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Physics of Carrier Backscattering in One- and
Two-Dimensional Nanotransistors

Raseong Kim, Student Member, IEEE, and Mark S. Lundstrom, Fellow, IEEE

Abstract—The physics of carrier backscattering in 1-D and 2-D
transistors is examined analytically and by numerical simulation.
An analytical formula for the backscattering coefficient is derived
for elastic scattering in a 1-D channel. This formula shows that
the critical length for backscattering is somewhat longer than the
kT length, and it depends on the shape of the channel potential
profile. For inelastic scattering, Monte Carlo (MC) simulations
show that the critical length is related to the phonon energy. The
MC simulations also show that although the scattering physics in
1-D and 2-D transistors is very different, the overall backscatter-
ing characteristics are surprisingly similar. For an elastic process,
this similarity is due to the compensating effects of the scattering
rate and the fraction of scattered carriers, which contribute to
the backscattering coefficient. For an inelastic process, the critical
length is determined from the phonon energy for both 1-D and 2-D
channels.

Index Terms—MOSFETs, nanowire (NW) transistor, scattering,
semiconductor device modeling.

I. INTRODUCTION

S EMICONDUCTOR nanowire (NW) transistors are attract-
ing attention as a possible solution to the scaling challenges

of MOSFETs [1]–[6]. In addition to improved electrostatics,
1-D transistors provide novel characteristics due to quantum
confinement [7], [8], which have been observed experimentally
as the diameter scales down and the temperature (TL) is low-
ered [9], [10]. A recent study of ballistic transistors shows,
however, that except for differences in electrostatics, device
performance metrics, such as the injection velocity and the
intrinsic device delay, are similar for NW transistors and 2-D
planar transistors, particularly at room temperature [11]. In the
presence of scattering, however, one might expect the 1-D and
2-D transistors to behave differently due to dimension-
dependent scattering [12], [13]. Our objective in this paper
is to examine the physics of backscattering in 1-D and 2-D
transistors.

The backscattering coefficient R in a field-free slab is ex-
pressed as [14]

R =
L

λ0 + L
(1)
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Fig. 1. Fraction (F ) of backscattered carriers that contribute to R versus
ΔE/E0 for 1-D and 2-D elastic/isotropic scattering.

where L is the channel length and λ0 is the averaged backscat-
tering mean free path under a low electric field (by low electric
field, we mean that it is low enough to maintain near-
equilibrium transport in the slab). It has been suggested that (1)
can be generalized to high electric fields as [15]

R =
l

λ0 + l
≈ LkT

λ0 + LkT
(2)

where l is the critical length and LkT (the “kT length”) is
the distance over which the potential drops by kBTL/q [15]
(by high electric field, we mean that the field produces off-
equilibrium conditions for carriers in the slab). For inelastic
scattering, it has been suggested that l is the distance from the
top of the barrier to the point where carriers gain enough kinetic
energy to emit optical phonons [16].

For planar devices, the critical region for backscattering
occurs because the fraction F of the scattered carriers that
contribute to R decreases as the carriers travel down the
potential drop along the channel [17]. This occurs even for
elastic scattering because only a small cone of backscattered
carriers has sufficient kinetic energy to surmount the potential
barrier and return to the source. This general understanding of
backscattering has been extended by a number of recent studies
[18]–[21]. Fischetti et al. [22] have, however, pointed out that
long-range Coulomb effects could invalidate the concept of a
critical length. This issue merits careful study but it is beyond
the scope of this paper. The critical region for elastic backscat-
tering in 1-D, however, may not apply because any carrier that
backscatters has sufficient longitudinal momentum to surmount
the barrier and return to the source. Fig. 1 shows a sketch of
F versus ΔE/E0 for 1-D and 2-D elastic/isotropic scattering,
where ΔE is the energy that a carrier gains and E0 is the
injection energy. For 2-D, F decreases steadily [17]; however,
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F is constant at 0.5 for 1-D. This clear difference in F suggests
that the backscattering characteristics may be different for
1-D and 2-D transistors.

