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This paper presents a physics-of-failure (PoF)-based prognostics and health management
approach for effective reliability prediction. PoF is an approach that utilizes knowledge of
a product’s life cycle loading and failure mechanisms to perform reliability design and
assessment. PoF-based prognostics permit the assessment of product reliability under its actual
application conditions. It integrates sensor data with models that enable in situ assessment of
the deviation or degradation of a product from an expected normal operating condition (ie, the
product’s ‘health’) and the prediction of the future state of reliability. A formal implementation
procedure, which includes failure modes, mechanisms, and effects analysis, data reduction and
feature extraction from the life cycle loads, damage accumulation, and assessment of
uncertainty, is presented. Then, applications of PoF-based prognostics are discussed.

Key words: electronics; physics-of-failure; prognostics; reliability prediction.

1. Introduction to the prediction of reliability

Reliability prediction of electronics started with Mil-HDBK-217A, published in 1965.
In this handbook, there was only a single point failure rate for all monolithic
integrated circuits, regardless of the stresses, the materials or the architecture of the
device. Mil-HDBK-217B was published in 1973, with the RCA/Boeing models
simplified by the U.S. Air Force to follow a statistical exponential (constant failure
rate) distribution. Since then, all the updates were mostly ‘band-aids’ for a modelling
approach that was proven to be flawed (Pecht and Dasgupta, 1995).
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Some other handbook reliability prediction methods for electronic products
followed the approach of Mil-HDBK-217. These included: 217-PLUS, Telcordia
(2001), PRISM (Denson, 1999) and FIDES (2004). All of these methods rely on the
collection of field failure data, but rarely is actual root cause analysis conducted. These
methods generally assume the components of the product have failure rates (most
often assumed to be constant) that can be modified by independent ‘modifiers’ to
account for various quality, operating and environmental conditions. There are
numerous well documented problems with this type of modelling approach (Cushing
et al., 1993; Leonard, 1991; Talmor and Arueti, 1997; Wong, 1990). The general
consensus is that these handbooks should never be used, because they are inaccurate
for predicting actual field failures and provide highly misleading predictions, which
can result in poor designs and logistics decisions (Cushing et al., 1993; Morris, 1990).
Today, good companies do not use these methods.

In 1987–1990, the Center for Advanced Life Cycle Engineering (CALCE) at the
University of Maryland was awarded a contract to update Mil-HDBK-217. It was
concluded that this handbook should be cancelled and the use of this type of
modelling approach discouraged.

In 1998, the IEEE 1413 standard, ‘IEEE Standard Methodology for Reliability
Prediction and Assessment for Electronic Systems and Equipment’, was approved to
provide guidance on the appropriate elements of a reliability prediction (IEEE
Standard 1413, 1998). A companion guidebook, IEEE 1413.1, ‘IEEE Guide for Selecting
and Using Reliability Predictions Based on IEEE 1413’, provides information and an
assessment of the common methods of reliability prediction for a given application
(IEEE Standard 1413.1, 2002). It is shown that the Mil-HDBK-217 and the related
handbook methods, such as Telcordia, PRISM, FIDES and 217-PLUS, are flawed. There
is also discussion of the advantage of reliability prediction methods that use physics-
of-failure (PoF).

The PoF approach and design-for-reliability (DfR) methods have been developed
by CALCE (Pecht and Dasgupta, 1995) with the support of industry, government and
other universities. PoF is an approach that utilizes knowledge of a product’s life cycle
loading and failure mechanisms to design for and assess reliability. The approach is
based on the identification of potential failure modes, failure mechanisms and failure
sites for the product as a function of the product’s life cycle loading conditions. The
stress at each failure site is obtained as a function of both the loading conditions and
the product geometry and material properties. Damage models are then used to
determine fault generation and propagation.

Prognostics and health management (PHM) is a method that permits the
assessment of the reliability of a product (or system) under its actual application
conditions. When combined with PoF models, it is thus possible to make continuously
updated predictions based on the actual environmental and operational conditions.

