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Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for

a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and

astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma

can be used to effectively neutralize the beam charge and current, so that the self-electric and

self-magnetic fields do not affect the ballistic propagation of the beam. From the practical

perspective of designing advanced plasma sources for beam neutralization, a robust theory should

be able to predict the self-electric and self-magnetic fields during beam propagation through the

background plasma. The major scaling relations for the self-electric and self-magnetic fields of

intense ion charge bunches propagating through background plasma have been determined taking

into account the effects of transients during beam entry into the plasma, the excitation of collective

plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and

dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger

self-magnetic field of the ion beam compared to the case without ionization, and a wake of current

density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal

magnetic field can be applied for controlling the beam propagation. Making use of theoretical

models and advanced numerical simulations, it is shown that even a small applied magnetic field of

about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the

presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves,

thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an

applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric

field of the beam pulse propagating through the background plasma. If controlled, this physical

effect can be used for optimized beam transport over long distances. © 2010 American Institute of

Physics. �doi:10.1063/1.3335766�

I. INTRODUCTION

Neutralization and focusing of intense charge particle

beams by background plasma form the basis for a variety of

applications to high-energy accelerators and colliders,
1–3

astrophysics,
4–7

inertial confinement fusion, in particular, fast

ignition
8

and heavy ion fusion,
9–12

magnetic fusion based on

field-reversed configurations fueled by energetic ion

beams,
13

the physics of solar flares,
14

high-intensity high-

energy particle beam propagation in the atmosphere and

outer-space plasmas,
15

as well as basic plasma physics

phenomena.
16

For instance, one of the modern approaches to

ion beam compression for heavy ion fusion applications is to

use a dense background plasma, which charge neutralizes the

ion charge bunch, and hence facilitates compression of the

charge bunch against strong space-charge forces.
9,10,17–20

For heavy ion fusion applications, the space-charge po-

tential of the ion beam pulse is of order 100 V at the exit of

the accelerator and can reach 10 kV at the end of compres-

sion phase.
9,10

The potential energy of the space-charge

potential is much greater than the temperature of the beam

ions, which is set by the ion source emitter and is of order

0.1 eV.
9,10

Therefore, ion beams used for heavy ion fusion

applications are space-charge �perveance� dominated, i.e.,

the space-charge potential energy is large compared with

the ion beam temperature, or equivalently, the perveance

term in the equation for the beam envelope is large compared

with the emittance term.
11,12

For example, for the Neutralized

Drift Compression eXperiment–I �NDCX-I�,9,10
the per-

veance Q=2�e2Zb
2nbrb

2
/�b

3MVb
2�10−3, and the emittance is

��30� mm mrad; the beam radius in the extraction region

of the ion beam source is 2.5 cm and can be reduced using an

aperture. The evolution of the beam radius, rb, can be as-

sessed by making use of the beam envelope equations,
9,10

d2rb

dz2
=

Q

rb

+
�2

rb
3

. �1�

From Eq. �1�, it is evident for NDCX-I experimental param-

eters that the perveance term �the first term on the right-hand

side� dominates the emittance term �the second term on the

right-hand side�. For perveance-dominated beams, one can
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readily integrate Eq. �1� neglecting the emittance term and

obtain

�drb/dz�2 = ri�
2 + 2Q ln�rb/ri� , �2�

where ri�=drb /dz �i is the initial angle of beam convergence.

For example, from Eq. �2�, it can be shown that if the beam

ballistically propagates without an initial convergence angle

�ri�=0� or an applied focusing field or neutralization, the

beam radius increases from an initial radius ri, to a twice

larger radius 2ri after propagating a distance

�
ri

2ri

dr/�2Q ln�r/ri� 	 1.5ri/
�Q . �3�

For typical NDCX-I parameters,
9,10

this distance is of order

1 m and is shorter than the length of the drift section. There-

fore, the beam space charge has to be effectively neutralized

during ballistic drift. For future heavy ion fusion drivers with

energy and current larger than the NDCX-I parameters
9

the

perveance remains of order Q�10−3 and the drift sections

are longer than a meter.
18–22

Therefore the beam space

charge has to be effectively neutralized for all future HIF

facilities. Besides neutralized drift compression, the ion

beam pulses need to be radially compressed. For heavy ion

fusion applications, the beam pulse is focused over distances

of 1–5 m, corresponding to the reactor chamber size;
21,22

during focusing, an initial beam radius of 1–2 cm is reduced

to a spot radius of about 1 mm or less �see Fig. 1�. For this

weak ballistic focusing, the beam space charge has to be

neutralized well enough so that the beam convergence angle

is not affected by the self–fields of the beam pulse during the

drift, i.e., from Eq. �2� it follows that the degree of charge

neutralization, f , should satisfy the following condition:

2�1 − f�Q ln�ri/r f� � ri�
2. �4�

Substituting the estimates ri��10−2 , Q�10−3, and ri /r f

�10 into Eq. �4�, we obtain that the degree of neutralization

should be better than �1− f��10−2, or better than 99%.

That is, for a heavy ion fusion driver, the beam self-field

potential is initially of order 10 kV, whereas the self-field

potential after neutralization should be less than 100 V.

Numerical studies
21,22

have shown that neutralization by

background plasma can achieve the required degree of

charge neutralization.

This paper presents a survey of the present theoretical

understanding of the neutralization of intense ion beams

by electron sources and a background plasma. The present

discussion is focused on high-energy ion beam pulses with

ion beam velocity that is large compared to the electron ther-

mal velocity, i.e.,

Vb � VTe. �5�

The typical temperature of background plasma electrons pro-

duced in a discharge is of order 3 eV, and the corresponding

electron thermal velocity VTe
�2Te /m is of order

108 cm /s; in case of filament emission the electron tempera-

ture is of order 0.1 eV. The velocity of a 1 MeV potassium

ion is 2.2�108 cm /s. For a heavy ion fusion driver, the

beam energy is envisioned to be higher than 300 MeV.

Therefore, the criterion in Eq. �5� is well satisfied for future

drivers and moderately well satisfied for current experi-

ments. Due to the fast motion of the beam pulse through the

background plasma, a return current is generated in the

plasma, in which the electron flow velocity is comparable

with the beam velocity. Thus the electron flow velocity in the

return current is faster than the thermal electron velocity, and

this electron flow determines the self-electric and self-

magnetic fields of the beam pulse propagating through the

background plasma; and the electron potential energy in the

self-electric field of the beam pulse propagating through the

background plasma is large compared with the electron

temperature. Therefore, the electron pressure terms can

be neglected for fast ion beam pulses, in contrast to the

limit of slow beams, considered, e.g., in Section 4.3.1 of

Ref. 23.

In many applications, an external magnetic field is ap-

plied for plasma confinement, or for focusing the ion beam.

Therefore, the effects of the applied magnetic field on the

degree of charge and current neutralization of an intense ion

beam pulse propagating through a background plasma have

also been investigated.
24–26

It has been recently demonstrated

that even a weak magnetic field �about 100 G� can signifi-

cantly change the degree of charge and current neutralization

of an intense ion beam pulse propagating through a back-

ground plasma.

The organization of the paper is as follows. Section II

briefly describes different schemes to introduce electrons

into a positive ion beam pulse for neutralization. Advantages

of volumetric plasma present everywhere along the beam

pulse propagation are emphasized. Section III identifies the

critical plasma parameters that assure very good charge and

current neutralization of the ion beam pulse. Sections IV and

V summarize major results on the self-electric and self-

magnetic fields generated by an intense ion beam pulse

propagating in a background plasma. Sections VI–VIII de-

scribe the effects of gas ionization and solenoidal and dipole

magnetic fields, respectively, on the self-electric and self-

magnetic fields of an ion beam pulse propagating in a back-

ground plasma. Conclusions are summarized in Sec. IX.

With

plasma

Without

plasma

plasma

plasma

(a)

(b)

(c)

Te~1/r
2

emitters

emitters

FIG. 1. �Color online� Schematics of different neutralization methods.
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II. DIFFERENT SCHEMES TO INTRODUCE

ELECTRONS INTO A POSITIVE ION BEAM PULSE

FOR NEUTRALIZATION

A. Neutralization by emitting filaments positioned
near the beam sides

A very important application of this research is heavy

ion fusion, which utilizes a neutralized drift compression

scheme to achieve high brightness beam pulses. An effective

way to achieve high current density of an ion beam pulse on

a target is to simultaneously compress the beam pulse in both

the radial and longitudinal directions. This is accomplished

by applying a velocity tilt to the beam pulse, so that the beam

tail is accelerated relative to the beam head.
10,17,19,20,27

As a

result, the beam line charge density increases during the drift

compression, when the beam tail approaches the beam head.

Similarly, the beam pulse can be compressed radially by

passing the beam pulse through a focusing element, for ex-

ample, a strong solenoidal magnetic lens. Because the self-

electric field of the beam increases rapidly during compres-

sion, the beam space charge may prevent tight compression,

and thus the space charge has to be effectively neutralized. In

Ref. 28, it was shown that, because the electron response

time is fast compared with the beam pulse duration, the neu-

tralization process can be considered local for any cross sec-

tion of the beam pulse. Therefore, in the following we focus

only on the neutralization process of beam pulses with con-

stant beam velocity. Experimental details of the drift com-

pression scheme are given in Refs. 10, 17, 19, and 20

whereas a theoretical description of limiting factors of the

compression scheme are described in Refs. 20 and 27.

To compensate for a large space-charge potential in the

neutralized drift compression section of the accelerator, a

sufficiently large number of electrons must be introduced.

