Physics of Multiantenna Systems and Broadband Processing

Tapan K. Sarkar Magdalena Salazar-Palma Eric L. Mokole

With Contributions from:

Santana Burintramart
Jeffrey T. Carlo
Wonsuk Choi
Arijit De
Debalina Ghosh
Seunghyeon Hwang
Jinhwan Koh
Raúl Fernández Recio
Mary Taylor
Nuri Yilmazer
Yu Zhang

A JOHN WILEY & SONS, INC., PUBLICATION

Contents

Preface .			•	•	•	•		•	xv
Acknowl	edgr	nents	•			•			xxi
Chapter	1	What Is an	n Antei	nna and	How Do	oes It Wo	ork?		1
	1.0	Summa	rv						1
	1.1						ions		
	1.2						uations		
		1.2.1	Farada	ay's Lav	v				4
		1.2.2	Gener	alized A	mpère's	Law		•••••	7
		1.2.3					ectrostatio		
		1.2.4					agnetosta		
		1.2.5					• • • • • • • • • • • • • • • • • • • •		
	1.3								10
	1.4						Point Sou		
			a in Fre	quency	and in Ti	me Dom	ain	••••••	15
		1.4.1					Sources		
			1.4.1.				ncy Dom		
			1.4.1						
			1.4.1.				omain of		
		1.4.2	Dagan				Receiver		
	1.5	~					nite-Size		10
	1.5						l in Time.		20
		1.5.1					Structur		
		1.5.1							
		1.5.2					Structur		
		1.0.2							
		1.5.3					ed Recei		21
							ansient Ir		
			Field.						21
	1.6	Conclus							
		Referen	ces				•••••		23
Chapter	2	Fundamer	itals of	Antenr	ıa Theor	v in the	Frequenc	ev	
Chapter	-	Domain	10015 01	AMICHI	I Heor	j m ene .	- request	-,	25
	2.0	Summa	ry						25
	2.1								
	2.2								

	2.3	Field Radiated by a Small Circular Loop	30
	2.4	Field Produced by a Finite-Sized Dipole	32
	2.5	Radiation Field from a Linear Antenna	
	2.6	Near- and Far-Field Properties of Antennas	36
		2.6.1 What Is Beamforming Using Antennas	36
		2.6.2 Use of Spatial Antenna Diversity	43
	2.7	The Mathematics and Physics of an Antenna Array	46
	2.8	Propagation Modeling in the Frequency Domain	49
	2.9	Conclusion	57
		References	57
Chapter	3	Fundamentals of an Antenna in the Time Domain	59
	3.0	Summary	59
	3.1	Introduction	
	3.2	UWB Input Pulse	61
	3.3	Travelling-Wave Antenna	62
	3.4	Reciprocity Relation Between Antennas	63
	3.5	Antenna Simulations	65
	3.6	Loaded Antennas	65
		3.6.1 Dipole	65
		3.6.2 Bicones	71
		3.6.3 TEM Horn	74
		3.6.4 Log-Periodic	78
		3.6.5 Spiral	80
	3.7	Conventional Wideband Antennas	83
		3.7.1 Volcano Smoke	83
		3.7.2 Diamond Dipole	85
		3.7.3 Monofilar Helix	86
		3.7.4 Conical Spiral	88
		3.7.5 Monoloop	90
		3.7.6 Quad-Ridged Circular Horn	91
		3.7.7 Bi-Blade with Century Bandwidth	93
		3.7.8 Cone-Blade	94
		3.7.9 Vivaldi	
		3.7.10 Impulse Radiating Antenna (IRA)	97
		3.7.11 Circular Disc Dipole	99
		3.7.12 Bow-Tie	100
		3.7.13 Planar Slot	101
	3.8	Experimental Verification of the Wideband Responses	
		from Antennas	102
	3.9	Conclusion	108
		References	109
Chapter		A Look at the Concept of Channel Capacity from a	
		Maxwellian Viewpoint	113

