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Physics of the Lindemann melting rule

A. C. Lawson’
Materials Science and Technology Division

Los Alamos National Laboratory

Los Alamos, NM 87545 USA
Abstract We investigate the thermodynamics of melting for 74 distinct chemical elements
including several actinides and rare earths. We find that the observed melting points are
consistent with a linear relationship between the correlation entropy of the liquid and the
Griineisen constant of the solid, and that the Lindemann rule is well obeyed for the elements
with simple structures and less well obeyed for the less symmetric more open structures. No

special assumptions are required to explain the melting points of the rare earths or light

actinides.
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1. Introduction

The melting point varies over a wide range across the periodic table. This is shown in figure 1,
drawn in the highly informative format introduced by Sanderson [1]. It it desirable to have a reliable
means of predicting the melting points of materials on the basis of known physical properties. A
widely used melting criterion grew out of work published by Lindemann [2] in 1910 and modernized
by Gilvarry [3]: a material melts at that temperature for which the amplitude of thermal vibration is a
certain fraction f of the interatomic distance in the crystal. The quantity f is not specified precisely, but
is in the range of 5-15%. An interesting history of the Lindemann melting rule has been given by
Wallace [4,5].

The Lindemann rule has powerful intuitive appeal. At high enough temperatures, we can
imagine that the crystal must “shake itself to pieces,” in the picturesque languagé of F. C. Frank [6]. At
low temperatures, the crystal is nearly static, and the thermal vibrations are irrelevant. The melting
point is somewhere in between; a critical amplitude characterized by a fraction =10% is not
unreasonable.

The Lindemann rule has been used for estimation of the melting point with considerable
success for many years, but is open to criticism on at least three fronts. First, the stated rule does not
have a legitimate physical basis, as the vibrational amplitude is a property of the so/id alone, and liquid
state is not explicitly considered; a proper thermodynamic model would consider both states [7].
Second, the critical fraction f is only vaguely specified. Finally, the accuracy of the rule is poor, in the
range of 20-25%. The Lindemann rule remains in use because there is nothing better.

The first criticism has been addressed by several workers, particularly Wallace. [4,5.8] Wallace

works from the entropy balance at the melting transition:

Sl S.mhc! = AS ' ( ] )

iquid
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‘AS is the measured entropy of melting which is found to be 1.1kg per atom on average; this is Richard's
rule [9], (We will subsequently express the entropy in units of ks, the Boltzmann constant.) For the

liquid, Wallace writes

MQ
Sliq W= 3 ln _kLYb__ + Scnrr = :_3- ln kﬁ—T_z—e + Scorr = SS‘-T + Swrr (2)
T2 ( 27k’ } 2 27h ‘

2
MQ?
The first term of Wallace's entropy is just the Sakur-Tetrode entropy for an ideal gas with the available
volume replaced by the finite, fixed atomic volume . (Here we use the subscript W to distinguish

Wallace's expressions from slightly different ones that we will use later.) In this expression, Q is the

atomic volume, M is that atomic mass, e is the base of natural logarithms, 7 is Planck’s constant divided

by 27, and S...w is the extra (negative) entropy arising form the correlation of atomic motion in the
liquid state. Wallace has carefully mined the available pair correlation data derived from x-ray and
neutron scattering experiments on liquid metals and determined that the correlation entropy may be
expressed as Seorw = X + Y In(T/Ty) , where X and Y are material-specific constants [5,8]. As an
average, he finds Scorw = -2.6+1.7 In(T/Tyy)

For the solid, he uses S.uw = 3In(Te/Oy), where 0y is the characteristic entropy temperature, the
zero-th moment of the phonon spectrum. In addition, one must consider a correction for vibrational
anharmonicity. Wallace shows that this is not readily obtained from first-principles theory, but is
fortunately negligible. In the end, he obtains a satisfactory account of the melting temperatures of the
30 elements he is able to treat by rigorous methods, which are unfortunately limited by the availability
of data for the determination of &, and S...w. Wallace also identifies a group of “anomalous” elements,

for which a simple melting criterion based on equation (1) is not successful, and suggests that these
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elements undergo an additional electronic transition at the melting point. He includes in this group: Sn,
Ga, Sb, Bi, Si and Ge.
In subsequent sections of this paper we use an empirical approach that is less rigorous than
Wallace's. We will be able to consider more than 70 elements, including some of the actinides, and to

point out and important property of the correlation entropy.