This can be accomplished by supplying electrons from elec-

tron emitters positioned at the peripheral region of the trans-

port section.
29–31

Emitted electrons from the emitters posi-

tioned near the side region of the ion beam pulse acquire

energies of order the unneutralized beam self-field potential.

In a stationary electrostatic field, the electrons are reflected

back radially toward the emitter. Therefore, the electron den-

sity is distributed over distances larger than the beam radius.

Hence, one would expect that the degree of charge neutral-

ization to be of order 50% in such a scheme
31,32 �see also

Sec. 3.6.2 of Ref. 23�. Figures 2 and 3 show the results of

simulations making use of the LSP particle-in-cell code.
33

Initially, when the beam pulse is far from the emitting side-

walls, the neutralization is poor, of order 50%, as predicted

by analytical estimates. As soon as the expanding beam

comes in contact with the emitting walls, the neutralization is

greatly improved �compare Figs. 3 and 2�, most probably due

to cold electrons, trapped by the beam potential during the

transient process when the self-potential decreases, as the

energetic electrons leave the beam pulse to the walls. Experi-

ments described in Ref. 30, where a filament was inserted

into the beam path, reported the degree of neutralization to

be about 90%. In the experimental studies in Ref. 29, the

self-potential was measured for the case when a nearby

emitting wire �tantalum filament� was introduced into a long

beam pulse at the edge of the beam. The measured potential

drop from the center of the beam to the beam periphery was

found to scale according to
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FIG. 2. �Color online� Color plots of �a� ion beam density, �b� electron

density, and �c� one-dimensional slice plot along the radial direction

�z=10 cm� at 100 ns after beam propagation along the neutralizing chamber

with emitting electrodes positioned at the sidewalls �r=4 cm�. Beam

parameters are K+beam ions with energy 320 keV and beam pulse duration

44 ns �with 5 ns linear rise and decay times�. The beam radial profile is

taken to be Gaussian with nb0 exp�−r2
/rb

2� where rb=1 cm; and the maxi-

mum beam current density is 0.19 A /cm2.
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�� = C���0Te/e , �6�

where ��0 is the unneutralized beam potential, Te is the

emitter temperature, and C is a coefficient, whose value de-

pends on the beam profile and location of the emitter. How-

ever, there has not been a sufficiently comprehensive theo-

retical and numerical studies performed to confirm the

scaling given by Eq. �6�.
In summary, neutralization by filament emission does

not provide the necessary �close to the 99%� high degree of

neutralization required by condition given in Eq. �4�, and is

not sufficient for space-charge neutralization of intense

heavy ion beam pulses during drift compression.

B. Neutralization by a grid immersed in the beam

If the emitting grid is immersed in the beam, the charge

neutralization is greatly improved �compare Fig. 4�c� and

Figs. 4�a� and 4�b��. One way to accomplish this is to intro-

duce a grid with high transmission ratio, e.g., a honeycomb

grid structure in the path of the beam.
34,35

For the case of a

high-energy beam, the emission may occur not only due to

secondary electron emission, but also due to gas desorption

and subsequent gas ionization by the beam without grid heat-

ing to achieve thermoemission. The results of numerical

simulations for the emitting foil, transparent to the ion beam

pulse, are shown in Figs. 4�c� and 5. In the simulations we

have assumed intense emission from the emitting surfaces so

that the electron flux is limited by the Child–Langmuir law.
33

In the experiments, some poor emitters may not provide a

sufficient supply of electrons. As soon as the beam intersects

the emitting foil, the beam space charge is well-neutralized,

as shown in Fig. 5. However, recent experiments
34

with a

honeycomb grid did not show significant neutralization when

a honeycomb grid was introduced into the beam path in

NDCX-I.
36

Neutralizing the beam space charge by means of

biased grids or electrodes in the presence of a weak applied

magnetic field ��100 G� allows the establishment of a fo-

cusing radial electric field in the transport section,
37

or serves

as a high-current electrostatic plasma lens.
38

Emission from

the grid inserted into the beam pulse may provide the neces-

sary high degree of beam space-charge neutralization. How-

ever, there has not been a sufficiently comprehensive experi-

mental study performed to confirm the high degree of

neutralization.

C. Neutralization by a plasma plug

Other options for neutralization include passing the

beam pulse through a background plasma, either a finite size

layer of plasma or a volumetric plasma produced everywhere

along the beam path �see Fig. 1�. Previous studies have ex-

plored the option of ion beam pulse neutralization by passing

the beam pulse through a finite layer of plasma or a plasma

plug.
39

The ion beam pulse extracts electrons from the
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FIG. 3. �Color online� Color plots of �a� ion beam density, �b� electron density, and �c� one-dimensional slice plot along the radial direction �z=35 cm� at

300 ns for the same conditions as in Fig. 2�d�. One-dimensional plots of the ion beam density and electron density slice along the beam propagation direction

at r=1 cm for same conditions as in Fig. 2.
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plasma plug and drags electrons along during its motion out-

side the plasma plug region. There are several limitations of

this scheme. When the intense ion beam pulse enters the

plasma, the electrons stream into the beam pulse in the

strong self-electric and self-magnetic fields, attempting to

drastically reduce the ion beam space charge from an unneu-

tralized state to a completely neutralized state. After the ion

beam pulse exits the plasma, the beam carries along the elec-

trons, with average electron density and velocity equal to the

ion beam’s average density and velocity.
40,41

However, large-

amplitude plasma waves are excited in a nonstationary peri-

odic pattern resembling butterfly-wing motion.
42

Due to

these transient effects, the beam may undergo transverse

emittance growth, which would increase the size of the focal

spot.
21

Smoother edges of the plasma plug density profile

lead to a more gradual neutralization process and, in turn,

results in a smaller emittance growth.
21,22

There are other

limitations of this scheme in addition to a deterioration due

to transient effects during the beam entry into and exit from

the plasma plug. For typical plasma sources parameters with

the electron temperature about 3–8 eV and density of order

108–1011 cm−3, the electron Debye length is small com-

pared with the beam radius, providing a high degree of neu-

tralization. After the ion beam exits the plasma plug it is

focused by a magnetic lens. An accompanying electron beam

extracted from the plasma plug follows the ion beam and is

also transversely focused. Due to the radial compression of

the electron beam, the transverse electron temperature in-

creases inversely proportional to the beam radius-squared

�Te�1 /r2�, and can reach very high values, in the keV range

if the beam radius decreases by a factor of 10 during the

radial compression.
22

Hot electrons cannot neutralize effec-

tively the beam pulse at the focal spot because the electron

Debye length becomes comparable with the beam radius.

This may result in poor beam focusing. Including gas ioniza-

tion by the beam ions improves the neutralization, but not to

the level of 99% required for reliable ballistic drift compres-

sion, mainly because the electrons, which are produced by

ionization, are concentrated in the beam path, whereas for

best neutralization of the ion beam pulse, the supply of elec-

trons should be from outside the beam
21,22 �see Sec. VI for

details on the effects of gas ionization on the degree of beam

current and charge neutralization�. In view of these facts a
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FIG. 4. �Color online� Color plots of ion beam density at three instants of

time after beam propagation along the neutralizing chamber at 30, 200, and

300 ns. Comparison of the three cases: �a� unneutralized, �b� neutralized

with emission from the sidewalls, and �c� neutralized with emission from a

grid introduced into the beam path at z=5 cm. Emission is assumed to be

space-charge limited according to the Child–Langmuir law.

FIG. 5. �Color online� One-dimensional plots of the ion beam density and

electron density slice along the beam propagation direction at r=1 cm

for the same conditions as in Fig. 4�c�. Beam is very well space-charge

neutralized after the beam passes through an emitting grid positioned at

z=5.1 cm.
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large volume background plasma is necessary everywhere

along the beam path in order to provide the required high

degree of the beam space-charge neutralization.

D. Neutralization by a volumetric plasma

Neutralized ballistic focusing typically requires the pres-

ence of a background plasma in and around the beam pulse

path for very good charge neutralization �the degree of neu-

tralization is very close to unity, �1− f��1�. Reference 22

showed that hot electrons cannot neutralize the beam well

enough. Therefore, any electron heating due to beam-plasma

interactions has to be minimized. The presence of cold,

“fresh” plasma in the beam path provides the minimum

space-charge potential and the best option for neutralized

ballistic focusing. Experimental studies of ballistic transverse

focusing have confirmed that the best neutralization results

are achieved when volumetric plasma is used everywhere

along the beam path to assure robust charge

neutralization.
43,16

Hence, in the following we only study the

case when a large amount of cold background plasma is

available everywhere along the beam path.

III. CRITICAL PLASMA PARAMETERS FOR EFFECTIVE
CHARGE AND CURRENT NEUTRALIZATION

If the beam pulse propagates through a cold unmagne-

tized plasma, and the background plasma density is large

compared with the beam density, the self-electric and self-

magnetic fields of the beam pulse can be obtained by the use

of linear perturbation theory.
44

The transport of relativistic

electron beams through the background plasma has been

studied in detail in various contexts.
45,46

Interaction of a

stripped, pinched ion beam pulse with the plasma has also

been discussed in Ref. 28, where the assumption of current

neutrality was made in order to obtain self-consistent solu-

tions for the self-electric and self-magnetic fields of the beam

pulse. In previous studies,
28

we focused on the nonlinear

case, where the plasma density, np, is comparable with or

smaller than the beam density, nb, and the degree of current

neutralization is arbitrary. The results of the theory agree

well with particle-in-cell simulations and thus confirm the

analytical formulas for the general nonlinear case, np�nb.
47

This section briefly reviews the major conclusions of that

study and serves as basis for discussions of the additional

effects of gas ionization, and solenoidal and dipole magnetic

fields in subsequent sections.

