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Abstract We investigate the thermodynamics of melting for 74 distinct chemical elements 

including several actinides and rare earths. We find that the observed melting points are 

consistent with a linear relationship between the correlation entropy of the liquid and the 

GrUneisen constant of the solid, and that the Lindemann rule is well obeyed for the elements 

with simple structures and less well obeyed for the less symmetric more open structures. No 

special assumptions are required to explain the melting points of the rare earths or light 

actinides. 
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1. Introduction 

The melting point varies over a wide range across the periodic table. This is shown in figure I, 

drawn in the highly informative format introduced by Sanderson [I]. It it desirable to have a reliable 

means of predicting the melting points of materials on the basis of known physical properties. A 

widely used melting criterion grew out of work published by Lindemann [2] in 1910 and modernized 

by Gilvarry [3]: a material melts at that temperature for which the amplitude of thermal vibration is a 

certain fraction f of the interatomic distance in the crystal. The quantity f is not specified precisely, but 

is in the range of 5-15%. An interesting history of the Lindemann melting rule has been given by 

Wallace [4,5]. 

The Lindemann rule has powerful intuitive appeaL At high enough temperatures, we can 

imagine that the crystal must "shake itself to pieces," in the picturesque language of F. C. Frank [6]. At 

low temperatures, the crystal is nearly static, and the thermal vibrations are irrelevant. The melting 

point is somewhere in between; a critical amplitude characterized by a fraction 10% is not 

unreasonable. 

The Lindemann rule has been used for estimation of the melting point with considerable 

success for many years, but is open to criticism on at least three fronts. First, the stated rule does not 

have a legitimate physical basis, as the vibrational amplitude is a property of the solid alone, and liquid 

state is not explicitly considered; a proper thermodynamic model would consider both states [7]. 

Second, the critical fraction f is only vaguely specified. Finally, the accuracy of the rule is poor, in the 

range of 20-25%. The Lindemann rule remains in use because there is nothing better. 

The first criticism has been addressed by several workers, particularly Wallace. [4,5,8] Wallace 

works from the entropy balance at the melting transition: 

S"qUid - SWlfd =M (I) 
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.L\S is the measured entropy of melting which is found to be 1.1 ks per atom on average; this is Richard's 

rule [9], (We will subsequently express the entropy in units ofkB' the Boltzmann constant.) For the 

liquid, Wallace writes 

(2) 

The first term of Wallace's entropy is just the Sakur-Tetrode entropy for an ideal gas with the available 

volume replaced by the finite, fixed atomic volume. (Here we use the subscript W to distinguish 

Wallace's expressions from slightly different ones that we will use later.) In this expression, n is the 

atomic volume, M is that atomic mass, e is the base of natural logarithms, nis Planck's constant divided 

by 21[, and Scorr,W is the extra (negative) entropy arising form the correlation of atomic motion in the 

liquid state. Wallace has carefully mined the available pair correlation data derived from x-ray and 

neutron scattering experiments on liquid metals and determined that the correlation entropy may be 

expressed as Scorr,W = X + Y In(T/T'vI) , where X and Yare material-specific constants [5,8]. As an 

average, he finds Scorr,W -2.6+ I.7 In(T IT 'vi) 

For the solid, he uses Ssol,W =3In(Te/8o), where 8 0 is the characteristic entropy temperature, the 

zero-th moment of the phonon spectrum, In addition, one must consider a correction for vibrational 

anharmonicity. Wallace shows that this is not readily obtained from first-principles theory, but is 

fortunately negligible. In the end, he obtains a satisfactory account of the melting temperatures ofthe 

30 elements he is able to treat by rigorous methods, which are unfortunately limited by the availability 

ofdata for the determination of 8 0 and Scorr,W. Wallace also identifies a group of "anomalous" elements, 

for which a simple melting criterion based on equation (I) is not successful, and suggests that these 



-4­

elements undergo an additional electronic transition at the melting point. He includes in this group: Sn, 

Ga, Sb, Bi, Si and Ge. 

In subsequent sections of this paper we use an empirical approach that is less rigorous than 

Wallace's. We will be able to consider more than 70 elements, including some of the actinides, and to 

point out and important property of the correlation entropy. 

2. Entropy, melting point and atomic vibrations 

The energy kBTM, where T M is the melting point and kB is the Boltzmann constant, is a useful 

dimensionless number when divided by the characteristic elastic energy, BQ, where B is the bulk 

modulus and Q the atomic volume. Another useful parameter is the dimensionless thermal expansion 

defined by y PBQ/Cv, where P is the volume thennal expansion, B is the bulk modulus, Q is the 

atomic volume, and Cv is the heat capacity per atom. This is the Gruneisen y. All of these quantities 

may be temperature dependent, and then y is. At high enough temperatures, Cv is just 3kB, and the 

temperature dependences of the other quantities cancel to a good approximation, and then y may be 

taken as constant. [10, I J]. As a dimensionless thermal expansion, y is a useful parametcr to 

characterize vibrational anharmonicity. For anisotropic materials, the y we have defined here is not 

strictly valid [12], but we will use it anyway on a provisional basis. The necessary data for computing 

kBTlv/BQ and y can be obtained in the literature. In our case, most of the data were found in the review 

of Gschneidner [13]. These data were supplemented in a few cases with more current results: a-Pu 

[14,15], 8-Pu [J 6], £-Pu [17] y-U [18,19] and y-Ce [20]. In the case of 8-Pu, the anomalous thermal 

expansion believed to result from an invar effect were subtraction, as explained in lI6], which 

discusses a series of Pu-Ga alloys. The Ce data are based on experiments on a Ce-Th alloy that 

undergoes the y-a transition. The data used in this paper are given in the appendix. 

