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Abstract

This is a review of the present status of heavy-ion collisions at intermediate energies. The
main goal of heavy-ion physics in this energy regime is to shed some light on the nuclear
equation of state (EQS), hence we present the basic concept of the EOS in nuclear matter as
well as of nuclear shock waves which provide the key mechanism for the compression of
nuclear matter.

The main part of this article is devoted to the models currently used for describing
heavy-ion reactions theoretically and to the observables useful for extracting information
about the EOS from experiments. A detailed discussion of the flow effects with a broad
comparison with the available data is presented,

The many-body aspects of such reactions are investigated via the multifragmentation
break up of excited nuclear systems and a comparison of model calculations with the most
recent multifragmentation experiments is presented.

This review was received in June 1993.
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1. Introduction

Since the beginning of this century the bombarding of heavy nuclei with energetic heavy
projectiles has been ope of the most important experimental tools for nuclear physicists. The
first experiments of this type were performed in the mid 1930s, using cosmic radiation as
projectiles and ionization chambers and Geiger counters as detectors. Later on photographic
emulsions were used as a permanently working analogue to the cloud chamber (Schopper
1937, Schopper and Schopper 1939) and a lot of data concerning nucleon—nucleus and
nucleus—nucleus collisions up to very high energies have been obtained with cosmic-ray
projectiles (Friedlander and Friedmann 1967). Unfortunately cosmic radiation samples a
wild mixture of projectiles with different masses, charges and energies. So one had to
wait until the mid 1970s, when several heavy-ion accelerators became available providing
the possibility of accelerating heavy ions up to energies of several hundred MeV per
nucleon. The most important facilities are the BEVALAC at Berkeley (which was shut
down in early 1993), the GSI at Darmstadt with the UNILAC and the heavy-ion synchrotron
818, the SATURNE synchrotron at Saclay, the GANIL Cyclotron at Caen, the NSCL
Superconducting Cyclotron at East Lansing, as well as the facilities in Dubna, Brookhaven,
and CERN which provide heavy-ion beams with ultra relativistic energies (for a detailed
overview of the experiments see, for example, Kampert (1989), Gutbrod et af (198%a),
Schmidt (1991), Schmidt and Schukeaft (1993)).

With the invention of these accelerators it became possible to study hot and dense
nuclear matter through heavy-ion collisions in a laboratory environment, and, indeed, this
new field of physics with all its fascinating features was opened for investigation.

A central role in hot and dense nuclear matter physics is played by the nuclear equation
of state (EOS} which contains the intriguing possibilities of various phase transitions (liguid—
gas, meson condensate, quark—gluon plasma, etc) and it is important for the understanding
of the physics of the early universe and the static and dynamical behaviour of stars (e.g.,
supernovae explosions (Miiller 1990)). It is therefore one of the main goals of the heavy-
ion experiments to extract the nuciear EQS, i.e. the density dependence of the thermostatic
properties of nuclear matter (energy and pressure) from observations. This, however, can
only be done if it is possible to compress nuclear matter to high densities and to heat it to
high temperatures in the laboratory. The only mechanism known to achieve this is nuclear
shack wave compression and heating in high-energy heavy-ion collisions (Scheid ez af 1968,
1974, Chapline et al 1973). These early papers can be considered as the starting point of
high-energy heavy-ion physics. Scheid et al (1968, 1974) discussed, in particular, for the
first time the collective flow that until now has been the most prominent signal for nuclear
compression. I part of the projectile—target system has been compressed and heated up by
such a mechanism, collective flow will appear and the matter will start to expand freely
and, in this expansion stage, it will also probe the E0s at low densities. However, all these
processes are not directly accessible in an experiment. All that can be measured are the final-
state observables (‘the ashes out of the compression zone’) that emerge out of the expansion
stage. Their final states will probably be highly distorted from interactions taking place after
the compression stage. The only possibility for learning something from the experimental
observables is therefore to compare them with complete theoretical descriptions of heavy-
ion collisions utilizing different physical scenarios as input. The purpose of this review is to
present the most important dynamical models that are used to describe heavy-ion reactions
theoretically and to introduce the observables that can be used to extract information about
the EOS. Since our main goal is to learn about the EOS, we present in section 2 the basic
concept of the EOS of nuclear matter and give a short overview of the basic features of nuclear
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shock waves. In section 3 we present the most important models used to describe heavy-ton
collisions, The huge variety of different models can be grouped into two categories. The
so-called macroscopic models are presented in section 3.1. They describe the reaction via
macroscopic, thermodynamical quantities such as energy, pressure, entropy and density.
The equations of motion are the hydrodynamical equations which describe the conservation
laws for energy, momentum and matter flow. The macroscopic models have the great
advantage that they use the EOS directly as input. This makes these models best suited for
a qualitative and even semi-quantitative investigation of the effects of the EOS on the final
stage of the reaction. However, the concepts of the macroscopic models rely—at least—on
local equilibrium and it is yet not clear whether any form of equilibrium is achieved in
heavy-ion reactions at higher energies.

On the other hand, there exist various models that describe heavy-ion reactions
microscopically in terms of the dynamics of the interacting nucleons. The most important
models of this group, i.e. the Viasow—Uehling—Uhlenbeck (vUU) model and the quantum
molecular dynamics (QMD) model, are presented in section 3.2.

Section 4 deals with the most promising observables that have so far been found to
give hints on the EOS. The first observable is the coliective flow that had been proposed
by early hydrodynamical models to depend strongly on the EOS (Scheid et al 1968, 1974,
Baumgardt ez af 1975). The in-plane transverse flow as well as the out-of-plane squeeze-out
have experimentally been observed. We present detailed investigations of these observables
and compare the experimental data with the model results in section 4,1,

In section 4.2 the stopping power in heavy-ion collisions is investigated. The degree of
thermalization is determined microscopically and the extent to which the basic assumptions
of the macroscopic models are justified is discussed.

In section 5 we switch over to the physics dealing with the low density part of the EOS.
In low-energy heavy-ion collisions the collision path may cross the boundary line between
nuclear liquid and vapour which may result in a phase transition with an increase in the total
entropy and the fragmentation of the system. While the entropy is not directly accessible the
formation of intermed:iate mass fragments can be observed. Therefore we devote this section
to the multifragmentation properties in heavy-ion collisions. This topic has gained much
interest recently, since it became, for the first time, possible to study muitifragmentation in
exclusive experiments. We confront in detail the QMD calculations with the experiments,

The ulira relativistic heavy-ion collisions with Egem/A 3> 2A GeV are not discussed in
this review. This interesting subject, even though smoothly connected to the present topic is
beyond the scope of this article and will be presented separately. This procedure is justified
by the many new phenomena appearing through the creation of new mesons and baryons
and their antiparticles and their mutual annihilation. We also cannot discuss the manifold
of the, physically, most exciting signals which deal with the produced particles (e.g. pions,
kaons, di-leptons etc); these will also be presented separately.

2. The concept of the equation of state and the mechanism of shock compression
Suppose there is infinite nuclear matter, consisting of nucleons only (the inclusion of

resonances is then straightforward). If we cut out a piece of volume V and ask for the
energy content in that volume, it will be given by

Ey =LQ(T)'WIQ(T)1 T(r)jav. 1
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1t is this energy density functional W{g, T) that we call in this simple scenario the
equation of state (EOS). It contains all the important thermodynamical features of nuclear
matter. For example the pressure is given by (Eisenberg and Greiner 1987)
arE

rv0==(57), = (55)
, BV /7 N=constant V2 dg T, N=constant

__Nz(a E) _Qz(aw)
Vz BQ N 7, N=constant ag T, N=constant

For T = 0 the saturation of the nuclear forces leads to a minimum of W{g, T) at
the saturation or equilibrium density gg. Fits to noclear binding energies and density
distributions lead to (Scheid er af 1968, 1974, Stock 1975, Blaizot 198()

op = 0.166 + 0.027 fm™* Wigg, T = 0) = =16 % 0.5 MeV/nucleon.

The curvature of W(p, T = 0) near gy characterizes the compressibility of nuclear
matter, Larger curvature obviously implies that more energy is necessary for compression.
The nuclear (in)compressibility constant X is defined by the change in energy of a nucleus
as a reply to a change in the radius.

d‘w P FwW
K=R_—— =9(—-i—gz—2—> : 3)
dR @ 3'@ T, N=constant
At g = gg, the pressure £ vanishes per defipition and the compressibility constant is
given by
2w
K =90} (——2) : *
3 e T, N =constant

The curvature of the EOS can be determined from giant monopole vibrations in spherical
nuclel and was measured to {(Blaizot 1989, Sharma 1989, Blaizot et al 1976)

K =210% 30 MeV (5)

but other groups prefer values of 290 & 20 MeV (Co and Speth 1986}, Clearly there are
great uncertainties in measuring even the compressibility constant at normal nuclear matter
density. The problem rests in the unknown collective mass B which enters the monopole
energy.

It is appropriate, at least in principle, to find a reasonable theory of nuclear matter, that
predicts the nuclear matter properties from first principles. This would mean that one has to
develop a many-body theory for nuclear matter as a system of interacting nucleons for which
the parameters defining the nucleon—nucleon interaction describe both the behaviour of
nucleons in the vacuum (i.e. the nucleon-nucleon scattering phase shifts) and the properties
of nuclear matter (i.e. saturation density and binding energy). Calculations done so far using
realistic nucleon—nucleon interactions which were fitted to describe the free scattering data
have failed ta describe nuclear matter properties (Green 1976, Anastasio et @l 1978, Day and
Coester 1976, Lagaris and Pandharipande 1981, Day 1981, Backmann et a! 1972). Potentials
which reproduce the correct saturation density predict a binding energy per nucleon which
is too small by roughly 5 MeV and those potentials which predict the correct binding energy
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yield saturation densities twice as large as the empirical value. There i3, however, evidence
that this problem may be solved by taking into account higher correlations (Dickhoff er af
1982) or relativistic effects (Anastasio et a/ 1983, Brockmann and Machleidt 1984, Serot
and Walecka 1986).

This, however, has not yet been achieved. So the procedure is as follows. First one
has to find some reasonable parametrizations of the E0s that can be used as an input for
theoretical models, which should then be tested by comparisons with experimental data.
The main difficulties here are o find the proper theoretical models for nuclear dynamics
and then to find the appropiate experimental observables which are sensitive to the EOS of
cold nuclear matter.

Before doing so, we will incorporate the more or less known properties of nuclear matter,
i.e. the saturation density gg, the binding energy Wy, the compressibility coostant X and
the effective mass m* of the nucleons, into a self-consistent phenomenological approach to
nuclear matter. Since the last two quantities (K and m*) are known only very imprecisely we
here have the opportunity to test how a change in these ground-state properties will influence
the high-density port of the EQS. For this purpose we use the self-consistent relativistic mean-
field model, developed by Diirr (1956) and later by Walecka (1974) and Serot and Walecka
{1985) and further by Boguta and Bodmer (1977) and Boguta and Stiicker (1983).

The relativistic mean-field model discussed here (see Theis et al 1983, Waldhauser er
al 1987, 1988) consists of nucleons (and deltas} obeying the Dirac equation, of a classical
spin-zero attractive meson field (@) obeying the Klein—Gordan equation, of a spin-one
repulsive meson field (V,) obeying the Proca equation and a meson-baryon interaction
between them. The scalar interaction includes explicitly nonlinear terms, which allow a
more realistic description of the nuclear matter properties.

The mode] Lagrangian is

L = Wn(iy 0" — ma)Wn — U(p) — 30.08%0 — 3 Fu F*Y — Im2V, V#
— g Unng — g Uny UV 6

where the field tensor is defined as

av, av,
F p = - .
M dx,  dx, @
' The potential function U(p) is taken as
Ulp) = §mig® + 1b0” + jog*. (8)

For rotationally and translationary invariant symmetric nuclear matter the field equations
for the meson field, in the mean-field approximation, are

mipo + b} + cpy = —g.' off
miVe =)0/ )
V =0
The energy density is given by
1 (g , LT B S S .
=5 BT UG G | PHE DT A (10
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where the effective mass mj, of the nucleon is defined as m¥; = mn+ g ¢o. The degeneracy
factor yy = 4 corresponds to spin—isospin 1/2 nucleons. The fowr relevant parameters of

the model, the dimensionless coupling constants
_ 8llmy C. = MmN B__ 2 __€
' (g Pmy (g¥)*

Cy = BTN
My My

are adjusted to fit the ground-state properties for cold (¥ = 0} nuclear matter (for details of
the parametrization see Waldhauser et af (1988)).
Now we can study the dependence of the EOS on the ground-state properties my(gg) and
K. Figure 1 shows the strong dependence of the E0S on the effective mass, when a fixed
compressibility constant is used, while figure 2 shows the influence of the compressibility
constant K for a fixed value of the effective mass. These results reveal the difficulties one

encounters if one wants to extract the £08 from heavy-ion data, where one will always be
dealing with compressed and hot nuclear matter, permanently changing due to the violent

mUgo} = 0.65, Kigg) = 210-400 MeV

dynamics.
Kigg) = 300 MeV, m*gg) = 0.55-0.85
e k=20 MV iff ]
80F — K=300Mv )} 4
------- K = 400 MeV  J///

E/A {MeV)

E/A (MeV)

2/

2s/ Qo

Figure 2. The gos for a fixed value of the ground-state

Figure 1. The e0s for cold nuclear matter is shown
for fixed ground-staie binding energy, baryon density
and ground-state compressibility for different effective
masses as indicated (Waldhauser ef af 1988),

Next we investigate possible phase transitions that are favoured by such an EOS.
Therefore we additionally include a deita field W, in our approach and end up with the

compressibility (Waldhauser et al 1938),

following Langrangian density:

L = Un(iy, 8" — ma) W + Waliyad® — ma) Wy
— L8,p0%¢ — U(p) — 3 FusF* ~ sm2V, VH

2
— g¥ Inng — gl PaWag — g Iy UV —~ g2y, YA V.

effective mass and various values of the ground-state
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The field equations for the nucleon, delta, scalar and vector fields are now given by

{iynd® — [mn + g wo) — g0 voVo ¥ =0

{iynd* — [ma + g200] — 229V W,s =0 (12)
m2go + boh + cgd = —gl ol — glol
miVo =g ol +glor. (13)

The effective masses of the nucleons and the deltas are given by my = my + gNgo.
m' = my + giwg, respectively. The two additional parameters are the delta coupling
constants

a=gl/gl  and  p=gl/g

describing the coupling to the vector and scalar meson fields, respectively.

CJ2 = 2460, C2 = 156.3, B = ~L.8¢-3, C = +2.87d-4, T=0 MeV

T T T T T T

FARE:

150

100

=
2
=
[,
50
0
WE . 11 Figure 3. The eos including delta resonances at T =
G 1 2 / 3 4 3 0 MeV for different values of the coupling constants o
8% and §, as indicated (Waldhauser et af 1987).

Let us now study the possibie phase structure of nuclear matter, Figure 3 shows the
EQS at T = ( MeV for different values of the scalar and vector coupling constants & and
B. One observes a secondary minimum at densities o > 2gg. The reason for this is the
rapid increase in the delta production rate at 2gg. This reflects the strong attraction of the
deltas by the scalar field, which results in a jowering of the delta continuum states below
the Fermi surface of the nucleons. Since the delta degeneracy (¥, = 16) is much larger
than the nucleon degeneracy (yn = 4), the equilibrium is dominated by an 80% abundance
of deltas,

The vector coupling constant « also has a great influence on the EOS as can be seen
in figure 3. If B is fixed to 8 = 1.31 and only « is varied, the minimum shifts to higher
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C2 = 2460, C7 = 156.3, B = ~1.8d-3, € = +2.87d~¢, B = 1.35

E., T r T —rr
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ok .
I :
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! i 3
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1 1 -

T i L L, Figure 4. Pressure P against the en-

ST e 2 3 5 7 10 2 3 5 ergy density € for different temperatures

& (MeV/fm®) {Waldhauser e ai 1987).

densities and vanishes completely for o > 1.15. Hence we conclude that, in addition to the
ground-state properties, the delta coupling constants also have a large influence on the high
density behaviour of the EOS.

In figure 4 the isotherms of the pressure against the energy density are shown. In such a
diagram the possible phase transitions can be identified very easily. The isotherms separate
clearly into four regions, which can be identified with the nucieon-liquid, the nucleon gas,
a delta phase and a fourth phase which corresponds to a nearly massless phase of hadrons
(Theis er al 1983, Garpman et al 1979, Nakai and Takagi 1984, Glendenning 1984). The
massless phase in the meson-hadron field theory may be another description of what is called
the quark—gluon plasma in the quark-gluon picture of nuclear matter, Indeed, Rischke et
al (1992a, b) have recently found in an analysis of lattice gauge calculations of the gluon
plasma that strong gluon clusters exist even beyond the phase tramsition point. One is
clearly dealing with a cluster plasma. This is the physical meaning of the phase transition
to massless constituents observed here. The Van-der-Waals form of the EOS in the low-
temperature regime is due to the long-range attractive and short-range repulsive forces. We
will come back to this point in section 5. Finally we show in figure 5 the phase diagram of
baryonic matter calculated in the relativistic mean-field approach (Waldhauser e el 1987).
One recognizes the liquid—gas coexistence, the delta matter and the narrow (in 7) but
broad (in g) band of the transition region to the massless plasma. The liquid—vapour phase
transition is not affected by the inclusion of delta resonances while the high-temperature
phase transition is strongly shifted to lower temperatures.

As a final point in this section we introduce a set of phenomenclogical EOSs which
are used later in the macroscopic and microscopic models of heavy-ion collisions (see
sections 3.1 and 3.2).

In hydrodynamical calculations one uses the so called linear and quadratic EO$ with the
parametrizations {Scheid ¢ al 1968, 1974).