CONTENTS vii

	4.0		•	113
	4.1			114
	4.2			y and Its Evolution117
	4.3			tions for the Channel Capacity118
	4.4			ent of a Waveform124
	4.5			les Illustrating the Relevance of the
		Maxwe	llian Physi	cs in Characterizing the Channel
		Capacit		130
		4.5.1		Versus Unmatched Receiving Dipole
			Antenna	with a Matched Transmitting Antenna
				g in Free Space131
		4.5.2		irective Versus Nondirective Matched
			Transmit	ting Antennas Located at Different
			Heights a	above the Earth for a Fixed Matched
			Receiver	Height above Ground133
			4.5.2.1	Transmitting Horn Antenna at a
				Height of 20 m135
			4.5.2.2	Transmitting Dipole Antenna at a
				Height of 20 m136
			4.5.2.3	Orienting the Transmitting Horn or
				the Dipole Antenna Located at a
				Height of 20 m Towards the
				Receiving Antenna137
			4.5.2.4	The Transmitting Horn and Dipole
				Antenna Located at a Height of 2 m
				above Ground137
			4.5.2.5	Transmitting Horn and Dipole
				Antenna Located Close to the
				Ground but Tilted Towards the Sky 138
			4.5.2.6	Channel Capacity as a Function of
				the Height of the Transmitting
				Dipole Antenna from the Earth139
			4.5.2.7	Presence of a Dielectric Wall
				Interrupting the Direct Line-of-sight
				Between Transmitting and Receiving
				Antennas141
			4.5.2.8	Increase in Channel Capacity when
				Matched Receiving Antenna Is
				Encapsulated by a Dielectric Box143
	4.6			146
	4.7			of Entropy and Its Evolution148
		Referen	ces	164
~•	_			
Chapter			nput-Mul	tiple-Output (MIMO) Antenna
		Systems		167

viii PHYSICS OF MULTIANTENNA SYSTEMS & BROADBAND PROCESSING

	5.0	Summar	y	167
	5.1	Introduc	tion	168
	5.2	Diversity	y in Wireless Communications	168
		5.2.1	Time Diversity	169
		5.2.2	Frequency Diversity	170
		5.2.3	Space Diversity	
	5.3	Multiant	enna Systems	172
	5.4	Multiple	-Input-Multiple-Output (MIMO) Systems	173
	5.5		Capacity of the MIMO Antenna Systems	
	5.6		Known at the Transmitter	
		5.6.1	Water-filling Algorithm	179
	5.7	Channel	Unknown at the Transmitter	180
		5.7.1	Alamouti Scheme	180
	5.8	Diversity	y-Multiplexing Tradeoff	182
	5.9	MIMO Ü	Under a Vector Electromagnetic Methodology	183
		5.9.1	MIMO Versus SISO	
	5.10	More Ap	opealing Results for a MIMO system	189
		5.10.1	Case Study: 1	189
		5.10.2	Case Study: 2	190
		5.10.3	Case Study: 3	191
		5.10.4	Case Study: 4	194
		5.10.5	Case Study: 5	
	5.11	Physics	of MIMO in a Nutshell	199
		5.11.1	Line-of-Sight (LOS) MIMO Systems with	
			Parallel Antenna Elements Oriented Along the	
			Broadside Direction	200
		5.11.2	Line-of-Sight MIMO Systems with Parallel	
			Antenna Elements Oriented Along the Broadside	
			Direction	202
		5.11.3	Non-line-of-Sight MIMO Systems with Parallel	
			Antenna Elements Oriented Along the Broadside	
			Direction	204
	5.12	Conclus	ion	206
		Reference	ces	207
Chapter			Output Energy Filter in Multiantenna Systems	
	fo	r Adapti	ve Estimation	209
	6.0	Summar	у	209
	6.1	Various	Forms of the Optimum Filters	210
		6.1.1	Matched Filter (Cross-correlation filter)	211
		6.1.2	A Wiener Filter	212
		6.1.3	An Output Energy Filter (Minimum Variance	
			Filter)	213
		6.1.4	Example of the Filters	

