydrostatic pressure �P0 ¼
�pxx þ �pyy and two invariants that characterize pure shear

stresses �P1 ¼ �pxx � �pyy and �P2 ¼ �pxy. In matrix notation,

�pij ¼ �P0E0 þ �P1E1 þ �P2E2 with respect to a convenient

basis of the space of symmetric rank-2 tensors,

E0¼
1

2

1 0

0 1

 !

; E1¼
1

2

1 0

0 �1

 !

; E2¼
0 1

1 0

 !

: (61)

By virtue of the Stokes theorem, each force-dipole density
�PkEk is equivalent to a set of surface forces fk ¼ �PkEk � ~n
that act at the boundaries of a cellular volume element.

1. Cellular strain for soft substrates

The active dipolar stresses contract and elastically deform

the cytoskeleton. For a spread cell whose thickness is much

smaller than its extent h � L, the local displacement ~uðx; yÞ
has only x and y components. The corresponding strain

matrix uij ¼ ð@iuj þ @juiÞ=2 can be written as the superpo-

sition of a homogeneous dilation U0E0, where U0 ¼ uxx þ
uyy is the trace of the strain matrix, and the traceless strain

matrix uij � U0E0 ¼ U1E1 þ U2E2, which characterizes

pure shear strain without area change with two measures of

shear strain U1 ¼ uxx � uyy and U2 ¼ uxy. The geometry of

the problem implies that U1E1 and U2E2 are symmetric and

antisymmetric with respect to a reflection about a coordinate

axis, respectively. The elastic deformation energy of the

cellular domain is thus written as

Fc¼h
Z

dxdySðx;yÞ
�
Kc

2
U2

0þ
�c

2
ðU2

1þ4U2
2Þ
�

: (62)

If the cell were not coupled to the substrate (or if the substrate

had vanishing rigidity), the cell would not be subject to

restoring forces from the substrate and the cell boundary

would be stress free. In this case, the only source of cellular

elastic stress �ðcÞ
ij would be the forces exerted by the dipoles

and thus �ðcÞ
ij ¼ pij. Alternatively, one can solve for the

resulting minimal strain by minimizing a Legendre transform

that includes the work done by the dipole (so that one now can

minimize the transformed free energy with respect to the

strains for a given, but arbitrary, dipole arrangement), G ¼
Fc þ Fd of the free energy where

Fd¼�h
Z

dxdySðx;yÞðU0
�P0þU1

�P1þ4U2
�P2Þ=2: (63)

The convexity of the free energy dictates that cellular strain is

constant throughout the cellular domain and moreover is

independent of cell shape since the cell boundaries are stress

free so that Ui  �Ui ¼ �Pi=ð2BiÞ, where i ¼ 1, 2, 3 and ~Bi ¼
ðKc; �c; �cÞ. Note that, irrespective of any anisotropy of cell

shape, the strain components depend only on force-dipole

components of the same symmetry type. Actomyosin produc-

tion that controls the strength of microscopic, contractile

force dipoles, but not their orientation, induces only an iso-

tropic (negative) ‘‘hydrostatic pressure’’ �P0E0 and thus a

homogenous dilation �U0E0, but no shear. Thus, in the absence

of other factors that break the system symmetry, a ‘‘floating

cell,’’ decoupled from its substrate, does not feel anisotropic

mechanical guidance cues, which could drive nematic order-

ing of force dipoles (e.g., alignment along one of the cellular

axes). The conclusion is that in the limit of a substrate with

zero stiffness the actomyosin network will remain symmetric,

not withstanding the fact that the cell shape may be asym-

metric. This situation changes fundamentally, once the elastic

deformations of the cell and the substrate are coupled.

(a) (b)

z

x

y

L h

FIG. 22. Simple model of a contractile and widely spread cell on

an semi-infinite elastic substrate.
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Because of the coupling of the CSK forces to the focal

adhesions, active cell contractility induces substrate deforma-

tions ~vðx; y; zÞ. The substrate surface strain at z ¼ 0 is

decomposed into its symmetry components vijðx;y;z¼0Þ¼
V0E0þV1E1þV2E2. For simplicity (Friedrich and Safran,

2012) one can take the average strain inside the cell to

be equal to the average substrate strain underneath the

cell �Vk ¼ �Uk.

2. Substrate elastic energy

The substrate deformations induced by its coupling to the

cell can now be included. The elastic energy of the substrate is

written in terms of the Fourier transforms of the substrate

displacements ~vðx; y; zÞ derived by Nicolas and Safran

(2006a). This energy is proportional to�m, the shear modulus

of the substrate, which is for simplicity taken to be incom-

pressible. One next expresses the coupling condition in Fourier

space and determines the strains by minimizing (Friedrich and

Safran, 2012) the Legendre transform G ¼ Fc þ Fm þ Fd of

the free energy of both the cell and substrate subject to the

coupling condition �Vk ¼ �Uk. The cellular strain components

Ui are then found as a function of the dipole components Pi:

Ui ¼ AijPj. The coupling coefficients Aij are functions of the

cell-shape moments [Eq. (60)] and of the cell and substrate

elastic moduli (Friedrich and Safran, 2012).

Of particular interest is the fact that there are off-diagonal

terms in this relationship. This means, for example, that a

homogeneous and isotropic dipole distribution characterized

by a nonzero value of P0 can induce a shear strain such as U1.

The coefficient that quantifies this symmetry breaking A01

depends on both the cell shape and matrix rigidity. In par-

ticular, it is proportional to J 1 (which vanishes for cells with

circular cross sections) and vanishes when the substrate

modulus is either very small or very large.

The elastic energy is the product of the local strain and

local force-dipole density and can be written in terms of

effective interactions of the force dipoles:

Fi¼ðL2h=4ÞðA00
�P2
0þ2A01

�P0
�P1þA11

�P2
1þ4A22

�P2
2Þ:

(64)

The terms proportional to P2
0 and P2

1 are the ‘‘self-energies’’

of the isotropic and nematic components of the force dipole,

respectively; they represent the energy to deform the cell

itself together with the elastic substrate (Fernandez and

Bausch, 2009). In addition, the shear stress induced by the

isotropic dipole component couples the �P1 nematic dipole

component to the isotropic contractility �P0 for cell shapes that

are anisotropic for which J 1 is nonzero. This implies that the

effects of cell shape on elastic interactions can induce ne-

matic order of the cellular force dipoles even if local cell

activity results only in isotropic contractility.

The coupling of the isotropic component of the dipole

tensor to the cellular shear allows the cytoskeletal shear to

present mechanical guidance cues for the polarization and

alignment of cytoskeletal structures and eventually of cellular

traction forces. Initially isotropic cytoskeletal contractility

can result from a local regulation of myosin activity within

the cell that may tune �P0 to a set value �P

0. Considering

�P1 as

an effective degree of freedom, the total elastic energy of cell

and substrate, Eq. (64), is minimized when �P1 is nonzero,

which corresponds to anisotropic cellular contractility.

Physical insight into the coupling of symmetry modes can

be obtained considering the limiting cases of very soft and

very stiff substrates. Since the strain propagates (Banerjee

and Marchetti, 2012; Friedrich and Safran, 2012) into the

substrate a distance of order of the cell extent L (but only a

distance of order the cell thickness h within the cell), the

effective Young’s modulus of the substrate is given by the

product of its Young’s modulus Em and a factor of L=h, where
h is the cell thickness ~�m ¼ EmL=h. This predicts that both
the stiffness ratio and the cell geometry (height and lateral

extent) will determine cytoskeletal organization and ordering,

which can be tested by changing both substrate rigidity and

cell volume (Guo and Weitz, 2012).

In the limit of a very soft substrate ~�m � �c, the situation

is that of an isolated cell; cellular strain components couple

only to force-dipole components of the same symmetry type.

Cell activity that results in locally isotropic contractile di-

poles cannot give rise to nematic order. In the limit of a very

stiff substrate, the cellular strain scales as 1= ~�m. For iso-

tropic, cellular contractility with only �P0 � 0: �U0 ¼
J 0

�P0=8 ~�m, �U1 ¼ J 1
�P0=8 ~�m, and �U2 ¼ 0. Thus, while

the symmetric part of the cell contractility P0 induces shear

strain due to the shape anisotropy, this shear strain attenuates

as ~�m ! 1. Similar conclusions are reached for the induc-

tion of nematic order (nonzero values of �P1) by locally

isotropic contractility. If, however, substrate stiffness and

cellular stiffness match, ~�m � Kc, �c, the symmetric shear

component �U1 is induced by the symmetric dipole component
�U1 � J 1

�P0. This shear is a result of anisotropic, cell-shape

dependent, elastic restoring forces from the substrate. For an

asymmetric cell shape that is elongated in the direction of the

x axis, J 1 < 0 and isotropic contractility with �P0 < 0 induces
cellular shear strain �U1 > 0, which is expansive in the

x direction (and compressive along the y direction). This

causes nematic ordering of the dipoles themselves along the

x axis, characterized by negative values of �P1.

