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Abstract. Recent results in the theory of turbulent momentum transport and intrinsic rotation are summarized.  

Special attention is devoted to the physics of the residual stress. The critical external torque required to balance 

intrinsic rotation is calculated. A simple model of profile evolution and velocity scaling for intrinsic rotation is 

summarized.  

 

1. Introduction 

 

The needs for understanding of, and predictive capacity for, both the off-diagonal flux of 

toroidal angular momentum and the origins of spontaneous or intrinsic rotation are now well 

established and accepted. In general, the mean field momentum flux driven by electrostatic 

turbulence is given by 

 

   
r,!" = n

r˜ v !˜ v +
r˜ v ˜ n !v . (1) 

 

Here the first term is the toroidal Reynolds stress and the second is the familiar convective 

flux, hereafter neglected. The Reynolds stress may be further decomposed as 

 

   r˜ v !˜ v = " !#
$ !v

$r
+ V !v + r,!

R% , (2) 

 

where !
"  is the turbulent viscosity, V is the convective velocity (i.e. the momentum pinch) 

and r,!
R

"  is the residual stress. Note that !
"  and V have well-known analogues in the 

theory of the particle flux, while r,!
R

"  does not. In this paper, we discuss the status of our 

current understanding of !
" , V and r,!

R
" , and the physics of turbulent transport of toroidal 

momentum and intrinsic rotation. In Section 2, we survey the constituents of the turbulent 

momentum flux and their underlying physics. In Section 3, we discuss the physics of the 

residual stress, which is the most unusual and counter-intuitive element of the turbulent 

momentum flux, but also the piece most important to intrinsic rotation. In Section 4, we 

outline a simple model which captures many of the basic scaling trends for intrinsic rotation. 

Section 5 consists of a brief discussion of future work. 
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2. Survey of Turbulent Momentum Flux Physics 

 

The turbulent viscosity !
"  is now relatively well understood. As was realized 20 years 

ago[1], !
"  is closely related to the ion thermal diffusivity 

i
!  for drift wave turbulence.  

Recent simulation[2] and theory[3] works have discovered that near ITG marginality, when 

transport is dominated by the resonant scattering of slightly suprathermal ions (with 

s =! ||k iT
V ~ 2 ), then 

 

   !
"

i
" # 2

s 1+ 2
s 2 + 4

s 2( ), (3) 

 

where the average is to be taken over the mean distribution function. This reveals that in stiff 

profile regimes, the intrinsic Prandtl number Pr ! 1, but rather Pr ~ 0.2! 0.5 , due to the 

inherent difference between wave-particle auto-correlation times for !˜ v  and ˜ T . Here, it is 

important to note that the intrinsic Prandtl number is defined by the ratio of the purely 

diffusive fluxes, and differs from the conventionally quoted 'raw' Prandtl number 

Pr ~ r,!" # !v #r Q # iT #r , defined without regard to the presence of non-diffusive 

fluxes. 

 

The past two years have witnessed intensive interest in and study of the convective 

momentum velocity V. Recent detailed theoretical work on the momentum pinch is reported 

in Refs [4, 5, 6]. In general, the toroidal pinch may be decomposed into a TEP and 

thermoelectric (TH) piece 

 

 V = TEPV + THV . (4) 

 

The turbulent equipartition convection velocity is purely inward (corresponding to a pinch) 

and is robust and mode independent.  

 

Like the TEP pinch for density, the origin of the TEP pinch is in the compressibility of the 

E ! B  velocity in toroidal geometry !"
E#BV $ 0( ) , so that magnetically weighted angular 

momentum ||V R
2

B  (rather than simplyn ||V R ) is locally conserved.  Thus, it is no surprise 

that the TEP momentum and particle pinches are strongly correlated. The TEP pinch has been 

derived from detailed gyrokinetic analysis[4,5] and general considerations of angular 

momentum homogenization [6]. For a stationary profile in the absence of a residual stress 

TEPV !
" # $ 2

B Rd dr R
2

B( ) # $ 3 R . The thermoelectric velocity THV  is related to the ion 

temperature fluctuation 
i

˜ T  and is given by 

 

   THV = 4
c

B
!k

k

" re c# di$ %k

*˜ & 
ki

˜ T 0T( ) . (5) 

 

In distinct contrast to the TEP pinch, the thermoelectric convection velocity is very sensitive 

to mode characteristics which determine the phase angle between ˜ !  and 
i

˜ T . In general, 

THV < 0  (i.e inward) for electron direction *eV( )  modes such as CTEM, while typically 

THV > 0  (i.e. outward) for ion direction *iV( ) modes such as ITG. 
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The third element in the momentum flux is the residual stress, r,!
R

" [7]. The residual stress is 

defined as that part of the Reynolds stress which is not directly proportional to either 

! "v !r  or !v , i.e. the portion other than the diffusive and convective flux. The residual 

stress has no counterpart in the theory of the turbulent particle flux, since momentum can 

obviously be exchanged between waves and particles, while density cannot. The residual 

stress defines an effective local internal toroidal momentum source 

 

  
! "P

!t
= " ,interalS = #

!