In most applications, the background plasma electrons

are cold—the electron thermal velocity is small compared

with the direct beam velocity �Eq. �5��. We also consider

intense particle beams with beam radius large compared to

the Debye length. If the electron temperature is about 3 eV

and density of order 1011 cm−3, typical for most plasma

sources, the electron Debye length is very small compared

with the beam radius and is irrelevant for considered effects

here associated with electron flows in the return current.

Therefore, due to the fast motion of the beam pulse through

the plasma, a flow in the return current is generated in the

plasma with the flow velocity comparable to the beam pulse

velocity. The plasma flow in the return current is faster than

the electron thermal velocity and is responsible for the self-

electric and self-magnetic fields inside the beam pulse,

whereas the electron pressure term can be neglected, in con-

trast to the case of slow beam pulses. Particle-in-cell simu-

lations show that in most cases the electron flow is laminar

and does not become multistreaming. Thus, the cold electron

fluid equations can be used for the electron description, and

thermal effects are neglected in the present study. The elec-

tron fluid equations together with Maxwell’s equations com-

prise a complete system of equations describing the electron

response to a propagating ion beam pulse. The electron cold-

fluid equations consist of the continuity equation,

�ne

�t
+ � · �neVe� = 0, �7�

and the force balance equation,

�pe

�t
+ �Ve · ��pe = − e�E +

1

c
Ve � B� , �8�

where −e is the electron charge, Ve is the electron flow ve-

locity, pe=�emVe is the average electron momentum, m is

the electron rest mass, and �e is the relativistic mass factor.

Maxwell’s equations for the self-generated electric and mag-

netic fields, E and B, are given by

� � B =
4�e

c
�ZbnbVb − neVe� +

1

c

�E

�t
, �9�

� � E = −
1

c

�B

�t
, �10�

where Vb is the ion beam flow velocity, ne and nb are the

number densities of the plasma electrons and beam ions, re-

spectively �far away from the beam ne→np�, and Zb is the

ion beam charge state. The plasma ions are assumed to re-

main stationary with Vi=0. The assumption of immobile

plasma ions is valid for sufficiently short ion pulses with

2lb	rb
�M /m.

24,25
Here, rb and 2lb are the ion beam radius

and length, respectively, and M is the plasma ion mass.

A. Criterion for charge neutralization

In Refs. 28, 48, 42, and 49 the steady-state propagation

of an ion beam pulse propagating through a background

plasma has been thoroughly explored. We have developed

reduced nonlinear models, which describe the stationary

plasma disturbance �in the beam frame� excited by the in-

tense ion beam pulse of the final length. The analytical re-

sults agree very well with the results of particle-in-cell

simulations.
47,24,25,48,42,49

The model predicts very good

charge neutralization �the degree of neutralization is very

close to unity� during quasisteady-state propagation, pro-

vided the beam is nonrelativistic and the beam pulse duration


b is much longer than the electron plasma period 2� /�pe,

where �pe=�4�e2ne /m, i.e.,

�pe
b � 2� . �11�
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Thus, the degree of charge neutralization depends on the

beam pulse duration and plasma density and is independent

of the ion beam current �provided np�nb�. Figure 6 shows

the results of particle-in-cell simulations for electron density

perturbations caused by propagation of a short ��pe
b=4�
and long ��pe
b=60� ion beam pulses, and demonstrates that

the charge neutralization is very good �the degree of neutral-

ization is very close to unity� for long beam pulses. Quanti-

tative formulas for the degree of neutralization are given in

Sec. V.

B. Criterion for current neutralization

The degree of ion beam current neutralization depends

on both the background plasma density and the ion beam

current. The ion beam current can be neutralized by the elec-

tron return current. The ion beam charge is neutralized pri-

marily by the action of the electrostatic electric field. In con-

trast, the electron return current is driven by the inductive

electric field generated by the inhomogeneous magnetic flux

of the ion beam pulse in the reference frame of the back-

ground plasma
28,49 �see Fig. 7�. The relationship between the

electron flow velocity and the induced magnetic field can be

obtained by applying the conservation of generalized

vorticity,
50

� 
 � � pe −
e

c
B = 0. �12�

If � is initially equal to zero ahead of the beam, and all

streamlines inside of the beam originate from the region

ahead of the beam, then � remains equal to zero every-

where. Therefore, due to conservation of the generalized vor-

ticity, it follows from Eq. �12� for long beam pulses with

beam half length lb�rb that

B� = −
�Az

�r
	 −

c

e

�pez

�r
, �13�

where B
 is the azimuthal component of self-magnetic field,

Az is the vector potential, and axisymmetry is assumed. Note

that Eq. �13� also expresses the conservation of canonical

momentum in the limit of long charge bunches, lb�rb, and

pez 	
e

c
Az, �14�

if the plasma is unperturbed in front of the beam pulse, i.e.,

Ve=0, A=0 ahead of the beam pulse. Equation �12� is valid

even for short beam bunches, where the conservation of ca-

nonical momentum is not applicable.

The electron return current and self-magnetic field can

be obtained from Ampere’s law, provided the displacement

current can be neglected. Substituting Eq. �14� into Ampere’s

law gives
28,49,33

−
1

r

�

�r
r

�

�r
Az =

4�

c
ZbenbVbz −

�pe
2

c2
Az. �15�

Equation �15� describes the degree of current neutralization

of the beam. Analyzing Eq. �15�, one can see that the self-

magnetic field of the beam pulse penetrates into the plasma
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FIG. 6. �Color online� Color plots of the normalized electron density
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the electron trajectories in the beam frame for �b=0.5, lb /rb=10, and

nb /np=0.5, and �a� �p
b=4 and �b� �p
b=60.

z

B ds

E
t

φ∂
=>

∂
∫

VVbb

Bϕ

Ez

Vez

j
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over distances of order the skin depth c /�pe. If the beam

radius rb is small compared with the skin depth, rb	c /�pe,

then the electron return current is distributed over distances

of order c /�pe, which is much broader than the ion beam

current profile. The magnetic field far away from the beam

should decrease to zero. Therefore, from Eq. �15� it follows

that the total current integrated along the beam cross section

over radial distances much larger than skin depth is equal to

zero. From Ampere’s law, it follows that the electron return

current is about �perb /c times smaller than the ion beam

current. Consequently, the ion beam current is neutralized by

the electron current, provided the beam radius is large com-

pared with the electron skin depth c /�pe, i.e., provided

rb � c/�pe, �16�

and is not neutralized in the opposite limit. This condition

can be expressed as
48,33

Ib �
1

4�b

IA�nb/np� = 4.25��bnb/np�kA , �17�

where �bc is the directed ion beam velocity, �b

=�1 / �1−�b
2�, and the Alfven current, IA=mc3�b�b /e

=17�b�bkA. The condition in Eq. �17� can be recast

in terms of the Budker parameter for the beam,

�b=e22��0
�nbrdr /Mbc2 using the relationship Ib / IA

	�bMb /m�b.
51,52

IV. SELF-ELECTRIC FIELD AND SELF-FOCUSING
FORCE OF THE FAST ION BEAM PULSE
PROPAGATING THROUGH A BACKGROUND PLASMA

The self-force Fr�r� acting on the beam ions is often

represented by introducing the degree of charge neutraliza-

tion, f , and current neutralization, fM,
12,23,48,51

i.e.,

Fr�r� =
4�e2Zb

2

r
��1 − f��

0

r

nbrdr − �1 − fM��b
2�

0

r

nbrdr� .

�18�

However, for the case of ion beam propagation through a

dense background plasma, the degree of charge neutraliza-

tion is very close to unity, and the use of Eq. �18� is incon-

venient. The electrons neutralize the ion beam pulse to such

a high degree that the remaining self-electric field is small

and is associated with the electron inertia terms caused by

the electron flow in the return current, Ve�Vbnb /np. Not-

withstanding the fact that the electron inertia terms are small,

the electron inertia terms are large compared with electron

pressure effects for the case of fast beams, provided that the

criterion in Eq. �5� is satisfied. For heavy ion fusion applica-

tions, we are primary interested in nonlinear models, where

the beam density is comparable with the plasma density and

describe the plasma disturbance excited by an intense �finite

length� ion beam pulse. For this case, the simplest way to

analyze the self-electric field and self-focusing force of the

ion beam pulse propagating in a background plasma is to

perform the calculations in the beam frame. For analyzing

the electron response to the beam pulse, the beam propaga-

tion through background plasma can be considered as a

steady-state phenomena because in most applications ion

beam dynamics is slow compared with the electron response

time. Therefore, the magnetostatic and electrostatic approxi-

mations

Eb = − �
b, �19�

are adequate.
53

Here, superscript b denotes the beam frame,

as apposed to the laboratory frame. No subscripts or super-

scripts are used to denote values in the laboratory frame.