D. Cell polarization guided by substrate rigidity

These intuitive results were used in a more formal theoreti-

cal model to predict that cells with anisotropic shapes on

substrates of intermediate rigidity will spontaneously show

CSK nematic order (Zemel et al., 2010b; Friedrich and

Safran, 2011). A phenomenological model couched in terms

of active-gel theory was presented by Banerjee and Marchetti

(2011). The case of stem cells is particularly applicable since,

at early times, the CSK is not yet well formed and oriented and

one can study the genesis of CSK formation and orientation

starting with relatively short actomyosin minifilaments that

can indeed be modeled as force dipoles contained within the

cell. Zemel et al. (2010b) used the real-space Eshelby formal-

ism (Eshelby, 1957, 1959) for an ellipsoidal inclusion to

calculate the real-space strains inside a cell contained in an

elastic medium of the same dimensionality (either 2D or 3D).

The shear strains induced by the medium are nonzero for cells

that are not circular (2D) or spherical (3D) and are predicted to

give rise to orientational order of the internal force dipoles

(short actomyosin minifilaments). The nematic order as
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expressed by �P1 is related to the shear strain by a susceptibility

whose form in the limit of large noise (expressed as an effective

temperature) was discussed by Zemel, Bischofs, and Safran

(2006). Friedrich and Safran (2011) provided a more general

statistical mechanical basis for the nematic ordering. An en-

ergy similar to Eq. (64) was obtained using the Eshelby theory;

this was used as a Hamiltonian in a Maier-Saupe (Maier and

Saupe, 1959) theory as described above in Eq. (2). This self-

consistently predicts the nematic order parameter �P1 as a

function of the cell and matrix elastic constants, cell shape,

and the noise (modeled as an effective temperature). In both

models, if the dipole density is dilute or if the noise is moder-

ately large, the nematic order of the CSK is maximal in some

optimal range of substrate rigidity and is small for very small or

very large rigidities.

The dependence on the boundary conditions (i.e., the global

cell shape and substrate rigidity) highlights the importance of

the long-range elastic interactions in contrast to the general

situation for nematic ordering in molecular systems where the

interactions are short range. The Mair-Saupe theory predicts

that, for small noise (or large values of �P0), the nematic order

may increase monotonically as a function of substrate rigidity

due to the increasing importance of short-range interactions

such as the excluded volume of the dipoles themselves.

Experiments were carried out (Zemel et al., 2010b) to

systematically analyze the alignment of stress fibers in human

mesenchymal stem cells as a function of the cell shape and

the rigidity of the environment. Cells were cultured on sub-

strates of varying stiffness and sorted by their aspect ratio. A

quantitative analysis of stress-fiber polarization in cells was

obtained by staining for both actin and nonmuscle myosin IIa

and applying a segmentation algorithm to map their spatial

organization in the cell. Both the magnitude of the dipoles as

measured by the number of actomyosin minifilaments (Zemel

et al., 2010a) and their orientation were measured. The results

are shown in Fig. 23. They suggest a generic mechanical

coupling between the cell shape, the rigidity of the surround-

ings, and the organization of stress fiber in the cytoskeleton of

stemcells, again pointing to the role of long-range interactions.

This identifies a mechanical property of cells (stress-fiber

polarization) that ismaximized at an optimal substrate rigidity,

analogous to the optimal rigidity found in stem-cell differen-

tiation (for example, to muscle cells) (Engler et al., 2006). The

fact that theCSK ismaximally polarized for substrate rigidities

of about 10 kPamay help explainwhy stem-cell differentiation

into muscle cells occurs optimally in this same rigidity range.

Stem cells on such substrates are musclelike in their CSK

structure and the resulting contractile forces; the latter may

play a role in nuclear deformations resulting in gene expres-

sion that is musclelike for precisely such contractile cells. We

note that the time scales observed for stress-fiber development

(Zemel et al., 2010b) and orientation (1–24 h) and for the

genetic changes in the cell (Engler et al., 2006) (about a week)

are quite different. In addition, recent experiments have shown

that differentiation may also depend on the mechanics of the

ligand molecule and not only on the bulk rigidity of the

substrate (Trappmann et al., 2012).

The ordering of the cytoskeleton on substrates of different

rigidities eventually affects the overall mechanical response

of the cell. Recent studies (Janmey and Miller, 2011) have

shown that cell cortical stiffness increases as a function of

both substrate stiffness and spread area. For soft substrates,

the influence of substrate stiffness on cell cortical stiffness is

more prominent than that of cell shape, since increasing

adherent area does not lead to cell stiffening. On the other

hand, for cells constrained to a small area, cell-shape effects

are more dominant than substrate stiffness, since increasing

substrate stiffness no longer affects cell stiffness.

E. Single cell response to rigidity gradients

Section VI.D looked ‘‘inside the cell’’ and considered the

elastic interactions and orientational ordering of short acto-

myosin minifilaments modeled as force dipoles that are

internal to the cell. This is relevant to stem-cell development

at relatively early times (1–24 h in which the stress fibers do

not yet span the entire cell). Mature cells such as fibroblasts

or muscle cells have long and well-ordered stress fibers

(Hotulainen and Lappalainen, 2006; Thery et al., 2006) and

in some cases the cell can be represented by a single, aniso-

tropic force dipole (Schwarz and Safran, 2002; Bischofs and

(a)

(b)

FIG. 23 (color online). (a) The experimental values of the stress-

fiber order parameter S� �P1 (which indicates the extent to which

the nascent stress fibers are aligned along the long axis of the cell)

for three groups of stem cells (of aspect ratios 1.5, 2.5, and 3.5) as a

function of the Young’s modulus of the matrix Em. For the smallest

aspect ratio, the order is clearly maximal for Em � 11 kPa; for the
other aspect ratios this trend may also be obeyed although it is less

clear. The fit is motivated by the theory described in the text. From

Zemel et al., 2010b. (b) Aspect ratio of stem cells as a function of

substrate elasticity. The point marked blebb refers to cells where

myosin activity has been suppressed by treatment with the drug

blebbistatin; this shows that the peak observed for untreated cells is

related to cell contractility. From Rehfeldt et al., 2012.
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Schwarz, 2003; Bischofs, Safran, and Schwarz, 2004; Pompe

et al., 2009). In the following we discuss the response of an

entire, polarized cell (modeled in a coarse-grained approxi-

mation as a single, anisotropic force dipole) to rigidity gra-

dients and in the next section, its response to dynamically

applied stress.

Cell spreading, alignment, and locomotion are controlled

both by biochemical activity within the cell and by the rigidity

of the substrate on which the cell is plated (Pelham andWang,

1997; Lo et al., 2000; Discher, Janmey, and Wang, 2005; Saez

et al., 2007; Solon et al., 2007; Isenberg et al., 2009). In

general, these activities are enhanced onmore rigid substrates.

In addition, the forces that even static cells exert on substrates

have been shown to increase with substrate rigidity (Choquet,

Felsenfeld, and Sheetz, 1997; Saez et al., 2005; Yeung et al.,

2005; Zemel et al., 2010a). Moreover, recent studies indicate

that substrate viscoelasticity also plays a role in stem-cell

morphology and proliferation (Cameron, Frith, and Cooper-

White, 2011). Active-gel theory has been used to model iso-

tropic rigidity sensing in Marcq, Yoshinaga, and Prost (2011).

Here we review how models of contractility based on force

dipoles (Bischofs, Safran, and Schwarz, 2004; Nicolas and

Safran, 2006b; Zemel et al., 2010a) can provide insight into

these observations.

Contractile cells are preprogrammed to exert force on their

surroundings. It has been argued that the experimental ob-

servation that most cells types prefer stiff over soft substrates

can be described by the assumption that cells effectively

minimize the elastic energy invested in deforming the matrix

(Bischofs and Schwarz, 2003; Bischofs, Safran, and Schwarz,

2004; Nicolas and Safran, 2006b). Neural cells, that prefer

soft over stiff substrates, are exceptions to this rule of thumb

(Janmey et al., 2009). This minimization can be the result of

evolution in producing optimized biological systems (Savir

et al., 2010), since the energy that the cell invests in deform-

ing its surrounding is not directly useful to the cell.