CONTENTS ix

	6.2	Direct	Data Domain Least Squares Approaches to	
			ve Processing Based on a Single Snapshot of Data .	215
		6.2.1	Eigenvalue Method	
		6.2.2	Forward Method	
		6.2.3	Backward Method	221
		6.2.4	Forward-Backward Method	
		6.2.5	Real Time Implementation of the Adaptive	
			Procedure	224
	6.3	Direct D	ata Domain Least Squares Approach to Space-	
			Adaptive Processing	226
		6.3.1	Two-Dimensional Generalized Eigenvalue	
			Processor	230
		6.3.2	Least Squares Forward Processor	
		6.3.3	Least Squares Backward Processor	
		6.3.4	Least Squares Forward-Backward Processor	
	6.4	Applica	ation of the Direct Data Domain Least Squares	
			ques to Airborne Radar for Space-Time Adaptive	
			sing	238
	6.5		sion	
		Refere	nces	247
Chapter	7	Minimun	Norm Property for the Sum of the Adaptive	
•			n Adaptive or in Space-Time Processing	249
	7.0	Summe	ary	249
	7.1		action	
	7.2		of the Direct Data Domain Least Squares	250
	7.2		ach	251
	7.3		of Space-Time Adaptive Processing Based on the	
	7.5		Method	
	7.4		um Norm Property of the Adaptive Weights at the	200
		Minim		
		DOA o	of the SOI for the 1-D Case and at Doppler	255
	7.5	DOA o Freque	of the SOI for the 1-D Case and at Doppler ncy and DOA for STAP	
	7.5 7.6	DOA o Freque Numer	of the SOI for the 1-D Case and at Doppler	258
		DOA o Freque Numer Conclu	of the SOI for the 1-D Case and at Doppler ncy and DOA for STAP	258 273
		DOA o Freque Numer Conclu	of the SOI for the 1-D Case and at Doppler ncy and DOA for STAP ical Examples	258 273
Chapter	7.6	DOA of Freque Numer Conclu Referen	of the SOI for the 1-D Case and at Doppler ncy and DOA for STAP ical Examples	258 273
Chapter	7.6 8	DOA of Freque Numer Conclu Referen	of the SOI for the 1-D Case and at Doppler ncy and DOA for STAP ical Examples nces al Weights in Adaptive and Space-Time	258 273
Chapter	7.6 8	DOA of Freque Numer Conclu Referen Using Res	of the SOI for the 1-D Case and at Doppler ncy and DOA for STAP ical Examples sion nces al Weights in Adaptive and Space-Time g	258 273 274
Chapter	7.6 8 8.0	DOA of Freque Numer Conclu Referer Using Res Processin	of the SOI for the 1-D Case and at Doppler ncy and DOA for STAP ical Examples sion nces al Weights in Adaptive and Space-Time g ary	258 273 274 275 275
Chapter	7.6 8 8.0 8.1	DOA of Freque Numer Conclu Referen Using Res Processin Summa Introdu	of the SOI for the 1-D Case and at Doppler ncy and DOA for STAP	258 273 274 275 275
Chapter	7.6 8 8.0	DOA of Freque Numer Conclu Referen Using Res Processin Summa Introdu Formul	of the SOI for the 1-D Case and at Doppler ncy and DOA for STAP	258 273 274 275 275
Chapter	7.6 8 8.0 8.1	DOA of Freque Numer Conclu Referen Using Res Processin Summa Introdu Formul	of the SOI for the 1-D Case and at Doppler ncy and DOA for STAP	258 273 274 275 275 275