From Eq. �3�, the self-electric field can be obtained from the

electron flow velocity in the electron return current, which

gives

eEz
b = m�Vb − Vez�

�Vez

�z
. �20�

Here, we have neglected small radial terms in the limit of

long beam pulses, lb�rb and Vez is given by Eqs. �14� and

�15�.28
From Eq. �20� it follows that the electrostatic poten-

tial is

e
z
b = − m�VbVez − Vez

2
/2� , �21�

and the radial self-electric field is given by

eEr
b = m�Vb − Vez�

�Vez

�r
. �22�

In the beam frame, the magnetic force acting on beam ions

vanishes, and the total radial force is
28

Fr = ZbeEr
b = mZb�Vb − Vez�

�Vez

�r
. �23�

Equation �23� together with Eqs. �14� and �15� for the elec-

tron flow velocity in the electron return current, and the

quasineutrality condition ne=np+Zbnb, determine the self-

focusing force. Note that this model is valid in the general

nonlinear case where the background plasma density is com-

parable with the beam density, np�Zbnb, or even in the limit

of tenuous plasma, np	Zbnb.
28

The self-focusing force is

strongly affected by electron inertia effects. However, this

force can also be important for fast, narrow ion beam pulses.

In the case of complete current neutralization, ZbnbVb

=neVe and np�Zbnb, Eq. �23� becomes

Fr =
mVb

2
Zb

2

np

�nb

�r
. �24�

Increase in the plasma density results in a decrease in the

self-focusing force. Therefore, the pinching effect can be

mitigated by introducing more plasma into the beam trans-

port region. Note again, for fast ion beams, that adding finite

electron temperature effects yields a small correction due to

the electron pressure, i.e.,

Fr =
Zb

2�mVb
2 − Te�

np

�nb

�r
,

according to Eq. �5�.
It is instructive to describe self-electric field in the labo-

ratory frame because most simulations are performed in the

laboratory frame, where physical boundaries are stationary.

In the laboratory frame, the self-electric field is given by

056703-8 Kaganovich et al. Phys. Plasmas 17, 056703 �2010�

Downloaded 23 Apr 2010 to 198.35.2.84. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



E = Eb −
Vb � B

c
. �25�

Here, the z-component of the electric field is the same in

both the laboratory and beam frames, but the radial compo-

nent is different, i.e.,

Er = Er
b +

1

c
VbB�. �26�

Substituting Eqs. �22� and �14� into Eq. �26�, it follows that

the terms Er
b and �1 /c�VbB� nearly cancel each other, and the

remaining small nonlinear term �proportional to Zbnb /np�
gives the radial self-electric field

eEr = − mVez

�Vez

�r
. �27�

Note that the radial self-electric field in the laboratory frame

is positive �defocusing�, whereas the electric field in the

beam frame is negative �compare Eqs. �20� and �15��. More-

over, the radial self-electric field vanishes completely in the

linear approximation �in the limit lb�rb�.28
The electric field

in the laboratory frame can be represented as a sum of the

inductive and electrostatic parts
28

E = −
1

c

�

�t
A − �
 , �28�

where both the vector potential and the electrostatic potential

can be expressed as functions of the flow velocity in the

return current,
28

A=cmVezez and 
=mVez
2

/2. Correspond-

ingly, the z-component of the electric field in the laboratory

frame is dominated by the inductive part, whereas the radial

component is given by the electrostatic part of the electric

field. That is, an electromagnetic code is required to describe

the self-focusing force in the laboratory frame; and an elec-

trostatic code is not sufficient, even for the case of a nonrel-

ativistic beam and a weak self-magnetic field.

The self-focusing force in the laboratory frame can be

expressed as
28

Fr = eZb�Er −
VbzB�

c
� , �29�

and is dominated by the magnetic component of the force. In

Eq. �29�, Er is given by Eq. �27�, and Vez and B� are given by

Eqs. �14� and �15�.

V. THE DEGREE OF CHARGE NEUTRALIZATION
AND EFFECTIVE PERVEANCE OF THE NEUTRALIZED
FAST ION BEAM PULSE PROPAGATING
THROUGH BACKGROUND PLASMA

The degrees of charge and current neutralization can be

calculated by making use of Eqs. �14�, �15�, �27�, and �29�
and depend on the radial profile of the beam density. Ana-

lytical formulas have been developed in Ref. 48. Here, we

focus on nonrelativistic, space-charge-dominated beams,

which have a flat-top radial density profile with a sharp

boundary at the outer beam radius, rb. It is convenient to

introduce the average degree of charge neutralization �f�
over the beam cross section defined by

�f� = 1 −
2�0

rb�Zbnb + np − ne�rdr

Zbnbrb
2

. �30�

Making use of Poisson’s equation, we obtain from Eq. �30�

�f� = 1 −
Er�rb�

2�eZbnbrb

. �31�

The general expression for �f� for arbitrary ratios of nb /np

and rb�pe /c is given in Ref. 48. In the limits nb /np�1 and

rb�pe /c�1, it reduces to

�f� = 1 − �b
2Zbnb

np

c

rb�pe

. �32�

It can be readily shown
48

that the maximum deviation from

quasineutrality occurs when rb�c /�pe, and the degree of

nonquasineutrality is bounded by �Zbnb+np−ne� / �Zbnb�
	0.25�b

2. Therefore, for nonrelativistic, long ion beam

pulses, there is almost complete charge neutralization. For

heavy ion fusion parameters, �b	0.2 and degree of charge

neutralization are more than 99%.

The effective electric self-field perveance in the presence

of plasma scales as 1− �f�, where �f� is the average charge

neutralization defined in Eq. �32�. Moreover, the total effec-

tive perveance including both self-electric and self-magnetic

effects scales as
12

Qeff

Q0

=
1 − �f� − �b

2�1 − fm�rb��

1 − �b
2

, �33�

where the magnetic neutralization fm�rb�=−Ie�rb� / Ib�rb� is

calculated at the beam edge, and Ie�r� is the electron current,

Ie�r�=−e�0
rneVez2�rdr, and Ib�r� is the ion beam current,

Ib�r�=Zbe�0
rnbVbz2�rdr, both within radius r. The general

expression for Qeff for arbitrary ratios of Zbnb /np and

rb�pe /c is given in Ref. 48. In the limits, Zbnb /np�1 and

rb�pe /c�1, it reduces to

Qeff = −
me

M

Zbnb

np

rb�pe

2c
. �34�

The effective perveance Qeff in Eq. �34� has a different sign

for the perveance than Olson’s electrostatic result
31

for a

plasma plug, Qe=Zbme /M. The effective perveance in Eq.

�34� is greatly reduced for the case of beam propagation in

dense plasma with np�Zbnb.

VI. EFFECTS OF GAS IONIZATION ON THE DEGREE
OF BEAM CURRENT AND CHARGE
NEUTRALIZATION

Gas ionization can considerably affect the degree of

beam current neutralization. In the case of a preformed back-

ground plasma, the electric field accelerates electrons in the

head of the beam pulse to produce the return current, and

then decelerates electrons in the tail of the beam pulse to

remove the return current behind the beam pulse. The radial

electric field pushes electrons toward the beam center, and is

compensated by the magnetic part of the Lorentz force

eVezB
 /c �see Fig. 8�. If an electron is produced inside the

beam pulse in the tail region, then the longitudinal electric
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field accelerates such an electron in the opposite direction to

the main flow of electrons comprising the background

plasma. Moreover, the radial electric field pushes such elec-

trons into the beam center because their force is not now

compensated by the self-magnetic part of the Lorentz force

eVezB
 /c. As a result, a wake in the electron flow velocity

appears behind the ion beam pulse. Electrons flow in the

direction opposite to the beam velocity in this wake region

�see Fig. 9�. In this case, the current associated with such

electrons enhances the beam current rather than diminishes

the beam current, as in the usual case for a self-generated

return current. An analytical description of the return current

when ionization effects need to be taken into account be-

comes complicated because the value of the return current is

not only a function of the local plasma density and vector

potential, but is also determined by the entire preceding por-

tion of the beam pulse.
54

In summary, the effects of gas ionization can lead to

considerable enhancement of the self-magnetic field in the

tail of the beam pulse.

VII. EFFECTS OF AN APPLIED SOLENOIDAL
MAGNETIC FIELD ALONG THE BEAM PROPAGATION
ON THE DEGREE OF CURRENT AND CHARGE
NEUTRALIZATION

The application of a solenoidal magnetic field along the

beam propagation allows additional control and focusing of

the beam pulse.
37

Here, we consider the case when the ion

beam pulse exits a diode located in vacuum, in a magnetic

field free region, and enters a background plasma, separated

from diode by an electrostatic field.
9,10

After propagating in a

background plasma in the drift section for a few meters, the

beam pulse is focused onto the target by a magnetic lens.

A strong magnetic lens �final focusing magnet� with a mag-

netic field up to several Tesla can effectively focus an intense

ion beam pulse in short distances of the order of a few tens

of centimeters, as it is accomplished in the NDCX-I

experiments.
9,18

However, due to the very strong magnetic

field in the solenoid, the leaking of the magnetic field outside

the solenoid can affect the degree of charge and current neu-

tralization far away from the final focusing magnet. The

plasma is produced by plasma sources inside the solenoidal

magnetic field everywhere along the beam path in order to

provide neutralization in the solenoid region. Even a small

-eEr-eEz

Bϕ

FIG. 8. �Color online� Schematic of the generation of a current wake behind

an ion beam pulse due to gas ionization.