K .
Wi, T =0) = By + TBEE(Q -~ Qo)2 + W quadratic EOS
0
K . (14)
LS W, /
W(o,T = 0) = Exy + | Tooge @ % TWo 2>¢ linear EOS

oo g<g
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€ = 2460, CF w 1563, B = -18¢+3, € = +2.87d%, P=135

T [ (Mev)
200~
.4////////////// QGP
z s
Transition fo massless plasme T .
00~
Liguid - gas Transition to

coexistance

0 1 2

3

F\(ddt&muffar
1] : Il e | L

R

Figure 5. The phase diagram for nuclear matter. The coexistence region for liquid-gas and the
transition regions to delta matter and to the massless plasma are displayed, The hatched area
indicates the coexistence region of the quark-gluon plasma and hadronic phase (Waldhauser et
al 1587),

with o' = 0o/(1 — 9Wo/K), & = (K /18000){1 — g3/2™).

In the microscopic models a parametrization of the EOS is used which stems originaily
from Skyrme (1959) and was later on used in Hartree—Fock calculations (Vautherin and
Brink 1972). In its most simplified version this EOS is given by (see also section 3.2.1 and
equations (22) ff.) )

W, T =0) = Exn -+ 2o + B0 (15)

The parameters «, 8 and y have to be adjusted so as to reproduce the ground-
state properties of nuclear matter, i.e. the binding energy, saturation density and the
compressibility. The compressibility constants K that are used later on in the vUU and
QMD models are 380 MeV for a hard (H) EOS and 200 MeV for the soft (S) 08, Figure 6
shows these four EOSs for different compressibilities as indicated. In all cases the kinetic
energy is taken as the energy of an ideal Fermi gas.

Compressional part of the EQS.

)
=1
=1

o]
=

3

- Skyrme H
3 00 = Skyrene §
< K=40d Me¥
~ K=IG0 MeV
L 50

Figure 6, Comparison of the different parametrizations
of the E0S used in most dynamical models of heavy-ion
collisions, The Skyrme EGS (equation {15)) is compared
with the quadratic E0s (equation (14)) for two different
values of K,

o

The basic question is how can one study the nuclear EOS under extreme conditions, far
away from the ground state. The only way to obtain access to the nuclear EOS at densities
exceeding the equilibrium density and at high temperatures in the laboratory is through
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relativistic heavy-ion collisions. The possibility of performing heavy-ion collisions under
controlled conditions and by varying a series of parameters like the bombarding energy, the
impact parameter and the mass of the colliding nuclei should enable us to extract detailed
information on the EOS from such experiments. Of course, the internal structure of neutron
stars and supernovae is also dependent on the EOS, but from such astrophysical observables
only confirmation and compatibility of EO$-models can be expected to be confirmed. The
basic mechanism for producing high density matter in relativistic heavy-ion collisions has
been proposed by Scheid er @/ as early as 1968 and extended in 1974 (Scheid ez al 1968,
1974). When the relative velocity of two colliding nuclei exceeds the velocity of sound
(Vsound = + K /(Omy)) they predicted the occurrence of shock waves in heavy-ion collisions.
To demonstrate the basic physics of compression effects in this case the following very
simplified model was used. Assume two identical nuclei the volume of which is divided
into three parts (see figure 7), namely an ellipsoid, sandwiched between two cut-off spheres.
The nuclear matter is assumed to be homogeneously distributed over the different volumes.
Compression is assumed to occur only in the ellipsoidal region. The time-dependent density
and pressure in the ellipsoidal region is then determined by the conservation of energy,
momentum and matter during the course of the collision.

- 5 -

[P J—

al

pr— r:“ —_—
]
@ .ll Figure 7. Geometric parameters of the mode! used in
&0 §<0 Scheid er al (1974),

The conservation laws for the matter density g, the momentum density M, pressure p
and the energy density e are given by the hydrodynamical equations

v (a2) -7 ()

ar
amk LV
—) =% = )
— +V(M C) p k=12 (16)
39]_,
StV (ag)=0
with
ut =y, yv/ec)
jﬂ = Qu‘”’

T* = (e + plu"u” — pgh
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=T =y*e+p)—p
oo=ji"=vye

M* =T = e + pyvF/e.

The index ‘L’ stands for local and implies that the corresponding quantities are taken
with respect to the local rest frame. The nuclear EQS W(g) enters directly into these
equations through a relationship between the local pressure p and energy density ¢ and the
local temperature T and baryon density g

e=e(pT) p=pT). (17)

In the simple scenario of figure 7 the non-trivial consequences of equations (16) are
related to the conservation of energy, momentum and matter across the discontinuous shock
front separating the ellipsoidal and the cut-off regions. Matter flowing from the cut-off
spheres into the eilipsoidal region will cause the shock front to move outwards. The
conditions of continuity of u* and 7" at the shock front leads to the relativistic Rankine~
Hugionot equation

e+ p1)®  (eo+ po)? e + o+
(e1 zpl) _ (e 2Jli'o) = (o, —Po)( 1 291 L& ZPD) (18)
g 8y 45 2y

which can easily be solved (the indices 0 and 1 correspond to the values of p and e on both
sides of the shock front). The velocities relative to the shock front are

(5)2 _ (pr — po)er + po) (L‘f)2 _ (1 — poXer + eo) (19)

€ (e — eg}(p1 + eo) € (er + po)(p1 + eo)

Both the shock-front velocity v; and the flow velocity vy are functions of ¢ and T;
for a large density ¢ in the shock front these velocities approach the velocity of light.
Figure & depicts the dependence of g on the shock front. Both v; and v¢ depend strongly
on the EOS used. If a density isomer (cf figure 3) exists, then the shock disappears at
some density and reappears again at higher densities. This behaviour should clearly be seen
in experiments, when the achieved density is varied with the bombarding energy (cf also
section 4.1, figure 20).

3. Modelling of heavy-ion reactions

In this section we introduce the basic models that are used to describe heavy-ion collisions
theoretically, Because of their conceptional differences we distinguish between two
branches of model. The models in the first branch describe the reaction by macroscopic,
thermodynamical quantities, i.e. density, energy and entropy and will therefore be called
macroscopic. Those in the second branch describe the reaction by following microscopicatly
the trajectories of each single pucleon; these models we shall call microscopic.
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Figure 8. The dependence of the velocity of the shock
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broken curves, influence of the hadronjc resonances;
dotted curves, influence of a density isomer at ¢ = 3
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Figure 9. The trple differential invariant cross
section {1/E)(d30/dp®) is shown for the reaction Ca
(400A MeV, b = 2 fm)} + Ca as obtained from a fuid
dynamical calcufation (Buchwald er af 1983),

(Scheid er al 1974),

3.1, The macroscopic models

We will start our survey with a short description of the nuclear fluid dynamics (NFD) model,
since this model has been influential in the development of the theory of heavy-ion reactions
since its conception. Let us therefore start with a brief comparison of the assumptions and
basic features of this group of models.

The validity of the NFO models is based on instantaneous local equilibrium, which will
certainly hold only approximately in realistic situations. The criteria for the applicability
of the NFD models therefore are (i) the system must have many degrees of freedom; and
(ii) the mean free path (A) of the nucleons must be short compared with the dimension (D)
of the system. For peripheral collisions (and also for central collisions of light nuclei) the
average number of nucleon—nucleon collisions is {#} &~ D/A = | and the hydrodynamical
approach is not applicable. However, for ceniral collisions the average number of collisions
per nucleon is larger than one, in particular if high compressions are achieved. Thus the
best chance of the NF> models to be applicable is clearly in central collisions of the heaviest
nuclei.

Already it becomes clear here that the mean free path of the nucleons is the key quantity
for the applicability of all macroscopic models. Simple kinetic models estimate the mean
free path from A = 1/{g - o) where ¢ is the nucleon—nucleon cross section. This yields a
short mean free path at low energies, and it was claimed (Sobel er ai 1975} that, due to
the decreasing N-N cross section, A will increase with bombarding energy and therefore
the shock compression mechanism will no longer be valid. Hence it is of basic importance
to test the NFD approach by extracting the mean free path of the nucleons either from first
principles or from more sophisticated models. Here the microscopic models present an ideal
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tool, since they follow the trajectory of each nucleon individually and can therefore be used
to ‘measure’ X (cf also section 4.2 and figure 28).

One of the great advantages of the NFD model is that the nuclear matter properties, i.e.
the nuclear EOS and dissipative coefficients (such as viscosity and thermoconductivity) are
used directly as input. This makes it very easy to use the NFD model as a testing ground for
the influence of the EOS and dissipative processes on the reactions. Furthermore the NFD
model is conceptionally well defined and thus is of great importance as a reference model.

Although NFD is a well defined approach for the description of massive heavy ions,
it is not a complete description of a heavy-ion collision. It can be used to describe the
compression and expansion stage of the reaction, but then, when the matter expands and all
the N-N collisions cease, a stage is reached, where the system is so dilute that the basic
assumptions of the NFD approach are no longer valid. At this point additional assumptions
have to be made in order to describe the ‘freeze-out’ of this homogeneous, dilute system
into an inhomageneous sample of particles (p, n, 7, d, t. &, ...}, which will then move on
without further interaction.

The equations of motion for a non-relativistic, viscous fiuid can be written as a system
of five continuity equations (indices ocurring twice are to be summed over):

dg

E + x (Q z) =

a{ow;) g b v

=S L (o) = — P — p— 2
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where g, gu; and ¢ = olmv?/2 + W(g, T)] are the local densities for baryon number,
momentum and energy, respectively. v is the local velocity and ¢; = —«8T/dx; is the
vector of heat transport according to Fourier’s law, where « is the coefficient of thermal
conductivity. Yukawa and Coulomb potentials are considerd by .

The stress tensor F;; is defined by

du; oy 2 du vy
P =—pdj+n (—‘ + — ™ 55:'13—“) +-’;'5;j5x—k 21)

with # and £ being the bulk and shear viscosity coefficients. Substituting this expression into
equation (20) and neglecting the heat conduction (x = () yields the well-known Navier—
Stokes equations, which reduce in the absence of viscosity (n = & = 0) to the Euler
equations,

The first calculations solved the Euler equations numerically for the one fluid case
(Stécker er ol 1979, 1980a, 1981, 1982, Nix and Strottman 1981, Buchwald et af 1984).
The energy and angular distributions were calculated from the particle density and velocity
vectors at a time sufficiently long, so that the residual thermal energy is negligible, i.e. the
densities are low.

During the expansion thermal equilibrium can only be maintained until the fiuid reaches
a break-up density (ogy ~ 0.3-0.70¢). Then the system breaks up into free particles, which
reach the detectors with the momentum distributions they had in the freeze-out moment.
The implementation of this freeze-out concept is the main difference between the different
NFD approaches. It has been shown that the proper treatment of this break-up stage improves
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the agreement with the data (Stocker e al 1981). One of the first predictions of the NFD
model was the sideward emission of nuclear matter, due to shock compression (Scheid et al
1974, Baumgardt et al 1975), implying considerable transformation of the incident kinetic
energy into compression and thermal energy. This sideward emission was proposed to be
even more pronounced for heavier fragments, due to less thermal distortion (Baumgardt et
al 1975). Quite early experiments (Baumgardt et al 1975, Baumgardt and Schopper 1979)
supported this hypothesis, preferential sideward emission of mainly ¢ particles was observed
in the irradiation of 4x particle detectors (emulsion, AgCl detectors) with light noclei at
E1p = 2004004 MeV, when selecting nearly central collisions. This was interpreted as
being due to a strong, sidewards travelling compression wave, called the Mach shock wave.
The first three-dimensional, non-relativistic, non-viscous, one-fluid dynamical calculations
revealed this sidewards flow in asymmetric heavy-ion collisions (Sidcker et af 1979, 1980a)
in contrast to the oversimplified geometrical fireball (Westfall et al 1976, Gosset et al 1977,
1978, Das Gupta and Lam 1979, Myers 1978) and intranuclear cascade models (Yariv and
Fraenkel 1979, 1981, Stevenson 1978, 1980). The first impact parameter averaged data on
light-fragment ermnission did not show sideward peaked angular distributions (Sandoval ef
al 1980, Nagamiya er al 1981); thus they seemed to support the oversimplified models.
However, these data turned out to be extremely inadequate, in fact wrong, When the first
high multiplicity selected data for exclusive reactions became available (Stocker et al 1980,
Beavis et al 1983, Gusiafsson et ol 1984) they confirmed the theoretically predicted sideward
peak in the distributions of flow angles in an event-by-event analysis (see also section 4.1).
As a typical prediction of an NFI* model we show in figure 9 the triple differential invariant
cross section (1/E)(d®o /dp?) for the reaction Ca (400A MeV, b = 7 fm) + Ca. One clearly
observes the in-plane flow (¢ = 0°, 180°) for particles close to beam rapidities as well as
the out-of-plane squeeze (& = 90°) of midrapidity nucleons. This out-of-plane squeeze has
experimentally been observed only very recently (Gutbrod et al 1989b, 1990a,b, Schmidt
1991), by a new analysis of the Plastic Ball data.

These three-dimensional NFD calculations neglected the influence of the nuclear viscosity
and thermal conductivity. Therefore previous one (Csernai et al 1980, Csernai and Barz
1981) and two-dimensional viscous calculations (Buchwald er af 1981) have been extended
to the first fully three-dimensional viscous hydrodynamical treatment of heavy-ion collisions
(Buchwald et af 1983a). One of the basic assumptions of the NFD models, the concept of
local equilibrium, is clearly not fulfilled in heavy-ion collisions, especially in the highly
anisotropic initial stage of the reaction. In order to remove this problem a non-relativistic
three-fluid model (Csernai et @l 1982, Rosenhauer et af 1987) was developed, in which
two of the three fluids represent the target and projectile and the third fluid represents the
thermalized nucleons. It was expected that the assumptions of the NFD models would be
fulfilled in these three fluids.

Because of the ‘increasing” mean free path of the nucleons at higher energies, it was
supposed that at least some nucleons would traverse the entire target and punch through. For
this reason, the relativisfic (see equation (16}) two-fluid model was introduced, where one
assumes that the projectile and target stream through each other and collectively decelerate
(Amsden et af 1977a,b, Ivanow et al 1985, Clare and Strottman 1986, Mishustin er a!
1989, Satarov 1990).

As a final point in this section we want to mention some early, very simplified models
which are based on thermodynamical concepts. These models have been stimulated by
the participant-spectator picture, combined with thermodynamic concepts. Considering a
collision between two nuclei, the participant-spectator picture distinguishes between three
different components. Those parts of the nuclei which do not belong to the overlap region



548 & Peilert et al

between the projectile and target (i.e. the volume which is not cut out of the projectile
and target when they are supposed to move through each other on straight lines) are
called spectators, while the nucleons in the overlap region are called participants. Only
the participants are supposed to undergo any reactions. The first models which have been
developed from this concept are the fireball (Westfall et al 1976, Gosset et al 1977, 1978),
the firestreak (Das Gupta and Lam 1979, Myers 1978) and the row-on-rows (Hiifner and
Knoll 1977) models. These modeis describe the physics of the participant component only
and are supposed to give the spectrum of the nucleons in the CM frame of the participant
region which is here called the fireball. The original fireball model treats this region as a
single, equilibrated object while the later forms of this model (firestreak, row-on-rows) treat
the geometry in a more sophisticated way, by dividing up the participant region into several
colliding tubes which are handled separately. The basic assumptions of these models is the
applicability of the participant—spectator geometry and the assumption of global equilibrium
in the whole fireball, streaks or rows, respectively.

3.2. The microscopic models

After this short overview of the macroscopic models, which have been—and still are—used
to describe the gross features of heavy-ion collisions, we switch over to the microscopic
modets, that have been developed in order to compare to experimental data in much more
detail.

As already mentioned, we denote as microscopic all those models that in some way
follow the trajectories of each single nucleon. Such a microscopic description of a heavy-
ion collision also gives us a unique opportunity to test the extent of which the macroscopic
approaches are valid, i.e. whether the mean free path of the nucleons is small compared
with the radius of the system and whether a local, or even a global, equilibrium is achieved.
Since it is beyond the scope of this article to describe the whole zoo of models that are (or
have been) on the market, we will give a short overview of the most important ones, which
have been developed in the last two decades and then give a detailed description of the two
surviving models that have been extensively used to describe heavy-ion collisions, ie. the
Vlasov-Uehling Uhlenbeck (vUU) and the quantum molecular dynamic (QMD) model.

If one wants to construct a realistic theory of heavy-ion collisions one should, in
principle, describe the simultaneous interaction between relativistic, quantum mechanical
wave packets via the concept of nucleon—nucleon interactions for a scattering inside a
medium. This task, however, is so complicated that it has not even been touched upon in
its full scheme so far. So one has to make several approximations to the quantal n-body
system.

Two extreme pictures can be obtained if one assumes that the nuclei interpenetrate each
other and only interact by

(i) binary hard collisions; or

(ity the superposition of the soft interactions of all nucleons.

In the first case, the inter nuclear cascade model (INC), the important quantum effects
have been incorporated by using experimental nucleon~nucleon scattering cross sections.
The disadvantage, however, is the complete absence of compression effects. This type of
model has been widely used to describe heavy-ion collisions (Bondorf et af 1976, Gudima
and Toneev 1978, Stevenson 1978, 1980, Yariv and Fraenkel 1979, 1981, Gudima er al
1979, Halbert 1981, Cugnon er ol 1981, 1982, Kitazoe et al 1984). In the second case, the
so called equation of motion (EOM) or molecular dynamics (MD) models, one treats the N-N
interaction purely classical via two-body interactions and integrates the Newtonian EOMs
numerically (Bodmer and Panos 1977, Wilets er af 1977, 1978, Bodmer et al 1980, Kiselev
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and Pokroskil 1983, Kiselev 1984, 1986, Molitoros ef al 1984, Schlagel and Pandharipande
1987, Beauvais et al 1987). This, however, has the great disadvantage that all the quantum
effects are neglected and classical potentials can only provide a poor approximation to N-N
scattering and nuclear binding properties.