x PHYSICS OF MULTIANTENNA SYSTEMS & BROADBAND PROCESSING

		8.2.3. Forward-Backward Method	282
	8.3	Simulation Results for Adaptive Processing	283
	8.4	Formulation of an Amplitude-only Direct Data Domain	
		Least Squares Space-Time Adaptive Processing	289
		8.4.1 Forward Method	
		8.4.2 Backward Method	291
		8.4.3 Forward-Backward Method	292
	8.5	Simulation Results	292
	8.6	Conclusion	299
		References	
Chapter	9 P	hase-Only Adaptive and Space-Time Processing	303
	9.0	Summary	303
	9.1	Introduction	
	9.2	Formulation of the Direct Data Domain Least Squares	
		Solution for a Phase-Only Adaptive System	304
		9.2.1 Forward Method	
		9.2.2 Backward Method	
		9.2.3 Forward-Backward Method	
	9.3	Simulation Results	
	9.4	Formulation of a Phase-Only Direct Data Domain Least	
	· · ·	Squares Space-Time Adaptive Processing	.318
		9.4.1 Forward Method	
		9.4.2 Backward Method	
		9.4.3 Forward-Backward Method	318
	9.5	Simulation Results	
	9.6	Conclusion	
	9.0	References	
Chapter	10 Si	imultaneous Multiple Adaptive Beamforming	323
	10.0	Summary	
	10.1	Introduction	323
	10.2	Formulation of a Direct Data Domain Approach for	
		Multiple Beamforming	
		10.2.1 Forward Method	324
		10.2.2 Backward Method	327
		10.2.3 Forward-Backward Method	328
	10.3	Simulation Results	328
	10.4	Formulation of a Direct Data Domain Least Squares	
		Approach for Multiple Beamforming in Space-Time	
		Adaptive Processing	332
		10.4.1 Forward Method	332
		10.4.2 Backward Method	
		10.4.3 Forward-Backward Method	

CONTENTS xi

	10.5	Simulation Results	.338
	10.6	Conclusion	
		References	
Chapter		erformance Comparison Between Statistical-Based and	
		Pirect Data Domain Least Squares Space-Time Adaptive	
	P	rocessing Algorithms	347
	11.0	Summary	.347
	11.1	Introduction	.347
	11.2	Description of the Various Signals of Interest	
		11.2.1 Modeling of the Signal-of-Interest	
		11.2.2 Modeling of the Clutter	349
		11.2.3 Modeling of the Jammer	.350
		11.2.4 Modeling of the Discrete Interferers	
	11.3	Statistical-Based STAP Algorithms	
		11.3.1 Full-Rank Optimum STAP	
		11.3.2 Reduced-Rank STAP (Relative Importance of	
		the Eigenbeam Method)	352
		11.3.3 Reduced-Rank STAP (Based on the Generalized	
		Sidelobe Canceller)	353
	11.4	Direct Data Domain Least Squares STAP Algorithms	
	11.5	Channel Mismatch	
	11.6	Simulation Results	.357
	11.7	Conclusion	368
		References	368
Chapter		pproximate Compensation for Mutual Coupling Using	
	tl	ne In Situ Antenna Element Patterns	371
	12.0	Summary	371
	12.1	Introduction	
	12.2	Formulation of the New Direct Data Domain Least	
		Squares Approach Approximately Compensating for the	
		Effects of Mutual Coupling Using the In Situ Element	
		Patterns	373
		12.2.1 Forward Method	373
		12.2.3 Backward Method	
		12.2.4 Forward-Backward Method	377
	12.3	Simulation Results	378
	12.4	Reason for a Decline in the Performance of the Algorithm	
		When the Intensity of the Jammer Is Increased	.386
	12.5	Conclusion	
		References	386