In this paper, we perform analytical and numerical analyses
to address the following questions: 1) “Is the concept of a
critical length still valid in 1-D?;” 2) “How is l related to LkT?;”
3) “Does λ0 control R even under high electric fields?;”
4) “Does l change for elastic and inelastic scattering?;” and
5) “How does the backscattering characteristic compare for
1-D and 2-D transistors?” Note that our objective in this paper
is to provide “insight, not numbers” [23]. We use simple but
physical model structures and scattering mechanisms to estab-
lish some general understanding that we believe will be broadly
applicable.

This paper is organized as follows. In Section II, we as-
sume a 1-D model device and analytically evaluate R for
elastic/isotropic scattering. In Section III, the results from the
analytical formula are compared with those from Monte Carlo
(MC) simulations. The role of inelastic scattering in 1-D tran-
sistors is also studied through MC simulations. In Section IV,
we repeat the analysis for a 2-D model device to compare
backscattering physics in 1-D and 2-D. The conclusion follows
in Section V.

II. ANALYTICAL TREATMENT OF BACKSCATTERING IN 1-D

In this section, an analytical formula for R is derived in 1-D,
considering elastic/isotropic scattering. We define a 1-D model
device (Section II-A) and assume a simple elastic scattering
process (Section II-B). An analytical formula for R is derived
using the one-flux method [24] for simple channel potential
profiles (Section II-C). In [25], it was shown that (2), with l =
LkT, can be derived from the 1-D Boltzmann transport equation
assuming a constant relaxation length. In that derivation, how-
ever, the authors assumed that the carrier velocity is constant at
the thermal velocity in the current continuity condition. In our
derivation, we consider the velocity variation along the channel,
thereby improving on the previous derivation, as demonstrated
by comparisons with numerical simulations in Section III.

A. Model Device

As a 1-D model device, we assume a rectangular silicon NW
with 3-nm width (W ) and [110] transport direction, where the
electrons are confined in a 2-D box of width W . We consider
only the lowest subband, i.e., a true 1-D transport. Then, the
valley degeneracy (gν) is two, and we take the transverse
effective mass of bulk silicon as the transport effective mass
(m∗ = mt). Although the bulk effective mass is not exact for
NWs [26], it should be useful for our simple model calculation.
The schematic of the model device is shown in Fig. 2(a).

Although we treat only a single subband, it should be noted
that intersubband scattering may become relevant under high
drain bias when multisubbands are considered. Intersubband
scattering mainly occurs between unprimed subbands [27],
and it becomes more important as W or TL increases. We
expect, however, that intersubband scattering will not affect
R significantly if it mostly occurs outside the critical region.

Fig. 2. (a) Schematic of the 1-D model device. The transport (x) direction is
[110], and W is the width of the NW. (b) Schematic of the 2-D model device.
The wafer orientation is (001), and W is the body thickness.

For our 1-D model device, the energy difference between the
first and the second unprimed subbands is 3�

2π2/2mlW
2 ∼

0.14 eV, where the longitudinal electron effective mass ml is
0.91m0. If this is less than the energy a carrier gains across
the critical region, then we can roughly say that intersubband
scattering is significant. We believe, however, that including
intersubband scattering will not change the general conclusion
of this paper. In Section IV, we consider a 2-D device with a
large number of transverse modes, and the intermediate case of
an NW with a few subbands (i.e., quasi-1-D transport) would
not be substantially different from the two limiting cases we
examine.

B. Elastic Scattering in 1-D

For elastic scattering, we assume intrasubband acoustic
phonon scattering, which is elastic and isotropic near room tem-
perature. The scattering rate due to acoustic phonon absorption/
emission is

1
τ1-D

=
9πD2

AkBTL

4gνW 2�ρυ2
S

g1-D (3)

where DA is the electron acoustic deformation potential; ρ
is the mass density; υS is the sound velocity; and g1-D is
the 1-D density of states, with g1-D = 2gνm∗/π�

√
2m∗E(p),

where E(p) is the carrier kinetic energy. For a relaxation
time in power-law form τ = τ0(E(p)/kBTL)s [28], the low-
field mobility is μ = qτ0/m∗ × Γ(s + d/2 + 1)/Γ(d/2 + 1)
in the nondegenerate limit, where d is the device dimen-
sionality. The low-field mobility for our 1-D model device
(μ1-D) can be calculated using d = 1 and s = 1/2. From the
1-D Landauer formula [14], μ and λ0 are related as μ =
q/kBTL × λ0υT /2, where υT is the thermal velocity, with
υT =

√
2kBTL/πm∗. By equating this relation with μ1-D, we

obtain λ0 = 8W 2
�

2ρυ2
S/9m∗D2

A, which is ∼42 nm at TL =
300K for our model device with bulk silicon parameters [29].
One thing to note is that this λ0 may be too large for a realistic
NW transistor, where other scattering mechanisms, such as
surface roughness scattering, play a significant role [30], [31].