In figure 1 we plot the quantity kBTM/BQ versus the Gruneisen constant y for 74 distinct 
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elements, some with several allotropes, for 81 entries. The plot shows a clear correlation between 

ks T IvI/BQ and y, but also many outliers, some of which are labeled. This plot expresses a connection 

between melting point and thermal expansion that has been known for a long time [21]. 

For further analysis, we divide the data into four groups according to crystal structure: BCC, 

FCC, HCP and open structures. On the basis of preliminary results, the "open" group is further divided 

into two subgroups, "1" and "2." Three elements with idiosyncratic planar structures are included with 

HCP: Sm, a-U and a-Pu. The subdivision of the "open" group and the reassignments to HCP are done 

on a provisional basis. Some of the structures considered are not the structures from which melting 

occurs. These structures are included as a practical matter, as data on the allotropes that do melt are not 

always available. In some cases, data are available for several allotropes, including the one that melts, 

and comparisons can be made, viz. Ce, Pu, Sn, P and C. 

We use equation (1) as a starting point but use a more practical if less rigorous route for its 

evaluation. For Ssol, we use the Oebye model. Wallace has discouraged the use of the measured Oebye 

temperature for the evaluation of thermodynamic quantities, but we show in figure 2 that the 

correlation between the eo favored by Wallace and e D is very strong. The only two obvious outliers 

are Fe and Ni. Figure 2 includes a plot of eel calculated from the bulk modulus. We will use eel later, 

but note for now that the points for Fe and Ni do fall properly on this curve, so we speculate that the 

neutron scattering data leading to the eo points for Fe and Ni are biased by magnetic effects. In that 

case, we may ignore the outliers and use the equivalence eo = 0.6 e D = e-1!3eD; the latter equivalence 

was suggested by Wallace. We now use the Oebye model [22] to evaluate of Ssol arising from harmonic 

vibrations as 3In(Te4i3/eD) 

In the solid we must include the effect of anharmonicity. Ifwe recall that the difference in heat 

capacities Cp-Cv is generally ~2BnT/Cv, it is easy to show that the anhamonic contribution to the 

entropy at high temperatures is 9iksTM/BQ. 



- 6­

For the liquid we follow Wallace with SL SL,W. Now we can rewrite equation (1) as 

9 2 kST - I!.S - Sr Bn - corr (3) 

To find a formula for the melting point, it is useful to replace the Oebye temperature eD by eel, 

the corresponding quantity calculated from elastic constants, in equation (3), using the formula from 

elementary Oebye theory [23] 

(4) 


to get an equation in the dimensionless variable kBTM/Bn. We have included a graph of eel versus 0 D 

in figure 2. A simple fitting procedure suggests that the equation can be improved by the prefactor 1.3, 

and we will allow this factor to be absorbed in the subsequent fitting procedure. It is known that a 

better formula for eel can be obtained from a complete set of elastic constants so that the shear modes 

are included, but these data are not available in every case (especially high-temperature allotropes.) 

We have also ignored some small correction tenns for extrapolating Band n from their values at 

measurement temperatures to those at the the melting point. When the replacement of0D is made we 

find 

2
3 k T 3 f 6J'C ' 2 J 5 

--In (_s_) + Inl ( ) - 3In(1.3) - 9r2 
:= I!.S S , (5)

2 En 2 2J'C 2 Bn con 

where the constant 3In(1.3) comes from equation (4). Collecting all the constants, we find 

3 (ksT) 2kST a+br (6)--In - -9r - 1!.S-2.452=-S.
2 \ En Bn £orr 
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it turns out that the term (AS - SCOTT) has a strong correlation with y. Since AS is known for some (but 

not all) of the elements and also shows a linear correlation with y we are able to find SCOlT' All of these 

quantities are shown in figure 3, and the coefficient of the linear fit of -SCOIT versus yare shown in Table 

1. 

We find that Secrr is in the the range found by Wallace, between -2 and -3 for FCC, BCC and 

HCP, but spans a much wider range for the open structures. For FCC, BCC and HCP, the scatter in the 

Sliq,O-Ssol data is enough that the correlation of Scon with y may not have much significance. For the open 

structures, the correlation is much stronger and cannot be ignored. When a and b from the entropy fits 

are used, equation 6 becomes a formula for the melting point. The calculated curves for kBTM/BQ 

versus yare plotted together with the data in figure 4, and the calculated melting points are plotted 

against the the observed melting points in figure 5. 