Chapter		gnal Enhancement Through Polarization Adaptivity on ransmit in a Near-Field MIMO Environment	389
	13.0	Summary	389
	13.1	Introduction	389
	13.2	Signal Enhancement Methodology Through Adaptivity on Transmit	391
	13.3	Exploitation of the Polarization Properties in the	
		Proposed Methodology	395
	13.4	Numerical Simulations	
		13.4.1 Example 1	
		13.4.2 Example 2	
		13.4.3 Example 3	
	13.5	Conclusion	
		References	411
Chapter		irection of Arrival Estimation by Exploiting Unitary ransform in the Matrix Pencil Method and Its	
		omparison with ESPRIT	413
	14.0	Summary	
	14.1	Introduction	
	14.2	The Unitary Transform	
	14.3	1-D Unitary Matrix Pencil Method Revisited	
	14.4	Summary of the 1-D Unitary Matrix Pencil Method	
	14.5	The 2-D Unitary Matrix Pencil Method	419
		14.5.1 Pole Pairing for the 2-D Unitary Matrix Pencil Method	
		14.5.2 Computational Complexity	426
		14.5.3 Summary of the 2-D Unitary Matrix Pencil Method	426
	14.6	Simulation Results Related to the 2-D Unitary Matrix	
		Pencil Method	
	14.7	The ESPRIT Method	
	14.8	Multiple Snapshot-Based Matrix Pencil Method	432
	14.9	Comparison of Accuracy and Efficiency Between	
		ESPRIT and the Matrix Pencil Method	
	14.10	Conclusion	
		References	436
Chapter		OA Estimation Using Electrically Small Matched ipole Antennas and the Associated Cramer-Rao Bound	439
		•	420
	15.0 15.1	SummaryIntroduction	
	15.1	DOA Estimation Using a Realistic Antenna Array	
	13.2	15.2.1 Transformation Matrix Technique	

CONTENTS xiii

	15.3	Cramer-F	Rao Bound for DOA Estimation	444
	15.4	DOA Est	imation Using 0.1 λ Long Antennas	445
	15.5	DOA Est	imation Using Different Antenna Array	
			ations	
	15.6		on	
	•	Referenc	es	462
Chapter			ntional Least Squares Optimization for DOA	
	E	stimation	Using Arbitrary-Shaped Antenna Arrays	463
	16.0		<i></i>	
	16.1		ion	
	16.2		odeling	
	16.3		ed DOA Estimation	
	16.4		ventional Least Squares Optimization	
	16.5		on Results	
			An Array of Linear Uniformly Spaced Dipoles	468
			An Array of Linear Non-uniformly Spaced	
			Dipoles	470
			An Array Consisting of Mixed Antenna	
			Elements	471
			An Antenna Array Operating in the Presence of	
			Near-Field Scatterers	472
			Sensitivity of the Procedure Due to a Small	
			Change in the Operating Environment	473
			Sensitivity of the Procedure Due to a Large	
			Change in the Operating Environment	
			An Array of Monopoles Mounted Underneath an	
			Aircraft	4/6
			A Non-uniformly Spaced Nonplanar Array of	455
	166		Monopoles Mounted Under an Aircraft	
	16.6		on	
		Referenc	es	479
Chapter			Direction of Arrival Estimations Using the	
	N	Iatrix Pen	cil Method	481
	17.0	Summary	7	481
	17.1		ion	
	17.2	Brief Ov	erview of the Matrix Pencil Method	482
	17.3	Problem	Formulation for Simultaneous Estimation of	
		DOA and	I the Frequency of the Signal	488
	17.4		Rao Bound for the Direction of Arrival and	
		Frequenc	y of the Signal	494
	17.5		Using Isotropic Point Sources	
	17.6	Example	Using Realistic Antenna Elements	512

xiv PHYSICS OF MULTIANTENNA SYSTEMS & BROADBAND PROCESSING

	17.7	Conclusion	
Chapter		DAPTIVE PROCESSING OF BROADBAND IGNALS	523
	18.0	Summary	523
	18.1	Introduction	
	18.2	Formulation of a Direct Data Domain Least Squares	
		Method for Adaptive Processing of Finite Bandwidth	
		Signals Having Different Frequencies	524
		18.2.1 Forward Method for Adaptive Processing of	
		Broadband Signals	524
		18.2.2 Backward Method	529
		18.2.3 Forward-Backward Method	529
	18.3	Numerical Simulation Results	530
	18.4	Conclusion	535
		References	535
Chapter	D	ffect of Random Antenna Position Errors on a Direct eata Domain Least Squares Approach for Space-Time daptive Processing	537
	19.0	Summary	537
	19.1	Introduction	
	19.2	EIRP Degradation of Array Antennas Due to Random	
		Position Errors	540
	19.3	Example of EIRP Degradation in Antenna Arrays	544
	19.4	Simulation Results	
	19.5	Conclusion	551
		References	551
Indov			552