Alternatively, one can think of this approach as a convenient

framework for analytical progress. Considering the cell as a

uniform distribution of dipoles (that can be either ordered or

random in their orientation), one can use Eq. (64). The dipole

densities P0 and P1 are proportional to the number of dipoles

and the cell volume while for fairly rigid substrates A00 and

A11 scales inversely with ~�m ¼ �mL=h. Assuming that the

cell optimizes its activity to avoid investing energy in sub-

strate deformations, this predicts that cells will favor and

spread optimally on rigid substrates.

This tendency of the cell to prefer rigid substrates is

particularly important for cells on substrates with rigidity

gradients or boundary regions (Lo et al., 2000; Allioux-

Guerin et al., 2009; Isenberg et al., 2009; Ladoux and

Nicolas, 2012). The limiting cases of a cell on a substrate

with a given rigidity near a boundary of a substrate with a

much larger or smaller rigidity can be understood by opti-

mizing the deformation energy of a single force dipole in a

medium with either clamped or free boundaries, respectively.

The corresponding elastic problem takes into account these

boundary conditions using the technique of ‘‘image dipoles’’

(Bischofs, Safran, and Schwarz, 2004). As shown there, the

preferred cell orientations close to the surface, as predicted

by the configurations of minimal deformation energy, are

parallel and perpendicular to the boundary line for free and

clamped boundaries, respectively.

This leads to the prediction that cells preferentially loco-

mote toward a clamped boundary, but tend to migrate away

from a free boundary. One may think of a clamped (free)

surface as the interface between the substrate on which the

cell is placed and an imaginary medium of infinite (vanish-

ing) rigidity, which effectively rigidifies (softens) the bound-

ary region. Thus for clamped (free) boundary conditions, the

cell senses maximal stiffness in the direction normal to

(parallel to) the boundary line. The cell exerts force on the

more rigid medium. For free boundaries, the substrate is more

rigid and the cell orients parallel to the boundary to maximize

the deformation of the substrate. Near a clamped boundary,

there is less deformation if the cell orients perpendicular to

the boundary line. Indeed such behavior has been observed

experimentally, e.g., for cells close to the boundary between

soft and rigid regions of a soft substrate (Lo et al., 2000). The

tendency to migrate toward stiffer regions has been termed

durotaxis. On a more microscopic level, this can be under-

stood from the preferred growth of focal adhesions on more

rigid substrates (see Sec. IV).

F. Dynamical response of cells to mechanical stress

Cells in tissues respond to a variety of mechanical forces

that influence their behavior and alignment such as gravity,

muscle tension, and blood pressure as well as from local

active tractions of nearby cells (Ingber, 2003; Chen, 2008).

The forces that act on cells can be static as well as time

varying, e.g., continuous loading occurs during development

of long bone growth while cyclic loading occurs due to

periodic blood pressure variations. These mechanical signals

typically induce an active reorganization of the cell cytoske-

leton and readjustment of the contractile forces exerted by the

cells (Deng et al., 2006; Stamenovic et al., 2007). The active

nature of this mechanotransduction is demonstrated by the

fact that it often vanishes when actin-myosin contractility is

inhibited (Zhao et al., 2007).

The response to mechanical stress is demonstrated by cells

that actively reorient and align themselves in preferred direc-

tions. It is interesting to note that, while in some studies cells

were shown to align parallel to the direction of a static or

quasistatic stress field (Samuel and Vandenburgh, 1990;

Brown et al., 1998; Eastwood et al., 1998; Collinsworth

et al., 2000), other experiments find that cells remain ran-

domly oriented (Jungbauer et al., 2008). On the other hand,

when subject to dynamically oscillating stress and strain

fields (designed originally to study the effects of heart beat

and blood pressure), cells tend to orient away (nearly, but not

exactly perpendicularly) from the stress direction (Shirinsky

et al., 1989; Wang and Grood, 2000; Hayakawa, Sato, and

Obinata, 2001; Wang et al., 2001; Kurpinski et al., 2006;

Jungbauer et al., 2008; Faust et al., 2011). As discussed

below, this reorientation does not occur as a rigid body

motion of the cell, but rather involves the disassembly and

then reassembly of the CSK in directions determined by the

applied stress; it may also involve rotations of the stress fibers

(Deibler, Spatz, and Kemkemer, 2011). In some of the experi-

ments on static stress (Brown et al., 1998), cells were placed
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in 3D collagen matrices and it is not clear whether remodel-

ing of the matrix (Takakuda and Miyairi, 1996; Fernandez

and Bausch, 2009) by the stress contributes to cellular ori-

entation or if the orientation is solely a result of CSK reor-

ganization within the cell in response to stretch. The

experiments in Fig. 5 of Eastwood et al. (1998) indicate

random collagen alignment even under tension. In general,

the roles of passive (CSK elasticity) and active (actomyosin

contractility) forces in determining cell response to applied

stress have yet to be fully elucidated (Nekouzadeh et al.,

2008). In the following, we first review some recent mecha-

nobiological measurements that provide new insights for

understanding the response of cells to applied stress. We

then summarize several theoretical approaches that quantify

these ideas.

1. CSK disassembly and reassembly

Recent experimental studies showed that cell stretch in-

duces CSK fluidization (Bursac et al., 2005; Deng et al.,

2006; Trepat et al., 2007; Krishnan et al., 2009; C. Chen

et al., 2010) which occurs through direct physical effects of

physical forces upon weak cytoskeletal cross-links. CSK

fluidization is typified by marked decreases of CSK stiffness,

CSK tension, and cellular traction forces, and marked in-

creases in the rate of CSK remodeling dynamics (Trepat

et al., 2007; Krishnan et al., 2009) and is accompanied by

extremely rapid disassembly of actin bundles. These effects

depend (Trepat et al., 2007; Krishnan et al., 2009) on the

load, loading frequency, and magnitude of the prestretch

actomyosin contractility.

To restore homeostasis in the cell (i.e., a fixed level of

contractility), CSK fluidization is immediately succeeded by

CSK reassembly, a signaling driven response that restores

molecular interactions that were disrupted by fluidization

(Trepat et al., 2007). CSK reassembly results in gradual

increases of CSK stiffness, CSK tension, and cellular traction

forces, and gradual decreases in the rate of CSK remodeling

dynamics. These are driven by slow reassembly that acts

predominantly on those spatial sites where traction forces

were markedly reduced by CSK fluidization (Trepat et al.,

2007; Krishnan et al., 2009). These processes govern the

response of cells to applied stress in which the reorientation

is a result of the CSK fluidization and reassembly.

2. CSK stiffness changes in response to applied stress

While it is clear that the CSK reorganizes in response to

applied stretch, it is also important to know whether cell

contractility and stiffness is increased or decreased during

stress application. Experiments on fibroblasts in three-

dimensional, collagen gels showed that overall cells reduce

their contractility during the stretch-relax cycles (Brown

et al., 1998). This led Brown et al. (1998) to suggest that

cells have a homeostatic (or set point) contractility that is

reduced when the surrounding medium is stretched. The

dynamics of this process were investigated in more detail

by Nekouzadeh et al. (2008) who showed that, when

stretched for several minutes, contractile fibroblasts initially

diminished the mechanical tractions they exert on their envi-

ronment through depolymerization of actin filaments. The

cells then restored tissue tension and rebuilt actin stress fibers

through staged Ca dependent processes that consisted of a

rapid phase that ended less than a minute after stretching, a

plateau of inactivity, and a final gradual phase that required

several minutes to complete. Active contractile forces during

recovery scaled with the degree of rebuilding of the actin

cytoskeleton. The final cell stress following a stretch exceeds

the prestretch value; this is in contrast to the results reported

by Brown et al. (1998). However, the observations of cellular

ensembles might not be indicative of a ‘‘typical’’ cell; the

highly repeatable ensemble behaviors may represent a diver-

sity of responses at the level of individual cells.

Trepat et al. (2004) developed an experimental system to

subject adherent cells to a global stretch while simultaneously

measuring the local complex shear modulus (G
 ¼ Gþ iG00)
of the cells. They used this system to study the viscoelasticity

of alveolar epithelial cells in response to stepwise stretch and

found that with increasing levels of stepwise stress, both G0

(elastic response) and G00 (viscous response) increased. These
findings indicate that the cytoskeletal response shows a non-

linear elastic response characteristic of strain stiffening and

that intracellular dissipation also increases with increasing

cytoskeletal tension. In addition, they found that the ratio

G00=G0 decreased with stretch, consistent with an increase in

the elastic rigidity of the CSK, corresponding to reassembly.