A better treatment of the quanium properties of nucleons is given by solving the time-
dependent Schrodinger equation in the Hartree—Fock approximation. This time-dependent
Hartree-Fock model (TDHF) has been applied with some success 1o heavy-ion collisions at
low energies (Koonin 1975, Bonche et al 1976, Stécker 1980b, 1983, Aichelin and Stécker
1985), and has the great advantage that it treats explicitly the Fermionic aspects of the
nucleons but, since collisions have to be neglected, it fails to reproduce heavy-ion data at
higher energies {(Ey 4 > 104 MeV).

We have seen that the INC model is unrealistic since it neglects the soff interaction and
the classical molecular dynamics (MD) model fails due to the neglect of hard collisions and
quantum effects. The next two sections are therefore denoted to the description of two types
of model which combine the basic features of the INC and MD models.

3.2.1. The Viasov-Uehling-Uhlenbeck (voU) model. A transport equation which contains
both a mean field and hard N-N collisions is the so called Vlasov—-Uehling—Uhlenbeck (vUU)
equation (Kruse et al 1985a,b, Aichelin and Bertsch 1985, Sticker and Greiner 1986,
Molitoris et af 1987, 1988a,b). It has also been called Boltzmann—Uehling~Uhlenbeck
{BUU) (Bertsch er af 1984) or Landan—Vlasov (Gregoire ef al 1987) equation. These three
manifestations of this mode] solve the same equation with different numerical technigues.
For particles in an external field this approach was first developed by Nordheim (1928)
and Uehling and Uhlenbeck (1933). The derivation of the VUU equation can be found in
almost all review articles (see, e.g., Bertsch and Das Gupta (1988) and Aichelin (1991))
and textbooks and will therefore not be repeated here.

The VUU equation cap be understood as a transport equation for the one-particle
distribution function f(r,p, 1}

8 9 3 Ep' dp Ep)
_f__|.£.._f__vrj_£___ __u%ﬁ.
a m dx dp (2m)

xolv=vlfif'(1- A~ = AfA-HA-fép+pi+p +p).

The VUU equation contains, on the left-hand side, a mean-field potential U and, on the
right-hand side, the collision integral with the Pauli blocking factors {1 — f) and the N-N
scattering cross section ¢. The Fermi—~Dirac distribution function, which is a solution of the
left-hand side (also called the Vlasov equation when the right-hand side is equal to zero) is
the equilibrium solution of the collision term. The basic ingredients in the VUU model are
therefore:

(i) the long-range N-N interaction via the mean field U/ {g);

{ii) the short-range N-N interaction via hard collisions with the differential cross section
o /dQdE,

{iii) the Pauli exclusion principle via the blocking factors (1 — f).

For the mean-field potential T/ (g} a local Skyrme interaction is commonly used. The
Skyrme interaction can be written as a potential

V=3 VP 4+ VR (22)
ij

ik
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with two- and three-body components. In configuration space the two-body part is given
by

VO(r; — 7)) = to(1 + X Pr)a(r; — ;) + %t;[ﬁ’zé(r,- 1)+ 8(r; — 7K
+ 0ok (ry — T+ Wk (ry — 1) - ke _ (23)

where
» 8 a PO 1
= — - — 2i B =k == i
k (Br,r arj)/ ! 2(1+0’ )
The three-body part is given by:
VO, 1y, 1) = B8(r; — 1,)8(r; — 7). (24)

This Skyrme interaction is usually used in the Hartree~Fock method, where the nuoclear
ground state is represented by a Slater determinant of single-particle states W. The
expectation value of the total energy is then given by

=(\p|f~+1?|xy)=fﬂ(r)d3r, (25)

In infinite nuclear matter this reduces to

E H 3 3
—==1F F) —t ——3r+5z % 26
A= 3 5F+80Q+163Q+ (3 2)oks (26)

and the potential is given by (U = 80H/3p)
Ue) = 300 + 107 + 5(3n + 5)0kE. 27)

Neglecting the momentum-dependent effects (they will be reintroduced later in a
phenomenological way) this leads to a mean-field potential of the form

Ulgy=o'a+ Bo" (28)

where we have already generalized the quadratic three-body term in order to vary alsc the
nuclear compression constant K as well (see also section 2). The N-N cross section on
the right-hand side of equation (22) is assumed to be the free N-IV cross section, which is
taken from experiments. Since the exact dependence of oy on the surrounding medium
is not known, this cross section can be treated as a parameter (it should, however, be
fixed independently from theoretical nuclear matter calculations, see e.g., Haar and Malfliet
(1986, 1987), Ohtsuka er af (1987)). The vUU equation is difficult to solve directly,
since it is an highly nonlinear integro-differential equation in six-dimensional phase space.
The semiclassical character of this equation, however, allows it to be solved in terms of
quasiparticles, whose mean positions are solutions of Newton’s equations (Molitoris et af
1984, 1988a,b, Kruse ¢t al 1985a,b).

To solve the VUU equation the nucleons are represented as a sum of point-like test
particles

NA
filrpi )=y 8(r = 1i0) - 5(pi — pio) (29)
i=1
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where A denotes the number of nucleons and A the number of test particles per nucleon.
Then N parallel collisions are followed and the phase-space density f is computed as
an ensemble average of the test particles in a sphere around each test particle. The local
gradient of the field is computed via a finite difference method between the two half-spheres
of this sphere. Each test particle in one of the parallel events is allowed to collide with the
other test particles (of the same parallel event) with their free N-N cross section.

Let us now briefly list the basic ingredients and assumptions of the VUU model (and all
the other models which solve the VUU equation).

(i) The derivation of the Vlasov equation from the N-body Liouville equation requires
a dilute gas limit, i.e. A > a, where A is the mean free path of the nucleons and a the
scattering length.

(i1} The N-N interaction is divided into a long-range attractive part and a short-range
repulsive part which are treated separately.

(iit) Subsequent collisions are independent, i.e. off-shell collisions are not allowed.

(iv) The VUU equation is a single-particle equation. The computation via parallel events
destroys all N-N correlations and therefore makes it impossible to treat correlations and the
fragmentation in heavy-ion collisions.

3.2.2. The QMD model. We have seen in the previous section that the vUU model
provides a useful tool to describe the one-particle observables of heavy-ion reactions.
However, phenomena such as fragment formation can hardly be described in such a single-
particle theory, since they are intimately connected to many-body correlations. The correct
propagation of correlations is lost in the VUU model, in contrast to the MD models, by
using the test particle method to obtain an ensemble average of the one-particle distribution
function f. If one wishes to treat correlations exactly, one has to avoid the test particle
method. For this reason in the QMD model a single Gaussian is used to describe the nucleons.
So each nucleon is described by a boosted Gaussian wave packet with fixed width

) = e expl iy 1 — S — T (D)
"I-‘,(’P;,t)'— (27?.[:)3/2 BXP[ﬁp‘ L ZL(TJ T,o(f))]. (30)

In the numerical calculations it is more convenient fo use the corresponding Wigner
density

ﬁ(rfv.pi’t) =
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where 70 and p;o are the centroids of particle { in coordinate and momentum space.
The phase-space distribution can now be expressed as

N
flr.p, =3 filr.p.0). (32)
i=l

In terms of these Gaussians the baryon density is given by

'r:())

os(r.1) = f it p.0yEp = o L)s,ZZexp[ _T"] (33)
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With knowledge of the phase-space distribution it is possible to calculate thermodynam-
ical quantities locally. The ensemble average of a macroscopic quantity x(r,¢) is given
by

e, 1)) = —— [d3px(p r ) f 1. 1). a4

In the basic version of the QMD model we used a local two- and three-body Skyrme
interaction (cf equations (23),(24)) and a Coulomb and Yukawa interaction.

With the Gaussian distributed nucleons (equation (31)) one calculates the following
Hamiltonian function.

N
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Evaluating the integrals yields
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The first term denotes the kinetic energy of the centroids of the nucleons; the second and
third term are the Yukawa and Coulomb interactions, respectively, for Gaussian shaped wave
packets (31) of the nucleons. The last term represents the Skyrme part of the interaction
which can, for infinite nuclear matter, be considered as a density-dependent interaction.
Note, however, the difference between pr in equation (36) and gp in equation (33). Only
for infinite systems are these two terms equal.

The parameters «, 8 and y are adjusted to reproduce the properties of infinite nuclear
matter, 1.e.

El o _ieMev
A =00
p=o? EA o Mev @37
L PR
& = o2 32E/A [ 200 Mev (soft EOS)
T T8¢ .., 1380MeV  (hard EOS).

In order to obtain a reasonable simulation of finite nuclei, we adjust the two Yukawa
parameters Vg and py (the Yukawa potential also gives a density-dependent contribution
to the EOS, which must be taken into account when adjusting the parameters).

It has recently been emphasized (Aichelin and Stécker 1986, Gale er af 1987, Bodmer
and Panos 1977, Bodmer et af 1980) that non-equilibrium effects will play an important role
in a realistic treatment of heavy-ion collisions. The most pronounced effect can be expected
from the momentum dependence of the nuclear interaction (cf equation (23)) which leads
to an additional repulsion between the nucleons. For the computation of such momentum-
dependent interactions {MDI) we parametrized the momentum dependence of the real part
of the optical p-nucleus potential, in order to substitute the term proportional to &% in the
Skyrme interaction, which is in striking contrast to the data above Epmp & 1504 MeV.

We get

Unmpt = 8§ In*[¢'tpr — p,;)* + 118(r; — 1) (38)

with § = 1.57 MeV and ¢’ =5 x 10~* MeV~2.
For infinite nuclear matter at zero temperature we can relate the square of the relative
momenta to the density using the Fermi gas approximation and we obtain for the potential

Unmpt = 81n*[(0/00)*> + 110"/ 00 (39)

(with € = 21.54 MeV), which gives after integration over ¢ (H = (1/g) [ U(g)do) the
corresponding term in the Hamiltonian.

When using the MDI, one has to readjust the parameters of the forces in order to yield
the same nuclear matter properties as these without MDI (see table 1).

In the jater versions of the QMD mode] the averaged charge in the Coulomb term of
equation (36) is replaced by an explicit Coulomb interaction of the form

2

veltr, — 1) = a; - 0j (40)

|7 — 7yl

where o; is equal to 1 for protons and O for neutrons. In this case an asymmetry interaction
of the following form was also incorporated:

Valry — m3) = Q8 — 1;) - 2003 — §) - 2(05 — 3) (41)
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which yields after integration an asymmetry energy of the form

N
Hi=) 2(a}(p) - &j(n). (42)

=1

Now the numerical simuiation of the collision takes place in three steps. First the
projectile and target are initialized in their rest frames. Therefore one determines the
positions of the nucleons randomly in a sphere of radius R = 1.14 fm A'Y* — 0.3 fm,
but requiring, in addition, a minimum distance of 1.5 fm between each pair of nucleons.
This procedure yields a smooth distribution in configuration space. The momenta of the
nucleons are then randomly chosen in the interval O < {p| € | pgl, where the local Fermi
momentum pg is determined from the local density via the Fermi gas approximation. A
minimum distance Ap = 180 MeV ¢~ is required for each spin—isospin identical pair in
order to fulfil the Pauli principle ab initio.

Successfully initialized nuclei are then boosted towards each other with the proper centre
of mass velocities using relativistic kinematics. The centroids of each Gaussian are then
propagated corresponding to the Hamilton equations with the Hamiltonian of equation (36)
in a leap frog integration routine with time steps ranging from 0.2 to 0.4 fm ¢~'.

After each integration step the hard N-IN collisions are treated in the same way as in
the VUU and INC models via a stochastic scattering term. Two nucleons can scatter if the
spatial distance of the centroids of their Gaussians is smaller than /o /7. The energy and
angular distributions of the experimental differential scattering cross section d?c/d./s dR2
are reproduced on average. Inelastic collisions lead to the formation of delta particles, which
can be reabsorbed in the inverse reaction. We do not incorporate free (s-wave) pions here,
unlike the vUU model. Whenever a collision occurs, we check the phase-space distribution
around the final states of the scattering partners. We determine the ratios Py, P of the final
phase spaces which are already occupied by other nucleons. The collision is then blocked
with the probability

Prigex, = min[1, Py - Pa]. (43)

Whenever a collision is blocked, the momenta of the scattering partners are replaced by
the values they had prior to the scattering.

In order to demonstrate the importance of Pauli blocking, the fraction of Pauli blocked
collisions to all attempted collisions is shown in figure 10 for the system Nb + Nb for
different beam energies between 50 and 1050A MeV. The ratio is plotted against ¢ - 8.
Here ¢ - 8 is the scaled reaction time, i.e. ¢ multiplied by the velocity 8 of the incoming
projectile in an equal speed system. This product corresponds to the distance travelled by
the projectile and target in the z direction, It scales the time according to the velocity of
the incoming projectile,

All curves start with a blocking fraction of one. This is due to the fact that all collisions
are Pauli blocked in the ground state. After the two nuclei touch on another the blocking
factors decrease and saturate after ¢ - 8 & 5-6 fm. This distance corresponds to the total
overlap of both nuclei. For very low bombarding energies (the TDHF regime) the blocking
factor remains close to one, whereas for higher energies it decreases down to 0.2 at 14 GeV,

Next we want to show how the QMD model compares with previously developed single-
particle models. Therefore we dispiay in figure 11 the time evolution of the density profile
of the reaction C (84AMeV, b = | fn) + C, calculated with three different theories,
namely the quantum mechanical TOHF method, the classical Vlasov equation (VUU without
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Nb (b=3 fm, Soft EOS) + Nb
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Figure 10. Time dependence of the ratio of Pauli
blocked collisions to the total number of attempted
collisions at different beam energies for the system Nb
+Nbatb=3fm.
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Figure 11. Comparison of the different
mean-field calculations from the reaction C
(BdAMeV, b = | fm) + C. The density
profiles are displayed for the results of the
TDHF, Vlasov and the QMD approach without
collisions (Aichelin er af 1989).

collisions) and the QMD without collisions. We observe a striking similarity between all
these theories. The longitudinal momentum transfer, as well as the momentum transfer in
the transverse direction, are very similar in al] these theories. The similarity of these results
indicates that details of the initializations and the detailed form of the wavefunction of the
nucleons are of minor importance for the time evolution of the system.

The time evolution of this system changes, however, dramatically if the collisions
are incorporated into the vUU and QMD approaches. A detailed comparison between the
VUU/BUU and the QMD results is shown in figure 12 for the same reaction. The double
differential cross section d?o/dEdQ for protons agrees well in those models. We can
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therefore conclude that the QMD approach reproduces the results obtained with the vUU/BUU
approach, if single-particle observables are considered. In addition, the mean-ficld version
reproduces the time evolution of the Vlasov and TDHF calculations.
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Before we investigate in detail the physics of heavy-ion reactions we briefly want to
describe some modifications to the original QMD model which have recently been developed
in order to remedy two of the main shortcomings of the model.

One deficiency in the model is that the nuclear ground state cannot be simulated in
a reasonable fashion, because of the absence of the Fermi motion, generated by the Pauli
exclusion principle.

Wilets et al (1977, 1978) and Callaway ef af (1979) suggested that the Pauli exclusion
principle might be simulated by a momentum-dependent repulsive potential. Later on several
forms of this potential were introduced, yielding a reasonable reproduction of the gross
thermostatic properties (Dorso and Randrup 1988, Boal and Glosli 1988, Boal e af 1989,
Peilert et al 1991), '

We employ the Gaussian Pauli potential introduced by Dorso and Randrup (1988, 1989)
and Peilert (1991). With such a potential the total energy of the ‘free’ Fermi gas is given
by

I Y
Ey = Euin+ Epw = ) (\/P.'?'o +m? — m) +3 2, Ve (q_op_o)

f i#]

P
X eXp —i'q—g -_ 2—’73 31,1:}55,5'; (44)

where o; and 7; denote the spin-isospin index of nucleon .

in the following we show how this potential reproduces the Fermi energy in an infinite
Fermi gas. We parametrized the Pauli potential such that the rotal energy EEC matches the
kinetic energy of the free Fermi gas.

The thermostatic properties are obtained by averaging over several hundred statistically
distributed manifestations of the system, sampled by means of the Metropolis importance
sampling method (Metropolis er al 1953) on the basis of the appropriate weight

w~ e ERlT, (45)
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Figure 13 shows the calculated energy per nucleon. For comparison, the full curves
show the corresponding exact values for a free Fermi gas. In all cases the overall agreement
is rather satisfactory. In particular the ground-state configuration no longer collapses in the
limit T — Q.

free fermigas
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Figure 13, The exact results for the energy per nucleon  Figure 14. Clusterization energy: the energy per
in a free Fermi gas is shown by the full curves, whilethe  nucleon is shown as a function of the specified density
symbols indicate the calculated results using the Pauli  at the temperature T = 0 MeV. The open circles
potential (Peilert ef al 1991). were pbtained when the initial random positions of the
nucleons were kept fixed while the full circles result
when the positions are also free (Peilert of al 1991).

Next we want to investigate how far the treatment of the Fermionic aspects of the nuclei
modifies the 20$ for infinite nuclear matter. Therefore we employ the full Hamiltonian of
the QMD model (see equation (36)) plus this Pauli potential and do a Metropolis sampling
for a system for 4 x 54 particles in a box with periodic boundary conditions.

Figure 14 shows the resulting EOS for cold nuclear matter (T = 0.5A MeV) for two
different cases. First we kept the coordinates of the nucleons fixed, in order to achieve
a homogenous density and performed the Metropolis sampling only in momentum space
(full curve). Then we performed the Metropolis sampling in the full six-dimensional phase
space (open symbois). As can be seen in this case the resulting energies for subsaturativon
densities are considerably lower, since the nuclei cluster into finite systems and gain the
binding energy. Therefore the ground state at these densities is highly inhomogeneous. This
fact has to be considered if one performs thermostatic calculations, i.e. one observes phase
transitions in this density regime.

The implementation of the Pauli potential in the dynamical QMD model yields two huge
improvements. First the ground states are now well defined and the Metropolis procedure
can be used to initialize the projectile and target in their real ground states, which yields
a much improved stability for the initialized nuclei. Second the excitation energy of the
resulting fragments can then be determined with respect to their true ground state and can
be used to describe the long-term behaviour {evaporation, multifragmentation or fission) of
those fragments in an independent model. We will come back to this point in section 5.