(a)

0

1.3 10 cm

5

10

x
(c
m
)

0

3.1 10 cm

0

-60 -30 0 30 60

5

10

z cm

x
(c
m
)

0

5

10

z cm

x
(c
m
)

-10

36 G

0

(b)

z cm

-10

60 A/cm
2

z cm

5

10

x
(c
m
)

0

(c) (d)

-60 -30 0 30 60

-60 -30 0 30 60

-60 -30 0 30 60

11 -3 11 -3

FIG. 9. �Color online� The electron density and ion density, magnetic field, and current density of the ion beam pulse are calculated in two-dimensional slab

geometry using the LSP code �Ref. 22�. The background plasma density is np=1011 cm−3. The beam velocity is Vb=0.2c; the beam current is 1.2 kA

�48.0 A /cm2�, which corresponds to the ion beam density nb=0.5np; and the ion beam charge state is Zb=1. The beam dimensions �rb=2.85 cm and


b=1.9 ns� correspond to a beam radius rb=1.5c /�pe and pulse duration 
b�pe=75. Shown are color plots of �a� the ion density produced by beam ionization,

�b� the electron density produced by beam ionization, �c� the magnetic field component By generated by the ion beam pulse, and �d� the current density.
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solenoidal magnetic field, typically less than 100 G, strongly

changes the self-magnetic and self-electric fields in the beam

pulse propagating in a background plasma.
27,63

Such values

of magnetic field can be present over distances of a few

meters from the strong solenoid, and thereby affect the fo-

cusing of the beam pulse. Moreover, an additional small so-

lenoidal magnetic field can be applied to optimize propaga-

tion of the beam pulse through a background plasma over

long distances in the drift section.

Note that we are not relying on the collective lens effect

proposed by S. Robertson,
55

where plasma or electron

sources are absent inside the solenoidal magnetic field re-

gion, and neutralizing electrons are dragged by the ion beam

pulse into the solenoid region, which is electron free in the

absence of the beam pulse. For this case, the electrons cross

the magnetic field lines, and thus a fast electron rotation with

frequency �ce /2 is established inside the solenoidal magnetic

field region. Here, �ce=eBz /mc is the electron cyclotron

frequency. The magnetic force and centrifugal force yield a

net focusing force acting on the electrons, i.e.,

−e�cerBz /2c+m�ce
2 r /4=−m�ce

2 r /4. The focusing force act-

ing on the electrons is counterbalanced by the space-charge

radial electric field eEr=−m�ce
2 r /4, which in turn focuses the

beam ions. For a collective lens to operate properly, no elec-

trons should be present inside the solenoid.
56

Therefore, col-

lective lens configurations have to be carefully designed to

prevent electrons produced near the target from penetrating

into the solenoid region.

Moreover, if an ion beam pulse propagates together with

neutralizing, comoving electrons after exiting the plasma re-

gion, and encounters “fresh” new plasma, a very fast two-

stream electron-electron instability is likely to develop; and

the resulting electric field fluctuations will slow down the

fast electrons comoving with the beam, and prevent them

from following the beam pulse. If electrons comoving with

the beam have a spread in velocity and are confined to the

beam pulse by a positive potential,
41,53

as soon as the beam

enters the background plasma, the self-potential is reduced

and the fast electrons leave the beam pulse. Therefore, in the

plasma region, electrons initially moving with the beam ve-

locity cannot follow the beam pulse; and neutralization is

provided by the “fresh” plasma electrons originating in front

of the beam pulse. This phenomenon is observed in particle-

in-cell simulations. Therefore, in the following we consider

only the case where the beam propagates through fresh back-

ground plasma.

In Refs. 57 and 58, the response of a magnetized plasma

to injection of an intense ion beam was studied while ne-

glecting electron inertia effects, which corresponded to mag-

netic fields of a few Tesla in ion ring devices. In the present

paper, we analyze the opposite limit, corresponding to small

values of magnetic field. In the collisionless limit and with-

out an applied solenoidal magnetic field, the return current is

driven by an inductive electric field which is balanced by

electron inertia effects. Taking electron inertia effects into

account allows us to study the transition from the limit where

the solenoidal magnetic field is small, i.e., where the pres-

ence of the applied solenoidal magnetic field begins to affect

the return current in the plasma, and determines the range of

magnetic field values that strongly affect the self-electric and

self-magnetic fields of a beam pulse propagating in a back-

ground plasma. This allows us to study the beam pulse evo-

lution over a wide range of solenoidal magnetic field

strengths, from approximately zero, to very large values,

such as when the beam pulse encounters an applied solenoi-

dal magnetic lens.

In Refs. 24 and 25 it was shown that application of a

solenoidal magnetic field strongly affects the degree of cur-

rent and charge neutralization when

�ce � �pe�b, �35�

or equivalently,

B � 320 G �b
�np/1010 cm−3. �36�

The threshold value of B given in Eq. �36� corresponds to

relatively small values of the magnetic field for nonrelativis-

tic beams. When the criterion in Eq. �36� is satisfied, appli-

cation of the solenoidal magnetic field leads to three unex-

pected effects. The first effect is the dynamo effect, in which

the electron rotation generates a self-magnetic field that is

much larger than in the limit with no applied magnetic field.

The second effect is the generation of a much larger self-

electric field than in the limit with no applied field. The third

unexpected effect is that the joint system consisting of the

ion beam pulse and the background plasma acts as a para-

magnetic medium if �ce	2�pe�b, i.e., the solenoidal mag-

netic field is enhanced inside of the ion beam pulse.

Application of the solenoidal magnetic field can be used

for active control of beam transport through background

plasma by enhancing or reducing the self-focusing force.

Without the applied solenoidal magnetic field, the radial self-

force is always focusing because the magnetic attraction of

parallel currents in the beam always dominates the radial

electric field, which is screened by the plasma better than the

self-magnetic field. However, when a solenoidal magnetic

field is applied, the radial electric force can become larger

than the magnetic force, resulting in beam defocusing. For

larger values of the solenoidal magnetic field, corresponding

to

�ce � 2�pe�b, �37�

or equivalently,

B � 640 G �b
�np/1010 cm−3 �38�

the beam generates whistler and lower hybrid waves.
24,25,63

Note that here we are only interested in fast electron waves

which modify the electron return current and not in slow

waves and instabilities on the ion time scale. When whistler

or lower hybrid waves are excited, the particle-in-cell simu-

lations show that the structure of the self-electromagnetic

field becomes rather complex, and the transport of very in-

tense beam pulses can be strongly affected by the wave

generation.
20,59

The intense whistler wave excitations can be

used for diagnostic purposes.

In Ref. 63, it was also demonstrated, in the regime where

�ce�2�b�pe and kqs
−1�rb�kem

−1 , where kem,qs are given in Eq.

�46�, that the positive charge of the ion beam pulse becomes

overcompensated by the plasma electrons, and the associated
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strong transverse-focusing self-electric field has the domi-

nant influence on the beam ions, compared with the self-

magnetic field. It was also shown, for the case where the

beam radius is small compared to the electron skin depth,

that the self-focusing force is significantly enhanced com-

pared to the self-focusing force acting on the beam particles

in the absence of an applied magnetic field. In addition, the

local diamagnetic plasma response is observed in the nu-

merical simulations, and is also predicted analytically for

�ce�2�b�pe. Note that these results differ significantly from

the case �ce	2�b�pe, where the transverse electric field is

defocusing, and the plasma response is paramagnetic. The

qualitatively different local plasma responses are separated

by the critical field case where �ce=�ce
cr =2�b�pe, corre-

sponding to the resonant excitation of large-amplitude

wave-field perturbations. The threshold magnetic field in the

inequality �ce�2�b�pe corresponds to a relatively weak

magnetic field of the order of 10 G �for NDCX-I
9,18� and

100 G �for NDCX-II
19�. Therefore, the magnetic fringe fields

of the final-focus solenoid above this value can penetrate

deep into the drift section. In particular, these fringe fields

provide conditions for enhanced beam self-focusing, which

can have a significant influence on the transverse beam dy-

namics for the parameters characteristic of NDCX-II.
63

In the presence of an applied solenoidal magnetic field,

the system of equations describing the self-electric and self-

magnetic fields becomes much more complicated. A strong

solenoidal magnetic field inhibits radial electron transport,

and the electrons move primarily along the magnetic field

lines. For high-intensity beam pulses propagating through a

background plasma with pulse duration much longer than the

electron plasma period, one is tempted to assume validity of

the quasineutrality condition, ne=np+Zbnb. In the limit of a

strong applied solenoidal magnetic field, the plasma elec-

trons are attached to the magnetic field lines, and their mo-

tion is primarily along the magnetic field lines. For one-

dimensional electron motion, the charge density continuity

equation, �� /�t+� •J=0, combined with the quasineutrality

condition ��=np+Zbnb−ne
0�, yields zero net current,

J
0. Therefore, in the limit of a strong solenoidal magnetic

field, the beam current can be expected to be completely

neutralized.

However, the preceding description fails to account for

the electron rotation that develops in the presence of a sole-

noidal magnetic field. Due to the small inward radial electron

motion, the electrons can enter into the region of smaller

solenoidal magnetic flux. Due to the conservation of canoni-

cal angular momentum, the electrons start rotating with a

very high azimuthal velocity �see Fig. 10�. This electron ro-

tation produces many unexpected effects.