The thermal atomic vibrational amplitude is related to kBT M/Bn via [24] 

(u2)= 3h
2

T 
(7)

mkB8 /e
we have equation (4) for 8, and the interatomic distance is datom 2(3n/4n)'!3, so we get 

relative amplitude = JV) = um'K = 0.513 kHr:"4 (8) 
da,o/ll d%~~m BQ 

The relative amplitude (RA) is plotted versus y in figure 6. The RA is in the expected range for BCC, 

FCC and HCP over a wide range of y, and the RA for Open-l falls into that range for y -;:;: 2. For 
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Open-2, the RA is consistently lower. 

3. Discussion and Conclusions 

The principal conclusion of this paper is that the Lindemann melting rule, that a solid melts 

when the vibrational amplitude reaches about 8% of the interatomic distance, follows from 

straightforward thermodynamic considerations for simple structures. There is no direct causal 

relationship between vibration and melting. The rule does not work as well for the "open-I" structures 

and does not work at all for the "open-2" structures. (Wallace's "anomalous" elements are all in the 

"Open-2" group.) Our discussion of the melting rule is based on the Debye model, which is expected 

to fail for complex structures [25]; we continue to use it for lack of an more accurate yet still 

practical - procedure. Some of the data used in this paper pertain to crystalline phases stable at 

temperatures below the phase that actually melts. Despite these limitations, the melting points are 

predicated more or less successfully, albeit with significant errors; for example, the two allotropes of 

carbon, graphite and diamond, fall reasonably close to the ideal curves in figures 5 and 6. This shows 

that melting is essentially an atomic property. 

For most of the elements, the anharmonic entropy of the solid is much less than the correlation 

entropy, as shown in figure 8. For these elements, we can say that the melting point is determined by a 

balance between the Debye entropy of the solid and the correlation entropy of the liquid. In 

exceptional cases, with high values ofy, the anharmonic entropy of the solid is involved in the balance. 

Thus the correlation entropy, a liquid state property, is found to depend on the GrUneisen constant y, a 

solid state property. This connection between liquid and solid properties should be expected on the 

grounds that y is a measure of the asymmetry of the interatomic potential about its minimum, and this 

asymmetry will also be important in the liquid state. 

We consider the application ofthe Lindemann rule to the high melting carbide ZrC [26]. The 

ZrC structure is essentially the FCC structure filled up with interstitial carbon .. For ZrC, B is higher by 
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a factor 2.7, n is higher by a factor of 1.1 and yis higher by 0.55 compared to elemental Zr. This 

suggests that the melting point of ZrC will be higher than that of Zr by a factor 2.3. Now ZrC melts at 

2700K and Zr at 2100K, so the actual factor is 1.7. The level of precision is consistent with figures 5 

and 6. Application of the Lindemann rule to ceramics with more complex structures is severely limited 

by the difficulties already encountered for open structures. 

Two of the actinide considered in this paper have anomalously high values of the Grilneisen y: 

y-U and a-Pu. In view of the invar effect which operates in o-phase Pu that that causes the uncorrected 

y to be artificially low, we might expect that that and anti-invar effect, that would artificially enhance y 

might be operative in these other actinide phases. Further experimental work on the thermal expansion 

of alloy-stabilized y-U would be revealing. Further work is needed also on y-Ce, for which an invar 

effect (not anti-invar) is predicted by the A-P model [27,28]. 

Questions about the melting points of the light actinides and rare earths were raised 40 years 

ago by Matthias et al. [29], who considered the minima near Ce and Pu shown in figure I and lamented 

the status of the contemporary theory of melting as "not even a satisfactory beginning," Smith and 

Kmetko published a composite phase diagram that emphasized the spectacular minimum in the 

actinides series [30] and has drawn much attention since. Now we can say that the melting point 

anomalies for the actinide series are determined by the elastic constants and volumes, which are 

themselves anomalous through their origins in correlated electron physics. In particular, the melting 

point of Pu is accounted for without any special assumptions about the liquid phase. Nothing further is 

involved. 
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Table A I: Atomic properties of selected elements 
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Figure Captions 

Figure I. Periodic table of melting points. 

Figure 2. ksTM/Bn versus Gruneisen y. The line ks T M/Bn = O.3e·05y is shown as a guide, and a few 

outlying points are labeled. 


Figure 3. Wallace's entropy 8 0 and the elastic 8 el (from equation 4) plotted versus the Oebye 8 D• 


Figure 4. Entropy difference SS.,SDebye-SAnhar, measured entropy of melting ~Smeas, and -SCOff from 

equation 6 plotted versus Gruneisen y for different structural groups. 


Figure 5. Fitted ks T lviBn versus Gruneisen y for different structural groups. 


Figure 6. Calculated T M versus measured T M for different structural groups. 


Figure 7. Calculated relative thermal atomic vibration amplitudes (RAs) from equation 8 plotted 

versus Gruneisen y for different structure groups. 


Figure 8. Ratio of solid anharmonic entropy to liquid correlation entropy, Sanharl(-SCOff) plotted versus 

Gruneisen y for different structure groups. 
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Figure 1: Periodic table ofmelting points. 
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