PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

Jasprit Singh University of Michigan

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi Paris San Juan Singapore Sydney Tokyo Toronto

CONTENTS

	PRE	FACE	xvii		
	INT	RODUCTION	xxi		
1	THE	FREE ELECTRON PICTURE	1		
	1.1	Atoms in Solids	1		
	1.2	The Drude Model	2		
	1.3	Quantum Mechanics and Electrons	12		
	1.4	The Density of States	16		
	1.5	Filling of Electronic States	18		
	1.6	For the Technologist in You	22		
	1.7	Problems	25		
	1.8	References	26		
2	PER	ERIODICITY: CRYSTAL STRUCTURES 28			
	2.1	Periodicity of a Crystal	28		
	2.2	Basic Lattice Types	32		
	2.3	The Reciprocal Lattice	40		
	2.4	Artificial Structures: Superlattices	47		
	2.5	Surfaces: Ideal Versus Real	50		
	2.6	Interfaces	53		
	2.7	For the Technologist in You	55		
	2.8	Problems	58		
	2.9	References	60		
3	WAV	AVE DIFFRACTION IN PERIODIC STRUCTURES 61			
	3.1	Bragg's Law	62		
	3.2	Laue Conditions	64		
	3.3	Diffraction from Random Scatterers	66		
	3.4	Diffraction Methods	74		
	3.5	Temperature Dependent Effects	78		
	3.6	For the Technologist in You	84		
	3.7	Problems	87		
	3.8	References	89		

4	ELE	CTRONS IN PERIODIC STRUCTURES	91	
	4.1	Periodicity and Bloch's Theorem	92	
	4.2	Significance of k: Crystal Momentum	97	
	4.3	Electron States in a Weak Periodic Potential	100	
	4.4	A Simple Description of Band Filling	115	
	4.5	Holes in Semiconductors	117	
	4.6	For the Technologist in You	120	
	4.7	Problems	124	
	4.8	References	125	
5	SEM	IICONDUCTOR BANDSTRUCTURE	126	
	5.1	The Tight Binding Method	127	
	5.2	The Spin-Orbit Coupling	140	
	5.3	Symmetry of Conduction Bandedge States	146	
	5.4	Symmetry of Valence Bandedge States	147	
	5.5	The Orthogonalized Plane Wave Method	149	
	5.6	The Pseudopotential Method	150	
	5.7	The $k \cdot p$ Method	151	
	5.8	Selected Bandstructures	159	
	5.9	Density of States in Semiconductors	169	
	5.10	For the Technologist in You	171	
	5.11	Problems	174	
	5.12	References	176	
6	BANDSTRUCTURE MODIFICATIONS: ALLOYS			
	ANI	HETEROSTRUCTURES	178	
	6.1	Bandstructure of Semiconductor Alloys	179	
	6.2	Bandstructure Modifications by Heterostructures	190	
	6.3	Bandstructure in Quantum Wells	194	
	6.4	Bandstructure in Superlattices	201	
	6.5	For the Technologist in You	210	
	6.6	Problems	213	
	6.7	References	215	
7		NDSTRUCTURE MODIFICATIONS THROUGH		
	STR	AIN	218	
	7.1	Critical Thickness	218	
	7.2	Elastic Strain	221	
	7.3	The Elastic Constants	223	
	7.4	Strain Tensor in Lattice Mismatched Epitaxy	226	
	7.5	Deformation Potential Theory	228	
	7.6	Bandgap Alteration	246	
	7.7	Built-in Electric Fields in Strained Quantum Wells	246	
	7.8	For the Technologist in You	248	