!r r,"

R
n $( ), (6) 

 

and so is crucial to the formation of intrinsic rotation profiles. However, the residual stress 

only affects net rotation by its value at the separatrix or plasma boundary. The physics of the 

residual stress is discussed at length in the next section. 

 

3. Physics of the Turbulent Residual (Radiation) Stress 

 

The residual stress r,!
R

"  is that part of the Reynolds stress r˜ v !˜ v  which remains after 

turbulent diffusion and convection are subtracted. Its existence is a necessary consequence of 

wave-particle momentum exchange, which is enforced by outgoing wave boundary conditions 

even in a purely fluid theory. Physically, the residual stress 

r,!
R" = " # iT ,# eT ,# iP ,# eP ,#n...( ) converts part of the driving heat flux i

Q  or e
Q  to a 

net toroidal flow. Observe that the residual stress is the only way to spin-up the plasma from 

rest, i.e. for !v = 0,  !v
"

= 0, 

 

 t! !p
0

a

" dr = ! n r,"
R

#
0

a

| ! " n r,#
R

$
a

| , (7) 

 

so the radially integrated momentum drive is set by the gradients (particularly pressure) at the 

plasma edge, acting through the residual stress. Note that a pinch alone cannot spin-up the 

plasma from rest, but instead requires some toroidal flow at the separatrix to initiate rotation, 

i.e. it needs !V a( ) " 0 . Of course, the critical pinch is that acting at r = a . For r < a , V 

simply re-distributes the plasma momentum in radius, but cannot change the net plasma 

momentum. The separatrix boundary condition is also critical. The total stress corresponds to 

a net momentum flux, which along with the boundary condition on !V , determines the 

profile. In particular, for the relevant prototypical case where !V a( ) = 0 (corresponding to a 

no-slip boundary, enforced by strong neutral drag), we have for zero net momentum flux 

(corresponding to an intrinsic rotation solution). 

 

 !V r( ) = " dr
r

a

!
"

r,!
R

" r( )
!

# r( ) , (8) 

 

so that R
! < 0  corresponds to co-rotation while R

! > 0 corresponds to counter-rotation. 

Note that either sign of R
!  can generate a flow. Of course, r,!

R" r( ) can change sign in 

radius, and so produce internal flow reversals. The sign dependence of R
!  should be 

contrasted to that for convection, where V > 0 is unfavorable while V < 0 is favorable. 

Thus, we see that r,!
R"  is conceptually distinct from a pinch or other convective effect. 
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The micro-physics of the residual stress is governed by resonant and non-resonant turbulent 

transport acting in the presence of broken parallel reflection symmetry (i.e. ||k  symmetry 

breaking). The calculation of r,!
R"  in the resonant limit is discussed in the literature[8]. Here 

we focus on the non-resonant or "wave" contribution. Intuitively, this is the most appealing 

way to envision the origin of intrinsic rotation, namely as a consequence of the modulation of 

an anisotropic quasi-particle pressure. Taking the turbulent !
"  momentum diffusivity as 

already determined, the mean flow !V  then satisfies  

 

 t! "V # r! "$ !r "V = #!r r,"
wave% , (9a) 

 

where 

 

 r,!
wave" = dk# grv ||k N . (9b) 

 

Here, r,!
wave

"  is the net radial flux of parallel wave momentum ||k N . The quasi-particle 

population density is just N x,k,t( ) , which obeys a wave-kinetic equation[9]. Defining 

||S = ! "V
# , the modulation in toroidal velocity shear, we have 

 

 t! ||S " r! #$ !r ||S = " r
2! dk% grv ||k &N . (10) 

 

The RHS effectively accounts for the quasi-particle induced residual stress. Formulation of 

the problem as one of modulational instability is useful for clarifying the dynamics of flow 

shear amplification. Note that the edge boundary condition discussed above guarantees that 

flow shear amplification leads to net flow amplification. Linearizing the wave kinetic 

equation then gives 

 

 !N = c,mod" #k EV $
% N

% rk
& grv

% N

%r

' 

( 
) 

* 

+ 
, 

. (11) 

 

Here EV !  is the electric field shear modulation and c,mod!  is the !N  response correlation 

time. Thus 

 

 r,!
wave" = dk# ||k grv c$ %k

& N

& rk
EV
' ( grv

& N

&r
) 

* 

+ 

, 

- 

. 