Assessing the extent of deviation or degradation from an expected normal
operating condition (ie, health) for electronics provides data that can be used to
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meet several critical goals, which include (1) providing advance warning of failures;
(2) minimizing unscheduled maintenance, extending maintenance cycles, and
maintaining effectiveness through timely repair actions; (3) reducing the life cycle
cost of equipment by decreasing inspection costs, downtime, and inventory; and
(4) improving qualification and assisting in the design and logistical support of fielded
and future systems (Vichare and Pecht, 2006).

The importance of PHM has also been explicitly stated in the U.S. Department of
Defense 5000.2 policy document on defence acquisition, which states that ‘program
managers shall optimize operational readiness through affordable, integrated,
embedded diagnostics and prognostics, embedded training and testing, serialized
item management, automatic identification technology, and iterative technology
refreshment’ (DoD 5000.2 Policy Document, 2004). Thus, a prognostics capability has
become a requirement for any system sold to the U.S. Department of Defense.

2. Prognostic modelling of stress and damage utilizing life cycle loads

A product can be subject to loads that arise during manufacturing, shipment, storage,
handling, operating and non-operating conditions. These life cycle loads (thermal,
mechanical, chemical, electrical, and so on), can either individually or in various
combinations, lead to performance or physical degradation of the product and reduce
its service life. The extent and rate of product degradation depends upon the
magnitude and duration of exposure to loads (usage rate, frequency and severity). In
the PoF-based prognostics approach, the life cycle loads are monitored in situ, and
used in conjunction with PoF-based damage models to assess the degradation related
to cumulative load exposures.

Ramakrishnan and Pecht (2003), and Mishra et al. (2002) used PoF-based
prognostics to assess an electronic component-board assembly placed under the
hood of an automobile and subjected to normal driving conditions. The test board
incorporated surface-mount leadless inductors soldered onto an FR-4 substrate using
eutectic tin–lead solder. Temperature and vibrations were measured in situ on the
board in the application environment. Using the monitored environmental data, stress
and damage models were successfully used to estimate consumed life.

Shetty et al. (2002) applied the PHM methodology to conduct prognostic remaining
life assessment of the End Effector Electronics Unit (EEEU) inside the robotic arm of
the space shuttle remote manipulator system (SMRS). A life cycle loading profile of
thermal and vibration loads was developed for the EEEU circuit boards. Damage
assessment was conducted using physics-based mechanical and thermo-mechanical
damage models. A prognostic estimate using a combination of damage models,
inspection and accelerated testing showed that there was little degradation in the
electronics and that their designed for life (of 20 years) could be extended.

Mathew et al. (2006, 2007) applied a similar PoF-based prognostics methodology to
conduct a remaining life assessment of circuit cards inside the space shuttle solid
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rocket booster (SRB). Vibration time history recorded on the SRB from the pre-launch
stage to splashdown was used in conjunction with physics-based models to assess
damage. Using the entire life cycle loading profile of the SRBs, the remaining life of the
components and structures on the circuit cards was predicted. It was determined that
an electrical failure was not expected within another 40 missions.

Gu et al. (2007a) developed a methodology for monitoring, recording and analysing
the life cycle vibration loads for remaining life prognostics of electronics in the time
domain. The responses of printed circuit boards (PCB) to vibration loading in terms of
bending curvature were monitored using strain gauges. The interconnect strain values
were then calculated from the measured PCB response and used in a vibration failure
fatigue model for damage assessment. Damage estimates were accumulated using
Miner’s rule after every mission and then used to predict the life consumed and
remaining life.

Simons and Shockey (2006) performed a PoF-based prognostics methodology for
failure of a gull-wing lead power supply chip on a DC/DC voltage converter PCB
assembly. First, three-dimensional finite element analyses (FEA) were performed to
determine strains in the solder joint related to thermal or mechanical cycling of the
component. The strains could be related to lead bending resulting from the thermal
mismatch of the board and chip, and those resulting from local thermal mismatch
between the lead and the solder, as well as between the board and the solder. Then the
strains were used to set boundary conditions for an explicit model that could simulate
initiation and growth of cracks in the microstructure of the solder joint. Finally, based
on the growth rate of the cracks in the solder joint, estimates were made of the cycles
to failure for the electronic component.