A. Dynamo effect—enhancement of the self-magnetic
and self-electric fields of the ion beam pulse
due to application of weak solenoidal magnetic field

The first effect is the dynamo effect.
60

Under the condi-

tions where electron magnetohydrodynamic equations can be

used neglecting electron inertia terms, the magnetic field is

attached to the electron flow.
24,25,61

Then, the electron rota-

tion bends the solenoidal magnetic field lines and generates

an azimuthal self-magnetic field in the beam pulse. The dy-

namo effect remains if electron inertia effects are taken into

account as well.
24,25

Moreover, the electron rotation can gen-

erate a self-magnetic field that is much larger than in the

limit with no applied field. The second effect is the genera-

tion of a large radial electric field. Because the eVe
Bz /c

force should be balanced by a radial electric field, the elec-

tron rotation results in a plasma polarization, and produces a

much larger self-electric field than in the limit with no ap-

plied solenoidal magnetic field. The total force acting on the

beam particles now can change from always focusing in the

limit with no applied solenoidal magnetic field, to defocusing

at higher values of the solenoidal magnetic field. In particu-

lar, an optimum value of magnetic field for long-distance

transport of an ion beam pulse, needed, for example, in in-

ertial confinement fusion applications,
62

can be chosen where

the forces nearly cancel. The third unexpected effect is that

the joint system consisting of the ion beam pulse and the

background plasma acts as a paramagnetic medium, i.e., the

solenoidal magnetic field is enhanced inside of the ion beam

pulse.

In order to quantify the above-mentioned effects, the

system of Maxwell equations, Eqs. �9� and �10� and the elec-

tron fluid equations, Eqs. �7� and �8� have to be solved taking

into account electron rotation and corresponding perturbation

of the applied solenoidal magnetic field �Bz=��rA
� /r�r.

The displacement current is small compared to the electron

current, and Ampere’s equations take the form

−
1

r

�

�r
�r

�Az

�r
� =

4�e

c
�ZbnbVb − neVez� , �39�

�

�r
�1

r

��rA��

�r
� =

4�e

c
neVe�, �40�

where Ve
 is the azimuthal component of the electron veloc-

ity. The electron flow velocity can be found using the con-

servation of the generalized vorticity,

� �

�t
+ Ve����

ne

� = ��

ne

· ��Ve, �41�

where the generalized vorticity is defined by �=�� �mVe

−eA /c�. Projecting Eq. �41� along the longitudinal and azi-

muthal axes, we readily obtain
24,25

Vb

magnetic field line
ion beam pulse

magnetic flux

FIG. 10. �Color online� Schematic of perturbations of magnetic field lines in

response to the propagating ion beam pulse. A small radial electron displace-

ment generates a fast poloidal rotation. The poloidal rotation then twists the

magnetic field and generates the poloidal magnetic field and large radial

electric field.
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Vez =
e

mc
Az −

B0

4�mVbne

1

r

��rA
�

�r
, �42�

Ve��1 +
�ce

2

�pe
2 � =

e

mc
A� −

B0

4�mVbne

�Az

�r
. �43�

In deriving Eqs. �42� and �43�, it has been taken into account

that in the linear approximation, nb�ne, the radial compo-

nent of the equation for the electron momentum gives

Er=−Ve
B0 /c. Furthermore use has been made of Poisson’s

equation.
24,25

The last term on the right-hand side of Eq. �42�
describes the magnetic dynamo effect, i.e., the generation of

a self-magnetic field due to rotation �B
�BzVe
 /Vez�. The

last term on the right-hand side of Eq. �43� describes the

generation of electron rotation due to the radial displacement

caused by a not fully compensated current and remnant self-

magnetic field. The second term inside the parenthesis on the

left-hand side of Eq. �43� describes the departure from

quasineutrality condition.
24,25

Figure 11 shows very good

agreement between analytical theory and the PIC simulation

results. Enhancement in the self-magnetic field �factor of 3�
and self-electric field �factor of 10� produced by the ion

beam pulse due to the application of a weak solenoidal mag-

netic field is shown. The paramagnetic effect of the enhanced

solenoidal magnetic field inside of the ion beam pulse is also

evident. The maximum enhancement is observed when
24,25

�ce→2�pe�b. However, in this range of the applied solenoi-

dal magnetic field, whistler waves are excited, and the struc-

ture of the self-magnetic field becomes more complicated.

Moreover, the slice approximation for long thin beams used

in Eqs. �42� and �43� is not valid when the waves are excited

by the beam
24,25

in the regime

�ce � 2�b�pe. �44�

In this case, the slice approximation is not valid because the

profiles for the self-electric and self-magnetic fields in the

presence of a whistler wave excitation depend on the entire

profile of the beam pulse and not only on the local cross

section.
63

B. Whistler wave excitation and effects
of self-focusing on ion beam propagation
through a background plasma along a solenoidal
magnetic field

If the condition in Eq. �44� is satisfied, whistler wave can

be excited by the ion beam pulse. The whistler wave disper-

sion relation is
63,64

�wh
2 =

kx
2
kz

2�ce
2

�kx
2 + �pe

2
/c2��kx

2�1 + �ce
2

/�pe
2 � + �pe

2
/c2�

, �45�

where the approximation of a long thin beam pulse has been

assumed, kx�kz, ���ce ,�pe, and the ion response is ne-

glected. Whistler waves are in resonance with the ion beam

pulse when their phase velocity coincides with the ion beam

velocity, �h�kx ,kz�=kzVb. The necessary condition for reso-

nance is given by Eq. �44� �see Fig. 12�. The solution to

Eq. �45� gives two values for the transverse wave number kx,

a small value kem corresponds to long wavelength electro-

magnetic perturbations, and a high value kqs corresponds to

short wavelength electrostatic perturbations with

kem,qs
2 =

�pe
2

c2

�ce
2 − 2�b

2�pe
2 � ��ce

2 ��ce
2 − 4�b

2�pe
2 �

2�b
2��pe

2 + �ce
2 �

. �46�

As evident from Fig. 12, the group velocity, ��wh /�kz of the

long wavelength electromagnetic perturbations is greater

than the beam velocity, whereas the group velocity of the

short wavelength electrostatic perturbations is smaller than

the beam velocity. Therefore, long wavelength electromag-

netic perturbations propagate ahead of the beam, whereas the

short wavelength electrostatic perturbations lag behind the

beam. Both waves have transverse group velocity ��wh /�kx.

Hence, the waves also propagate sideways from the beam

pulse. Typical results are shown in Fig. 13. Propagating in

magnetized ionospheric or magnetospheric plasma, charged

particle beams can excite whistler wave-field perturbations,

φ
d

φ
d

φ
d

φ
d

FIG. 11. �Color online� The azimuthal self-magnetic field, the self-magnetic

field perturbation in the solenoidal magnetic field, and the radial electric

field in a perpendicular slice of the beam pulse. The beam parameters are �a�
nb0=np /8=3�1010 cm−3, Vb=0.33c, and the beam density profile is taken

to be Gaussian with rb=1 cm. The applied magnetic field is �a�
Bz0=300 G; c�ce /Vb �pe=0.57, and �b� Bz0=900 G; c�ce /Vb �pe=1.7.
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and therefore can be used as compact on-board emitters in

the very-low-frequency range, replacing large-apertures elec-

tromagnetic antennas.
65,66

Analytical and numerical studies

of the whistler branch excitation by a density-modulated

electron beam propagating through a background plasma

along a uniform magnetic field, including linear and nonlin-

ear effects, have been recently reported in Refs. 67–69 in the

limit of a very thin ion beam, rb�kqs
−1. Reference 63 per-

formed analytical calculations of whistler wave excitation in

slab geometry. Analytical calculations have been verified by

comparing with the results of particle-in-cell simulations,

which showed very good agreement. Particle-in-cell simula-

tions in cylindrical geometry were also carried out, and

showed that the analytical formulas obtained for the self-

focusing force can be applied in cylindrical geometry as

well.

The analysis in Ref. 63 showed that wave excitation

does not affect the self-focusing force in the limit of strong

solenoidal magnetic field and not very thin beams, i.e.,

�ce � 2�b�pe and rb � kqs
−1 = �1 + �ce

2
/�pe

2 �1/2
�bc

�ce

.

�47�

In this limit the degree of beam current neutralization is high.

However, the self-magnetic field in the wave excitation can

(a)

α=1

B

Vb

Whistler

Quasi -
electrostatic wave

Vg
em

Vg
qs

Beam frame

(b)

Long wavelength
(electromagnetic)

Vgz>Vb Vgz<Vb

α=ωce/2βbωp

k

ω/ckz

ωpe/c

Short wavelength
(quasi-electrostatic)

βc

Vb=Vgz
Vgx=0

ωh/ckz
Waves are
excited (α>1)

kem kqs

No waves

FIG. 12. �Color online� �a� The phase velocity of the whistler wave is

plotted as a function of wave vector �solid curve� and is intersected by

different values of the normalized beam velocity �b �dashed lines�. �b� Sche-

matic illustration of the whistler waves excited by the ion beam pulse. In the

beam frame of reference, the long-wavelength electromagnetic wave field

propagates ahead of the beam pulse, and the short-wavelength electrostatic

wave field lags behind the beam pulse.

FIG. 13. �Color online� Plots of the steady-state amplitude of the transverse

magnetic field perturbations By. The beam-plasma parameters correspond to

Zb=1, lb=10c /�pe, �b=0.33, and np=2.4�1011 cm−3. The applied mag-

netic field, Bz=1600 G, corresponds to �ce / �2�b�pe�=1.54. The frames in

the figure show �a� excitation of primarily long-wavelength electromagnetic

waves by a wide-aperture ion beam with rb=2.5c /�pe and �b� excitation

of primarily short-wavelength quasielectrostatic waves by a thin beam

with rb=0.5c /�pe. The normalization factor in �a� and �b� is given by

B0=4�nb0Zbe�brb. The arrows schematically illustrate the direction of the

wave packet group velocity. The dashed lines correspond to the contours of

constant beam density corresponding to the effective beam radius rb.
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be comparable with the remaining self-magnetic field. Nev-

ertheless, the total self-magnetic field is small, and does not

influence the self-focusing force. Moreover, we can use Eq.