In a later study, they observed that when the cytoskeleton was

contracted with thrombin before application of a stepwise

stretch, the strain-stiffening response was abrogated (Trepat

et al., 2006), which suggests that the strain-stiffening regime

is restricted to a range of cytoskeletal tension. The same

experimental setup was used to test the viscoelastic response

of a broad variety of cell types that were subject to a transient

application of stretch or unstretch (Trepat et al., 2007).

Contrary to the case of a stepwise stretch, a transient stretch

that returns to zero strain caused a sharp drop in both G0 and
G00 and a sudden increase in the ratio G00=G0. Thus, while a

stepwise stretch induces CSK rigidification, a transient

stretch induces cell softening and fluidization. To test whether

stretch-induced cell stiffening and softening were associated

with changes in cytoskeletal tension, Gavara et al. (2008)

developed a system to map traction forces at the cell-substrate

interface during application of stretch. They observed that

cytoskeletal tension increased with application of a stepwise

stretch, but decreased below baseline levels upon stretch

removal. Analysis of traction maps before, during, and after

stretch indicated that the regions of higher traction force

application were those that exhibited a larger relative drop

of traction after stress cessation, suggesting that those cellular

structures subjected to a higher tension are disrupted by

stretch. Taken together, these findings point to the existence

of two different mechanisms by which cells respond to

stretch. Strain stiffening during a stepwise stretch is likely

to arise from nonlinear stretching of single cytoskeletal fila-

ments. On the other hand, strain softening after a transient

stretch is probably caused by inelastic unbinding or unfolding

of cytoskeletal cross-links and actomyosin cross bridges. In

response to a constant stepwise stretch, filament stretching

appears to dominate over inelastic unbinding and unfolding

of cross-links and cross bridges. After stretch cessation,

however, the contribution of filament stretching becomes
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negligible and the effect of inelastic unbinding and unfolding

dominates.

3. CSK and cellular reorientation in response to cyclic stretch

In the introduction to this section, we mentioned several

studies that showed that the cells orient away from the stress

direction of cyclically applied stress. Recent experiments

provided quantitative measures of these effects.

Experiments described in Jungbauer et al. (2008) and

Deibler, Spatz, and Kemkemer (2011) investigated the dy-

namic reorientation of rat embryonic and human fibroblast

cells over a range of stretching frequencies from 0.0001 to

20 s�1 and strain amplitudes from 1% to 15%. Their mea-

surements show that the mean cell orientation changes ex-

ponentially in time with a frequency-dependent characteristic

time from 1 to 5 h. At subconfluent cell densities (at which the

cells are not yet close packed), this characteristic time for

reorientation shows two characteristic regimes as a function

of frequency. For frequencies below 1 s�1, the characteristic

time decreases with a power law as the frequency increases.

For frequencies above 1 s�1, it saturates at a constant value.

In addition, a minimum threshold frequency was found below

which no significant cell reorientation occurs. The results

suggest a saturation of molecular mechanisms of the mecha-

notransduction response machinery for subconfluent cells

within the frequency regime studied. One possible interpre-

tation of these two time scales is given in the theoretical

model described in Secs. VI.F.4, VI.F.5, and VI.F.6.

Interestingly, Zahn et al. (2011) recently showed that the

time scale is correlated with the amount of actin in the cell;

aged cells with less actin show faster reorganization in re-

sponse to uniaxial tensile stress compared with younger cells

which contain more actin and are elastically more rigid. In

addition, other biochemical changes can modify the response

time of the cytoskeleton and thereby control its orientation in

response to cyclically varying stress (Hoffman, Grashoff, and

Schwartz, 2011).

To control the strains both parallel and perpendicular to the

stress directions, Faust et al. (2011) used elastomeric cham-

bers that were specifically designed and characterized to

distinguish between zero strain and minimal stress directions

and to allow accurate theoretical modeling. Reorientation was

induced only when the applied stretch exceeded a specific

amplitude, suggesting a nonlinear response. However, on very

soft substrates no mechanoresponse occurs even for high

strain. This suggests an explanation for the necessity of rather

stiff environmental conditions to induce cellular reorientation

in mammalian tissues. For all stretch amplitudes, the angular

distributions of reoriented cells could be modeled as dis-

cussed in Secs. VI.F.4, VI.F.5, and VI.F.6. Cyclic stretch

increases the number of stress fibers and the coupling to

adhesions. Changes in the cell shape follow the cytoskeletal

reorientation with a significant temporal delay; this indicates

that cell reorientation and shape is induced by CSK reassem-

bly in response to stretch. In the frequency range studied of

10–50 mHz, the stress induces cell reorientation (after about

16 h) in the direction of zero strain. A recent study by Livne

and Geiger (unpublished) analyzed the reorientation dynam-

ics of cyclically stretched cells, over a wide range of stretch

configurations, and observed a systematic deviation between

the measured cell and stress-fiber orientation and the zero-

strain prediction (up to 10�). To address this discrepancy, a

novel model that shifts the focus of the reorientation process

to the FAs was developed.

4. Theory of cell response to applied stress

Models of cell response to applied stress are motivated by

the question of why stress fibers or cells orient nearly (but not

always exactly) perpendicular to the direction of the applied

stress. Macromolecular or biochemical models of cellular

orientation and stress-fiber rearrangement in response to

applied forces have been discussed by Mogilner and

Rubinstein (2005), Wei et al. (2008), Hsu, Lee, and Kaunas

(2009), Pirentis and Lazopoulos (2009), and Pirentis et al.

(2011), while a more generic theoretical approach was given

by De, Zemel, and Safran (2007, 2008), De and Safran

(2008), and Safran and De (2009). We first review more

molecularly based models that focus on the role of the stress

fibers and then present a more phenomenological and general

approach that in principle coarse grains over both stress fiber

and focal adhesion response.

5. Molecularly based models

The work of Wei et al. (2008) predicts the orientation of

stress fibers in response to cyclic stretch based on a

biochemical-mechanical model that relates the contraction

and extension rate sensitivity of the stress fibers to the magni-

tude and frequency of the applied stress. These kinetics

depend on a biochemical activation signal (the tension-

dependent fiber dissociation rate) and the rate of force gen-

eration bymyosin II motors. This assumes that the stress fibers

are intact throughout the application of dynamically varying

strain. Experiments (Bursac et al., 2005; Deng et al., 2006;

Trepat et al., 2007) showed that cells respond to mechanical

stress via an initial, fast (sec time scale) fluidization of the

stress fibers that then reassemble and reorganize. Motivated

by this, Pirentis and Lazopoulos (2009) and Pirentis et al.

(2011) focused on a mathematical model that simulates the

effects of fluidization and reassembly driven rigidification

(Krishnan et al., 2009; C. Chen et al., 2010) on cytoskeletal

contractile stress. They showed how these phenomena affect

cytoskeletal realignment in response to pure uniaxial stretch-

ing of the substrate. The model comprises individual elastic

stress fibers anchored at the end points to an elastic substrate

and predicts that in response to repeated stretch-unstretch

cycles, stress fibers tend to realign in the direction perpen-

dicular to stretching. They concluded that relaxation of cy-

toskeletal contractile stress by means of fluidization and

subsequent stress recovery by means of CSK reassembly

may play a key role in reorganization of cytoskeletal stress

fibers in response to uniaxial stretching of the substrate.