. (12a) 

 

If a net external torque ext
T  modulation was retained, the condition for a stationary state in 

the presence of the wave stress given by Eqn. (12a) can easily be shown to be  

 

 ext
T = dk! ||k grv c" #k

$ N

$ rk
EV
%& 

' 

( 

 

 

 ! grv
" N

"r

# 
$ 
% a
| ! nm "

#
$ "v

$r a

| . (12b) 
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Several observations are in order here. First note that the net residual stress is driven by the 

quasi-particle population gradients in both 
rk  and r . The 

rk  gradient ! N !
rk  induces 

a stress via shearing when !k " grv " rk # 0 , so that the net 
rk -space flow is compressible. 

Note that for drift waves, !k " grv " rk # $2 !
2
k s

2%
*v

2

1+ &
2
k s

2%( ) , so the integrated contribution 

to the stress is even in 
!k  and 

rk , and exhibits some mode dependence via 
*ev . We expect 

this trend to be generic. The r -gradient ! N !
rk  induces a radiative diffusive inward flux 

of wave momentum, which may be either co or counter direction, depending on the sign of 

||k . The radiative diffusion flux ~ ! rD "
w

||P "r , where 
w

||P  is the wave parallel 

momentum density and rD ~ gr
2
v c!  is the quanta diffusivity. Note rD ~ GBD . 

 

Second, before proceeding to calculate ! "v !r
a

| , the edge rotation gradient, we note that  

 

 EV
! =

" #v

"r
+

0EV
! , (13) 

 

i.e. the net electric field shear is the sum of the contributions due to toroidal rotation and the 

other pieces, denoted by 
0

EV
! . The latter includes both diamagnetic (i.e. ! iP -driven) 

velocity shear and poloidal velocity shear. Of course this means that absent 
0

EV
! , 

! "v !r  can feed back on itself, as in a modulational instability. Indeed, one can easily 

extend the analysis presented here to demonstrate that toroidal zonal flows are modulationally 

unstable. Such toroidal zonal flows have been observed in gyrokinetic particle simulation[10]. 

More generally, this result suggests that any intrinsic rotation feeds back on itself via electric 

field shearing, and so renormalizes the effective !
" . To see this, observe that plugging Eqn. 

(13) into Eqn. (12b) and re-writing gives 

 

 
! "v

!r a
| = extT # dk ||k grv c$ %k

! N

! rk
&

' 

( 
) 

* 

+ 
, 

- 

. 

/ 

0 

1 

2 
0EV
3   

 

 

a

+ radD
!

w||
P

!r

" 

# 
$ 

% $ 

& 

' 

( 

( 
nm ) ,eff*

a
| , (14a) 

 

where 

 

 nm !eff" = nm !"
a
| #

a

dk ||k grv c$ %k
& N

& rk
'

( 

) 
* 

+ 

, 
-  (14b) 
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is the 'renormalized' !
"  which includes self-induced rotation feedback via EV

! . Note that 

the sign of the !
"  renormalization is determined by the group velocity grv , the spectral 

population gradient ! N !
rk  (which is usually negative) and the spectrally weighted 

||k . 

Observe that the correction to !
"  can be positive and so it is at least conceivable that the 

observed !
" -deduced, say, from momentum perturbation experiments-may exceed the 

observed 
i

! . !
" >

i
"  has been observed in JT60U perturbation experiments[11]. 

 

Third, observe that Eqn. (14a) defines an effective critical torque which zeroes the edge 

velocity gradient, i.e. crit
ext

T  for ! "v !r
a

|# 0 . This may be thought of as defining a critical 

torque which exactly cancels the residual stress-driven intrinsic rotation[12]. Here, the critical 

torque is  

 

 crit
ext

T =

!

dk ||k grv c" #k
$ N

$ rk

% 

& 
' 

( 

) 
* 

0EV
+ + radD

$
w||

P

$r,
- 

. 
/ 

0 / 

1 

2 
/ 

3 / 

. (15) 

 

Note that the critical torque is determined by 
0

EV
!  (i.e. the electric field shear due to 

diamagnetic and poloidal rotation), the mode propagation velocity (in grv ), the turbulence 

spectrum (in ! N !
rk ), the wave momentum density profile 

w
||P  and radD ,  c! , etc. Of 

course, the critical torque defines the off-set in the linear plot of ! "v !r
a

|  vs. ext

T . 

Interestingly, it is renormalized !
"  -  i.e. ! ,eff

"  - which sets the slope of this linear 

relation. Thus, the feed-back loop physics of intrinsic rotation enters more than just the off-

set! Finally, we should recall that if the edge rotation velocity is finite,  

 

 
! "v

!r a
| =

#1
nm " ,eff$

ext
T # r,"

R%
a
| #V "v

a
|

& 
' 
( 

) 
* 
+ 

. (16) 

 

In this case, the edge pinch velocity also enters the determination of ! "v !r
a

| . 