Nasser and Curtin (2006) applied the PHM methodology to predict failure of the
power supply. They subdivided the power supply into component elements based on
specific material characteristics. Predicted degradation within any single or combi-
nation of component elements could be rolled up into an overall reliability prediction
for the entire power supply system. Their PHM technique consisted of four steps:
(1) acquiring the temperature profile using sensors; (2) conducting FEA to perform
stress analysis; (3) conducting fatigue prediction of each solder joint; and (4) predicting
the probability of failure of the power supply system.

Searls et al. (2001) undertook in situ environment loading, such as temperature
measurements, in both notebook and desktop computers used in different parts of the
world. In terms of the commercial applications of this approach, IBM has installed
temperature sensors on hard drives (Drive-TIP; Herbst, 2005) to mitigate risks related
to severe temperature conditions, such as thermal tilt of the disk stack and actuator
arm, off-track writing, data corruptions on adjacent cylinders, and outgassing of
lubricants on the spindle motor.

Vichare et al. (2004, 2007) also conducted in situ health monitoring of notebook
computers. The authors monitored and statistically analysed the temperatures inside
a notebook computer, including those experienced during usage, storage and
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transportation, and discussed the need to collect such data both to improve the
thermal design of the product and to monitor prognostic health. After the data was
collected, it could be used to estimate the distributions of the load parameters. The
usage history was used for damage accumulation and remaining life prediction.

In 2001, the European Union funded a 4-year project, ‘Environmental Life-Cycle
Information Management and Acquisition’ (ELIMA), which aimed to develop ways to
manage the life cycles of products (Bodenhoefer, 2004; ELIMA Report, 2005). The
objective of this work was to predict the remaining lifetime of parts removed from
products, based on dynamic data, such as operation time, temperature and power
consumption. As a case study, the member companies monitored the application
conditions of a game console and a household refrigerator. The work concluded that
in general, it was essential to consider the environments associated with all life
intervals of the equipment. These included not only the operational and maintenance
environments, but also the pre-operational environments, when stresses maybe
imposed on the parts during manufacturing, assembly, inspection, testing, shipping
and installation. Such stresses are often overlooked, but can have a significant impact
on the eventual reliability of equipment.

Tuchband and Pecht (2007) presented the use of prognostics for military line
replaceable units (LRU) based on their life cycle loads. The study was part of an effort
funded by the Office of Secretary of Defense to develop an interactive supply chain
system for the U.S. military. The objective was to integrate prognostics, wireless
communication and databases through a web portal to enable cost-effective mainte-
nance and replacement of electronics. The study showed that prognostics-based
maintenance scheduling could be implemented into military electronic systems. The
approach involved an integration of embedded sensors on the LRU, wireless
communication for data transmission, a PoF-based algorithm for data simplification
and damage estimation, and a method for uploading this information to the Internet.
It was shown that the use of prognostics for electronic military systems could enable
failure avoidance, high availability and reduction of life cycle costs.

3. PoF-based PHM implementation approach

The general PHM methodology is shown in Figure 1. The first step involves a virtual
(reliability) life assessment, where design data, expected life cycle conditions, failure
modes, mechanisms and effects analysis (FMMEA), and PoF models are the inputs.
Based on the virtual life assessment, the critical failure modes and failure mechanisms
are prioritized. The existing sensor data, built-in-test results, maintenance and
inspection records, and warranty data are also used to identify the abnormal
conditions and parameters. Based on this information, the monitoring parameters and
sensor locations for PHM can be determined.

Based on the collected operational and environmental data, the health status of the
products can be assessed. Damage can also be calculated from the PoF models to
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obtain the remaining life. Then PHM information can be used for maintenance
forecasting and decisions that minimize life cycle costs, maximize availability or some
other utility function.