A somewhat more general approach to the mechanical

response of stress fibers that was taken by Kaunas and

colleagues (Hsu, Lee, and Kaunas, 2009; Kaunas, Hsu, and

Deguchi, 2011) who developed a model that tracks the fate of

individual, stretched stress fibers based on the hypothesis that

stress fibers have an optimal prestrain due to actomyosin

contractility (Lu et al., 2008); perturbing the strain from

that optimal value promotes stress-fiber disassembly.
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Motivated by experimental evidence of stress-fiber viscoelas-

tic properties, stress fibers are assumed to relax at a rate

proportional to the perturbation in fiber stretch away from

this optimum. The dynamic turnover of stress fibers was

described using a stochastic approach with the probability

per unit time of stress-fiber disassembly expressed as a

constant plus a term quadratic in the deviation of the strain

from its optimal value. The disassembly of a stress fiber is

assumed to be immediately followed by the assembly of a

new stress fiber at its optimal stretch and oriented in a

randomly chosen direction. Model parameters were deter-

mined by fitting experimentally measured time courses of

stress-fiber alignment performed at different rates of strain

(i.e., 0.01 to 1 Hz). The model predicts that reorganization of

the stress fibers is determined by the competition between the

rates of stress-fiber assembly and load-dependent disassem-

bly. The stress fibers preferentially disassemble in the direc-

tion of stretch, while stress fibers reassembling in

stochastically chosen directions gradually accumulate about

the direction of least perturbation in fiber tension. At low

strain rates, the stress fibers are predicted to align with

random orientations with respect to the applied stress direc-

tion. While this has been reported in some cases for very slow

cyclic stress, other experiments report alignment in the stress

direction as discussed above. Recent studies (Tondon, Hsu,

and Kaunas, 2012) using nonsinusoidal waveforms show that

the stress-fiber reorientation is most sensitive to the rate of

lengthening; this provides support for the role of stretch of the

actin filaments in cell reorientation under stress.

6. Coarse-grained models based on force dipoles

One goal of this more phenomenological approach (De,

Zemel, and Safran, 2007, 2008; De and Safran, 2008; Safran

and De, 2009) is to explain the observed frequency depen-

dence of cell orientation previously mentioned. Another is to

understand why the characteristic time for the cell to reach its

steady-state orientation �c � 103–104 s is strongly frequency

dependent for stretch frequencies smaller than about 1 Hz

while at higher frequencies, �c is frequency independent. The
experiments were conducted on anisotropic cells such as

fibroblasts so the theory focuses on needlelike cells in which

the entire cell is modeled in a coarse-grained approximation

as a single force dipole; for needlelike cells, the dipole

component P2 ¼ 0. The dipoles can then be characterized

by their magnitude P0  P < 0 (to signify contraction) and

direction, �¼arctan½ðP0�P1Þ=ðP0þP1Þ�¼arctan½pyy=pxx�,
relative to the external stress.

It was suggested (Brown et al., 1998) that cells actively

adjust their contractility by reorganizing the FA and stress

fibers to maintain an optimal (or set point) value of the stress

or strain U? in the adjacent matrix (De, Zemel, and Safran,

2007, 2008; De and Safran, 2008; Safran and De, 2009). This

translates via elastic theory into an optimal value of the

cellular dipole P? > 0. The stresses are converted to energy

units by multiplying by the cell volume and the externally

applied stretch is denoted as PaðtÞ> 0. In the presence of

such time-dependent stretch that acts at an angle � relative to

the cell axis, it is assumed that the homeostatic, set-point total

local stress in the matrix is achieved when the cellular force

dipole obeys (Safran and De, 2009)

P ¼ �P? þ �0PaðtÞð���1Þ; (65)

where � ¼ cos2�. Two limiting cases are where (i) the cel-

lular dipole is controlled by the matrix stress where �1 ¼ 0,
and (ii) the dipole is controlled by the matrix strain and �1 ¼
cos2�0  �0, where �0 is the zero-strain direction given by

cos2�0 ¼ =ð1þ Þ. In general, �0 can be either positive

or negative corresponding to matrix stretch that causes

either a decrease or an increase in the cytoskeletal forces,

respectively.

Deviations from the set point result in internal forces

within the cell that reestablish the optimal stress condition.

These forces can be derived from derivatives of an effective,

harmonic ‘‘free energy’’ (more precisely, a cost function

whose minimum represents the optimization of the cellular

activity) due to cell activity Fa that includes the active

processes within the cell that establish cellular response to

its local environment,

Fa ¼ 1
2�½�Pþ �0PaðtÞð���1Þ � P?�2; (66)

where �P?2 (with units of energy) is a measure of cell

activity that establishes the set point.

In addition to the cell activity, the model also includes the

effect of mechanical matrix forces, Eq. (59), that yields an

energy Fe proportional to the product of PaðtÞ and P. The
goal is to solve for the dipole magnitude and direction in the

presence of a time-varying stress PaðtÞ ¼ Pað1� cos!atÞ,
where Pa > 0 for stretch. In general, the dynamics of the

cytoskeleton are governed by complex, viscoelastic processes

that also involve liquification and reassembly of the stress

fibers (Deng et al., 2006). In a coarse-grained picture, one can

write relaxational equations for the dipole magnitude and

direction that are governed by the derivatives of F¼FaþFe:

dpðtÞ
dt

¼ � 1

�p
fp;

d�ðtÞ
dt

¼ � 1

��
f�; (67)

where p ¼ P=P
, the dimensionless, effective free energy

f ¼ F=�P
2, and fp ¼ @f=@p and f� ¼ @f=@�. Noise

terms modeled as a dimensionless, effective temperature Ts

can also be included in this formalism (Safran and De, 2009);

note the caveats on the use of effective temperature and

Boltzmann distributions discussed in Sec. II on the physics

background.

Based on experiments (Deng et al., 2006; Gavara et al.,

2008; Nekouzadeh et al., 2008), it has been suggested that the

liquification and repolymerization of the actin stress fibers

after stretch is applied occur on a short time scale on the order

of several seconds, while the correlated reorientation occurs

on much longer time scales (on the order of many minutes)

(Brown et al., 1998; Eastwood et al., 1998; Jungbauer et al.,

2008). It is thus assumed that �p � ��: the time scale

associated with changes in the magnitude of the dipole is

much faster than that associated with the dynamics of its

highly correlated reorientation. In this approximation, the

dipole magnitude reaches a steady-state value in a short

time; this value may be time dependent and oscillatory due

to the cyclic nature of the applied, time-dependent stress.

One therefore first solves for the dipole magnitude pðtÞ,
treating the slowly varying dipole orientation �ðtÞ as a

constant; for details, see Safran and De (2009). The average
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value of � ¼ cos2� calculated as a function of the frequency

depends on the effective temperatures for the cases of both

stress and strain as set points. At high frequencies and

low effective temperatures, the average angle is nearly

perpendicular (or in the zero-strain direction �0, for cells

whose set point is determined by matrix strain), due to the

dynamical frustration of the cell which is unable to adjust its

force dipole to the time-dependent matrix stresses. At very

low frequencies, the average angle is nearly parallel and for

the case of both stress and strain as set points, consistent with

some of the experiments (Brown et al., 1998). At higher

effective temperatures, the orientation distribution is random

and the average value of � (in two dimensions) is 1=2 for all

frequencies. At intermediate temperatures, one finds the in-

teresting possibility of nearly perpendicular orientation for

high frequencies, but nearly random orientation for low

frequencies [for details, see Safran and De (2009)].

Biochemical changes can modify the response time of the

cytoskeleton and thereby change cell orientation from nearly

perpendicular (when the CSK cannot follow the applied,

cyclic stress) to parallel (when CSK remodeling time scales

are short enough) (Hoffman, Grashoff, and Schwartz, 2011).

In addition, experiments on 3D matrices (Riehl et al., 2012)

indicate parallel orientation of stress fibers even at relatively

high frequencies. The systematic understanding of when cells

respond by orienting parallel compared to the relatively well-

studied response of cells on relatively stiff substrates to cyclic

stretch is a challenge that has yet to be met.

The dynamical theory is also used to calculate (Safran and

De, 2009) the characteristic time �c for a cell to attain its

steady-state orientation. At high frequencies, �c is frequency
independent, while at low frequencies, �c � 1=!2; in both

regimes �c depends on the amplitude of the applied stress and

this is related to the fact that the zero-strain or zero-stress

direction orientation occurs only when the applied stress

exceeds a threshold value (De, Zemel, and Safran, 2007;

De and Safran, 2008; Safran and De, 2009). Both the pre-

dicted frequency and amplitude dependence are in qualitative

agreement with experiments (Jungbauer et al., 2008).

VII. CELL ASSEMBLIES

A. Matrix-mediated cell interactions

After treating the response of isolated cells to changes in

their elastic environment, we now discuss the elastic re-

sponses of and interactions in ensembles of cells. We restrict

the analysis to the effects of elastic interactions on the relative

positions and orientations of cells. Moreover, we focus on the

case in which cells are well separated and interact with each

other only via the matrix and not through direct cell-cell

interactions. This is fundamentally different when modeling

growing epithelial tissue or tumors, when cell-cell interac-

tions dominate. A popular model system for epithelial tissue

formation is the Drosophila wing disk, which often is treated

using vertex models (Farhadifar et al., 2007; Hufnagel et al.,

2007; Rauzi et al., 2008; Landsberg et al., 2009; Aegerter-

Wilmsen et al., 2010; Canela-Xandri et al., 2011; Aliee et al.,

2012). In our focus here on matrix-mediated interactions, we

do not discuss the effect of cell proliferation and cell death

that also leads to interesting features in cell assembly

(Shraiman, 2005; Basan et al., 2009; Ranft et al., 2010).