C. Analytical Derivation of R

Let V (x) be the potential profile along the channel. For
elastic scattering, the carrier velocity at x is given as υ(x) =√

2(E0 + qV (x))/m∗, where E0 is the average energy of in-
jected carriers. In the nondegenerate limit, E0 is calculated to be
kBTL for 1-D because the distribution function of the carriers
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injected in the x-direction is velocity weighted [28]. Then, the
backscattering mean free path at x can be expressed as

λ(x) = 2υ(x)τ1-D(x) =
8W 2

�
2ρυ2

S

9m∗D2
AkBTL

(E0 + qV (x))

= λ0

(
E0 + qV (x)

kBTL

)
. (4)

The factor of two appears in (4) because the scattering is
isotropic. Then, the relation between the positively and
negatively directed fluxes can be obtained from the one-flux
method [24] as

d (n+(x)υ+(x))
dx

= − n+(x)υ+(x)
λ(x)

+
n−(x)υ−(x)

λ(x)

= − kBTL (n+(x) − n−(x)) υ(x)
λ0 (E0 + qV (x))

(5)

where n+ and n− represent the concentrations of positively
and negatively moving carriers. In (5), it is assumed that the
velocities of positively and negatively moving carriers are the
same, as υ+(x) = υ−(x) = υ(x). From the current continuity
condition, (5) becomes

d (n+(x)υ(x))
dx

= −kBTL (n+(0) − n−(0)) υ(0)
λ0 (E0 + qV (x))

. (6)

For a given V (x), (6) may be integrated analytically to
calculate R. Here, we consider two channel potential profiles,
i.e., linear and parabolic potential profiles.

1) Linear Potential: For a linear potential profile, (6)
becomes

d (n+(x)υ(x))
dx

= −kBTL (n+(0) − n−(0)) υ(0)
λ0(E0 + qExx)

(7)

where Ex is the constant electric field along the x-direction.
Using the boundary condition n−(L) = 0 [25] and the cur-
rent continuity n+(L)υ(L) = (n+(0) − n−(0))υ(0), (7) is in-
tegrated as

n+(x)υ(x) =
(
n+(0) − n−(0)

)
υ(0)

×
(

1 +
kBTL

λ0qEx
ln

(
E0 + qExL

E0 + qExx

))
. (8)

By evaluating (8) at x = 0 and rearranging the result, R is
obtained as

R =
n−(0)
n+(0)

=
LkT ln(1 + L/LkT)

λ0 + LkT ln(1 + L/LkT)
(9)

where LkT is defined as LkT = kBTL/qEx [15].
In the low-field limit (L � LkT), LkT ln(1 + L/LkT) ≈ L,

and (9) reduces to R ≈ L/(λ0 + L), as expected from (1). In
the high-field limit, (9) has a similar form as (2); however, l
is larger than LkT and has a more complicated form which

depends on Ex and L, as l = LkT ln(1 + L/LkT) > LkT. The
1/R versus Ex relation obtained from (9) shows

1
R

= 1 +
λ0

l

= 1 +
λ0Ex

kBTL/q × ln(1 + qExL/kBTL)

� 1 +
λ0

ΔV
Ex (10)

where ΔV is the voltage drop across the critical region. It
is observed that 1/R versus Ex is approximately linear with
the slope of ∼λ0/ΔV because the Ex dependence in the log
term is weak. Under a low electric field, ΔV is the total drain
voltage. Under high electric fields, ΔV is somewhat larger than
kBTL/q.