The parameters of the several manifestations of the QMD model can be found in table 1.

Recently Feldmeier introduced an antisymmetrized molecular dynamics version called
the fermionic molecular dynamics (FMD) (Feldmeier 1990). In this framework the many-
body wavefunction is described by a Slater determinant of the single-particle Gaussian
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Table 1, Parameters of the interaction used in the gmp model.

No Pauli potential Mo Pauli potential ~ Pauli potential
no Mol with MDI no Mpl
K =380 MeV K =200MeV K =200 MeV K =380 MeV
VR, (MeV) — - - 99.5
4o {fm) — — - 3.0
po(MeV )y — - —_ _ 1200
L (fm®) 2,165 2.165 2,165 2.165
e (MeV) —124,0 —-356.0 —390.0 —84.55
B (MeV) 705 - 303.0 3200 188.18
¥ 20 7/6 81 1.457
Vo MeV)  —100 -100 -10.0 -850
Yyuk (fm} L5 15 1.5 10
2 (MeV) — — - 25.0
£ (MeV-?) — — 21.54 —
§ (MeV) —_ — 1.57 —

wavefunctions and the time evolution of the parameters of these Gaussians is determined
by a time-dependent variational principle (Koonin 1975, Kramer and Saraceno 1981).

This model has not yet been solvable in its full complexity, but restricted versions of
the FMD model have recently been applied to heavy-ion collisions (Konopka 1991, Valta
1991, Horiuchi 1991, Valta et al 1992, Ono et al 1992),

4. The testing ground for the nuclear EOS

The main purpose for which all the models, that have been introduced in section 3, have
been developed is to investigate the nuclear EOS by comparing the model results with
experimental data. For this purpose it is not sufficient to perform high-quality experiments
and to have the most efficient theories with which to compare them, it is also of the utmost
importance to find the appropriate observables, i.e. ones that are sensitive to the underlying
EOS. The modelling of heavy-ion collisions gives us a unique opportunity to change the
physical input (e.g. the EOS and the N-N cross sections) in order to investigate to what
extent the results depend on these quantities. Then one has to find observables that are
directly connected to one input parameter, without being disturbed by other effects. These
observables can then be used to adjust the input parameters independently by comparing
them with experiments. It is this deep interplay between theory and experiment which
makes this field so interesting for many physicists.

For testing the influence of the EOS on the observables, the NFD and VUU models are
the most promising, since they use the EOS, via a density-dependent mean field, directly
as input. So it is easy to change the £0$ and even to implement exotic forms (e.g. an
EOS with secondary minima as was shown in figure 3). This is more difficult in the QMD
approach, since there the EOS enters only indirectly. The direct inputs into the QMD model
are the nucleon—nucleon interactions, which, in infinite nuclear matter, lead to an EOs of the
form E/A = Eun(o, T) + {o/00) + B{e/00)?. In the original version of the QMD model
the Fermi gas energy has been taken for the kinetic part. After the inclusion of the Pauli
potential the total energy can be caiculated self-consistently. Up to now no attempts have
been made to change the functional form of this EOS in the QMD model, but it is easy to
change the parameters ¢, 8 and y (with the restriction that it reproduces the known nuclear
matter properties}, in order to change the stiffness of the EOS (cf figure 6).
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The QMP model, however, is most efficient to test, via multifragmentation break up,
also the low density part of the BOS with its—supposed—Iliquid-gas phase transition. This
is not only of importance for low-energy collisions, where this multifragmentation break up
is observed in central reactions; at higher energies it is also necessary to use a model, which
describes the many-body degrees of freedom if one wants to make a direct comparison with
experimental data. The reason for this is that most of the key observables that are sensitive
to the EOS also depend on the size of the measured particles. Therefore one has to use
a model which also describes the formation of fragments even if one looks at one-body
observables (we will discuss the multifragmentation channels of these reactions in detail in
section 5).

In this section we shall introduce the most important observables that have been found
to depend on the physicat input.

aff plane squeaze - put

Figure 15, Pictorial representation of the in-plane bounce-off and out-of-plane squeeze-out of
the participant matter in a heavy-ion collision.

4.1. The collective flow

The basic collective flow observables can be seen in figure 15. The picture one has in
mind here is as follows. When nuclear matter has been stopped and compressed, it tries to
sscape and to expand under a finite angle (with respect to the beam axis). In the reaction
plane this angle depends strongly on the impact parameter b: for & = 0 the flow of nuclear
matter is perpendicular to the beam axis while for mid-central collisions the flow angle
lies between 0° and 90°. Perpendicular to the reaction plane, however, there is always a
squeeze-out under 90° in the CM frame. In this direction the matter can escape freely from
the compression zone, without being disturbed by any spectator material or corona effects,
i.e. it reflects the purely hydrodynamical pact of the reaction. This effect corresponds to the
classical push-out of matter discussed by Scheid er al (1968, 1974). One can already see
from this schematic picture that all the important effects that one is looking for will strongly
depend on the impact parameter and therefore the only way to measure these observables
will be in an event-by-event analysis of highly exclusive experiments.

4.1.1. The in-plane bounce-off. One method to measure the collective flow is by global
momentum analysis. The basic idea here is to measure event-by-event the momenta of all
{charged) particles. Then one transforms into the €M frame and determines the direction of
maximum momentum and energy flow, Similar problems in event topology analysis have
been treated eardier in high-energy particle physics, later this so called sphericity analysis
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was proposed for the analysis of heavy-ion data (Cugnon et al 1982, Gyulassy et al 1982),
The three-dimensional sphericity tensor is defined as

A
Fa=) o®) pp®)  Lk=xy.2 (46)
v=1

(V) is a weight factor calculated event-by-event from the CM momenta of all measured
particles. Choosing () in such a way that the composite particles obtain the same
weight per nucleon as single nucleons with the same velocity, ie. w(v) = %m(v) leads
to the kinetic energy flow tensor (Gyulassy et af 1982, Buchwald ez al 1983b). Although
being mathematically elegant, this method suffers substantially from finite particle number
distortions for A < 100, which allows only the maximum in the Jacobian free flow angle
distribution dN /d cos 8, and not the mean values, to be extracted as a useful observable
{Danielewicz and Gyulassy 1983).
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Figure 16. Kinetic energy fow analysis for the reaction
U (4004 MeV) + U. The Ry3—@ plane for the INC model
calculation {shaded area) and the NFD calculation (full
curve) are shown. The numbers indicate the impact
Kinetic flow ratio (a/b)? parameter (Buchwald er of 1983).

Figure 16 shows, for the reaction U (4004 MeV) + U, the fiow angle XY, ie. the
angle of the largest principal axis of the kinetic energy flow tensor to the beam axis, against
the aspect ratio Ry3{= A/Az), where the A; are the eigenvalues of F ordered according to
Ap < Az < A3. Here calculations done with the NFD model (full curve) are compared with INC
calculations (haiched area). Note that Ry3 >» 1 reflects events stretched in momentum space
(high transparency} while Ry3 = 1 corresponds to a spherical momentum distribution. This
figure clearly indicates that the matter flow is more strongly correlated in the hydrodynamical
calculation and that the flow angle increases with decreasing impact parameter.

The first experiment that has rigorously shown a non-zero flow, ie. a dN/dcos 6
distribution that is peaked at non-zero &g values, was performed by the Plastic Ball
collaboration for the reaction Nb (400A MeV) + Nb (Gustafsson er a/ 1984) and later on
also for heavier systems (Ritter er al 1985) (for a detailed discussion of these experiments
see e.g., Kampert (1989), Gutbrod (1989a) and Schmidt (1991)).

Figure 17 shows the measured flow angle distributions for the systems Ca + Ca and Nb
+ Nb at 4004 MeV bombarding energy (Ritter et al 1985) compared with the WNC (Yariv
and Fraenkel 1979, Cugnon et al 1982, Cugnon 1980) and the NFD (Stiicker ef af 1980a,
Buchwald et ! 1983b) calculations. A peak, different from zero, is only observed for the
heavier sysiem and in nuclear hydrodynamics calculations, while the cascade calculation
fails to reproduce the collective flow, due to the absence of compression effects.
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Figure 17. Distributions of the flow angles g for the reactions Ca + Ca and Nb + Nb at
400A MeV bombarding energy. The experimental data for the Ca and Nb case (Ritter et af
1985), compared with the theoretical caleulations performed with the INC and NFD models for
different multiplicity bins as indicated are shown.

This sphericity analysis has, however, the disadvantage that it constructs a global
observable out of all measured particles from one event. So it is not very selective, since
it also includes all the thermalized particles which smear out the important effects. For this
reason this method cannot be used to extract any detailed information about the underlying
physics.

In order to avoid these difficulties Danielewicz and Odyniec (1935) developed the so
called global transverse momentum analysis. In this method the reaction plane is constructed
for each event from the transverse momentum components of all particles. In the next step
the transverse momentum vector of each particle is projected onto this plane, yielding the
in-plane transverse momentum p,, which is then usually plotted as a function of the Lorentz
invariant rapidity y = £ In[(E + py)/(E — p)].

Figure 18 shows such a distribution for the measured system Au (2004 MeV) + Au
(Gutbrod et af 1989a). This was the first exclusive experiment (in fact, until 1991 when the
GSI 47 spectrometer went into operation it was the only one), where the flow of composite
particles was measured. The transverse momentum distributions for protons (Z = 1) are
shown as well as for heavier fragments as indicated. One clearly observes the general
behaviour of such distributions, The particles with rapidities close to the beam rapidity
show a maximum flow, while for the stopped, thermalized particles at midrapidity, the
transverse momentum vanishes due to the azimuthal symmetry (we will investigate later to
what extent these particles are thermalized). This figure also shows clearly that a stronger
flow effect is found for the heavier fragments, due to less thermal smearing as was proposed
from early NFD calculations (Baumgardt et al 1973, Sticker et al 1981).

For the comparison of the in-plane flow with theoretical calculations we use the QMD
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Figure 18. The mean value of the transverse momentum projected onto the reaction plane as a
function of the cM rapdity for the reaction Au (2004 MeV) + Au. The values for Z =1, 2 and
2 6 are shown (Gutbrod ef al 1989a).

model, with different parameter sets for the relevant interactions. First we vary the nuclear
EOS by changing the compression constant K from 200 MeV (the resulting EOS is called
soft) to 380 MeV (hard EOS), without using the momentum-dependent interactions (MDI). As
a third case we use the soft E0S (K = 200 MeV) with the MDI (SM). In the fourth case we
also change the nucleon-nucleon cross section. The effective value of the N-N scattering
cross section in the nuclear medium is still not known precisely. This cross section may
be reduced, due to the Pauli blocking of intermediate scattering states (Haar and Malfliet
1986, 1987, Cugnon et al 1987, Bertsch et al 1987, Ohtsuka er af 1987). It is well known
that the N-N cross section in infinite nuclear matter is lowered compared with that in the
free case. One part of this reduction results from the Pauli blocking of the final scattering
states. This leads to a reduced cross section o, which is already included in all the
models which use the Uehling—-Uhlenbeck collision term via the explicit blocking of the
final scattering states. In a Dirac-Brueckner theory the N--N scattering also includes the
blocking of intermediate scattering states. This leads to an additional reduction of the cross
section (Haar and Malfliet 1986, 1987), which, for the present study, is approximated by a
simple reduction factor

o & 0,703 - 47

It should be noted that such a global reduction in the cross section certainly does not
reproduce the physical situation exactly, but our purpose here is only to show the changes
in the observables that should be expected if the cross section in the nuclear medium is
substantially different from the free one.

Before a comparison with experiment, one has to include the experimental efficiency
filter in the theoretical calculations. In order 1o do s0, we applied the same low-energy cut-
off at 354 MeV to all particles and counted the intermediate mass fragments (up to mass 20)
only if they were emitted with an angle lower than 30° in the laboratory frame. One also has
to be careful to correlate the experimental multiplicity triggers with the impact parameters
used in the calculations. By its definition the transverse momentum analysis fails to detect
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flow effects for very central ¢oliisions; becaunse of symmetry it is always p, (b = 0 fm} = 0.
A clear maximum is experimentally observed in the multiplicity dependence p.(N,) (see
{Kampert 1989)) in the bins MUL3 and MULA4. An analogous maximum is observed in
the calculated impact parameter dependence p.(b) at » = 3 fm. Data and theory can
thus be directly confronted by comparing the p./A values at the corresponding maxima.
One also has to be careful about the exact definition of the collective flow. One possible
definition is based on the slope of the p,{y) distribution at midrapidity (Doss et al 1986).
For heavy fragments, however, the slope of the p,(y) distribution at midrapidity cannot
be defined, because the vields are strongly peaked at projectile and target rapidity (Peilert
et al 1988). Only a few fragments are found at midrapidity, except for the most central
collisions (b £ 1 fm), where the p,/A values are small. There is only one way out of this
Catch22 situation, namely to study the p,/A values at their maximum yield, i.e. close to
the projectile and target rapidities.

Aufb = 3 fm) + Au
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i 100 g Figure 19, Excitation function of the Aow (absolute
o< 1 value of the p.(y) distribution at projectile rapidity)
N oW 1 for the reactions Au (200-800A MeV) + Au obtained
0. o™ oy with the Qmp model with different interactions as
0 W 20 30 40 50 indicated (upper part). The lower part shows the mass
A dependence of the fragment How (Peilert et al 1989).

In figure 19 we show in the upper part the excitation function of this flow (px(y,)/A)
for the singles (A = 1) calculated with the QMD mode! using the different interactions
as indicated. One clearly observes a difference of about a factor two between the pure
soft and hard EOS. This difference is, unfortunately, smeared out if one considers the other
in-medium effects, e.g., the MDI and the effective nucleon-nucleon cross sections. The
additionally included MDI increases the transverse flow so that the results obtained with a
soft EOS plus MDI (5M} comes close to the hard EOS without MDB1. The reduction of owy acts
in the opposite direction. Due to an increased transparency the flow decreases, when the
cross section is lowered (see the curve labelled sm).

So we are left with the problem of disentangiing the different influences, ie. to
find observables which are unambiguously influenced by one parameter only. With such
abservables at hand we can then fix all the unknown parameters independently.

The lower part of figure 19 shows the mass dependence of the fragment flow. Note that
the flow of the intermediate mass fragments is more pronounced than the flow of the single
nocleons,
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As one can see from the upper part of this figure the flow increases steadily with
increasing bombarding energy, reflecting the increase in the compression energy deposited in
the systern. This, however, is only the case if the EOS shows an increase in the compression
energy with increasing density. A drastic change in the excitation function of the flow is
expected when the EOS shows any deviation from this scheme, for example in the form of
a second minimum as was shown in figure 3.
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Figure 20. vuu calculation for the excitation function of the directed transverse flow pgi' (from
Hartnack {1992)). The upper curve was obtained using the hard Eos of figure 6, whife for the
lower curve the exotic EoS with a secondary minimum at g & 2.5gp was used (see the curve in
figure 3 witho = 1.0 and 8 = 1.31).

As an example for the consequences of such an exotic EOS we show in figure 20 the
excitation function of the directed transverse flow pg* = 3, pi|, for the reaction Ca
(b = 2 fm) + Ca. In this case a VUU calculation has been performed (Hartnack 1992) using
the conventional hard EOS as well as the exotic EOS which was shown in figure 3 with the
parameters & = 1.0, 8 = 1.35. One clearly observes that, in contrast to the results obtained
with the hard E0S the excitation function of the flow drops out when some critical density
{bombarding energy) is reached and then decreases when the density (bombarding energy)
in further increased. At the highest energies the excitation function starts to increase again,
This behaviour will be even more pronounced for a larger system (e.g., Au + Au) but in
this case we expect the drop-out to occur at energies larger than 1A GeV where one should
use a relativistic model,

Figure 21 shows the calculated (filled circles) and the measured (filled triangles) in-
plane transverse momenta distributions for the reaction Au (200 AMeV, & = 3 fm) + Au,
evaluated with the Plastic Ball efficiency cuts for different fragment masses and for the
soft and the hard EOS (without MDJ, off, = o), respectively. Note again the increase in
the p./A values with the mass of the fragments both in theory and experiment, as well as
the dependence of p,/A on the EOS. This difference between the results obtained with the
soft and hard EOSs is most pronounced for intermediate mass fragments. These fragments
are formed early in the reaction as a result of the compression wave travelling through the
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Figure 21. The transverse momentum distributions p.(¥)/A of light and intermediate tass
fragments obtained from the QMD calculations for the reaction Au (2004 MeV, b =3 fm) + Au
are compared with the Plastic Ball data (full triangles) for different fragment classes as indicated.
The left-{right-Yhand column compares the results obtained with a soft (hard) eos with the data,
Both the gMD resuits and the data have been taken at the impact parameter (multiplicity) where
the transverse momentum shows a maximum {Peilert er al 1989).

system. The heaviest fragments (A > 30}, on the other hand, are formed later in a decay
chain from the excited projectile and target residue (see also section 5);, hence they do not
carry strong signatures from the compression stage.

With the invention of the SIS/ESR facility at the GSI in Darmstadt it then became
possible to study these reactions (i.e. collisions of heavy ions at high energies) in much
more detail. One of the first experiments that was investigated there was the reaction Au
(150A MeV) + Au (Alard et ol 1992). In figure 22 we therefore show the double differential
invariant cross section (1/p)(d*c/dy dp,), obtained with three different models, namely the
INC, vUU and QMD models. In the case of the QMD model the results have been integrated
over all nucleons, even if they were bound in clusters. Shown in this figure are the inclusive
results (obtained from impact parameters & € 6 fm) and the central collisions with & < 1 fm.
In addition to this a directivity cut D = |3, pil/ 3, Iptl .., < 0-2 has been applied to
all events and to the central events only. First one observes that both the VUU and the
QMD calculations yield almost the same distributions, as they should, because in this case
a one-body observable is considered. The cascade calculation, however, clearly shows a
different result. In contrast to the VUU and QMD results, which yield complete stopping,
there is a considerable amount of transparency in the cascade calculation. The reason for
this is again the absence of the compression effects, which has also led to the failure of the
cascade models to expiain the transverse flow.