3.1 Failure mode, mechanism, and effect analysis

Failure modes, mechanisms and effects analysis (FMMEA) used in the PoF-based
PHM approach is shown in Figure 2. Design capture is the process of collecting
structural (dimensional) and material information to generate a model. This step
involves characterizing the product at all levels, ie, parts, systems, as well as physical
interfaces. In most cases, this information is developed within the design process.

The reliability assessment step involves identification of appropriate PoF models
for the identified failure mechanisms. A load-stress analysis is conducted using
material properties, product geometry and the life cycle loads. With the computed
stresses and the failure models, a damage analysis is conducted and then the
accumulated damage is estimated using a damage model.

A failure mode is the effect by which a failure is observed to occur (Pecht, 1995). All
possible failure modes for each identified element should be listed. Potential failure
modes may be identified using numerical stress analysis, accelerated tests to failure
(eg, HALT), past experience and engineering judgment. A failure cause is defined as
the specific process, design and/or environmental conditions that initiate a failure,
whose removal will eliminate the failure. Knowledge of potential failure causes can
help identify the failure mechanisms driving the failure modes for a given element.

Physics-of-failure
Based life
consumption 
monitoring

• Existing sensor data

• Built-in-test

• Maintenance and
  inspection records 
• Warranty data

System health
status and
prognostics

Remaining life
assessment

Design data

Life cycle
expectationst

FMMEA

PoF models

Virtual life
assessment

Life cycle logistics
and cost analysis 

Figure 1 PoF-based PHM methodology
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Failure mechanisms are the physical, chemical, thermodynamic or other processes
that result in failure. Failure mechanisms are categorized as either overstress or wear-
out mechanisms. Overstress failure arises as a result of a single load (stress) condition,
which exceeds a fundamental strength property. Wear-out failure arises as a result of
cumulative damage related to loads (stresses) applied over an extended time. Within
current technology, PHM can only be applied in the wear-out failure mechanisms.
Some example wear-outs failure mechanisms for electronics are presented in Table 1
(Vichare and Pecht, 2006).

Failure models help quantify the failure through evaluation of time-to-failure or
likelihood of a failure for given set of geometries, material construction, environmen-
tal and operational conditions. For wear-out mechanisms, failure models use both
stress and damage analysis to quantify the damage accumulated.

3.2 Life cycle load monitoring

In the life cycle of a product, several failure mechanisms may be activated by different
environmental and operational parameters acting at various stress levels, but in
general, only a few operational and environmental parameters, and failure
mechanisms, are responsible for the majority of the failures. High-priority mechan-
isms are those with high combinations of occurrence and severity. Prioritization of the
failure mechanisms provides an opportunity for effective utilization of resources.
If one can measure these loads in situ, the load profiles can be used in conjunction with
damage models to assess the degradation related to cumulative load exposures. The
typical life cycle loads have been summarized in Table 2 (Vichare and Pecht, 2006).

Material
properties and

product
geometries

Define item and identify
elements and functions 

to be analyzed

Estimated life
cycle loading

Identify potential failure
modes 

Identify potential failure
causes

Monitor life cycle 
environment and
operating loading

Conduct data
reduction and load
feature extraction

Perform
stress/strain and

damage
calculation

Remaining
useful life
estimation

Choose
monitoring
parameters

and locations

Document the process

Prioritize the failure
mechanisms 

Identify failure models

Identify potential failure 
mechanisms

Maintenance
records

Figure 2 FMMEA analysis used in the PHM approach
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3.3 Data reduction and load feature extraction

Experience has shown that even the simplest data collection systems can accumulate
vast amounts of data quickly, requiring either a frequent download procedure or a

large capacity storage device (Harris and McNee, 2003). Therefore, data reduction is

necessary. Vichare et al. (2006, 2007) described the accuracy associated with a number

of data reduction methods such as: ordered overall range (OOR), rainflow cycle

counting, range-pair counting, peak counting, level crossing counting, fatigue meter