2) Parabolic Potential: For a given drain voltage Vd, the
parabolic potential profile and LkT are given as V (x) =
Vdx

2/L2 and LkT = L
√

kBTL/qVd, respectively [25]. In
a similar way to that used in the previous section, R is
obtained as

R =
LkT tan−1(L/LkT)

λ0 + LkT tan−1(L/LkT)
(11)

and l can be defined as l = LkT tan−1(L/LkT). In the low-
field limit (Vd � kBTL/q), l ≈ L, and R reduces to the
well-known low-field form in (1). Under high fields (Vd �
kBTL/q), l ≈ LkT × π/2 > LkT, and ΔV = Vd/L2 × l2 ∼
Vd/L2 × π2L2

kT/4 = π2/4 × kBTL/q.
3) Discussion: Analytical formulas for R in (9) and (11)

show that the concept of a critical length is still valid in 1-D.
As shown in Fig. 1, once a carrier scatters elastically in a 1-D
channel, it has a constant probability to go back to the source.
The scattering rate, however, decreases as the carriers travel
down the potential drop and gain kinetic energy [because the
scattering rate is proportional to g1-D, as given by (3)]; hence,
the carriers have less chance to scatter deep inside the channel.
Analytical formulas also show that λ0 still controls R even
under high electric fields. In addition, l is not as simple as
expected from (2); it is a function of LkT but it depends on L
and the shape of the potential profile along the channel. For both
linear and parabolic potential profiles, l is somewhat longer
than LkT under high electric fields. Finally, our derivation
assumed that the velocities of positively and negatively moving
carriers are the same. A simple MC simulator to be discussed
in Section III-A shows that υ−(0) ∼ 0.9υ+(0), which indicates
that our assumption is reasonable. More sophisticated MC sim-
ulations that treat multisubband scattering with a self-consistent
channel potential have shown that υ−(0) ∼ 0.7υ+(0) [32]. The
assumption of equal velocities for injected and backscattered
carriers does not appear to affect our overall conclusions.

III. MC SIMULATION OF BACKSCATTERING IN 1-D

In this section, the implementation of the MC simulator is
explained (Section III-A), and the results for R from analytical
formulas derived in Section II are compared with those from
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MC simulations (Section III-B). Then, the role of inelastic
scattering in 1-D transistors is studied through MC simulations
(Section III-C).

A. MC Simulator

The MC simulator takes the incident-flux approach, assum-
ing nondegenerate contacts [28]. Carrier degeneracy may affect
the backscattering characteristics [20]; however, it is beyond
the scope of this paper. The simulation begins with a carrier
selected at random from the flux injected from the source
contact (x = 0). The carrier is followed until it comes back
to the source or reaches the drain contact (x = L) under
−x-directed electric fields. For 1-D, carriers are allowed to
move only along the x-direction, while the carriers in 2-D sim-
ulation also have momentum along the y-direction. We assume
that the carriers that reach contacts simply exit the channel [28].
When the carrier injection from the drain contact is turned off
[25], R can be calculated by dividing the number of carriers
returning to the source by the total number of carriers injected
from the source contact. The potential profile along the channel
is fixed to explore how the shape of the potential profile affects
R and to compare against the analytical results of Section II.

The physics and simulations of carrier scattering in NWs
constitute an active area of research [12], [33], [34]. To quan-
titatively simulate NW transistors, various scattering processes,
such as confined phonon scattering [35], surface roughness
scattering [30], [31], and intersubband scattering [27], should
be considered. In this paper, however, we use simple but
physical model scattering mechanisms, treating only a single
subband to understand the general principles for elastic and
inelastic backscatterings. For elastic scattering, as discussed in
Section II, we assume that the scattering rate is proportional
to the density of states and the parameters are taken from
the intrasubband acoustic phonon scattering for bulk silicon
[29]. For inelastic scattering, we assume intervalley phonon
scattering with bulk silicon parameters [29].

B. Comparison With the Analytical Formula

As shown in (1), 1/T versus L is linear under low electric
fields, as 1/T = 1 + L/λ0. From 1/T versus L obtained from
MC simulations with Ex = 10 V/cm at TL = 300 K, λ0 is
extracted to be ∼38 nm, which is in a good agreement with
the analytical result (∼42 nm). Fig. 3(a) shows a comparison
of the R versus Ex results from the analytical formula in (9)
with the MC simulation results. The analytical and numerical
results match very well for both low and high electric fields.
The analytical formula for the parabolic potential profile in (11)
also agrees well with the MC simulation result, as shown in
Fig. 3(b).