An early study that highlighted the effect of elastic sub-

strate deformations in modulating the relative positions of

cells placed far apart was presented by Korff and Augustin

(1999). They observed that capillarylike structures formed by

two, initially separated groups of cells were associated with

tensional remodeling of the collagen matrix and directional

sprouting of the outgrowing capillaries toward each other.

These experiments presented evidence that tensional forces

on a fibrillar, extracellular matrix such as type I collagen, but

not fibrin, are sufficient to guide the directional outgrowth of

endothelial cells. More recently Reinhart-King, Dembo, and

Hammer (2008) and Califano and Reinhart-King (2010) used

matrices of varying stiffness and measurements of endothelial

cell migration and traction stresses to show how cells can

detect and respond to substrate strains created by the traction

stresses of a neighboring cell; they demonstrated that this

response is dependent on matrix stiffness. Other studies

suggest that, on some matrices, cells can sense each other

(most probably via elastic deformations) at distances on the

order of 400 �m (Winer, Oake, and Janmey, 2009). Recently

it was also reported that cardiac cells can synchronize their

beating through substrate deformations (Tang et al., 2011).

The various experiments imply that matrix mechanics can

foster tissue formation by correlating the relative motions or

even internal dynamics of cells, thereby promoting the for-

mation of cell-cell contacts. The theoretical studies below

model an entire cell as a single, usually anisotropic, force

dipole. Interactions among cells are taken into account for

several simple geometries. A simple analogy to dielectric

media with predictions of the elastic susceptibilities and

‘‘dielectric constants’’ of force-dipole assemblies was pre-

sented by Zemel, Bischofs, and Safran (2006), where the

effective elastic constants of materials containing force di-

poles are calculated as a function of the dipole density. The

results, valid in the relatively dilute limit, indicate an effective

stiffening of the material due to the alignment of the con-

tractile dipoles parallel to the applied stretch. It remains to be

seen how to take this analogy further to include dynamical,

tensorial, and nonlocal spatial effects as well as the develop-

ment of a theory that is valid for both high and low force-

dipole concentrations. In addition, one must decide whether

the dipoles are translationally mobile (as is the case for

counterion screening in electrostatics) or only orientationally

mobile [as assumed by Zemel, Bischofs, and Safran (2006)].

B. Elastic interactions of force dipoles

The anisotropic and long-range nature of the interactions

of cell dipoles leads to a rich variety of self-assembled

structures (Bischofs and Schwarz, 2003, 2005, 2006;

Bischofs, Safran, and Schwarz, 2004). Monte Carlo simula-

tions of these dipolar interactions in the presence of noise,

modeled as an effective temperature, predicted cellular struc-

ture formation on elastic substrates as a function of the cell

density and Poisson ratio of the substrate. One interesting

situation considered was that of an infinitely extended string

of aligned force dipoles spaced at equal distances a (Bischofs

and Schwarz, 2005). An additional dipole is placed at a
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horizontal distance x and with a vertical offset y. Despite the
long-ranged character of the elastic dipole interaction, the

nearby dipoles in the string screen each other’s strain fields;

thus, the effective interaction between an infinite string and a

single dipole (or a second string) is short ranged and decays

as an exponential function of x=a. The magnitude of the

interaction strongly depends on the Poisson ratio of the

substrate. The results suggest that long-ranged effects do

not dominate structure formation at particle densities suffi-

ciently large as to allow formation of strings of aligned

dipoles.

The orientational interactions of dipoles at random spatial

positions (but constrained to obey excluded volume) were

considered; the elastic energies and noise were used to equili-

brate the dipolar directions (Bischofs and Schwarz, 2006). At

low density, the simulations show many short strings with few

correlations (paraelastic phase) among them. At high density

and small values of the Poisson ratio, spontaneous polariza-

tion occurs (ferroelastic or nematic) that results in a unidirec-

tional contraction of the substrate. At large values of both the

cell density and the Poisson ratio, the system becomes macro-

scopically isotropic again, with a local structure which is

ringlike rather than stringlike (antiferroelastic). The predicted

structures are shown in Fig. 24.

C. Myofibril registry modulated by substrate elasticity

We now summarize a model that shows that elastic inter-

actions can tune the registry of long actomyosin fibers whose

nematic (orientational) order is already well established

(Friedrich et al., 2011). In a variety of cell types, various

types of actomyosin bundles exhibit periodic internal struc-

ture with alternating localization of myosin filaments and the

actin cross-linker �-actinin. Examples include striated stress

fibers in fibroblasts and striated stress fiberlike actomyosin

bundles in some developing muscle cells (Rhee, Sanger, and

Sanger, 1994; Hotulainen and Lappalainen, 2006; Pellegrin

and Mellor, 2007; Russell et al., 2009). The striated archi-

tecture of these fibers is similar to the sarcomeric architecture

of myofibrils in striated muscle, but is much less regular. Both

in adherent, nonmuscle cells and in developing striated

muscle cells, the striations of neighboring, but distinct fibers

are often in registry, i.e., the positions of the respective

�-actinin and myosin bands match; see Fig. 25. This inter-

fiber registry of striated fibers represents a further state of

cytoskeletal order, which might be termed ‘‘smectic order’’

using liquid crystal terminology.

Experiments on cultured cells plated on flexible substrates

have shown that substrate stiffness is one factor that can

regulate cytoskeletal order in general, and myofibril assem-

bly, in particular (Engler, Griffin et al., 2004; Engler et al.,

2008; Jacot, McCulloch, and Omens, 2008; Serena et al.,

2010; Majkut and Discher, 2012). Relative sliding of striated

actomyosin bundles into registry was previously reported by

McKenna, Johnson, and Wang (1986). In Engler, Griffin

et al. (2004) the amount of striated myosin (which serves

as a measure of myofibril condensation) depended on the

stiffness of the matrix upon which various cells were cultured,

with a pronounced maximum at an optimal stiffness of about

Em � 10 kPa. Interestingly, this value is close to the longi-

tudinal stiffness of relaxed muscle.

The striated fibers are under constant tension due to the

activity of myosin filaments that link actin filaments of

opposite polarity; see Fig. 25. These actomyosin contractile

forces strain the �-actinin-rich cross-linking regions (termed

Z bodies) of premyofibrils and nascent myofibrils in develop-

ing muscle cells. Because the cross-linking regions can be

mechanically connected to the substrate by means of adhesive

contacts, the tension generated in them may be transmitted to

the substrate. Thus, the substrate underneath a striated fiber is

strained with regions of expansion below the cross-linking

bands and regions of compression in between. The strain fields

induced by a single bundle of actomyosin propagate laterally

toward its neighbors, inducing an effective elastic interaction

between the fibers; this biases the spatial reorganization of

fibers to favor registry that results in smectic ordering of the

cross-linkers and the myosin in neighboring bundles.

A minimal model for this effect (Friedrich et al., 2011)

considers the cell-substrate interface as the x-y plane with a

FIG. 25. Schematic view of two striated fibers. Striated stress

fiberlike actomyosin fibers form close to the cell-substrate interface

of adherent, nonmuscle cells. Each fiber is a bundle of aligned actin

filaments that has a sarcomeric subarchitecture: Z bodies (contain-

ing �-actinin) that cross-link actin filament barbed ends alternate

with regions rich in myosin II in a periodic fashion. Striated fibers

can slide past each other until their periodic structures are in phase.

Adapted from Friedrich and Safran, 2011.
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FIG. 24. Phase diagram for positionally disordered cells. At low

values of the scaled cell density �, an orientationally disordered

(paraelastic) phase (p) prevails. At high cell density, orientational

order sets in, with a nematic stringlike (ferroelastic) phase (f) at low

values of Poisson ratio , and an isotropic ringlike (antiferroelastic)

phase (af) at large values. From Bischofs and Schwarz, 2006.
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single contractile fiber parallel to the x axis. The forces

transmitted by the fiber onto the substrate can be effectively

described by a dipole distribution (with units of energy per

unit area)�ijðx; yÞ ¼ �ðxÞ	ðyÞ	ix	jx of force dipoles that are

localized to the adhesive contacts whose lateral extensions

are on the order of 100 nm and are thus much smaller than the

spacing a � 1 �m of Z bodies. Here the force-dipole density

(with units of energy per unit length) �ðxÞ is a periodic

function of x due to the sarcomeric (i.e., periodic) architec-

ture of a single striated fiber. For simplicity, the analysis

focuses on the principal Fourier mode �ðxÞ¼�0þ
�1cosð2
x=aÞ, where a corresponds to the sarcomeric

periodicity of the striated fiber.