Going from the inclusive distribution (upper row) to the more central triggers one
observes a change in the momentum distributions. For the inclusive distributions the events
look more or less thermal; this, however, is an artifact of the impact parameter mixing and
not a physical observation. For the more central collisions one clearly observes that the
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Tigure 22. Double differential, invariant cross section {1/p)(d%a/dy dp,) for the reaction Au
(150A MeV) + Au, obtained with the INC, the vUy and the QMD model. The results are shown
for the inclusive reaction (b < 6 fm) and for varions other triggers on central collisions.

distributions are clearly not thermal, there is even a peak at finite transverse momenta for
the most central collisions.

In parallel to the FOPI experiments at the GSI the E0OS Time Projection Chamber (TPC)
was developed in Berkeley. The EOS/TPC is a newly constructed detector that exceeds the
capabilities of the Plastic Ball. The experiments with this detector have been devoted to
measuring the excitation function of the collective flow effects up to the highest energies
that are possible at the BEVALAC (Hjort er al 1994). It is our purpose to use the QMD
model in order to perform a detailed comparison of the collective flow observables with
the experimental data in the whole energy regime available at the BEVALAC. Since the
experimental data are not yet fully analysed, we cannot present a comparison with QMD
results right now. Figure 23 shows a prediction of the in-plane transverse flow (g, (¥)} for
the reaction Au + Au at 4004 MeV bombarding energy. The calculations have been done
with the modified QMD model with and without the Pauli potential, using a compressibility
constant of 380 MeV for the impact parameter range » = 2-4 fm. The qualitative and
quantitative results here agree well with the previous results, obtained with the original
QMD version (see e.g. figure 19). In addition to the unfiltered results we also show, tor
the light fragments (Z = 1, 2}, the results that have been obtained after filtering the QMD
events according to the EOS/TPC efficiencies. In this case we did not use the fixed impact
parameter interval, but we used the same multiplicity trigger as the experimentalists (the
MULS3 bin is constructed in the same way as for the Plastic Ball data discussed earlier).
One can see clearly from figure 23 that the Pauli potential affects the magnitude of the
collective flow only slightly, also the filtering slightly lowers the flow.

We have seen that the absolute magnitude of the iransverse flow is sensitive to the
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Figure 23. The in-plane transverse flow is shown for the reaction Au (4004 MeV, b = 2—4 fm)
for fragments with Z = 1,2 and Z = 3-5. The upper figures also show results that have been
obtained after filtering the QMD events according to the EOS/TPC efficiencies (labelled with
MUL3). The open triangies show the results with and without the Pauli potential,
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Figure 24, Transverse momentum distributions for the reaction Nb (b = 3 fm) + Nb obtained
with the vou model (Molitoris and Sticker 1985).
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underlying EOS. This effect is more pronounced at high energies where higher compressions
are obtained. But one can also use the same observable, i.e. the p,(y) distribution, to test
the EOS at low densities. In figure 24 we present a VUU calculation (Molitoris and Sticker
1985, Sticker and Greiner 1986) for the reaction Nb(k == 3 fm) + Nb. The calculated
transverse momenturmn distributions are shown as a function of the beam energy. Observe
that the p, values change sign in the energy regime between 50 and 1004 MeV. This is due
to the fact that the attractive part of the nuclear interaction becomes dominant; the bounce-
off, caused by the short-range repulsion at higher energies is converted into the negative
angle deflection known from TDHF calculations in the same energy regime (Stdcker et al
1980b). This onset of the flow has recently been observed experimentally by the MSU 4
group (Krofcheck et al 1989, 1992, Ogilvie ef al 1990, Wilson et al 1990, Westfall et af
1993) and at the GANIL facility (Sullivan er af 1990).

Nolb=3fm +Nb

T i T 1 T 1

0.10 |

= . i Figure 25, The relative transverse momenta p, / Poeam
: * * — are shown for the reaction Nb (b = 3 fm) + Nb
0 50 100 150 200 obtained with the vy model using a soft and a hard

Elay (MeV} Eos (Hartnack 1992),

In figure 25 we present a VUU calculation which shows this onset of the flow for different
interactions. It can be seen that the crossing point, where the transverse momentum transfer
changes its sign, depends clearly on the E0S8. A stiffer EOS leads to higher compression
energies which result in a lower energy for the crossing point. Note, however, that these
calculations were performed at the fixed impact parameter & = 3 fm. Since the transverse
momentum transfer also depends strongly on the impact parameter and this impact parameter
cannot be measured with sufficient precision at these energies, it seems to be almost
impossible to use this effect in order to pin down some information about the EOS. A
more detailed comparison of the recent MSU data with the BUU model calculations has
recently been made by Westfall et al (1993). They showed that the in-medium nucleon-
nucleon scattering cross sections have an even larger influence on the onset of the flow than
the nuclear EOS.

4.1.2. The 90° squeeze-out. Let us now concentrate on the behaviour of the particles that are
stopped at midrapidity. These particles are supposed to undergo the highest compression and
are therefore expected to be most sensitive to the underlying EOS. Unfortunately the usual
construction of the bounce-off observables triggers on particles which are not at midrapidity
but at forward/backward rapidities. For this reason we now study the so-called squeeze-out,
namely the compeonent of the collective flow that is emitied perpendicular to the reaction
plane,
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For the qualitative and quantitative comparison with the latest Plastic Ball data we
therefore look at the azimuthal distribution of the particles at midrapidity. The azimuthal
angle ¢ is defined as the inclination angle between the p. -vector and the x-axis. A ¢ angle
of 0° corresponds to particles in the positive hemisphere of the reaction plane (projectile
spectators) and 180° to particles in the negative hemisphere of the reaction plane (target
spectators). In 90° and 270° one observes the particles with momenta perpendicular to the
reaction plane.

The first squeeze-out studies, done by the Plastic Ball collaboration (Gutbrod et af
1989b) employed an analysis that used the transverse momentum analysis to determine the
reaction plane and the sphericity method to determine the flow angle in that reaction plane.
These investigations have demonsirated that the azimutbal distributions around the flow axis
are much better suited to describing the event than the azimuthal distribution around the
beam axis! It was also shown that the azimuthal distribution of the momentum per nucleon
of the particles also shows the squeeze-out effect, indicating that not only the density of
particles is enhanced in the out-of-plane direction, but that these particles are also emitied
with a higher average transverse momentum.
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Figure 26. Azimuthal distributions for the reaction Au (4004 MeV) + Au. The Plastic Ball
data (full triangles) are compared with the vuu results (histogram) obtained with a soft gos plus
MD! (taken from Hartnack (1992)).

In figure 26 we compare the azimuthal distributions d*N /dp dy in the unrotated (left-
hand figure) and the rotated (middle figure) frame as well as the azimuthal distribution of
the transverse energy d?Er/dpdy (right-hand figure) with the Plastic Ball data (Gutbrod
et al 1989b). The comparison is made for the reaction Au (4004 MeV) + Au at the
corresponding impact parameter respectively multiplicity. The best agreement between the
QMD calculations (full triangles) and the data (histogram) is found when the soft £08 plus
Mo is used. One should, however, keep in mind that the calculations were for the fixed
impact parameter b = 3 fm, while the data were selected according to the charge particle
multiplicity.

Further experimental (Gutbrod et al 1990b) and theoretical (Hartnack 1992) investiga-
tions have shown that the squeeze-out effect is a truly collective effect that scales linearly
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with the mass of the system rather than with ~/A like the bounce—off. The maximum of
the squeeze is found at surprisingly low beam energies (E = 400A MeV), in contrast to the
bounce that increases up to the highest energies that have been achieved up to now.

Because the squeeze-out particles escape directly from the hot and dense reaction zone,
unhindered by the surrounding cold target or projectile matter, they provide a clear probe
through which one can look directly at the compressed and hot fireball. The simultaneous
description of both collective flow effects within one microscopic approach is therefore a
large step forward to the ultimate goal of heavy-ion physics, namely the determination of
the bulk properties of nuclear matter.

4.2. Stopping and thermalization

Before we investigate the degree of stopping and thermalization we start with a survey of
the time evolution for the reactions Au (200, 800AMeV, b = 0 fm) + Au. In order to
distinguish between different groups of nucleons we define, in addition to projectile and
target nucleons, a third compoenent that includes all nucleons that have suffered at least one
collision.

Au {200 MeV foucl, b = 0 fm) + Au
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: — s L L tator fluids barely interpencteate, but rather collide with
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Figure 27 shows in the left-hand column the density profiles of the {cold) projectile and
target component, i.e. all particles that have not collided vp to this time. The right-hand
column shows the corresponding profiles of the participant component. Only at the very
beginning of the reaction is there an overlap between the projectile and target component.
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The very first collisions rapidly built up the participant component, which immediately after
formation acts as a huffer between target and projectile. Hence they no longer interact
directly. The further evolution of the system is completely determined by the separate
interaction of the participant matter with the projectile and target, respectively. Interactions
within the participant matter are crucial, too. This behaviour is in complete contradiction
with the two-fluid model (Amsden er al 1977b, Ivanow et af 1985, Clare and Strottman
1986, Mishustin et af 1989, Satarov 1990), where one assumes that the projectile and target
component stream through each other and collectively decelerate.

Let us now investigate the influence of the collisions as well quantum effects such
as Pauli blocking and the possible reduction in the nucleon~nucleon cross section on the
reaction. This influence can most clearly be seen by inspection of the mean free path of the
nucleons.

g7 T Tt T T T
Au + Ay
S 2L :,." 200 MeV/nucl -
~ b =3 fm
o
1+ ]
0 1 I 1 1
AX (200 Mev/nucl, b o= 0 fmd + AX gal T T ¥ T LI
40 —————e————
] _ —H
as5F 1 . ] % 40k —
£ e Z
£ zal aft | =
~ — 20} E
2_5 Fa o
L6 S .
20— L A — ’ : R . L L
0 50 60 150 200 0::::IT
15 L T T A
A
——— T
&0 Auth =0 fml + Au] <
i A, [
sol - 2
E N
= ]
~ 28 = 5r
e, — 2 r 1] ]
0 200 400 60D SO0 1000 0 20 40 83 80 #©5 120
Epp/nucl. (MeV] t fm/cl

Figure 28. The mean free path A of the nucleons  Figure 29, Time evelution of the central compression,

is shown for the very central collisions at energies
from 200 to 800A MeV for the different N=N cross
sections, masses and energies as indicated (Berenguer ef
al 1992). Note that A does not depend on the mass of
the system and decreases with increasing bombarding
energy in contrast to the naive expectation of classical
kinetic theories {(Sobel ef al 1975).

the transverse ‘temperatire’ and the average number
of collisions per pucleon of the reaction Y7Au
(2004MeV, & = 3 fm} + Au.  The local
‘temperature’ has been obtained via the relation T =
(pi) /2m for the different interactions as indicated.
Almost all collisions take place when the ‘temperature’
and densities are at their highest values (Berenguer et
al 1992).

Figure 28 (upper part) shows the dependence of the mean free path on the mass of the

system for central, symmetric reactions. The results are shown for the UU cross section
oYV and for the 30% reduced cross section a*®. This reduction in the cross section clearly
reduces the number of collisions and therefore increases A. Note that A depends on the
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N-N cross section and not on the mass of the system. The energy dependence of A can
be studied for the most central collisions of Au on Au in the lower part of figure 28. A
decreases with increasing bombarding energy, due to the higher densities achieved, and
the lower Pauli blocking rates (cf figure 10) in spite of a decreasing N-N cross section.
The results obtained with the Boltzmann cross section o™ (without Pauli blocking) are
also shown. This increased cross section yields a drastic decrease in the mean free path.
Enhanced thermalization and nuclear stopping resuits.

Let us now inspect in more detail the stopping of the incoming matter which implies
the equilibration of the incident longitudinal momenta in N-N collisions. Some quantities
of interest to macroscopic models are shown in figure 29 for the reaction Au (2004 MeV,
b =3 fm) + Au as a function of time. The central density increases from zero (in the initial
stage the nuclei are separated in coordinate space) to the maximum density reached after
~ 15 fm ¢~!. The maximum densities achieved in this energy regime are between two and
three times higher than the normal nuclear matter density depending on the EOS used (with
a soft EOS higher densities are reached). After this compression stage the matter flows out
of the central region and the central density decreases steadily to zero. The same behaviour
can be observed in the middle part of figure 29 for the transverse kinetic ‘temperature’,
which is defined as T, = ((p2} + {p2))/(2m).

The reason for the degradation of the longitudinal momenta into transverse degrees of
freedom, the build up of the compression zone and the complete stopping of the system are
the hard nucleon—nucleon collisions. The lower part of figure 29 shows therefore the average
number of N-N collisions per nucleon plotted as a function of time for the different N-N
cross sections. Almost all collisions take place in the time interval when the ‘temperature’
and the density are at their highest values. At the end of the compression stage (¢ = 50-
60 fm c¢™'), practically all collisions have ceased. Hence, the following expansion and
fragmentation stage is little affected by short-range interactions and the system evolves
almost isentropically, although there are still a few coilisions occurring within the formed
fragments.

The large average collision numbers Neai/A = 5 indicate the approach to local
equilibrium, since kinetic models predict the thermalization of the incident momenta already
after two or three collisions, depending on the beam energy (Randrup 1979, Cugnon et af
1981, Rosenhauer et al 1984).

The dependence of the dN/dY distributions on the mass of the system and on the
bombarding energy is shown in the vpper part of figure 30: complete stopping, resulting
in a single-peak distribution at midrapidity is observed only for massive systems while
lighter systems exhibit rather broad rapidity distributions even for very central collisions,
The stopping power does not change much with bombarding energy, if the scaled rapidity
distribution dV /d(Y/Yp) is considered, as can be seen in the lower part of figure 30.

Figure 31 shows the QMD calculations (right-hand column) compared with the Plastic
Ball data (Guibrod et af 1990a) (left-hand column) for different systems at 4004 MeV
bombarding energy. The shape of the distributions seem to be identical for all systems.
However, this insensitivity is only due to the selection of protons (light clusters are
predominantly seen at the projectile and target rapidities (Peilert et ol 1988)). For the
smaller systems there is more transparency, because the ratto of the mean free path to
the diameter of the system is not small enough. The Plastic Ball efficiencies which have
been applied to the theoretical results furthermore cut out those particles, which remain at
target and projectile rapidities, because of their low energy, respectively small angles, in
the laboratory frame. Thus the plateau shapes of the unfiltered distributions as can be seen
in figure 30 appear as Gaussian shaped only due to the efficiency cuts, Non-negligible
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(Berenguer et al 1992). Plastic Ball filter all distributions {even those for the
light systems) look Gaussian shaped (Berenguer et af
1992).

distortions of the midrapidity yields have been reported for the very heavy system by the
Plastic Ball collaboration.

The sensitivity of nuclear stopping to the potential employed and to the effective
scattering cross section has also been investigated. Figure 32 shows that the influence
of the mean field on the longitudinal flow is relatively small. However, the scattering cross
section is vital for the stopping power. By using the free cross section (without Pauli
blocking) the classical collision numbers double. This yields an increase in the stopping
power. A global reduction in the scattering cross section with 6% = 0.7¢'"V in combination
with the soft EO$ and the mMDI (SIM) yields double-peaked dN /dY distributions with peaks
closer to the rapidities of the projectile and target. The double-peak structure originates from
the remnanis of the projectile and target spectators. It indicates an incomplete stopping of
the incident nuclei. One should, however, keep in mind that a more complex functional
dependence of o°ff, e.g. on p and T, could render the systematics of the interplay between
the effective scattering cross section and the longitudinal and transverse flow much more
complicated. The dN/dY distribution of the soft EOS with the UU cross section oVY(S) lies
between the curves S and SIM. The mpi (SM) maodifies the stopping power slightly. The
evident differences between the dN /dY spectra obtained from the cases o°% and "V can be
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Figure 32, The influence of the different interactions on
the rapidity distributions dN /dY (all particles included)
obtained from the reaction '*TAu (2004 MeV, & =
3 fm) +1%7Au (Berenguer er af 1992). The dN/d¥
distributions depend strongly on the N-N cross sections
used!

Au b =0 fm) + Au

200 MeV/nucl.

t

Figure 33. Ratio of the mean quadratic momenta at the
origin of the cM frame in transverse and longitudinal
direction for central Au + Au collisions at 2004 MeV
(upper figure) and 8004 MeV (lower figure) for all
particles (full curves), for particles which kave collide at
least once (broken curves) and more than once {dotted

curves). The participant component equilibrates much
better than the spectators. This behaviour is more
pronounced at lower energies (Berenguer er o 1992).

exploited for the experimental determination of o°% from the dN/dY spectra for different
systems at different energies (see, e.g., Peilert et af 1988, Keane er al 1988). The measured
rapidity spectra for the systems Ar (12004 MeV) + Baly and KCI are in good agreement
with VUU calculations (Keane et al 1988), which use the free scattering cross sectton g,
A reduced—or increased—o°! fails to reproduce these data, just as the Au + Au data show
ne dip.

Let us now investigate to what extent thermodynamic concepts, in particular local
equilibrium, are justified. The local equilibrium concept forms the basis of ideal fluid
dynamics whiie the assumption of global equilibrium forms the basis of most statistical
models.