	7.9	Problems	251
	7.10	References	252
8	DOF	PING OF SEMICONDUCTORS	254
	8.1	Intrinsic Carrier Concentration	254
	8.2	The Effective Mass Equation for Shallow Levels	258
	8.3	Extrinsic Carriers	266
	8.4	Population of Impurity Levels, Carrier Freeze-out	267
	8.5	Heavily Doped Semiconductors	270
	8.6	Modulation Doping	274
	8.7	Hydrogenic Impurities in Quantum Wells	276
	8.8	For the Technologist in You	280
	8.9	Problems	282
	8.10	References	283
9	LAT	TICE VIBRATIONS: PHONONS	285
	9.1	Considerations for Crystal Binding	286
	9.2	Crystal Vibrations for a Monatomic Basis	292
	9.3	Crystal Vibrations for a Diatomic Basis	296
	9.4	Phonons: Quantization of Lattice Vibrations	299
	9.5	Polar Optical Phonons	301
	9.6	Optical Phonon-Photon Interactions	304
	9.7	Phonon Statistics	309
	9.8	Models for Phonon Energy	312
	9.9	Phonon Dispersion Measurement Techniques	315
	9.10	Phonons in Heterostructures	318
	9.11	For the Technologist in You	320
	9.12	Problems	321
	9.13	References	322
10	TRA	NSPORT: GENERAL FORMALISM	324
	10.1	Relaxation Times	326
	10.2	The Boltzmann Transport Equation	327
	10.3	Averaging Procedures	336
	10.4	Mobility Measurement Techniques	338
	10.5	Hall Mobility	342
	10.6	Solution of the Boltzmann Transport Equation	346
	10.7	For the Technologist in You	353
	10.8	Problems	355
	10.9	References	356
11	DEF	ECT AND CARRIER-CARRIER SCATTERING	357
	11.1	Ionized Impurity Scattering	359
	11.2	Alloy Scattering	369
	11.3	Carrier-Carrier Scattering	374

	11.4	Auger Processes and Impact Ionization	381
	11.5	For the Technologist in You	391
	11.6	Problems	393
	11.7		394
12	PHO	NON SCATTERING	397
	12.1	General Formalism	397
	12.2	Limits on Phonon Wavevectors	403
	12.3	Selection Rules for Phonon Scattering	410
	12.4	Acoustic Phonon Scattering	411
	12.5	Deformation Potential Optical Phonon Scattering	414
	12.6	Polar Optical Phonon Scattering	417
	12.7	Electron-Plasmon Scattering	424
	12.8	Piezoelectric Scattering	425
	12.9	Intervalley Scattering	427
	12.10	The Polaron	429
	12.11	For the Technologist in You	430
	12.12	Problems	431
	12.13	References	432
13	THE	VELOCITY-FIELD RELATIONS	433
	13.1	Low Field Transport	434
	13.2	High Field Transport	437
	13.3	Monte Carlo Simulation of Carrier Transport	439
	13.4	Electron Transport Monte Carlo Calculations	459
	13.5	High Field Electron Transport in Si	462
	13.6	Hole Transport Monte Carlo Calculations	464
	13.7	Balance Equation Approach to High Field Transport	471
	13.8	Impact Ionization in Semiconductors	475
	13.9	Zener-Bloch Oscillations	480
	13.10	For the Technologist in You	484
	13.11	Problems	491
	13.12	References	492
14	TRA	NSPORT IN HETEROSTRUCTURES	496
	14.1	Parallel Transport in Quantum Wells and MODFETs	498
	14.2	Mobility in a MODFET Quantum Well	505
	14.3	High Temperature / High Field Transport	511
	14.4	Effect of Strain on Transport	511
	14.5	Transport in Quantum Wires	517
	14.6	Real Space Charge Transfer	518
	14.7	Avalanche Processes in Quantum Well Structures	520
	14.8	Quantum Transport	523
	14 0		524

	14.10	Tunneling in Heterostructures with Spatially Varying				
		Central Cell Symmetry	530			
		Perpendicular Transport in Superlattices	539			
		Quantum Interference Effects	541			
		Density Matrix Formalism	544			
		For the Technoligist in You	549			
	14.15	References	554			
15	INTI	ERACTIONS OF PHOTONS WITH				
	SEM	ICONDUCTORS	557			
	15.1	Maxwell Equations, Vector Potential, and Gauge				
		Transformations	559			
	15.2	Drude-Zener Theory	564			
	15.3	Optical Modes in Ionic Crystals	567			
	15.4	Kramers-Kronig Relation	568			
	15.5	Electrons in an Electromagnetic Field	572			
	15.6	Selection Rules for Optical Processes	576			
	15.7	Interband Transitions	578			
	15.8	Optical Processes in Semiconductor Lasers	586			
	15.9	Indirect Interband Transitions	595			
	15.10	Intraband Transitions	599			
	15.11	For the Technologist in You	604			
	15.12	Problems	612			
	15.13	References	613			
16	орт	OPTICAL PROPERTIES IN SEMICONDUCTORS:				
	EXC	ITONIC TRANSITIONS	615			
	16.1	Excitonic States in Semiconductors	617			
	16.2	Optical Properties with Inclusion of Excitonic Effects	622			
	16.3	Excitonic States in Quantum Wells	627			
	16.4	Excitonic Absorption in Quantum Wells	632			
	16.5	Exciton Broadening Effects	634			
	16.6	Modulation of Excitonic Transitions: Quantum Confined				
		Stark Effect	637			
	16.7	Exciton Quenching	646			
	16.8	[[[[[[[[[[[[[[[[[[[653			
	16.9	Strain Induced Electric Fields for Enhanced Optical				
		Modulation	657			
	16.10	Radiative Recombination from Excitonic States	658			
		For the Technologist in You	660			
		Problems	665			
		References	665			