The strain field uijðx; yÞ at the surface of the substrate with
Young’s modulus Em (and located at z ¼ 0) that is induced by
this periodic dipole ‘‘string’’ can be found from the Green’s

function of Eq. (57). The parallel strain component u11ðx; yÞ
can be written as a product of a ‘‘lateral propagation factor’’

� that characterizes the propagation of strain in the lateral y
direction and a harmonic modulation in the x direction along

the striated fiber

u11ðx; yÞ ¼ �ðjyj=a; Þ 2�1

Ema
2
cosð2
x=aÞ: (68)

Thus the strain field u11 is periodic in the x direction with

period a reflecting the periodicity of the striated fiber. The

factor � characterizes the propagation of strain in the lateral

direction away from the center line of the fiber; this depends

on the distance from the fiber as well as the Poisson ratio.

The interaction between two such strings of dipoles is de-

scribed by the elastic interaction energy, which is the local

product of the dipole and the strain. The energy which a given

fiber (string of dipoles) must invest in order to deform the

substrate is the sum of a self-energy of the first dipolar string

Wself ¼
R
d2x�ð1Þ

ij u
ð1Þ
ij , which accounts for the substrate defor-

mation energy in the absence of the second string of dipoles

and an interaction term Wint ¼
R
d2x�ð1Þ

ij u
ð2Þ
ij . The term Wint

characterizes an effective, substrate-mediated interaction be-

tween the two contractile fibers and can guide their spatial

reorganization.

Inserting the specific strain field induced by a single

striated fiber, Eq. (68), into the general formula for elastic

interactions yields the elastic interaction energy between the

two fibers (per minisarcomere) as a function of the phase shift

�x and the separation of their center lines d:

Winteraction ¼ �ðd=a; Þ �2
1

aEm

cosð2
�x=aÞ: (69)

Here W
 ¼ �2
1=ðaEmÞ � 10�18 J � 250kBT sets a typical

energy of the elastic interactions. Registry of fibers with

�x ¼ 0 is favored for interbundle spacings where the propa-

gation factor �< 0.
For incompressible substrates with Poisson ratio close to

 ¼ 1=2, such as those used in experiments (Engler, Griffin

et al., 2004; Buxboim, Ivanovska, and Discher, 2010), it can

be shown (Friedrich et al., 2011) that the sign of the prefactor

� of the elastic interaction energy is negative provided

that the lateral fiber spacing is larger than some threshold

d=a > d
=a � 0:247. Hence, elastic interactions favor a

configuration where neighboring fibers are in registry with

�x ¼ 0. The opposite trend is found when  � 0 (Bischofs

and Schwarz, 2005; Friedrich et al., 2011). It is therefore

possible that elastic interactions also set a preferred lateral

spacing of striated fibers. Additionally, steric interactions

may prevent neighboring fibers from getting too close and

could enforce the condition d > d
.
We previously discussed experiments and theory that dem-

onstrated that cells tend to prefer rigid substrates where the

elastic deformation energy cost is minimal. This also deter-

mines the optimal value of the cellular dipole magnitude in a

simple model that balances the ‘‘cell activity’’ [described in

Eq. (66) with zero applied field Pa ¼ 0] with the elastic

energy cost of deforming the substrate [analogous to the

expression in Eq. (64)] (De, Zemel, and Safran, 2007;

Safran and De, 2009; Friedrich and Safran, 2012). In terms

of the present model, this determines the optimal amplitude

of the dipole string �

1 from the force balance given by

minimization with respect to the dipole amplitude �1 of the

sum of the two energies (per unit length of the bundle): the

activity optimization Wactive ¼ �ð�1 � �

1Þ2=2 and the defor-

mation energy Wdeform � �2
1=ð2a2EmÞ, where Em is the

Young’s modulus of the substrate (Friedrich et al., 2011).

This predicts that �1 ¼ �

1Em=ðEm þ E


mÞ, where E

m ¼

1=a2�. The set-point value �

1 corresponds to the amplitude

�1 of the dipole density on very stiff substrates with Em �
E

m. On soft substrates with Em � E


m, however, �1 can be

considerably smaller than �

1.

Using this expression for the saturation of �1 on substrate

stiffness further predicts that the registry force between two

parallel striated fibers becomes a nonmonotonic function of

Em with a Lorentzian form and has maximal magnitude

for Em ¼ E

m. Here it is assumed that the lateral spacing d

of the fibers is larger than the critical distance d
 and inde-

pendent of substrate stiffness.

The theory was compared with recent experimental studies

of the interfiber registry in human mesenchymal stem cells

that were plated on polymeric gels of different stiffness

(ranging from 0.3 to 40 kPa) (Friedrich et al., 2011; Majkut

and Discher, 2012). Well-established, interfiber registry of

adjacent striated fibers was observed primarily for cells that

were cultured on 10 kPa gels as opposed to softer or more

rigid substrates. Myosin bands perpendicular to the axis of

nematic fiber organization were clearly visible and most

likely connect neighboring actomyosin bundles in registry.

Out of approximately 20 cells examined per gel, roughly

30%–50% exhibited aligned, striated fibers. The guidance

mechanism for the registry of striated fibers by elastic inter-

actions due to their elastic interactions predicts maximal

registry at an ‘‘optimal’’ value of the substrate rigidity and

represents a plausible mechanism for the establishment of

interfiber registry observed in the experiments. Further ex-

periments are needed to resolve the extent of striations within

one actomyosin bundle from the registry of striations in

neighboring bundles; the theory presented here addresses

the question of registry among bundles. It assumes that

each bundle is well ordered; a possible mechanism for the

development of such order was recently suggested by

Friedrich et al. (2012).
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VIII. CONCLUSIONS AND OUTLOOK

Research at the interface of physics and biology is an

exciting adventure that has led and is still leading in several

different directions. In this review with a theoretical focus, we

appropriately modified soft matter physics approaches to

analyze how adherent cells mechanically interact with their

environment through forces at the cell-material interface.

Although passive soft matter systems such as droplets, fully

elastic particles, vesicles, and polymeric capsules are impor-

tant reference cases for the adhesion of single cells, our

discussion has shown that the main feature missing from

such theoretical frameworks are active processes. In the

context of force generation and sensing of adherent cells,

the most prominent active processes are the polymerization of

lamellipodia at the cell edge and the myosin II generated

tensions in the actin cytoskeleton, including the contractile

bundles (stress fibers) and networks that form during mature

adhesion. These cytoskeletal processes are closely integrated

with the dynamics of spatially localized sites of focal adhe-

sions. Together this system allows cells to sense and react to

the mechanical properties of their environment. Our review

shows that the active and dynamic nature of cellular systems

must be addressed on many different scales, from the model-

ing of nanometer-scale molecular association and dissocia-

tion events in adhesion clusters to force generation in large

supramolecular complexes and the shape and effective force

balance at the 10 �m scale for animal cells. A further level of

cooperativity arises if one considers the tissue scale at which

cells can be further abstracted as discrete particles or defects.

In the future, it is hoped that these different approaches will

converge into a system-level understanding of cellular sys-

tems that not only includes genetic and biochemical aspects

(which were not the focus of this review), but also structural

and mechanical ones; the latter are at least equally as influ-

ential as biochemistry and genetics for the interactions of

cells with their environment.