The local degree of isotropy R can be defined as R = {p3)/2 - {p}), where p7 and
pL are taken in the rest frame of the matier element under consideration, Then R = Q
means total anisotropy which is characteristic for the first stage of a collision in which the
two nuclei just touch and no transverse momentum yet has been transferred. An isotropic
momentum distribution would lead to R = 1. Note, however, that R = 1 is a necessary,
but not sufficient condition for equilibration. For heavy systems one expects to be close
to a local equilibrium situation, where viscous hydrodynamics is applicable. When the
matter starts to decompress, near equilibration is observed in this central zone. Figure 33
shows the time evolution of R at the origin (x = y = z = 0) for the reaction Au (200,
800AMeV, b =0 fm) + Au. Three different cases are shown, including all pucleons (full
curve), those nucleons which have suffered at least one (broken curve) or even two (dotted
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Figure 34. Time dependence of the kinetic pressute
in the centre of the reaction for the system Au (200
7 {upper figure), 800 (lower figure) A MeV, £ = 0 fm)
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vy components of the stress tensor, full curves to the
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curve) collisions. Local equilibrivm is clearly not achieved for the total system while the
participant component equilibrates better (R & 0.8-0.9).
More information about the thermalization process can be obtained from the stress tensor

Pu(r.t) = fd3p F,r,0)lpi ~ {pe(r, D} — {0y (v, 1))] ki=ux,y2 (48)

The interaction part of Pj; has been excluded from the analysis, because Py is to be
compared with the Newtonian ansatz used in viscous fluid dynamics (Csernai and Barz
1981, Buchwald er af 1981, 1983a). For the local interactions used here Py is trivially
isotropic. This means the sum of the kinetic and interaction pressure will always appear
more isotropic than the kinetic pressure (stress tensor) alone. Using the QMD distribution
function (see equations (31), (32)) one obtains

1 N - 2
Py(r,1) = GrLyl D exp {—(T—;;(t)“)“] Lpio — (p(r, DDl (pio/mi) — {vlr, O}
i=1

(49

Figure 34 shows the time evolution of the different components of the stress tensor. The
maxima of both the zz component (full curve) and the xx component (broken curve) appear
at the same time as the maxima of the temperatures and the central densities (cf figure 29).
However, the absolute values of these components differ from each other; they approach
one common value towards the end of the reaction. This reflects again the importance of
treating the non-equilibriom aspects during the early course of the reaction. On the other
hand, for fireball nucleons the zz component of the stress tensor {dotted curve) is almost
identical to the xx component, i.e. the fireball is pear thermal equilibrium. Hence, the basic
assumption of the three-fluid model (Csernat ef al 1982, Rosenhauer et af 1987) is justified:
each of the three components closely approach thermal equilibrtum. The non-equilibrium
effects are most important at the start of the reaction.
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Can the concept of viscous fluid dynamics (Csernai and Barz 1981, Buchwald ¢t al 1981,
1983a) be applied to heavy-ion collisions? The viscosity coefficients i (shear viscosity) and
& (bulk viscosity) are defined by the following Newtonian form of the stress tensor.

8V 8V, 3 avk) 38V
Po=p-8;—n-|—+—=8,2 3§i_._ S = 50
Y P g " (3):_; Bx,- Y ! =1 Bxk Y é: k=1 Bxk ( )

The viscosity and its density and temperature dependence serve as a constitutive equation
for hydrodynamical calculations. In a microscopic model these viscosity coefficients can be
determined by comparing the exact pressure tensor (equation (48)) with the Newtonian form
(equation (50)). Furthermore this Newtonian ansatz itself can be checked. This means that
unique coefficients 7 and £ should be found so that all, in general, anisotropic components
of the stress tensor obey relation (50) with the same coefficients, However, we find here
that the coefficients for the longitudinal components of the siress tensor are about a factor
of three larger than the coefficients for the transverse component.
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Figure 35 shows the shear viscosity coefficient as a function of both the transverse
{(denoted with r), and the longitudinal (denated with z) distance from the origin, exfracted
for the reaction Au (2004 MeV, b = 0 fm) + Au, at 20 fm ¢! (note the cylinder symmetry
of the system). The left-hand column shows the longitudinal viscosity coefficient n,, for
all particles and for particles which have collide at least once. 1, reaches maximum values
around 60 MeV fm~2 ¢! in the highest density region, if all particles are considered.
It drops to zero at larger distances from the centre due to the density and temperature
dependence. In contrast, the participant component reaches values of & 20 MeV fm=2 ¢!
only. The right-hand column shows the transverse component 1., which reaches maximum
values of 20 MeV fm~2 ¢~!, which are nearly identical to the ‘participant’ component. The
same situation is found for higher energies (Berenguer er al 1992). A maxiroum viscosity
coefficient of 130 MeV fm~2 ¢! is needed in order to get a proportionality between stress
tensor and velocity gradient at 8004 MeV bombarding energy. For the transverse component
a maximum value of 20 MeV/fm?c is found. A higher value of the viscosity coefficient is
found in the longitudinal direction.
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Previous one- (Csernai and Barz 1981), two- (Buchwald ef a/ 1981) and three-
dimensional {Buchwald et af 83a) viscous hydrodynamical calculations used much smaller
viscosity coefficients than those obtained by kinetic theories. These low values were
motivated by fission fragment spectra (Hofmann and Nix 1983). However, recently
hot fission experiments recently led to much higher extracted viscosity coefficients (Paul
Private communication) in accordance with the estimates of kinetic theories (Bodmer 1978,
Danielewicz 1984). Recent hydrodynamical calculations (Schmide 198%) show that only
such high viscosity coefficients can explain the flow and bounce-off data. However,
viscosity coefficients of 60 MeV fm~2 ¢~ yield better agreement with the experimentally
observed in-plane sidewards while the out-of-plane squeeze-out can be reproduced with
n =40 MeV fm~2 ¢! (see also (Schiirmann 1988)). This is in qualitative agreement with
the above results.

5. Mulfifragmentation

One goal of heavy-ion physics is to investigate nuclei at the extremes of excitation. In the
decay of highly excited nuclei it is possible to study the low density part of the nuclear EQS,
since at those densities (0 < gg) the behaviour of the system is governed by the balance of
long-range attractive and short-range repulsive nuclear forces with the long-range Coulomb
force. In analogy with the classical Van der Waals gas, where the interplay between long-
range attractive and short-range repulsive forces leads to a second-order phase transition,
such a liquid-vapour phase transition is also expected in heavy-ion collisions (Friedman
and Pandharipande 1981, Bertsch and Siemens 1983, Siemens 1983, Goodman et af 1984,
Panagioutou et of 1984, Csernai and Kapusta 1986, Hahn and Stocker 1988). In low-energy
heavy-ion coliisions or high-energy proton-induced reactions this phase transition resuits
in an increase in the total entropy (Csernai and Kapusta 1986) and in the fragmentation
of the system (Fisher 1967). While the entropy is not directly measurable in heavy-ion
experiments, the formation of intermediate mass fragments (IMFs) can be observed directly.
This feld was first touched upon experimentally via inclusive proton-induced reactions
(Finn er al 1982) and later in heavy ion reactions (Aleklett er af 1982, Jakobsson er af
1982, Jacak et al 1983, 1987, Warwick et al 1983, Waddington and Freier 1985, Doss et al
1986, Gelbke and Boal 1987, Alard et af 1987, Trockel er af 1987, 1988, 1989, Pochodzalla
1989, Ogilvie et al 1989, 1990, Aleklett et af 1990, Bowman et al 1991).

All the inclusive, i.e. impact parameter averaged, experiments have shown a typical
power-law dependence o(A)} =~ A~" of the mass yield distributions, where the critical
exponent T was compatible with a value of approximately 2.5. Fisher (1967) made such a
prediction for fragmentations resulting from a classical liquid—vapour phase transition only
at the critical point.

The major shortcoming of these experiments was, however, that no selection on
multiplicity (impact parameter) could be done, and so the results could also be of geometrical
or any other origin and not a signature of a phase transition,

In recent years it has become possible to do exclusive measurements of multifragmenta-
tion reactions. This has been done with streamer chamber detectors (Jakobsson et al 1982,
Waddington and Freier 1985) or with electronic detectors (Doss et af 1986, Alard et al
1982, 1987, Ogilvie et al 1989, 1991, Hubele et al 1991, Bowman et al 1991, Sangster et
al 1992, Hjort ez al 1993). With the availability of 4% detectors it is possible to study the
multifragment break up of nuclear systems in much greater detail, due to the huge number
of events which can be sampled.
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The decay of highly excited nuclei may be divided up qualitatively into two processes; a
dynamically determined fast process in which many nucleons and some clusters escape the
equilibrating mix and a statistical process that govesns the decay of the equilibrated residue.
The consequences of the dynamic processes in heavy-ion collisions have been discussed in
the first sections of this article. Now we want to concentrate on the process of fragment
formation. In the past few years much progress has been made in describing the dynamical
stage of these reactions, but the statistical processes have had less attention. So let us first
summarize the properties of commeon statistical decay models.

At moderate excitations (for temperatures up to a few MeV) the decay of equilibrated
nuclei may be interpreted in terms of sequential binary decay. Straighiforward extensions
of the Weisskopf and Ewing (1940) evaporation formula have beent used in this context,
with moderate success in reproducing spectra and yields of ejectiles, including clusters, and
exclusive cluster multiplicities. These approaches rely on phase space, but restrict the phase
space at each step of the calculation to that available for binary processes.

As the excitation energy increases, three-body and higher order (simultaneous) decay
processes will show a greater phase space than binary processes. Different physical models
(formulations) are necessary to consider these higher order processes., The question as
to whether the greater phase space will determine the outcome of these reactions or
whether dynamic constraints {as for example seen in nuclear fission) will restrict the
multifragmentation channels remains to be seen as a result of experimental measurement.

The decay models treat this process in a statistical way in micro canonical, canonical
or grand canonical ensembles (Randrup and Koonin 1981, Fai and Randrup 1982, 1983,
Gross and Zhang 1985, Bondorf e al 19852, b, Gross et al 1986, Koonin and Randrup 1987,
Botvina et ¢l 1987, 1990, Hahn and Stécker 1988, Gross 1990); or by means of evaporation
models (Blann 1985, Barbagallo et al 1986, Friedman 1988, Blann et af 1989, 1991). All
these models have the great disadvantage that they start with an equilibrated system. While
this may be a good approximation in heavy-ion reactions at very low energies (around the
Coulomb barrier the projectile may excite the collective degrees of freedom of the target)
or for light-ion-induced reactions at very high energies, it is still an open question whether
at higher energies a global, or even a local, equilibrium is achieved (see also the discussion
in the previous section).

The aim of the present review is to present a realistic model, capable of describing the
whole collision process, starting from the fast initial stage of interacting projectile and target
and ending with the final stage with the de-excitation of thermalized intermediate states, It
seems that a practical way to solve this problem will be to combine several models, each
suitable for the description of a limited part of the whole dynamical process.

In the mean-field models of VUU/BUU type the nucleons follow a trajectory which is
generated by the ensemble averaged motion of all the other nucleons (cf section 3.2). This
means that two-body and higher-order correlations are ignored, and these models give only
event-averaged answers for many-body observables such as the formation of fragments
(Kruse 1985a, Koch er af 1991).

The only microscopic model which is able to describe the direct fragment formation is
the QMD model, which was described in detail in section 3.2.2 of this article.

First we want to study some general multifragmentation properties calculated with the
original QMD model (without the Pauli potential). The spatial evolution of a Au + Au
collision at 2004 MeV energy can be followed in figure 36 for impact parameters 1, 3 and
7 fm. The beam axis coincides with the z direction. Observe the formation of one blob
of matter for all impact parameters (¢ € 40 fm ¢~'), which then disintegrates and yields
the fragments. For half-overlap collisions (b = 7 fm) two massive projectile and target
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remnants survive the reaction. In this case one observes almost no IMFs. When going to
more central collisions the projectile and target-like fragments become smaller (& = 3 fm)
and are absent in the most central collisions, where we observe a complete disintegration
of the incident nuclei. On the other hand, the IMFs are abundantly produced in central
collisions and disappear for peripheral ones.
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Figure 36. Time evoiution of the particle distribution in configuration space for the reaction
Au (2004 MeV, b=1,3, 7 and 11 fm) + Au. The projection of all particles onto the reaction
plane is displayed at five different times as indicated.

In figure 37 we show the typical time—-structure of a single half-overlap collision for
Au (200AMeV, b = 7 fm) + Au in more detail. Only fragments with A 2= 10 are
considered from ¢ = 0 (bottom) to ¢ = 200 fm ¢~! (top) in steps of 10 fm ¢~!. Up to
50 fm ¢~ one observes one blob of matter in configuration space which—for this large
impact parameter—is still separated in momentam space into a projectile and a target-like
residue. After 50 fm ¢~} the system breaks up into these two residues. Between 30 and
80 fm ¢~ most of the single nucleons and light fragments (A < 10) are evaporated. Then a
rather stable fragment with A & 105 remains in the projectile rapidity regime. In the target
regime a second break up is observed, which yields two stable fragments with A =~ 80 and
I3, respectively. At large impact parameters (¢ = 7 fm) the IMFs are mainly produced in
the binary break up of the heavy residues.

Figure 38 presents the average number of fragments as a function of time for 5 = 3 fm.
First of all we observe that the mass yield distribution for all fragments (A 2 2) stabilizes
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Au 4+ Au
E = 200 A MeV Figure 37. Time evolution of the fragmentation process
b=7im in a single event for the reaction Au (2004 MeV,
£ =17 fm) + Au. All massive fragments (4 > 10) from
t =0 fm ™! (bottom) to 1 = 200 fm ¢~ (top) are
shown. Two nucleons are considered to be members of
L A= a fragment if their spatial distance is less than dy = 3 fm
- (Peilert er al 1989).

at 150 fm ¢~! or even earlier. Let us first concentrate on the heavy clusters with A > 70.
Here one recognizes one cluster up to 50 fm ¢~! which is not stable and decays rapidly.
The decay chain can be seen by the subsequent population and depopulation of the different
mass bins for the smaller clusters. Along the decay chain the cluster also evaporates single
nucleons and therefore these numbers increase but have almost saturated at ¢ = 200 fm ¢~'.
The clusters in between 2 € A € 30 have a completely different history. They are formed
at a very early stage of the reaction and are not fed from the decaying remnants nor do they
decay. After 100 fm ¢~' practically all of them have been formed. They emerge from the
surface region of the combined system (Aichelin et af 1988) and measure the violence of
the reaction.

Keep in mind that the transient appearance of large ‘clusters’ reflects the simple
configuration space method used to define the clusters. The actual phase-space distributions
indicate that the cluster correlations are established much earlier. This can be seen in the
transverse momentum transfer discussed above. The complex fragments are most sensitive
to the detailed dynamics during the early compression stage. The transverse momentum
transfer, which is build up during the expansion from the high density stage, can be seen
most clearly for the tMFs. This indicates that these fragments have been formed early as
prefragments in the shock zone and therefore show this strongly enhanced sensitivity on the
EOS.

The time evolution of the local density in the central region of the reaction is also shown
in figure 38. Observe the compression shock at r & 20 fm ¢~'. At this time the highest
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Figure 38. Time dependence of the fragment yields for
the reaction Au (200A MeV, b = 3 fm) + Au, based
on 200 collisions. The average number of fragments
for different mass classes as indicated are shown as a
function of reaction time. The width of the fragment
distributions are indicated by the error bars. Also shown
is the time evolution of the Jocal density in the central

Figure 39. Inclusive, ie. impact parameter averaged
mass yield for the reaction Auw (2004 MeV) + Au
obtained with the soft (squares) and the hard (circles)
EOS, respectively (upper part). The lower part shows
the impact parameter dependence of the average mass
vield per event Y{A) for the same reaction (Peilert et
al 1989),

region of the reaction (Peilert et al 1989).

temperatures are also found (cf figure 29). Subsequently the system rapidly expands out
of the centrat region of the shocked matter. Note that the highest compression occurs at a
time when the fragments are not yet separated in the configuration space. After the central
density has decreased they are visible as individual entities only.

Figure 39 shows in the upper part the inclusive, i.e. impact parameter averaged mass
yields, for the hard and the soft BOS for Au (2004 MeV) + Au. Both curves exhibit a clear
power-law behaviour Y (A) ~ A™7. The fragment yields, however, are not sensitive to the
underlying EOS. For the constant T we find T = 2.3. The same behaviour is found in the
asymmetric system Ne + Au at 14 GeV bombarding energy (Warwick et a/ 1983, Aichelin
et af 1988). Such a power-law dependence with an exponent 2 < v < 3 has been interpreted
as evidence for a liquid~vapour phase transition (Minich et @/ 1982, Panagioutou et 2! 1984,
Csernai and Kapusta 1986). In the present fully dynamic model we can investigate to what
extent this conclusion is conclusive. The lower part of figure 39 displays the dependence
of the final fragment yields on the impact parameter. In all cases we observe a steep
drop of the yields of fragments with A < 10. Large differences become evident for the
heavier fragments. For central collisions (5 = 1 fin) the projectile and target are completely
disintegrated and hence there are no A > 40 fragments. For b = 5 fin the distribution
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cxhibits a flat plateau between A = 40-70. At b = 7 fm a U-shaped curve with a peak at
A = 120 (projectile and target residue) and almost no fragments in the A = 20-80 region
results. Hence we conclude that impact parameter averaging (rather than a liguid-vapour
phase transition) leads to an accidental power-law dependence of the inclusive mass yield
in high-energy collisions.

In figure 40 we compare the filtered maltiplicity distributions of central and peripheral
collisions (¢ = 3, 10 fm) directly with the corresponding data of Doss ¢t af (1987). The
data are shown for those events with maximal (MULS) and minimal (MUL!}) participant
proton multiplicity N,. The data and the theory are shown for fragments with A > 5. Our
calculation shows that the mean IMF multiplicities are reproduced quite well within the QMD
model.
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Figure 40. Calculated against measured fragment Figure 41.  Excitation function of the average

multiplicity distributions for peripheral (MULL, b =
10 fm) and central (MULS, & = 1 fm} collisions of the
system Au (2004 MeV) + Au. The QMD resulls (circles)
(Peilert ez @/ 1989) have heen obtained with the Plastic

multiplicity of IMrs Mc{A > 4) for the system Nb +
Nb obtained without filters for central and peripheral
collisions as indicated. The curves are to guide the eye
only (Peilert er al 1989),

Ball filter while the curves represent the experimental
data, taken from (Doss et af 1987, Kampert 1989).

