### PHYSICS OF RADIO-FREQUENCY PLASMAS

Low-temperature radio-frequency (RF) plasmas are essential in various sectors of advanced technology, from micro-engineering to spacecraft propulsion systems and efficient sources of light. The subject lies at the complex interfaces between physics, chemistry and engineering. Focusing mostly on physics, this book will interest graduate students and researchers in applied physics and electrical engineering.

The book incorporates a cutting-edge perspective on RF plasmas. It also covers basic plasma physics, including transport in bounded plasmas and electrical diagnostics. Its pedagogic style engages readers, helping them to develop physical arguments and mathematical analyses. Worked examples apply the theories covered to realistic scenarios, and over 100 in-text questions let readers put their newly acquired knowledge to use and gain confidence in applying physics to real laboratory situations.

PASCAL CHABERT is Research Director within CNRS. He currently leads the Low-Temperature Plasmas group of the 'Laboratoire de Physique des Plasmas' at Ecole Polytechnique. His expertise is in plasma physics and plasma processing.

NICHOLAS BRAITHWAITE is Professor of Engineering Physics at The Open University, where his research group works on the physics of 'technological' plasmas. He has been on the editorial board of the journal of *Plasma Sources Science & Technology* since 1998.

# PHYSICS OF RADIO-FREQUENCY PLASMAS

#### PASCAL CHABERT

#### **CNRS**

#### NICHOLAS BRAITHWAITE

The Open University



> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521763004

© P. Chabert and N. St. J. Braithwaite 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Chabert, Pascal, 1969– Physics of Radio-Frequency Plasmas / Pascal Chabert, Nicholas Braithwaite. p. cm. Includes bibliographical references and index.

ISBN 978-0-521-76300-4 (hardback)

1. Low temperature plasmas. 2. Radio frequency. I. Braithwaite, Nicholas (Nicholas St. J.) II. Title. TA2020.C43 2011

621.044 – dc22 2010042728

ISBN 978-0-521-76300-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

## Contents

|   | Acknowledgements                              |                                                          | <i>page</i> vii |
|---|-----------------------------------------------|----------------------------------------------------------|-----------------|
| 1 | Introduction                                  |                                                          |                 |
|   | 1.1                                           | Plasmas                                                  | 1               |
|   | 1.2                                           | Plasma processing for microelectronics                   | 3               |
|   | 1.3                                           | Plasma propulsion                                        | 9               |
|   | 1.4                                           | Radio-frequency plasmas: E, H and W-modes                | 14              |
|   | 1.5                                           | What lies ahead                                          | 17              |
| 2 | Plasma dynamics and equilibrium               |                                                          | 18              |
|   | 2.1                                           | The microscopic perspective                              | 19              |
|   | 2.2                                           | The macroscopic perspective                              | 37              |
|   | 2.3                                           | Global particle and energy balance                       | 41              |
|   | 2.4                                           | The electrodynamic perspective                           | 45              |
|   | 2.5                                           | Review of Chapter 2                                      | 55              |
| 3 | Bou                                           | nded plasma                                              | 59              |
|   | 3.1                                           | The space charge sheath region                           | 61              |
|   | 3.2                                           | The plasma/sheath transition                             | 72              |
|   | 3.3                                           | The plasma region: transport models                      | 78              |
|   | 3.4                                           | Review of Chapter 3                                      | 90              |
| 4 | Radio-frequency sheaths                       |                                                          | 96              |
|   | 4.1                                           | Response times                                           | 97              |
|   | 4.2                                           | Ion dynamics                                             | 102             |
|   | 4.3                                           | Electron dynamics                                        | 110             |
|   | 4.4                                           | Analytical models of (high-frequency) RF sheaths         | 116             |
|   | 4.5                                           | Summary of important results                             | 130             |
| 5 | Single-frequency capacitively coupled plasmas |                                                          |                 |
|   | 5.1                                           | A constant ion density, current-driven symmetrical model | 133             |
|   | 5.2                                           | A non-uniform ion density, current-driven model          | 146             |