Table 2 Life cycle loads

Load Load conditions

Thermal Steady-state temperature,
temperature ranges, temperature cycles,
temperature gradients, ramp
rates, heat dissipation

Mechanical Pressure magnitude, pressure gradient,
vibration, shock load,
acoustic level, strain, stress

Chemical Aggressive versus inert environment,
humidity level, contamination,
ozone, pollution, fuel spills

Physical Radiation, electromagnetic
interference, altitude

Electrical Current, voltage, power

Table 1 Failure mechanisms, relevant loads, and models in electronics

Failure mechanisms Failure sites Relevant loads Failure models

Fatigue Die attach,
Wirebond/ TAB, solder
leads, bond pads, traces,
vias/PTHs, interfaces

�T, Tmean,
dT/dt, dwell
time, �H, �V

Nonlinear
Power Law
(Coffin–Manson)

Corrosion Metallizations M, �V, T Eyring (Howard)
Electromigration Metallization T, J Eyring (Black)
Conductive filament

formation
Between metallization M, rV Power Law (Rudra)

Stress driven diffusion
voiding

Metal traces S, T Eyring (Okabayashi)

Time dependent
dielectric breakdown

Dielectric layers V, T Arrhenius
(Fowler–Nordheim)

T, temperature; H, humidity; �, cyclic range; V, voltage; M, moisture; J, current density; r, gradient; S, stress.
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counting, range counting, etc. The efficiency measures of data reduction methods
include: gains in computing speed and testing time; the ability to condense load
histories without sacrificing important damage characteristics; and estimation of the
error introduced by omitting data points.

As shown in Figure 3, a time-load signal can be monitored in situ using sensors, and
further processed to extract (in this case) cyclic range (�s), cyclic mean load (Smean),
rate of change of load (ds/dt) and dwell time (tD) using embedded load extraction
algorithms. The extracted load parameters can be stored in appropriately binned
histograms to achieve further data reduction. After the binned data is downloaded, it
can be used to estimate the distributions of the load parameters. This type of output
can be input to fatigue damage accumulation models. Embedding the data reduction
and load parameter extraction algorithms into the sensor modules as suggested by
Vichare et al. (2006) can lead to a reduction in on-board storage space, lower power
consumption and uninterrupted data collection over longer durations.

In Vichare’s studies (Vichare et al., 2004, 2006), temperature data was processed using
two algorithms: 1) ordered overall range (OOR) to convert an irregular time–
temperature history into peaks and valleys and also to remove noise related to small
cycles and sensor variations, and 2) a three-parameter rainflow algorithm to process the
OOR results to extract full and half cycles with cyclic range, mean and ramp rates. The
approach also involved optimally binning data in a manner that provides the best
estimate of the underlying probability density function of the load parameter. The load
distributions were developed using non-parametric histogram and kernel density
estimation methods. The use of the proposed binning and density estimation techniques
with a prognostic methodology were demonstrated on an electronic assembly.
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3.4 Damage assessment and remaining life calculation

PoF-based failure models use appropriate stress and damage analysis methods to

evaluate the susceptibility to failure based on the time-to-failure or likelihood of a
failure for a given geometry, material construction, and environmental and set of

operational conditions (Ganesan et al., 2005). The loading feature (eg, cyclic range,

cyclic mean, ramp rate and dwell time) from raw data (eg, temperature, vibration)

after feature extraction can be the input of the failure model to calculate the damage.

Then the damage is accumulated over a period until the item is no longer able to

withstand the applied load. Remaining life prediction is the process of estimating the

remaining life (eg, the time in days, distance in miles) through which the product can
function reliably, based on the damage accumulation information (Mishra et al., 2002).