�22� to determine the radial self-electric field in the beam

frame. Because the self-magnetic field is well neutralized,

the self-electric field in the laboratory frame,

Er = Er
b +

1

c
VbzB� 	 Er

b, �48�

is the same as in the beam frame and therefore is electro-

static. The self-focusing force acting on the beam ions is

given by Eq. �24�. Variation of the self-focusing force acting

on beam ions as a function of applied magnetic is shown in

Fig. 14.

C. The degree of charge neutralization and effective
perveance of the neutralized fast ion beam
pulse propagating through background plasma along
a solenoidal magnetic field

Substituting Eq. �22� for the radial self-electric field into

Eq. �31� for the average degree of charge neutralization �f�
gives in the limit Zbnb /np�1,

�f� 
 1 + 2�b
2 c2

rbrg�pe
2

. �49�

Here, rg=nb / ���nb /�r�� is the effective radial scale of the ion

beam density profile at the beam edge. Note that the second

term on the right-hand side of Eq. �49� is positive because in

this regime electrons overcompensate positive ion charge

and the radial electric field at the beam edge is negative.

From Eq. �49�, it is evident that the electric field increases

and the degree of charge neutralization for the case

rb�c /�pe.
63

Equation �49� can be used only for rb ,rg�kqs
−1

= �1+�ce
2

/�pe
2 �1/2�bc /�ce and �ce�2�b�pe. The maximum

deviation from quasineutrality occurs for the smallest pos-

sible beam radius and sharpest ion beam density gradients.

As a function of the parameter �ce /�pe, the minimum value

of kqs
−1=�bc /�pe occurs when �ce��pe. Substituting the val-

ues rb�rg��bc /�pe into Eq. �49� one finds that �f��2, and

the beam can become non-neutralized, as observed in nu-

merical simulations.
24,25

Therefore, even for nonrelativistic,

long ion pulses, complete charge neutralization is not guar-

anteed in the presence of a solenoidal magnetic field, if

rb�rg��bc /�pe. However, for heavy ion fusion parameters,

rb�c /�pe and �b	0.2 and the degree of charge neutraliza-

tion can exceed more than 99% by increasing the plasma

density according to Eq. �49�.
The effective self-electric perveance in the presence of

plasma scales as 1− �f�, where �f� is the average charge neu-

tralization defined in Eq. �32�. Because the contribution to

the self-focusing force by the self-magnetic field can be ne-

glected in the limit �ce�2�b�pe, the total effective per-

veance including both self-electric and self-magnetic effects

is given approximately by the self-electric perveance. Sub-

stituting Eq. �49� for �f� into Eq. �33� gives for Qeff,

Qeff 
 −
m

M

rb

rg

Zb
2
nb

np

. �50�

The effective perveance in Eq. �50� can be greatly reduced

for the case of beam propagation in dense plasma with

rb�c /�pe.

VIII. EFFECTS OF A DIPOLE MAGNETIC FIELD
ACROSS THE BEAM PROPAGATION ON THE DEGREE
OF CURRENT AND CHARGE NEUTRALIZATION

A dipole magnetic field can be used to deflect the beam.

Due to the large ion beam space charge, it is necessary to fill

the dipole region with a background plasma to neutralize the

beam space charge. The question arises as to whether the

plasma can still neutralize the ion beam space-charge density

effectively. In this case, it is necessary to take into account

the plasma flows in all directions simultaneously: along the

dipole magnetic field, and across the magnetic field, in order

FIG. 14. �Color online� Plots of the normalized radial force acting on beam

ions propagating through plasma for different values of ��ce /�b�pe�
2 calcu-

lated from Eqs. �23�–�27� for ��ce /�b�pe�
2	4 and Eq. �45� for

��ce /�b�pe�
2
→�. The force is normalized to Zbnb0mVb

2�pe /npc �see

Eq. �36��. The beam density profile is a Gaussian, nb0 exp�−r2
/rb

2� with �a�
rb=0.5c /�pe and �b� rb=2c /�pe.
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to properly take into account of all of the drifts and flows set

up in a dipole magnetic field, when the beam pulse moves in

background plasma. The neutralization of beams and propa-

gating plasmoids across the magnetic field has been studied

extensively both in simulations and experimentally, see e.g.,

Ref. 70 and references therein. Here, we discuss only the

effects associated with the self-electric and self-magnetic

fields of fast, intense ion beam pulses of finite length. Three-

dimensional simulations show that the beam space-charge

density is well-neutralized by the plasma flow along the di-

pole magnetic field �due to connection to the emitting side-

walls�. However, because the electron motion across the

magnetic field is greatly reduced by the dipole magnetic

field, the current is almost completely unneutralized, as

shown in Fig. 15. The unneutralized current generates a

time-varying self-magnetic field in the laboratory frame,

which in turn produces an inductive electric field Ez, as

shown in Fig. 15�e�. The longitudinal electric field Ez pro-

duces drifts in the x-direction and polarizes the plasma, as

evident in Fig. 15�f�. The transverse electric field in the

x-direction has different signs for the beam head and the

beam tail. After the beam exits the dipole region, the current

becomes neutralized as shown in Fig. 15�d�. However, some

complex structures appear at the dipole boundary, as evident

by comparing the color plots of the beam density in Fig.

15�b� and the current density in Fig. 15�d�. Therefore, an

intense ion beam can be effectively deflected by a dipole

magnetic field directed perpendicular to the beam propaga-

tion direction. However, the self-magnetic field of the beam

pulse is not neutralized by the plasma inside the dipole re-

gion, and a transverse electric field is generated due to the

plasma polarization. This can result in a pinching effect and

an unwanted emittance growth of the beam pulse. An addi-

tional comprehensive study needs to be performed in order to

quantify these effects.
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FIG. 15. �Color online� Beam propagation in a dipole magnetic field. Plots correspond to �a� the magnetic field By of the dipole, �b� the beam density in the

dipole region, �c� the current density jz in the dipole region, �d� the current density jz outside the dipole region, �e� the longitudinal, inductive electric field Ez,

and �f� the transverse electric field Ex. The background plasma density is np=1011 cm−3; the beam velocity is Vb=0.2c; the beam current is 1.2 kA

�48.0 A /cm2�, which corresponds to the ion beam density nb=0.5np; and the ion beam charge state is Zb=1. The beam dimensions �rb=2.85 cm and


b=1.9 ns� correspond to a beam radius rb=1.5c /�pe and pulse duration 
b�pe=75.
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IX. CONCLUSIONS

In this paper we have reviewed several neutralization

schemes for intense ion beam pulses, including neutraliza-

tion by emitting filaments positioned near the beam sides,

neutralization by gas ionization, neutralization by a grid im-

mersed in the beam, and neutralization by passing the beam

pulse through a background plasma, either a finite size layer

of plasma or a volumetric plasma produced everywhere

along the beam path. All schemes except for neutralization

by a volumetric plasma cannot provide the necessary very

high degree of neutralization ��99%� required for ballistic

drift compression of intense ion beam pulses. Therefore, neu-

tralized ballistic focusing typically requires the presence of a

background plasma in and around the beam pulse path for

very good charge neutralization. Correspondingly, the main

focus of this paper is on the neutralization of intense ion

beam pulses by volumetric background plasma. In plasma

sources, the electron temperature is about 3 eV, and the

plasma density is of order 1011 cm−3. For these plasma pa-

rameters, the electron Debye length is very small compared

with the beam radius, and the electrons neutralize effectively

the ion beam space charge. Due to the fast motion of the

beam pulse through the background plasma, a return current

is generated in the plasma, in which the electron flow veloc-

ity is comparable with the beam velocity. Thus the electron

flow in the return current is faster than the thermal electron

velocity, and this electron flow determines the self-electric

and self-magnetic fields of the beam pulse propagating

through the background plasma. Furthermore, the electron

potential energy in the self-electric field of the beam pulse

propagating through the background plasma is large com-

pared with the electron temperature. Therefore, the electron

pressure terms can be neglected for fast ion beam pulses, in

contrast to the limit of slow beams. Therefore, for the cases

considered here, the electron Debye length is not relevant to

the neutralization physics associated with such fast electron

flow in the return current.

In this paper we have summarized a nonlinear theory

describing the quasisteady-state propagation of an intense

fast ion beam pulse in a background plasma, neglecting

small electron thermal effects. The results of the theory have

been verified by detailed comparison with particle-in-cell

simulations. It has been shown that in the absence of applied

magnetic field, the beam charge is well neutralized �the de-

gree of charge neutralization is close to unity� during

quasisteady-state propagation of the beam pulse through

background plasma, provided that the beam pulse duration 
b

is much longer than the electron plasma period, 2� /�pe, i.e.,

�pe
b�2�. Therefore, in this limit, the quasineutrality con-

dition holds, ne	Zbnb+np, where np is the background

plasma ion density. Note, that the beam charge is well neu-

tralized during quasisteady-state propagation of the beam

pulse even through a tenuous plasma, np�Zbnb, after initial

transient processes of neutralization during beam entry into

the plasma. Tenuous plasma can provide good charge neu-

tralization due to the accumulation of electrons from the

large volume of plasma surrounding the beam pulse.
28

Fur-

thermore, in the general nonlinear case with np�Zbnb, the

degree of current neutralization is given by Ampere’s law,

combined with the conservation of the generalized vorticity

or canonical momentum, and the quasineutrality condition,

ne	Zbnb+np, i.e.,

B� = −
�Az

�r
= −

c

e

�pez

�r
, �51�

−
1

r

�

�r
r

�

�r
Az =

4�

c
ZbenbVbz −

�pe
2

c2
Az. �52�

It was shown that the ion beam current is effectively neutral-

ized by the plasma electron current, provided the beam ra-

dius is large compared with the electron skin depth c /�pe,

i.e., rb�c /�pe, and is not current neutralized in the opposite

limit. This condition can be expressed as

Ib � 4.25��bnb/np�kA , �53�

where �bc is the directed beam velocity.