Interestingly, only the edge momentum pinch is relevant to intrinsic rotation. We speculate 

here that SOL physics in general, and SOL flow effects in particular[13], couple to core 

intrinsic rotation via the edge momentum pinch.  The TEP momentum pinch, discussed in 

reference [4], is surely operative at the edge. Analysis of other possible contributions requires 

a study of the regime with collisionless fluid ion and dissipative/collisional electron 

dynamics. In particular, it would be interesting to see if a momentum analogue of the familiar 

in mixing mode density pinch[14] exists. In closing this section, we remark that coupling of 

intrinsic rotation to !v a( )  should also manifest itself as a sensitivity of the critical torque to 

SOL asymmetry - i.e. crit
ext

T  should differ between single null and double null operation. 

 

Virtually all of the results in this discussion are sensitive to spectrally averaged 
||k , i.e. 

||k . 

Following Eqns. (36a,b) of Ref. [8], we can balance nonlinear decay with shearing to obtain 
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 ||k = ! dk"
# ||k

# rk
$k EV

% N
L ,kN

& , (17a) 

 

where  

 

 ||k = dk! ||k N . (17b) 

 

Here 
L,kN

!  is the nonlinear decorrelation rate (i.e. inverse mode lifetime) for wave-vector 

k . ! ||k ! rk " 0  requires magnetic shear. This description is equivalent to that developed in 

real space, in which the shift of the spectrum off the resonant surface induced by the electric 

field shear sets the mean
||k [7,15,16]. 

 

5. Simple Model for Intrinsic Rotation Scalings 

 

It's interesting to note that Equation (14a) effectively states that ! "v !r
a

|  - and thus the net 

intrinsic rotation - will increase with 
0

EV
! . Since 

0EV
! = "r " P "r ne #B( )$ "r #v 0B( ) 

increases with edge pressure gradient, one direct prediction of this theory is a correlation 

between edge pressure gradient and intrinsic rotation velocity. This is qualitatively suggestive 

of the ! "v ~ ! pW pI  scaling proposed by J. Rice[17], but now expressed in terms of more 

physical, local gradient quantities. One can go further and develop a transport model which 

evolves the  

 

i.) toroidal momentum profile, in terms of !
" ,  V and r,!

R
"  acting along with the external 

torques, 

ii.) density profile, in terms of D,  nV  and fueling, 

iii.) ion temperature profile, in terms of ! and heating, 

iv.) fluctuation intensity, evolved by simple E ! B  shear-induced quenching[18,19]. 

 

This model represents a generalized Hinton model[20]. The model may be solved 

numerically, and also analytically, assuming a piecewise linear profile structure. Results 

indicate that the central rotation velocity is determined primarily by the pedestal velocity, and 

that the latter scales as  

 

 ! "v iTv ~ ! cr a( ) ped! a( ) ~ *

#$ ped! a( ) . (18c) 

 

Here ped!  is the pedestal width and ! cr  is the turbulence correlation length. Thus, ! ~1 

corresponds to Gyro-Bohm edge turbulence while ! ~ 0  corresponds to Bohm. The pedestal 

width is proportional to the pedestal pressure, i.e. ped! ~ pedP , so! "v ~ pedP ~ ! pW , the 

increment in the stored energy, as in the Rice scaling. More interestingly, we note that if: 

 

i.) the edge turbulence exhibits Bohm scaling, so! cr a ~
0

*
"( ) ~1, 

ii.) we assume the Snyder, et al.[21] empirical pedestal width scaling ped! a ~ p

1/2" , 
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we then recover ! "v iTv ~ p

1/2#  which is effectively equivalent to the Rice 

scaling ! "v ~ ! pW pI . Interestingly, the unfavorable current scaling of intrinsic rotation 

appears as a consequence of the unfavorable current scaling of the pedestal width. This seems 

plausible, since otherwise transport scalings with current are nearly universally favorable. 

Note that in this scenario, intrinsic rotation is strongly tied to pedestal physics, which is also 

suggested by the experimental results. The absence of 
*

!  scaling of intrinsic rotation 

velocity appears as a consequence of Bohm scaling of the pedestal turbulence. The 

persistence of this favorable trend into the regime of ITER parameters is far from certain. 

 

5.  Future Work 

 

Ongoing and future work will focus on studies of electron heat transport driven regimes[22], 

electromagnetic coupling and saturation, alternative symmetry breaking mechanisms 

(especially GAM shearing), poloidal rotation effects, SOL-core coupling and detailed 

modelling work. Understanding the edge pinch of momentum and its interaction with the edge 

rotation velocity driven by SOL flows is a particularly important near-term goal. Finally we 

also plan to apply the theory to the interesting TCV internal momentum transport 

bifurcations[23]. 
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