Some models used to calculate the damage caused by temperature and vibration

loadings are summarized in Figure 4. Damage caused by temperature can be

calculated in the time domain using Coffin Manson’s model. This approach has been

demonstrated in Zhang’s work (2007) and Cluff et al.’s work (1996). Damage caused

by vibration can be calculated in both the time and frequency domains. Time domain
modelling has been demonstrated by Gu et al. (2007a), and frequency domain

modelling has been demonstrated by Mathew et al. (2007).

3.5 Uncertainty implementation and assessment

The PoF models can be used to calculate the remaining useful life, but it is necessary to

identify the uncertainties in the prognostic approach and assess the impact of these

uncertainties on the remaining life distribution in order to make risk-informed

decisions. With uncertainty analysis, a prediction can be expressed as a failure

probability.

Temperature data

Time domain

PoF models

• Coffin manson’s model
• 1st order calcePWA model

Vibration data

Time domain
Frequency

domain

Basquin’s model
1st order

Steinberg’s model

Damage accumulation (e.g., Miners rule)

Product remaining useful life assessment

Figure 4 Damage calculation approach for temperature and
vibration data
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Gu et al. (2007b) implemented uncertainty analysis of prognostics for electronics

under vibration loading. Gu identified the uncertainty sources and categorized them

into four different types: measurement uncertainty, parameter uncertainty, failure
criteria uncertainty and future usage uncertainty (Figure 5). Gu et al. (2007b) utilized a

sensitivity analysis to identify the dominant input variables that influence the model

output. With information of input parameter variable distributions, a Monte-Carlo
simulation was used to provide a distribution of accumulated damage. From the

accumulated damage distributions, the remaining life was then predicted with

confidence intervals. A case study was also presented for an electronic board under
vibration loading and a step-by-step demonstration of the uncertainty analysis

implementation. The results showed that the experimentally measured failure time
was within the bounds of the uncertainty analysis prediction.

4. Application of PoF implementation for PHM

A PoF-based prognostics approach can be used in different areas, such as new

products and legacy systems. When the new product has not been manufactured, it is
impossible to use the data-driven method since there will no data available for

training the algorithm. In the PoF method, one only has to change the material

properties or geometries to model the new products. Since most new products are not
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inaccuracies and data

reduction effect

Parameter uncertainty

Consider parameters in load stress
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Damage distribution
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Failure criteria uncertainty

Remaining
life
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Consider the
future usage at
different loading

intervals

Future usage
uncertainty

Consider the failure criteria as intervals

Figure 5 Uncertainty implementation for prognostics
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completely different from previous products, similar products can be referenced via a
failure modes, mechanisms and effects analysis (FMMEA; Ganesan et al., 2005).

For legacy system, training data is difficult to obtain, and it is also very difficult to
assess a remaining life if there is no understanding of the failure mechanisms and
their influence on collected parameters. The PoF-based PHM approach is based on an
understanding of the structure and life cycle conditions of the legacy system and its
failure modes and mechanisms. The first step is to utilize available information (such
as previous loading conditions, maintenance records and so on) to assess the health
status of the legacy system. The second step is to calibrate the health status using
individual unit data so that an assessment of individual legacy systems’ health can be
derived. The third step involves the use of sensors and prognostic algorithms to
update the health status on a continual basis to provide the most up-to-date prognosis
of the system (Tuchband et al., 2006).

5. Summary

Traditional reliability predictions based on handbook methods are inaccurate and
misleading. In this paper, we have shown that PoF-based PHM is more suitable for
reliability (remaining life) assessment, since it considers actual operational and
environmental loading condition for individual product.

Currently research has been done on building physics-based damage models for
electronics, obtaining the life cycle data of product, and assessing uncertainty in
remaining useful life prediction in order to make the PHM more realistic. More
research areas are investigated on advance sensor technologies, communication
technologies, decision-making methods and return of investment methods.

In the future, because of the increasing amount of electronics in the world and the
competitive drive toward more reliable products, PoF-based PHM is being looked
upon as a cost-effective solution to predict the reliability of electronic products and
systems, since it can help identify the most critical failure under products’ real
application condition.
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