Nevertheless, the degree of charge neutralization is close

to unity, and the remaining self-focusing force may affect the

ballistic propagation of the beam pulse over long distances.

Therefore, the self-focusing force has to be considered in the

design of neutralized drift compression systems. Analytical

formulas have been derived for the self-focusing force taking

the effects of an applied solenoidal magnetic field into ac-

count. The self-focusing force is inversely proportional to the

plasma density and can be greatly reduced by increasing the

plasma density. The requirement for high plasma density has

been demonstrated in many numerical studies.
20–22,33,59,63

For

ballistic propagation and focusing of intense ion beams, the

degree of neutralization has to be high enough so that the

remaining weak radial self-focusing force does not alter the

ballistic trajectories of the beam ions. The analytical for-

mulism that has been developed allows us to estimate the

required plasma density for ballistic focusing of the beam

ions.

The radial self-focusing force is strongly affected by

electron inertia effects; in the absence of an applied solenoi-

dal magnetic field, the radial self-focusing force is controlled

by the electron flow in the return current,

Fr = m�Vb − Vez�
�Vez

�r
. �54�

Here, Vez=eAz /mc, which is determined from the equation

for current neutralization, Eq. �52�. For the case of complete

current neutralization, ZbnbVb=neVe and np�Zbnb, the radial

self-focusing force is given by

Fr =
mVb

2
Zb

2

np

�nb

�r
. �55�

Note again that adding finite electron temperature effects

yields a small correction due to the electron pressure for fast

ion beam pulses, i.e.,

Fr =
Zb

2�mVb
2 − Te�

np

�nb

�r
,

according to Eq. �5�.
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The background plasma can provide the necessary very

high degree of neutralization for drift compression ��99%�,
provided the plasma density exceeds the beam density every-

where along the beam path, i.e., provided np�Zbnb. In the

laboratory frame, the longitudinal electric field accelerates

the electrons to produce the return current in the head region

of the beam pulse, and decelerates electrons in the tail of the

beam in order to remove the return current behind the beam

pulse. The nature of this electric field is inductive, i.e., it is

generated by the nonstationary self-magnetic field of the

beam pulse. The radial electric field is given by

eEr = − mVez

�Vez

�r
. �56�

Note that the radial electric field in the laboratory frame is

positive �defocusing�. The radial electric field can be de-

scribed by an effective potential, which is determined from

the kinetic energy of the electron flow in the return current.

Thus the radial electric field is given by nonlinear terms, and

can be neglected in the linear approximation.

The self-focusing force in the laboratory frame can be

expressed as

Fr = eZb�Er −
VbB�

c
� , �57�

and is dominated by the self-magnetic component of the

force, i.e., the degree of charge neutralization is much higher

than degree of current neutralization for long nonrelativistic

beam pulses.

In the beam frame the beam propagation is typically a

steady-state phenomenon. Therefore, the magnetostatic and

electrostatic approximations can be used. The electric field in

the beam frame is given by the potential

e
z
b = − m�VbVez − Vez

2
/2� , �58�

and the radial self-electric field is given by

eEr
b = m�Vb − Vez�

�Vez

�r
. �59�

Note that the radial self-electric field in the laboratory frame

is positive �defocusing�, whereas the self-electric field in the

beam frame is negative �focusing�.
In the presence of an applied solenoidal magnetic field,

the system of equations describing the self-electric and self-

magnetic fields becomes much more complicated. The theory

predicts that there is a sizable enhancement of the self-

electric and self-magnetic fields when �ce→2�pe�b. There-

fore, application of a solenoidal magnetic field can be used

for active control of intense ion beam transport through a

background plasma.

Electromagnetic waves are generated oblique to the di-

rection of beam propagation whenever

�ce � 2�b�pe. �60�

In the limit of a nonrelativistic beam with �b�1, and strong

magnetic field with �ce�2�b�pe, long wavelength electro-

magnetic perturbations are excited with wave number

kem��b�pe
2

/�cec, and short wavelength electrostatic pertur-

bations with kqs��ce / ��bc��ce
2

/�pe
2 +1�1/2� are also excited.

The electromagnetic waves have long wavelength compared

with the skin depth,

�em =
cBz

2enpVb

, �61�

whereas the short-wavelength electrostatic perturbations

have short wavelength compared with the effective skin

depth,

�qs =
2�mVbc

eBz

��ce
2

/�pe
2 + 1�1/2. �62�

The group velocity, ��wh /�kz of the long-wavelength electro-

magnetic perturbations is larger than the beam velocity,

whereas the group velocity of the short-wavelength electro-

static perturbations is smaller than the beam velocity. There-

fore, the long-wavelength electromagnetic perturbations

propagate ahead of the beam, whereas the short-wavelength

electrostatic perturbations lag behind the beam pulse. Both

wave excitations have transverse group velocity ��wh /�kx.

Therefore, wave perturbations also propagate sideways from

the beam pulse. The long-wavelength electromagnetic pertur-

bations excited by the tail of the beam pulse can propagate

along the beam and influence the dynamics of the beam

head. The system reaches a quasisteady state when the wave

packet of the initial transient excitation propagates suffi-

ciently far outside the beam.
63

It was found, for a sufficiently

long ion beam pulse, that the time scale for achieving a qua-

sisteady state can be of order the beam pulse duration, and is

therefore much longer than the inverse plasma frequency.
63

The analysis in Ref. 63 determined that waves do not

affect the self-focusing force in the limit of strong solenoidal

magnetic field, and for beams satisfying

�ce � 2�b�pe, and rb � kqs
−1 = �1 + �ce

2
/�pe

2 �1/2
�bc

�ce

.

�63�

In this limit the self-magnetic field is small and does not

influence the self-focusing force. Hence, the radial electric

field in the beam frame is the same as the electric field in the

laboratory frame and is electrostatic. The self-focusing force

acting on beam ions in this case is given by

Fr =
mVb

2
Zb

2

np

�nb

�r
, �64�

provided np�Zbnb.

In absence of a solenoidal magnetic field, the degrees of

charge and current neutralization can be calculated by mak-

ing use of Eqs. �52�, �59�, and �64�, and the values depend on

the radial profile of the beam density. An analytical estimate

has been developed in Ref. 48. In the limits, nb /np�1 and

rb�pe /c�1, it reduces to

�f� = 1 − �b
2 nb

np

c

rb�pe

. �65�

It can readily be shown
48

that the maximum deviation from

quasineutrality occurs when rb�c /�pe, and the degree of
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nonquasineutrality is bounded by �Zb
2Zbnb+np−ne� / �Zbnb�

	0.25�b
2. Therefore, for nonrelativistic, long ion beam

pulses, there is almost complete charge neutralization. For

typical heavy ion fusion parameters, �b	0.2, and the degree

of charge neutralization is more than 99%.

The general expression for the effective self-electric per-

veance in the presence of background plasma, Qeff, for arbi-

trary ratios of nb /np and rb�pe /c, is also given in Ref. 48. In

the limits, nb /np�1 and rb�pe /c�1, it reduces to

Qeff = −
Zbme

M

nb

np

rb�pe

2c
. �66�

If a solenoidal magnetic field is applied with strength such

that �ce�2�b�pe, and rb� �1+�ce
2

/�pe
2 �1/2�bc /�ce, the ra-

dial self-electric field is negative and the ion beam space

charge is overcompensated by the electrons. The average de-

gree of charge neutralization �f� in the limit Zbnb /np�1 is

given approximately by

�f� = 1 + 2�b
2 c2

rbrg�pe
2

. �67�

Here, rg=nb / ���nb /�r�� is the effective radial scale of the ion

beam density profile at the beam edge. Note that the second

term on the right-hand side of Eq. �67� is positive because in

this regime the electrons overcompensate the positive ion

charge and the radial self-electric field at the beam edge is

negative. The maximum deviation from quasineutrality oc-

curs when rb�rg��bc /�pe, and the beam can become non-

neutralized, as observed in numerical simulations.
24,25

There-

fore, even for nonrelativistic, long ion pulses, complete

charge neutralization is not guaranteed in the presence of a

solenoidal magnetic field, if rb�rg��bc /�pe. However,

for typical heavy ion fusion parameters, rb�c /�pe and

�b	0.2, and the degree of charge neutralization can exceed

more than 99% by increasing the plasma density to values

satisfying rb�c /�pe according to Eq. �67�.
Because the self-magnetic field contribution to the self-

focusing force can be neglected in the limit �ce�2�b�pe, the

total effective perveance including both self-electric and

self-magnetic effects is given approximately by the self-

electric perveance,

Qeff 
 −
m

M

rb

rg

Zb
2
nb

np

. �68�

In conclusion, a background plasma can provide the neces-

sary very high degree of neutralization for drift compression

of intense ion beam pulses ��99%�, provided the plasma

density exceeds the beam density everywhere along the

beam path, np�Zbnb, in absence of an applied solenoidal

magnetic field, and rb�c /�pe, if a solenoidal magnetic field

is applied.
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