| vi |                                              | Contents                                               |     |
|----|----------------------------------------------|--------------------------------------------------------|-----|
|    | 5.3                                          | Global model                                           | 154 |
|    | 5.4                                          | Other regimes and configurations                       | 165 |
|    | 5.5                                          | Summary of important results                           | 174 |
| 6  | Multi-frequency capacitively coupled plasmas |                                                        | 176 |
|    | 6.1                                          | Dual-frequency CCP in the electrostatic approximation  | 177 |
|    | 6.2                                          | Electromagnetic regime at high frequency               | 187 |
|    | 6.3                                          | Summary of important results                           | 218 |
| 7  | Inductively coupled plasmas                  |                                                        | 219 |
|    | 7.1                                          | Electromagnetic model                                  | 222 |
|    | 7.2                                          | Impedance of the plasma alone                          | 233 |
|    | 7.3                                          | The transformer model                                  | 236 |
|    | 7.4                                          | Power transfer efficiency in pure inductive discharges | 241 |
|    | 7.5                                          | Capacitive coupling                                    | 243 |
|    | 7.6                                          | Global model                                           | 246 |
|    | 7.7                                          | Summary of important results                           | 252 |
|    | 7.8                                          | Further considerations                                 | 253 |
| 8  | Helicon plasmas                              |                                                        | 260 |
|    | 8.1                                          | Parallel propagation in an infinite plasma             | 264 |
|    | 8.2                                          | Helicon wave propagation in a cylinder                 | 268 |
|    | 8.3                                          | Conditions for existence of the helicon modes          | 276 |
|    | 8.4                                          | Wave power absorption: heating                         | 277 |
|    | 8.5                                          | E–H–W transitions                                      | 283 |
|    | 8.6                                          | Summary of important results                           | 286 |
| 9  | Real plasmas                                 |                                                        |     |
|    | 9.1                                          | High-density plasmas                                   | 288 |
|    | 9.2                                          | Magnetized plasmas                                     | 293 |
|    | 9.3                                          | Electronegative plasmas                                | 298 |
|    | 9.4                                          | Expanding plasmas                                      | 313 |
| 10 | Elect                                        | rical measurements                                     | 318 |
|    | 10.1                                         | Electrostatic probes                                   | 319 |
|    | 10.2                                         | Electrostatic probes for RF plasmas                    | 340 |
|    | 10.3                                         | A retarding field analyser (RFA)                       | 348 |
|    | 10.4                                         | Probing with resonances and waves                      | 354 |
|    | 10.5                                         | Summary of important results                           | 365 |
|    | Appendix: Solutions to exercises             |                                                        | 368 |
|    | References                                   |                                                        | 375 |
|    | Index                                        |                                                        | 383 |

## Acknowledgements

The authors are grateful to many colleagues who have been interested in the progress of this book from concept to reality. In particular, we acknowledge detailed advice and guidance from Jean Paul Booth, Valery Godyak, Mike Lieberman and Jean Luc Raimbault. Additional feedback and encouragement has come from Rod Boswell, Mark Bowden, Christine Charles, Bill Graham and Alex Paterson.

The perspectives we have of plasma physics also owe much to our various postdocs and students, many of whom have played a key part in defining the content and style of our text. At Ecole Polytechnique, PC acknowledges his past and present PhD students Jaime Arancibia, Emilie Despiau-Pujo, Claudia Lazzaroni, Gary Leray, Pierre Levif, Laurent Liard, Amélie Perret and Nicolas Plihon and former post-docs Ane Aanesland, Cormac Corr and Albert Meige. At the Open University, NB acknowledges his past and present (low-pressure plasma) PhD students Gareth Ingram, Sasha Goruppa, Suidong Yang, Pierre Barroy, Paulo Lima, Eva Vasekova and Vladimir Samara and former post-docs Charlie Mahony, Alec Goodyear, Jafar Alkuzee and Tashaki Matsuura.

We wish also to record that we have drawn much inspiration over many years of professional acquaintance with John Allen, Raoul Franklin, Al Lichtenberg, Leanne Pitchford and Miles Turner. All the above are joined by other international colleagues too numerous to mention, with whom we have exchanged ideas at conferences and workshops over the last 10–15 years; many of those whose work we cite have been kind enough to provide original data.

We also gratefully acknowledge the support of various organizations. Many hours of discussion were facilitated by the hospitality of the members' room at the IoP in London and our respective laboratories, The Laboratorie de Physique des Plasmas at the Ecole Polytechnique in Paris and the Atomic, Molecular and Plasma Physics group at The Open University. Equally important has been the financial viii

#### Acknowledgements

support of our national research councils, CNRS and EPSRC, and various other funders without whom there would have been less to write about.

In spite of all the wisdom that surrounds us, there will inevitably be misunderstandings and errors in our work. We take full responsibility for these and will try harder next time.