The IMF multiplicities depend strongly on the bombarding energy. The average
multiplicities of IMFs (A > 4, without filter) is shown in figure 41 for the Nb + Nb system
as a function of bombarding energy, for the most central and the peripheral (b = 7 fm)
collisions. Observe that for central collisions the average multiplicity (M.(4A > 4)} is one
at low energies (fusion) and has a maximum of about 5 to 6 IMFs at intermediate energies
(E =~ 100A MeV). This clearly demonstrates that the system completely breaks up into the
lightest (A < 4) fragments at higher energies.

All the results presented up to now have been obtained with the original QMD model,
without the Pauli potential. Since it i3 basically important for the following considerations
to know the excitation energy of the fragments as well, we use from now on the modified
QMD approach which also includes the Pauli potentia) of (Peilert et al 1991) (see section
3, equation (44) and the discussion there), Within this modified QMD madel the nuclei
have well defined ground states, including the Fermi motion of the nucleons. Without the
Pauli potential the ground state of the Hamiltonian is always a configuration where all the
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momenta are identically zero. As a result we are also now able to calculate the excitation
energies of the fragments with respect to their ground states event-by-event.

For the remainder of this review we therefore use the modified model. Before we
study the multifragmentation process in more detail, we first investigate the pre-equilibrium
processes in such reactions.

Pre~equilibrium neutron emission has been measured recently for the inclusive reactions
p + Al, Zr, Pb at E, = 80, 120 and 160 MeV (Scobel ef al 1990) as well as for 256 and
800 MeV (Stamer 1992). It has been reported (Blann and Vonach 1983, Blann et al 1984,
Gruppelaar et al 1986, Trabandt et 2l 1989) that in this energy regime semiclassical pre-
equilibrium models, which are based on an intranuclear nucleon—nucleon collision process,
fail to reproduce the angular distributions. In order to describe the data more appropriately
a multistep model based on the Feshbach-Kerman—-Koonin (FKK) (Feshbach et al 1980)
formalism with at least two or more incoherent direct nucleon—nucleon interactions has
been used (Scobel et al 1990). Since the QMD model follows the trajectories of all nucleons
microscopically and treats both the hard nucleon—nucleon scattering and the soft nucleon~
nucleon interaction, it should be equally successful in describing these reactions.
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Figure 42. Neutron energy spactra in the cM frame for the reaction p (160 MeV) + Al at different
laboratory angles as indicated (Peilert ef al 1992). The symbels show the QMp calculation while
the full curve represents the data of Scobel ¢ al {1990),

The experimental and calculated CM energy spectra of peutrons emitted at different
laboratory angles are shown in figure 42 for the Al target at 160 MeV incident proton
energy (a detailed discussion of this topic can be found in Peilert er al (1992)). Both
the data and the calculations show a characteristic transition from a weak neutron energy
dependence at forward angles to an almost exponential shape at backward angles. This
clearly indicates that the system is not equilibrated. So we conclude that the failure of the
previous pre-equilibrium models to describe the angular dependence of the data is due to
the neglect of second- and higher-order collisions. The treatment of the collisions within

the quantum mechanical model of Feshbach ez af gives a similar agreement with the data,
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which implies that the quantal treatment of the statistical multistep direct emissions is well
reproduced with the stochastic collision term in the QMD model. The detailed form of the
nucleon-nucleon potential, which is the essential input for, for example, the FKK theory,
seems to be unimportant at these high energies. A detailed investigation of the high-energy
reactions at 256 and 800 MeV bombarding energies has not so far been achieved. It will,
however, be of basic interest to compare all available microscopic models with this type
of experiment in order to check the basic input of the models, namely the treatment of the
nucleon—nucleon collisions. One expects that the spectra of the emitted neutrons will be
very sensitive 10 the underlying input, especially to the treatment of the produced mesons.

Let us now present a comparison between data and calculations of IMF production in
the bombarding energy region between 50 and 100A MeV, where the maximum ™F yields
are expected to occur (Hahn and Stiicker 1988, Bondorf et al 1985a, Peilert et al 1989).

The data we want to discuss in the next two figures were obtained using 50 and
1004 MeV iron beams from the LBL BEVALAC and the PAGODA detector array (Fowler
et al 1989). A detailed discussion of the experimental set-up, as well as the inclusive
data, are contained in a recent publication (Sangster et al 1992). An important aspect of
the experiment is that the correlations between several fragments, emitted from the same
reaction, can be measured simultaneouslty. This allows quite different processes to be
uniquely identified.

Inclusive distributions from this experiment do not permit an unambiguous separation
of fragments stemming from true multifragmentation {central collisions) and binary fission
(peripheral collisions). However, anticorrelations of IMFs with projectile fragments and
correlations with the multiplicity of associated protons show (Sangster et al 1992) that
fragments with Z < 20 come almost exclusively from central high multiplicity events.
Coincidences between two fragments with Z > 20 clearly isofate fission, whereas mixed
coincidence events (Z; < 20 and Z > 20) are dominated by multifragment emission.

For the theoretical description of these reactions we use the modified QMD approach to
describe the initial non-equilibrium stage of the reaction. Since the Pauli potential provides
a well defined ground state for each fragment we calculate the excitation energy of the
prefragments and use this information, together with their mass and charge, as input for the
statistical multifragmentation model (SMMm) of Botvina et al (1987, 1990), that describes the
secondary decay of the excited fragments. In the calculation presented below, we stopped
the QMD calculations at 300 fm c~! reaction time. At this time the fast pre-equilibrium
processes are finished and the multiplicities and excitation energies of the prefragments do
not change rapidly with time (Peilert 1992). At this time the central densities of the excited
fragments in the QMD model are about half the nuclear matter density and also do not change
with time (Peilert 1992). This values are consistent with the freeze-out density used in the
SMM model. Up until now a precise matching of the density of the prefragments obtained
within the QMD with the freeze-out density of the SMM model has not been done, but we
use the standard values for all the parameters of the SMM model.

Figure 43 shows the inclusive charge distributions at laboratory angles of 36°, 72°,
108° and 144° relative to the beam axis for 50 and 100A MeV Fe + Au reactions. The
cross sections were obtained by integration of the velocity spectra above a threshold of
1.0 cm ns~'; no extrapolation below that threshold was performed. The most striking
feature is that the basic shape of the distributions does not change as the beam energy is
doubled. However, the slopes of the distributions decrease as the beam energy is increased.

A rather dramatic increase in the element yields at large laboratory angles is illustrated
in figures 44 which show the angular distributions of several elements for both the 50
and 100A MeV Fe + Au reactions. Here we observe an exponential decrease in the cross
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Figure 43. Charge yields for the reactions Fe  Figure 44. Angular distributions for the reactions Fe

(50, 1004 MeV) + Au for cented] collisions a¢ different
laboratory angles as indicated. The crosses show the
data of Sangster et al (1992) while the histograms
represent the QMD calculations obtained from impact
parameters 0 to 6 fm. The dotted histograms show
the results from the QMD model alone while the full

(50, 1004 MeV) + Au. The data shown are for several
charge yields as indicated while the results of the QMp
calculations {dotted histograms for the oMD results, full
histograms for the results after the secondary decay
of the excited prefragments) are averaged over 3,
respectively 6 charge bins.

histograms refer to the results after the secondary decay
of the excited prefragmenis.

section with laboratory angle for all elements at both energies. The angular distributions of
all efements are steeper at 50A MeV than at 1004 MeV. This behaviour is contrary to what
one would expect from kinematic focusing.

Together with the data we show in the two figures the results for central collisions (b = 0
to 6 fm) obtained with the QMD model alone (dotted histograms) and after the secondary
decay of the hot primordial fragments (full histograms). In the output of the calculations the
same velocity cut-off of 1.0 cm ns™' has been used. Several heavy prefragments (Z > 60)
can be seen in the primordial distribution at the most forward angle for the 504 MeV
calculation (figure 44). These fragments are highly excited, decay within the SMM stage
and are, therefore, not seen in the final distribution. These heavy primordial fragments are
not seen at the higher energy because they are boosted to very forward angles.

Although this model now produces a slight excess of fragments, especially at forward
angles and the lower bombarding energy, the qualitative agreement with the data is
remarkable. Virtually all of the IMFs observed at backward angles stem from the secondary
decay of highly excited heavy-target remnants. The success of this model is perhaps most
striking in figure 44, which shows that the experimentally observed yields at backward
angles can only be described by the emission of IMFs due to evaporation from a highly
excited target residue. The fast, direct emission of hot fragments from the improved QMD
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model alone produces considerable yields only at the most forward angles. The two-step
picture also accounts for the flattening of the angular distributions of the IMFs with beam
energy: higher excitation energies boost the IMFs beyond the velocity threshold,

Beside this semi-exclusive experiment and the Plastic Ball experiment, which has
been described above, several other multifragmentation experiments have been performed
recently. The first of this experiments has been performed at the K1200 Cyclotron at the
National Superconducting Cyclotron Laboratory at MSU, The systems investigated there
have been Xe (504 MeV) + Au (Bowman et ai 1991) and Ar (35, 50, 80, 1104 MeV) +
Au (Kim et al 1991, de Souza et al 1991}, The MSU Miniball Detector, which was used
in these experiments, covers approximately 87% of 4m (¢ = 16-160°) with 171 modules.
In addition, a forward hodoscope was used to cover the angles from # = 1-16° with 16
elements. This set-up was used to detect fragments with 1 < Z < 20 in the Miniball and
1 £ Z £ 54 in the forward hodoscope with thresholds of 2, 3, 44 MeV for fragments with
Z =3, 10, 18 in the Miniball and 6, 13, 21 and 27AMeV for Z = 2, 8, 20 and 54 in the
forward hodoscope.
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Figure 45. Experimental multiplicity distribution for fragments with Z = 3-20 in the reaction
Xe {50A MeV) + Au {from (Bowman er af 1991)).

Figure 45 shows the (uncorrected) experimental probability distributions in the reaction
Xe (50 A MeV) + Au (taken from (Bowman ef al 1991)). The upper part shows the
probability distribution for the total charged-particle multiplicity (N.). A rough scale for
the impact parameter and the energy deposttion is also shown. The lower part shows the
multiplicity distributions of IMFs (Z = 3-20) for different N, bins. It can be seen (as
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has been found from Doss et af (1987) for the systemm Au (200A MeV} + Au) that the
multiplicity of IMFs increases with decreasing impact parameter,

Before the QMD calculations can be compared with these data, the theoretical events
have to undergo an experimental filter. This was not necessary in the semi-exclusive Fe
+ Au reactions described earlier, since there the data have been comected with respect
to the detector efficiency, so the only filter was a low velocity cut-off. In this, more
general case, there are, in principle, two possibilities why a fragment has not been detected.
First, the energy of the fragment could have been too small and second, two or more
fragments could have been detected in the same detector module, which would have lead
to a misinterpretation of the signal. In the following comparison of the data with QMD
calculations we have considered these effects.

Xe (50 MeV/nucl.) + Au
10 = (R I B T | B

O data

8F 3 QMD+SMM (filtered) ]

Figure 46. IMF multiplicity as a function of the total charged particle multiplicity N, in the
reaction Xe (504 MeV) + Au. The experiment (Bowman et af 1991) is compared with the QMD
+ SMM calculations.

In figure 46 we show the multiplicity distributions of IMFs as a function of the total
charged particle multiplicity N.. Observe the almost linear increase in the fragment
multiplicities with increasing charged particle multiplicity (decreasing impact parameter).
The highest IMF multiplicities are observed for the most central collisions! The QMD+SMM
calculations show the same functional behaviour as the data, but the total IMF multiplicities
are about 20-30% too low.

In the preceding sections we have seen that the production mechanism for IMFs is still
one of the unknown properties in such reactions. In high-energy, symmetric collisions (e.g.,
Au + Au at 2004 MeV incident energy) the fragments seem to stem from a dynamical
rupture of the system while at lower energies and in asymmetric systems (e.g. Fe/Xe + Au
at 50/100A MeV incident energy) it looks more like a ‘nuclear boiling’, where a highly
excited prefragment is formed which then disintegrates into nucleons and fragments.

The transition between these two mechanisms has recently been investigated

experimentally by the MSU Miniball group (Tsang er al 1993a,b). For this purpose they
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studied both the systems Kr + Au at bombarding energies from 35 up to 400 AMeV and Au
+ Au at 100, 250 and 400A MeV bombarding energy (the experimental data for the Kr + Au
experiment are not yet final and therefore cannot be shown here). Previous QMD calculations
(see figure 41) have shown that a maximum IMF yield is expected in the bombarding energy
region around 1004 MeV. These calculations have, however been done with the original
QMD, neglecting the secondary decay of the excited prefragments. In order to investigate this
transition from low-energy ‘thermal multifragmentation’ to ‘mechanical multifragmentation’
at higher energies we used the QMD+SMM approach and calculated the reactions Kr + Au at
35/55/70/100/200/400A MeV bombarding energy for central collisions. In the upper panel
of figure 47 we show the average \MF multiplicities (Z = 3-20) for those reactions before
and after the SMM stage for very central collisions (b < 3.5 fm). One observes that the
QMD alone reproduces the qualitative structure of this curve that has been observed for the
system Nb + Nb before (see figure 41). After the secondary decay of those fragments this
result, however, changes significantly.
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The SMM increases the yield of IMFs at low energies due to the explosion of the hot
source that is formed at those energies. At higher energies, however, no target residue is
formed, but the direct reaction by itself leads to many fragments that are still excited. The
secondary decay of these excited fragments reduces the total yield of IMFs. The preliminary
data (Tsang ef al 1993b) (not shown) show that the peak in the ™MF multiplicity indeed
occurs at about 100A MeV bombarding energy.

The failure of the QMD+5MM approach to reproduce the decrease in IMF yield at energies
below 1004 MeV is possibly due to the fact that the excitation energy of this compound
system is too large, because the nucleons are trapped inside the nucleus and cannot escape
because of the large Yukawa potential, so the main cooling mechanism {pre-equilibrium
nucleon emission)} is suppressed in the QMD calculations.
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A more detailed comparison with experimental data can be found in the lower panel of
figure 47 for the reaction Au + Au. Here the dependence of the iMF multiplicity (Z = 3-
30) the reduced impact parameter b,y both for the experimental data (crosses) and the
filtered QMD (circles) and QMD+SMM (boxes) calculations is shown, To allow a quantitative
comparison between experiment and model calculation it was assumed that the charged
particle multiplicity N would depend monotonically vpen the impact parameter, and a
reduced impact parameter by

5] 1/2
f aN. P(Nc)] (51)

bred = bi = l:

max Ne(B)
was assigned to each data point. Here, P(N.} is the probability distribution for the charged-
particle multiplicty for N, > 4 and by, is the mean impact parameter with ¥, = 4. One
observes that the QMD alone underpredicts the production of IMFs at central collisions and
fails totally to reproduce the large IMF multiplicity for peripheral collisions. The combined
model QMD+$MM explains the IMF yield for peripheral collisions but also underpredicts the
multiplicities for central collisions

The reasen for this is quite obvipus, The directly produced fragments are still excited
up to several MeV per nucleon, but now the size of these prefragments lies in the range
from Z = 2-30. The sMM, however, was constructed in the same way as all the other
statistical multifragmentation models, in order to describe the statistical decay of a large
compound nuclews. So it is at least questionable whether the same approach can be applied
to the decay of light, excited nuclei. In addition the excitation energy of these prefragments
contains, by its definition, not only the thermal energy but also the collective energy which
is, for example, hidden in the radial flow energy of the nucleons if the fragment is still
expanding. It has to be seen whether more refined evaporation models, which suppress the
level densities of the clusters in the continuum, due to restrictions to bound and quas: bound
levels (Mustafa er al 1992), yield similar results. These guestions have to be solved before
the SMM approach is used to describe the final-stage fragmentation at these energies.

All these open questions are currently under investigation, but all the present studies
are consistent with the assumption that at these energies the fragments are predominantly
produced from the statistical decay of a highly excited source, while at higher energies the
direct multifragmentation channel due to the mechanical rupture of the system becomes
more and more important. If one wants to investigate the liquid—vapour phase transition
in heavy-ion collisions one is, therefore, restricted to either central collisions of (almost)
symmetric systems at low energies or to peripheral collisions at high energies.

If one wants to obtain more information about the mechanism of fragment formation in
these reactions one has to go one step beyond the single-particle observables and investigate
the correlations between nucleons and fragments. Recently it has been shown from Kim et
al (1992a,b) that the technique of intensity interferometry can be applied to light fragments,
in order to extract the time scale of the reaction, For this purpose they used a final-state
Coulomb interaction model. This formalism is, however, restricted to the case, where the
fragment—fragment correlation function is governed by the final-state Coulomb interaction
of the fragment pair under consideration only. Whether this assumption can hold in the
case where one has many (up to 10) fragments which may have been produced in a small
volume at the same time, is at least questionable. It was also shown, that the Coulomb
influence of a heavy, third body could not be neglected when calculating the light fragment
correlation function (Kim et @/ 1992a,b). All these limitations do not apply to the QMD
calculations. In this case the Hamilton equations of all nucleons are integrated, which
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implies that correlations between all the existing nucleons and fragments are treated in all
orders. This is especially important in the case when one deals not only with two IMFs,
but with many, that, in addition, are influenced by a huge number of light fragments and
protons. In the following we present the fragment—fragment correlation function for the
reaction Fe (1004 MeV) + Au for central collisions (b = 0—6 fm} in comparison to the data
of Sangster et al (1993). For the theoretical calculations we again used the two-step model
QMD+SMM. After the break-up of the hot target remnant within the sSMM model (this takes
place after 300 fm ¢~} reaction time)} we neglect the nuclear forces and follow the Coulomb
trajectories of the charged particles. This propagation is stopped when the total Coulomb
interaction is sufficiently small. '

Fe (100 MeV/nucl.) + Au

1.84 ® (MD+IMM
Gplaub9-130
1.64 — data
1.4
1.2 I[
1]
0.8+
0.6
0.4

Lo Riv D

Figure 48, Mixed-fragment redeced-velocity correlation functions iMes in the the Coulomb
product bin Z;- Z» = 65-130. The experimental results from Sangster et al (1993) are compared
with the calculations of the QMD+sMM approach.