Fig. 4 shows the analytical and MC simulation results for
1/R versus Ex under high electric fields. The l for each Ex

can be extracted using 1/R = 1 + λ0/l, and the result is shown
as the inset of Fig. 4. As expected from (10), although 1/R
versus Ex looks quite linear, the l/LkT ratio is not constant but
increases with Ex. Fig. 4 also shows that l is a few times longer

Fig. 3. Comparison of the analytical formulas for R and MC simulation
results considering elastic/isotropic scattering in the 1-D model device, with
L = 100 nm/500 nm at TL = 300 K. (a) R versus Ex obtained from the
(line) analytical formula and the (symbol) MC simulation for linear channel
potentials. (b) R versus Vd from the (line) analytical formula and the (symbol)
MC simulation for parabolic potential profiles.

Fig. 4. (Symbol) MC simulation results for 1/R versus Ex (linear potential)
for the 1-D model device and (line) comparison with the analytical results,
with L = 100 nm/500 nm at TL = 300 K. (Inset) l/LkT versus Ex from
the (symbol) MC simulation and (line) analytical formula.

than LkT and depends on L, as l ≈ 2 ∼ 4LkT for L = 100 nm
and l ≈ 3 ∼ 5LkT for L = 500 nm.

Let nBS and xmax be, respectively, the number of backscat-
tered carriers that return to the source and the maximum
distance that each backscattered carrier had reached before
returning to the source. Then, F can be estimated from the
MC simulation results by dividing nBS versus xmax by the total
number of scattering events at each point x. As shown in Fig. 5,
F for 1-D is quite uniform along the channel and close to 0.5,
as expected analytically. It is mostly less than 0.5 because some
of the carriers that backscatter scatter again and do not return to
the source.

C. Inelastic Scattering in 1-D

For inelastic scattering, we assume g-type intervalley scat-
tering with bulk silicon parameters [29]. For this scattering
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Fig. 5. F versus x estimated from the (symbol) MC simulation and the (solid
line) analytical formula for the 1-D model device, with L = 100 nm and Ex =
105 V/cm (linear potential) at TL = 300 K. M and σ are the mean and the
standard deviation of the MC simulation result, respectively. M is shown as
a dashed line. The error is estimated by taking the root mean square of the
difference between the analytical and the simulation results.

Fig. 6. MC simulation results for 1/R versus Ex (linear potential) for the 1-D
model device, with L = 100 nm/500 nm at TL = 300 K, considering elastic
and inelastic scattering mechanisms. (Inset) MC simulation results for l versus
Ex and comparison with L0 = �ωo/Ex, where �ωo is the LO phonon energy.

process, there are three phonon modes, namely, transverse
acoustic, longitudinal acoustic, and longitudinal optical (LO)
[29]. Due to the large momentum change and the almost con-
stant phonon energy, intervalley phonon scattering is usually
treated in the same way as optical phonon scattering [29].
Then, the scattering rate due to absorption and emission of each
intervalley phonon becomes

1
τ1-D

=
9πD2

if

8gνW 2ρωif

(
Ni +

1
2
∓ 1

2

)
g1-D(E ± �ωif) (12)

where Dif is the intervalley deformation potential, Ni is the
number of phonons, and �ωif is the intervalley phonon energy.

Fig. 6 shows the MC simulation results for 1/R versus Ex,
considering both elastic and inelastic scattering mechanisms for
linear potential profiles. We observe that 1/R increases with Ex

as it did in the elastic scattering case; however, the slope rolls
off as Ex increases. It has been suggested that l is the distance
over which the potential drops by the optical phonon energy for
the inelastic scattering process [16]. Among the three inelastic
scattering processes, the LO process is dominant due to the
high Dif . Hence, we define L0 = �ωo/Ex, where �ωo is the
LO phonon energy, with �ωo = 0.062 eV [29]. For our model
device at room temperature, the intravalley acoustic phonon and
the LO processes are the two dominant scattering mechanisms.
As shown in the inset of Fig. 6, l decreases with increasing Ex

and finally approaches L0. Under relatively low electric fields,
L0 is long, and l is mainly controlled by elastic scattering near