An important aspect of this review is to point out in which

regard concepts from physics can be used to improve our

understanding of cellular systems. By focusing on the physi-

cal constraints posed by the overall force balance in single

myosin minifilaments and cells, we arrived at the notion of

force dipoles, which turns out to be a very powerful concept

to rationalize many important aspects of the interactions of

adherent cells with their physical environment. Motivated by

pioneering experiments with adhesive micropatterns (Chen

et al., 1997) and soft elastic substrates (Pelham and Wang,

1997), during the last two decades or so, a growing body of

research has addressed the physical understanding of how

cells sense and respond to the physical properties of their

surroundings, including adhesive geometry, topography, and

stiffness (Geiger, Spatz, and Bershadsky, 2009). The generic

nature of the experimental observations (including the essen-

tial role of active contractility) suggests that measurements

that focus on mesoscale (tens of nanometers to micrometers)

behavior along with ‘‘coarse-grained’’ models that capture

the physics with only a small number of molecular parame-

ters can provide insight into the generic aspects of cell

mechanosensitivity. In particular, we discussed models

for the observed force dependence of the initial stages of

cell adhesion in terms of either polymerlike elasticity or

nucleation and growth. The genesis of the CSK in stem cells

and its dependence on the rigidity of its elastic environment

can be understood in terms of models that focus on the

interactions of actomyosin force dipoles (within the cell)

through the elastic deformations they induce in the cytoske-

leton and the substrate. These deformations are long range

and the ordering that develops in the CSK is therefore

dependent on global boundary conditions such as the cell

shape and the substrate rigidity. This can be demonstrated

either by a rigorous treatment of the elasticity (that extends

known results for passive inclusions to the case of active

contractile elements) or by a simplified version based on the

approximation of the cell as a thin, actively contractile film

coupled to an elastic substrate. In the latter theory, the shape

dependence enters via moments of the Fourier transform of

the lateral spatial dependence of the cell height. The response

of cells to time-varying, externally applied stresses can be

understood either in terms of a specific elastic response of

stress fibers or in terms of a generic theory that treats the

entire cell as an elastic dipole that exerts forces on an elastic

substrate. When the dipole dynamics (the formation and

orientation of actomyosin bundles and their adhesions) are

fast enough to follow the applied field, the cell is predicted to

align parallel to the stress direction. However, if the applied

strains or stresses vary too rapidly, the cell cannot adjust and

orients its CSK in the zero-strain or zero-stress directions.

Despite some success of these models in understanding

and in some cases, predicting the experimental findings,

many questions remain unresolved. Regarding the relation

between focal adhesions, actin cytoskeleton, and rigidity

sensing, recent experimental progress has posed new chal-

lenges to theory. Quantitative studies with elastic substrates

have shown that the size and traction force of focal adhesions

can be very variable, depending on the history and internal

structure of the adhesion (including a possible templating

effect for growth by the actin cytoskeleton) (Stricker et al.,

2011). Studies of cell forces with microplates (Mitrossilis

et al., 2010) and pillar assays (Trichet et al., 2012) have

suggested that rigidity sensing is a more global process

than formerly appreciated; however, models integrating focal

adhesion dynamics over entire cells present a great challenge.

Finally RNA-interference studies have revealed the regula-

tory complexity of rigidity sensing (Prager-Khoutorsky et al.,

2011), but a theoretical framework to integrate the biochemi-

cal, genetic, and mechanical features of focal adhesions on a

systems level is still missing.

Another important challenge is improving our understand-

ing of cell behavior in three dimensions. The physiological

environment of tissue cells in three dimensions is a viscoelastic

porous matrix and it is thus not surprising that cell behavior in

three dimensions tends to be different from the one on flat

culture dishes (Cukierman et al., 2001;Baker andChen, 2012).

Surprisingly, however, if one cultures cells in open three-

dimensional scaffolds, many of the features known from

two-dimensional scaffolds seem to be conserved (in particular,

arclike stress fibers and focal adhesions) (Klein et al., 2010,

2011). Recent experiments with three-dimensional hydrogels

have shown that the dependence of cytoskeletal orientation on

the matrix rigidity is similar in both two and three dimensions

(Rehfeldt et al., 2012). In the future, a careful quantitative
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comparison should be made of those factors that are substan-

tially different in various experimental assays.

From the mechanical point of view, many of the theoretical

models described here treat the CSK and the matrix as linear

elastic materials in which the stresses are proportional to the

strains. However, biopolymers that are important in either the

cytoskeleton or the extracellular matrix often show interest-

ing nonlinear responses to applied forces (Gardel et al., 2004;

Storm et al., 2005; Klotzsch et al., 2009) as discussed above.

Generalizing the theory of stress generation, response, and

interactions of elastic dipoles to nonlinear elastic environ-

ments, either within the CSK itself or via the coupling of

actomyosin forces to nonlinear substrates by focal adhesions,

is thus an important future goal. Some experiments report that

cells sense each other (most probably via elastic deforma-

tions) at distances on the order of 400 �m (Winer, Oake, and

Janmey, 2009) on nonlinear, elastic substrates. In addition,

those observations report that cell spreading becomes inde-

pendent of the (small-stress) elastic modulus, suggesting that

a mechanical ‘‘tug of war’’ persists until neither the cell nor

the nonlinear substrate can increase its resistance (Winer,

Oake, and Janmey, 2009). A recent theory (Shokef and

Safran, 2012a, 2012b) of the deformations induced by force

dipoles in nonlinear elastic media predicts a linear-type

response in the far-field regime, but with an amplitude that

is magnified by the nonlinearities important in the near field

where the stresses are large. The predicted amplification can

be quite large even for modest forces applied by the dipole.

This can also modify the interactions between dipoles. The

theory suggests further quantitative measurements of the

long-range effects reported by Winer, Oake, and Janmey

(2009) along with corresponding theoretical calculations of

the interactions of force dipoles in nonlinear elastic medium.

An experimental hint of some nonlinear effects was presented

by Pompe et al. (2009), where a nonquadratic dependence of

the deformation energy on the cellular force-dipole moment

was reported; linear elasticity predicts a quadratic depen-

dence as in Eqs. (57) and (64).

Apart from making use of nonlinear elasticity, another

interesting avenue is the development of models for nontradi-

tional mechanics, such as the actively contracting cable net-

works discussed in Sec. V (Bischofs et al., 2008; Guthardt

Torres, Bischofs, and Schwarz, 2012). By focusing on two

essential physical aspects of biological materials, namely, the

asymmetric mechanical response of filaments and the gen-

eration of tension by molecular motors, these models capture

some of the essential physics but are still relatively easy to

handle. This allows the ideas to be used in new ways for

detailed comparison with experiments on micropatterned and

elastic substrates. Interestingly, these models also demon-

strate a close relation between elasticity and tension

(Bischofs et al., 2008; Edwards and Schwarz, 2011;

Guthardt Torres, Bischofs, and Schwarz, 2012; Mertz,

Banerjee et al., 2012), which recently has been confirmed

by experiments on cell layers (Mertz, Banerjee et al., 2012).

Although here we focused on the physical aspects of

cellular systems, it is worth noting that some of the questions

addressed in this framework come quite close to central

questions currently studied in biology, for example, stem-

cell differentiation and development. Experiments that report

genetic effects of substrate rigidity and their implications for

stem-cell differentiation (Engler et al., 2006) are based on

observations performed on the scale of several days, while

those that report the physical effects of CSK nematic order in

response to rigidity changes (Zemel et al., 2010b) are based

on observations performed on the scale of hours. Are these

two effects related and is CSK nematic order in stem cells and

its optimization on substrates of particular rigidities a pre-

cursor of differential of stem cells into muscle cells? While it

is true that muscle cells show highly developed nematic order

of actomyosin bundles, it is not yet clear that the early-time

development of nematic order in the same rigidity range

triggers stem-cell differentiation into muscle. Further experi-

ments and models that explore how CSK stresses translate

into nuclear stresses and possibly chromosomal rearrange-

ments (Roopa et al., 2008; Wang, Tytell, and Ingber, 2009;

Iyer et al., 2012; Zeng et al., 2012) are needed before con-

clusions can be drawn.

The effects of elastic interactions, substrate rigidity, and

applied stresses on development are another related area.

Understanding the role of elastic stresses on development

involves not only an interplay of genetic expression con-

trolled by CSK and nuclear deformations within a single

cell, but also the interactions of many developing cells via

both chemical signals and elastic stresses. The spatial devel-

opment of ‘‘order’’ as evidenced by differentiation within a

developing tissue is influenced by both the diffusion of

signaling morphogens (Ben-Zvi et al., 2008) and the long-

range elastic interactions explored here in simpler contexts.

The connection to morphogen diffusion requires an under-

standing of the dynamical elastic interactions of cells and this

may involve both their elastic (‘‘speed of sound’’) and viscous

(damping) dynamics and a complete theory that may bridge

the elastic nature of adherent cells to active-gel theories of

cytoskeletal flow and cell motility (Liverpool and Marchetti,

2003; Kruse et al., 2004; Julicher et al., 2007; Marchetti

et al., 2013).
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