The two-fragment correlation function in figure 48 has been constructed by using the
technique of event mixing which was first introduced by Kopylov (1974} and later on used
by several other authors (Zajc et al 1984, Trockel er al 1987). As the independent variable
we use the reduced velocity vy = vr1/+/Z) + Z» that has also been introduced also by Kim
et al {1992a,b). In their work these authors claim that, as nuclear inferactions and higher
order effects have been neglected, the fragment—fragment correlation function depends only
on this scaling parameter. This permits the construction of mixed correlations functions
for fragments with different charges. 1t has, however, been shown (Sangster et af 1993)
that this assumption only holds locally, i.e. for small charge bins, which have been under
consideration from the MSU group. Figure 48 shows the correlation function (1 + R(Vieq))
for IMFs in the Coulomb product bin Z; - Z; = 65-130. The effect of the fragment—fragment
Coulomb repulsion can clearly be seen, both in the experiment and in the theory. It can
be seen from figure 48, that the QMD+SMM calculations reproduce the size of the Coulomb
hole. For larger values of v the shape of the calculated results disagrees totally with the
experimental curve. While the experiment shows a smooth approach to the asymtotic value
of 1, the calculated curves exhibits a large peak at v,y &~ 15. Recent investigations (Peilert
et al 1993) show that this peak can be traced back to the more peripheral collisions, where
the existence of a large fragment influences the smaller pairs by its Coulomb repulsion.
For the present investigation we have used the standard values for the variables in the sMM



Physics of high-energy heavy-ion collisions 591

model. These values have been adjusted from the authors of the $MM model to reproduce
the results of proton-induced reactions (Botvina et af 1990). In this case a break-up volume
of three times the volume of a normal nucleus was needed. It was also found (Peilert et
al 1993) that the size of the Coulomb hole as well as the magnitude of the peak depends
on the volume parameter and therewith on the charge asymmetry of the multifragmentation
event.

Oue of the main purposes of future heavy-ion experiments is, therefore, to obtain
information about the mechanism of multifragmentation in reactions at this critical energy.
The first steps in this direction have already been taken with the first experiments at the
new GSI/SIS facility. In these experiments the multifragmentation properties of asymmetric
systems at high energies have been investigated by the Aladin group (Hubele et al 1991,
Qgiivie et al 1991) and the properties of symmetric systems are under investigation by the
FOPI group (Alard et al 1982). The last part of this survey is therefore devoted to the
physics investigated by these experiments.

In the very first experiment at the SIS a 600A MeV gold beam was used in combination
with the Aladin spectrometer (Hubele 1991, Ogilvie et af 1991). The Aladin spectrometer
can basically measure the charge and multiplicity of the heavy-reaction products in the very
forward direction (~4.5 < &, ¢ < 4.5°). In addition a hodoscope was used to measure
the multiplicity of light particles in the angular regime from 7° < @ < 40°. Because of
the restriction to the very forward direction, study of the reaction was lmited to inverse
kinematics, i.e. with heavy beams and light targets.

This opens up the possibility of varying the mass of the target in order to change (at
fixed beam energy) the violence of the reaction (or, in other words, the total amount of
energy which is deposited in the projectile). This was done practically by using a gold
beam at 600A MeV energy and carbon, aluminum and copper as targets.

In this experiments one had to deal—in the same way as in all other heavy-ion
experiments—with the problem of how to trigger the impact parameter. It was shown
by the Aladin group that for this particular set of experiments a new observable can be used
to measure the centrality of the reaction, namely the number of charges which are bound in
fragments with Z > 2 (Zyouma)- Clearly this observable is complementary o the multiplicity
of light particles which is used to focus on centrality in other experiments.

One of the most important results of this set of experiments is shown in the right-hand
column of figure 49. There the correlation of the charge of the largest fragment (Zpay)
with the sum of all bound charges (Zpeung) is shown for the three different targets. By
construction the relation Z,,, < Zyoung must always hold, so all events must result in a
point lying below the diagonal. All reactions which yield only one fragment contribute a
point close to this diagonal while reactions which produce more than one fragment (the
true multifragmentation events) yield points below this diagonal. Note, however, that this
representation gives no information about the distribution and multiplicities of the iMFs,
since the only information that enters is the total number of charges and the size of the
biggest fragment (e.g., a fragmentation in one Z = 50 and ten Z = 5 fragments gives the
same coniribution as the fragmentation in two Z = 50 fragments).

The right-hand column of figure 49 shows clearly that for very peripheral reactions (large
Zyound) there is no multifragmentation, i.e. the gold remains as the largest fragment while
with decreasing Zy,ounq the points shift away from the diagonal, indicating multifragmentation
events. At very central collisions with a heavy target a total disintegration of the projectile
into light particles is observed, yielding points in the very lower lefi-hand corner of the
plot. Note that these points are absent for the carbon target. In this case there is no
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Au (600 MeV/N) 4+ C,Al,Cu

QMD + SMM data
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Figure 49, Corrclation between the maximum charge observed within one event (Znyy) and
the total number of charges bound in fragments with Z 2 2 {Zpoyea) for the reactions Au
(6004 MeV) + C,Al,Cu. The calculations performed with the omp model with (middle column)
and without {left-hand column} the secondary decay of the prefragments are compared with the
data of Hubele er al (1991).

experimental evidence for a total disintegration of the projectile, but there remains always
a heavy projectile rest!

The main information which is missing here, the multiplicity of IMFs, is shown in the
right-hand column of figure 50. Here the multiplicity of the resulting fragments is plotted
against the bound charge. The remarking feature here is the fact that the different targets all
yield an identical distribution (note, however, that the points with low Zpoyq are missing
for the light targets).

This leads to the conclusion that Zygug is not a direct measure of the impact parameter,
but more a measure of the violence of the collision or of the deposited energy. A central
collision with the carbon target leads to the same prefragment as a more peripheral collision
with heavier targets. What is observed in the experiment are, however, the decay products
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Au (600 MeV/N) + C, Al, Cu
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Figure 50. The multiplicity of mMFs (3 € 2 < 30) in the reaction Au (600A MeV) + C,ALCu
are shown as a function of Zy,,ny both for the oMD calculation with secondary decay and for
the data of Hubele et af (1991),

of this prefragment, which then yield this universal behaviour if plotted against the variable
Zboumi-

The theoretical results obtained with the QMD model are also shown in figures 49 and 50
{see also Konopka er al 1993). The left-hand column of figure 49 shows the Z—Zhound
correlation obtained with the pure QMD model while the middle column shows the same
distributions obtained after secondary decay within the $MM. Here one again observes that
the QMD model yields in most cases one large excited prefragment (this is especially true for
the Tight target), resulting in an distribution very close to the diagonal. After the secondary
decay of these prefragments (middle column of figure 49) the distributions agrees much
better with the data. This effect can also be seen in the left-hand column of figure 50,
where the multiplicity distributions shown for the QMD+SMM calculations compare nicely
with the data, while the pure QMD results (not shown) are completely different.

The basic conclusion from this experiment and the comparison with the theoretical
results is the fact that in these asymmetric reactions the IMFs stem from the statistical decay
of a highly excited prefragment which is produced in the direct collision. This production
mechanism seems to be the dominant channel for the carbon target; for the heavier targets
it applies for the peripheral reactions while in central collisions the direct production of
IMFs is also important. A similar experiment has recently been performed by the EQOS/TPC
collaboration at LBL for the reaction Aw/Kr/La (1A GeV) + C (Hjort et af 1993).

This transition from statistical decay to direct fragmentation is one of the most intriguing
features in this field which should be studied in greater detail. For this purpose one needs,
however, more information about the reaction than that contained in charge yields and
muttiplicity distributions. Of particular importance in this context are the momentum space
distributions of the IMFs, which could give information about the degree of equilibration,
and the (velocity and angular) fragment—fragment correlations, from which one can possibly
gain information about the time scale of the fragmentation process.

All this information can be provided by a 4mx detector. Such a device has been
constructed by the FOPI collaboration at the GSI. The basic properties of this detector
are:

(i) it covers almost the complete phase space for charged fragments;
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(i) the granularity is high enough to dissolve high multiplicity events as well,

(iii) the azimuthal symmetry the reaction plane to be reconstructed;

(iv) it allows light particles (w*, K, p, t,> He*He) to be distinguished;

(v) it can detect fragments up to Z = 20.

This detector has been constructed in two steps. The first step (called Phase I) was
finished in summer 1991 and the second step (Phase I) went into operation at the end of
1992. With Phase I it was possibie to cover the forward hemisphere for the reactions Au
4+ Au at beam energies from 150 to 8004 MeV with 2 plastic wall (1 < # < 30°) and the
cluster detectors ROSACE (I € ¢ £ 6°) and parabela (6 € & < 30°).

The second large experiment that was devoted to investigating the nuclear BOS at high
densities was performed at the BEVALAC from the EOS group, utilizing a detector in the
form of a time projection chamber (TPC) (Hjort ez af 1993). The EQS/TPC was designed
to cope with the high multiplicity events characteristic for reactions with the heaviest and
most energetic beams at the BEVALAC. In the EOS experiments at the BEVALAC beams
of Ca, Ni, Kr, La and An with energies from 2504 MeV to the maximum possible energy
(2.1A GeV for Ca, 1.24 GeV for Au) were used to study both symmetric and asymmetric
collisions. In combination with the EOS/TPC the Music I detector was used with a time-
of-flight wall in order to identify forward moving particles beyond the dynamic range of
the TPC. This combination of detectors identified particles with charges greater than 7.

The EQS/TPC experiments have been designed to attempt a systematic measurement of
the energy and mass dependence of the flow effects and to make a high statistics, exclusive
study of nuclear multifragmentation. For this purpose reverse kinematics were used to
study projectile fragmentation in the systems Kr + C, La + C, Au + C at 1A GeV. Since
the results of these experiments have not yet been completely published we cannot present
2 comparison with the theory right now.

One of the basic aims of these experiments is to shed some light on the nuclear EOS
therefore it is of the utmost importance to trigger on very central collisions. This has
previously been done with multiplicity triggers only, but it has been shown by the FOPI
group (Alard er af 1982) that it is possible to trigger on even more central collisions if one
uses not only the multiplicity, but also the phase-space information of the reaction.

The upper part of figure 51 shows the distribution of the total multiplicity of charged
particles obtained with the QMD model (without filter). This distribution shows a plateau
at intermediate multiplicities and then falls rapidly off going to higher multiplicities. The
total multiplicity regime is now divided into five bins, where the highest bin (PMS5) contains
all the events which yield a multiplicity larger than that at the point where the distribution
begins to drop. The remaining interval is then divided into four bins with equal widths
called PM1-PM4. For the ideal case, where the multiplicity drops linearly with impact
parameter this procedure would give a linear dependence between the impact parameter and
the multiplicity bins. This, however, is not the case practically, as central collisions depend
only weakly on the multiplicity on the impact parameter. In order to trigger on this very
central collisions one uses the following trick (Alard et af 1982).

The main feature of central collisions (b = 0 fm) is the complete azimuthal symmetry.
For precisely this reason it was not possible to extract the so called ‘transverse flow’ for
very central collisions (see section 4). Now one can turn this relation around and use the
azimuthal symmetry of the reaction in order to trigger the centrality. This is done practically
by using the transverse-momentum directivity D, defined as

_ [ 202l
= P, =
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Au (150 A MeV) + Au

100 —_ T T3
QMD
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. Figure 51. Distributions of the total charged-particle
2 010 d multiplicities tn the reaction Au (150A MeV) + Au
= obtained with the QMD model.  The wpper figure
shows the multiplicity distributions with the cuts PM1-
0.06 § PMS which are used in the experiment to trigger the
centrality. The lower figure shows the impact parameter
0.00 ranges which contribute to the different multiplicity

bins. The meaning of the *directivity trigger’ PM3+ D
is explained in the text.

where the sum runs over all (charged) particles with Z < 15. For & = 0 it obviously
holds that D = 0. In addition to the muktiplicity bins PMI1-PM35 one now uses the trigger
PM5 + D which contains all events from the PM35 bin with a D value lower than 0.2.

The lower part of figure 51 now shows the impact parameter ranges which are, according
to the QMD calculations, selected by these triggers, We observe that the peripheral collisions
{PM1-PM3) are clearly separated from each other (this, however, is only the case in the
theoretical calculation where one does not have to deal with a background) whiie for central
collisions there is a large overlap between the different distributions, PM4 covers the impact
parameter range from 0 to 6 fm while PMS5 selects the impact parameter region up to 4 fm.
The additional trigger PM3 + D, however, gives an additional cut by selecting only the very
central events with b < 2 fm.

As a final point we would like to investigate the charge-yield distributions in these
reactions. As was pointed out earlier it is hoped that information about the supposed
liquid—vapour phase transition could be obtained from the charge distribution in exclusive
experiments.

In figure 52 we compare the calculated (filtered) charge-vield distributions for the
reaction Au (1504 MeV) + Au with the experimental data of the FOPI collaboration (Kuhn
et al 1993) for the multiplicity bin PM4. Both the results obtained with the QMD (circles)
as well as with the QMD+$MM (boxes) approach are shown. It can be seen that the slope of
the charge yield distribution is reasonably well reproduced by the QMD calculations, while
the QMD+SMM results are steeper than the data (for the same reasons as has been described
in the discussion of figure 47). The discrepancy of a factor two that was observed for IMF
multiplicities in the 400 MeV Aus-Au reaction in figure 47 is also present in this data set
but it is almost invisible because of the logarithmic scaling,
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6. Conclusion

We have reviewed the present status of heavy-ion physics. The basic concepts of the nuclear
EQS have been introduced and the idea of shock compression and heating was summarized.
‘We presented the three main approaches to the theoretical description of heavy-ion collisions
that have survived the zoo of models developed in the past decades. These approaches are
the nuclear fluid dynamical model and the microscopic models based on the vuu/BuU
equation and the molecular dynamical models of the QMD type.

These modeis have been used to investigate the most important signatures in heavy-ion
reactions, The nuclear matter flow, i.e. the in-plane bounce-off and the out-of-plane squeeze-
out are sensitive to the underlying EOS, but these observables also depend on other unknown
properties of nuclear matter such as the in-medium nucleon-nucleon scatiering cross section
and the momentum dependence of the nuclear forces. To the best of our knowledge there is
no experimental evidence for a significant change in the nucleon-nucleon scattering cross
sections in the nuclear medium compared with the vacuum cross sections that are used
in the QMD and vuu models. The momentum dependence of the nuclear forces has been
adapted from the experimental values obtained from the real part of the optical potential in
proton-induced reactions. The observables discussed here can therefore be used to extract
nuclear matter properties like the ground-state compressibility constant of nuclear matter
from the most recent experimental data that are available now. Of particular importance
here is the fragment flow, since our calculations clearly show that the fragments show an
enhanced sensitivity to the underlying EOS.

In order to study the applicability of macroscopic modeis we have investigated the
stopping power of interpenetrating nuclei, as well as the degree of thermalization found in
symmetric collisions. It turned out that neither a one- nor a two-fluid modei can hold, since
the dynamical evolution of the reaction is dominated by the interaction of the projectile
and the target with the participant matter and not with each other. A rapid approach to
equilibrium has been found in such a three-fluid scenario.

We discussed the possibility of a liquid—vapour phase transition by a comparison of
calculations with the most recent multifragmentation experiments. In these investigations
4 consistent picture of the reaction process over a broad range of excitation energies in
the target residue is beginning to evolve. For very low excitation energies the relative
slow fission process is the most important decay channel. At higher bombarding energies
a multifragmentation emerges and dominates the residue decay. We have shown that for
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asymmetric reactions the large cross section for IMFs, especially at backward angles, is due
to the statistical decay of the excited heavy residue that remains following the initial stages
of the reaction. This production mechanism is supported by the experimental data from three
different, independent groups, namely the LBL/LLNL Pagoda, the MSU Miniball, and the
GSI Aladin group. As the bombarding energy continues to increase, QMD calculations
suggest that a rapid compression—decompression mechanism emerges in the initial stage of
the reaction and leads to a direct multifragmentation process and a highly excited heavy
residue is no longer formed. A comparison with recent Kr + Au date from the MSU Miniball
collaboration suggest that the best region to search for thermally driven multifragmentation
is the bombarding energy region around 100A MeV.

A new, potentially interesting key to understanding the multifragmentation process is
the study of the correlations in charge and velocity between two or more IMFs emitted from
the heavy remnant.

In this review we have restricted ourselves to heavy-ion reactions in the energy regime
available at the BEVALAC, the SIS and at MSU. The model calculations show, however,
that at those energies the maximum compression that is achieved in central collisions of
the heaviest nuclei is about two to three times normal nuclear matter density. Since we
are interested in exploring the nuclear EOS to much higher densities it is clear that the
bombarding energies at these facilities are no longer sufficient to complete these tasks. The
ultimate goal even is to find evidence for densities that are so large, that the constituents of
the nucleons, quarks and gluons share a volume larger than the volume of one nucleon and
form the so called quark—gluon plasma,

For this purpose experiments have been started at the AGS at the Brookhaven National
Laboratory utilizing silicon and gold beams with 14/10A GeV bombarding energies and at
the SPS at Cern with a sulphur beam at 2004 GeV bombarding energy.

Recent investigations with the relativistic extension of the QMD model, the so called
RQMD model (Sorge ef al 1989, 1991a,b, 1992a,b) have shown that the collective flow
is still important even at these high energies. The complete stopping of the collisions
partners for central collisions is predicted for all energies available at those accelerators,
If information about the nuclear EOS at low and intermediate densities (0/pp < 3) and at
high densities (p/po = 5-10) is available it is also of the utmost importance to explore
the density/energy regime in between. A detailed excitation function for all the available
observables discussed in this review as well as information about pions and produced
mesons, dileptons and antiparticles (e.g. p) from bombarding energies from 14 GeV up
to 20-50A GeV could give evidence for the exotic behaviour of the EOs due to density
isomers, resonance matter etc that would alter the functional form of the EQS.
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