Fig. 7. MC simulation results for the number of LO emissions versus x for the
1-D model device, with L = 100 nm and Ex = 105 V/cm (linear potential) at
TL = 300 K. The slab size is 2 nm. (Bar) l coincides with the position where
the LO emission is peaked.

the source region. As Ex increases, the optical phonon process
starts to dominate and l becomes ∼L0 because the carriers gain
enough energy to emit optical phonons near the source. Fig. 7
shows that the critical length coincides with the position where
LO emission is peaked. This means that once a carrier passes
through the critical region, it is hard for the carrier to go back
to the source because the carrier loses energy due to phonon
emission.

IV. BACKSCATTERING IN 2-D

In this section, we discuss the scattering physics of 2-D
transistors and how it differs from the 1-D case. We define a
2-D model device (Section IV-A) and discuss MC simulation
results for elastic (Section IV-B) and inelastic (Section IV-C)
processes.

A. Model Device

As a 2-D model device, we assume a silicon thin body with
W = 3 nm with (001) wafer, and the electrons are confined in
a 1-D box of width W . Only the lowest subband is considered,
with gν = 2 and m∗ = mt. The device schematic is shown in
Fig. 2(b).

B. Elastic Scattering in 2-D

In a similar approach used for the 1-D model device, we
assume intrasubband acoustic phonon scattering. Then, the
scattering rate due to acoustic phonon absorption/emission
becomes

1
τ2-D

=
3πD2

AkBTL

2gνW�ρυ2
S

g2-D (13)

where g2-D is the 2-D density of states, with g2-D =
gνm∗/π�

2. Then, λ0 is calculated as ∼104 nm at TL = 300 K
using bulk silicon parameters [29]. As it was for the 1-D case,
this λ0 may be too large for a realistic 2-D transistor because
our model treats phonon scattering only. The result extracted
from the MC simulation is ∼93 nm, which is consistent with
the analytical estimation. We note that λ0 for 1-D in Section II
is shorter than that for 2-D. This is due to the increased
electron–phonon wave function overlap that compensates for
the effect of the reduced density of states in 1-D [12].
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Fig. 8. MC simulation results for 1/R versus Ex (linear potential) for the 2-D
model device, with L = 100 nm/500 nm at TL = 300 K, considering elastic
scattering. (Inset) l/LkT versus Ex from the MC simulation.

Fig. 9. F versus x from the (symbol) MC simulation and the (line) analytical
formula for the 2-D model device, with L = 100 nm and Ex = 105 V/cm
(linear potential) at TL = 300 K. The error is estimated by taking the root
mean square of the difference between the analytical and the simulation results.

Fig. 8 shows MC simulation results for 1/R versus Ex

for the 2-D model device. The relation between 1/R and Ex

looks linear as it did in 1-D, and we observe similar Ex and
L dependences of l. The l/LkT ratio increases with Ex;
l ∼ 2LkT for L = 100 nm, and l ∼ 3LkT for L = 500 nm.
These critical lengths are shorter than those of 1-D but are
still longer than LkT. In Fig. 9, F from the MC simulation is
compared with the analytical result [17]

F =
cos−1

(√
ΔE/(ΔE + E0)

)
π

(14)

where ΔE = qExx for the linear channel potential. As ex-
pected, F decreases steadily as the carrier moves down the
potential drop.

Observations in Fig. 8 seem to show that backscattering
characteristics in 1-D and 2-D are similar. To determine why
it is so, we artificially increase DA for 2-D to make λ0 the
same for 1-D and 2-D. Then, R is the same for 1-D and 2-D
under low electric fields; however, we might observe some
difference under high electric fields. As shown in Fig. 10,
however, backscattering characteristics are very similar even
under high electric fields. This is surprising because 1-D and
2-D transistors have distinctively different characteristics for F
and scattering rates.

The similar backscattering characteristics in 1-D and 2-D
elastic scattering can be understood in the following way.
If we assume that a backscattered carrier propagates to the

Fig. 10. MC simulation results for R versus Ex (linear potential) for 1-D
and 2-D model devices, with L = 100 nm at TL = 300 K. The acoustic
deformation potential for 2-D has been artificially increased to make λ0 the
same for 1-D and 2-D.