17	SEMICONDUCTORS IN MAGNETIC FIELDS	668
	17.1 Semiclassical Dynamics of Electrons in a Magnetic Field	670
	17.2 Semiclassical Theory of Magnetotransport	675
	17.3 Quantum Mechanical Approach to Electrons in a Magne	etic
	Field	676
	17.4 The Aharonov-Bohm Effect	683
	17.5 The De Haas-Van Alphen Effect	686
	17.6 The Shubnikov-De Haas Effect	691
	17.7 The Quantum Hall Effect	695
	17.8 Magneto-optics in Landau Levels	701
	17.9 Excitons in Magnetic Field	703
	17.10 Shallow Impurities in Magnetic Fields	707
	17.11 Magnetic Semiconductors	709
	17.12 For the Technologist in You	711
	17.13 References	712
18	DEFECTS AND DISORDER IN SEMICONDUCTOR	RS 714
	18.1 Point Defects in Semiconductors	715
	18.2 Trapping and Recombination	723
	18.3 Dislocations and Lattice Mismatched Epitaxy	728
	18.4 Disordered Semiconductors	738
	18.5 Extended and Localized States	739
	18.6 Mesoscopic Structures	751
	18.7 For the Technologist in You	754
	18.8 References	757
19	AND NOW SOMETHING OF REAL	
	CONSEQUENCE: DEVICES	759
	19.1 Some Recent Trends	759
	19.2 Requirements for Successful Devices	760
	19.3 A Summary of Some Important Devices	768
	19.4 References	782
A	THE WAVE PACKET PICTURE	783
	A.1 Motion of a Wavepacket	784
В	ELECTRON IN A QUANTUM WELL	788
\mathbf{C}	THE HARMONIC OSCILLATOR PROBLEM	791
D	COMBINATION OF ANGULAR MOMENTUM	172-12-22
	STATES	795

\mathbf{E}	STA	TIONARY PERTURBATION THEORY	797
	$\mathbf{E.1}$	Nondegenerate Case	798
	E.2	Degenerate Case	799
\mathbf{F}	EIG	ENVALUE METHOD TO SOLVE COUPLED	
	EQU	UATIONS	801
G	THE	ZEEMAN EFFECT	804
н	THE	VARIATIONAL METHOD	807
I	TIM	E DEPENDENT PERTURBATION THEORY	
	ANI	THE FERMI GOLDEN RULE	810
	1.1	Transition Probability	813
J	GAU	USSIAN AND MKSA UNITS	815
K		MERICAL EVALUATION OF SOME PHYSICAL	
		AMETERS	819
	K.1	Density of States	819
	K.2		820
	K.3	• • •	$820 \\ 821$
	K.4 K.5	Bohr Radius and Binding Energies of Dopants or Excitons Effective Density of States and Intrinsic Carrier	821
	14.5	Concentration	821
	K.6	Absorption Coefficient and Emission Rate	822
	K.7	Recombination Times	823
L		ECTED PROPERTIES OF SEMICONDUCTORS	824
	L.1	Tabulated Values	824
	L.2	References	827
\mathbf{M}	EVALUATION OF SCATTERING RATES FOR A		
	MO	NTE CARLO PROGRAM	828
	M.1		828
	M.2	o .	830
	M.3	Equivalent Intervalley Scattering	831
	M.4	Non-equivalent Intervalley Scattering	832
	M.5	Ionized Impurity Scattering	833
	M.6	Alloy Scattering	835
N	WII	DE BANDGAP SEMICONDUCTORS	836
	N.1	References	841
	IND	EX	843