Fig. 11. Analytical estimates for (a) F versus x, (b) S versus x, and (c) F × S
versus x for 1-D and 2-D transistors, with L = 100 nm and Ex = 105 V/cm
(linear potential) at TL = 300 K, where S is the scattering rate.

source without subsequent scattering, then R can be simply
estimated as

R ∼
L∫

0

dx
F (x)S(x)

υ(x)
(15)

where F (x) is the fraction shown in Fig. 1 and S(x) is the
scattering rate in (3) or (13). Although F (x) and S(x) are very
different for 1-D and 2-D transistors, their product F (x)S(x)
looks very similar, as shown in Fig. 11. Due to these compen-
sating effects of F (x) and S(x), R behaves similarly in 1-D
and 2-D transistors.

Fig. 11 also explains why the critical lengths for 2-D tran-
sistors are shorter than those for 1-D. As shown in Fig. 11(c),
F (x)S(x) near the source decreases more rapidly in 2-D than
in 1-D, indicating a shorter l for 2-D. This is because F (x) for
2-D drops more rapidly than S(x) for 1-D does, as shown in
Fig. 11(a) and (b). The sharp decrease of F (x) for 2-D comes
from (14), which is derived from the fact that only a small
fraction of backscattered carriers has sufficient longitudinal
momentum to return to the source due to the scattering into
transverse momentum states [17]. Therefore, we believe that
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Fig. 12. MC simulation results for 1/R versus Ex (linear potential) for the
2-D model device, with L = 100 nm at TL = 300 K. (Inset) MC simulation
results for l versus Ex and comparison with L0 = �ωo/Ex, where �ωo is the
LO phonon energy.

Fig. 13. MC simulation results for the number of LO emissions versus x for
the 2-D model device, with L = 100 nm and Ex = 105 V/cm (linear potential)
at TL = 300 K. The slab size is 2 nm. (Bar) l falls near the position where LO
emission is peaked.

the shorter critical lengths for 2-D are due to the scattering into
transverse momentum states.

C. Inelastic Scattering in 2-D

As in the 1-D analysis, we assume g-type intervalley scatter-
ing for inelastic scattering. Fig. 12 shows the MC simulation
results for 1/R versus Ex. Similar to the 1-D case, the 1/R
versus Ex slope rolls off, and l approaches L0 as Ex increases.
In Fig. 13, l is close to the distance from the source to the
position where LO emission is peaked, although a little shorter.
This is because l is determined by combining the critical lengths
due to the two dominant scattering mechanisms, namely, the
elastic acoustic phonon (lac) and the inelastic (L0) processes.
Between the two, the shorter one dominates. As discussed
in Section IV-B, lac is shorter in 2-D than in 1-D; hence,
the shorter lac in 2-D has a larger effect on the resulting l.
Therefore, l in 2-D is a little shorter than L0 while it is close
to L0 for 1-D, as shown in Fig. 7.

V. CONCLUSION

In this paper, we examined the concept of a critical length
for backscattering in 1-D transistors, considering elastic and
inelastic scattering mechanisms. We also compared the scat-
tering physics in 1-D and 2-D transistors using MC simu-
lations. We showed that the concept of a critical length is
still valid for elastic scattering in 1-D. Our theoretical expres-
sion for the backscattering coefficient, which was confirmed

by MC simulations, shows that the backscattering coefficient
depends on the kT length; however, the critical length is
somewhat greater than the kT length, and it also depends on
the potential profile in the channel. The analytical expression
also showed that backscattering is controlled by the near-
equilibrium mean free path even under high electric fields.
The role of inelastic scattering was studied using MC sim-
ulations, and the results support the work of [15]; the crit-
ical length for inelastic scattering is related to the phonon
energy. Finally, we showed that backscattering coefficients in
2-D behave very similarly to those in 1-D. For elastic scattering,
this similarity is explained in terms of the compensating effects
of the scattering rate and the fraction of scattered carriers that
contribute to the backscattering coefficient. For inelastic scat-
tering, the critical length is determined by the phonon energy
for both 1-D and 2-D.
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