2. Entropy, melting point and atomic vibrations

The energy ksTwm, where Ty is the melting point and kg is the Boltzmann constant, is a useful
dimensionless number when divided by the characteristic elastic energy, BS), where B is the bulk
modulus and Q the atomic volume. Another useful parameter is the dimensionless thermal expansion
defined by v = BBCY/Cy, where P is the volume thermal expansion, B is the bulk modulus, Q is the
atomic volume, and Cy is the heat capacity per atom. This is the Griineisen y. All of these quantities
may be temperature dependent, and then y is. At high enough temperatures, Cy is just 3kg, and the
temperature dependences of the other quantities cancel to a good approximation, and then y may be
taken as constant. [10,11]. As a dimensionless thermal expansion, y is a useful parameter to
characterize vibrational anharmonicity, For anisotropic materials, the y we have defined here is not
strictly valid [12], but we will use it anyway on a provisional basis. The necessary data for computing
ks Tn/BQ and y can be obtained in the literature. In our case, most of the data were found in the review
of Gschneidner [13]. These data were supplemented in a few cases with more current results: a-Pu
[14,15], 6-Pu [16], e-Pu [17] y-U [18,19] and y-Ce [20]. In the case of 8-Pu, the anomalous thermal
expansion believed to result from an invar effect were subtraction, as explained in | 16}, which
discusses a series of Pu-Ga alloys. The Ce data are based on experiments on a Ce-Th alloy that
undergoes the y-a transition. The data used in this paper are given in the appendix.

In figure 1 we plot the quantity ksTw/BQ versus the Griineisen constant y for 74 distinct
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elements, some with several allotropes, for 81 entries. The plot shows a clear correlation between
ks Tn/B€2 and vy, but also many outliers, some of which are labeled. This plot expresses a connection
between melting point and thermal expansion that has been known for a long time [21].

For further analysis, we divide the data into four groups according to crystal structure: BCC,
FCC, HCP and open structures. On the basis of preliminary results, the “open” group is further divided
into two subgroups, “1” and “2.” Three elements with idiosyncratic planar structures are included with
HCP: Sm, a-U and a-Pu. The subdivision of the “open” group and the reassignments to HCP are done
on a provisional basis. Some of the structures considered are nof the structures from which melting
occurs. These structures are included as a practical matter, as data on the allotropes that do melt are not
always available. In some cases, data are available for several allotropes, including the one that melts,
and comparisons can be made, viz. Ce, Pu, Sn, Pand C.

We use equation (1) as a starting point but use a more practical if less rigorous route for its
evaluation. For S, we use the Debye model. Wallace has discouraged the use of the measured Debye
temperature for the evaluation of thermodynamic quantities, but we show in figure 2 that the
correlation between the @, favored by Wallace and @y, is very strong. The only two obvious outliers
are Fe and Ni. Figure 2 includes a plot of @ calculated from the bulk modulus. We will use @ later,
but note for now that the points for Fe and Ni do fall properly on this curve, so we speculate that the
neutron scattering data leading to the &, points for Fe and Ni are biased by magnetic effects. In that
case, we may ignore the outliers and use the equivalence @, = 0.6 ©,, = ¢'”@p; the latter equivalence
was suggested by Wallace. We now use the Debye model [22] to evaluate of Sy arising from harmonic
vibrations as 3In(Te**/®p)

In the solid we must include the effect of anharmonicity. If we recall that the difference in heat
capacities C,-C, is generally B’BQT/Cy, it is easy to show that the anhamonic contribution to the

entropy at high temperatures is 97’k Tn/BQL.
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For the liquid we follow Wallace with S, = S_w. Now we can rewrite equation (1) as

_3_1n _kyTe —~3In Te* ~9y? kBT:AS..SW (3)
2 [2;@7&2} ®, BO

Ed

MQ3

To find a formula for the melting point, it is useful to replace the Debye temperature ®p by O,

the corresponding quantity calculated from elastic constants, in equation (3), using the formula from

BQ(6r )
1.31(),5@!} Q‘kﬁ@d =h -A,T( O ] (4)

to get an equation in the dimensionless variable ksT\/B£Q. We have included a graph of ®, versus ®p

elementary Debye theory [23]

in figure 2. A simple fitting procedure suggests that the equation can be improved by the prefactor 1.3,
and we will allow this factor to be absorbed in the subsequent fitting procedure. It is known that a
better formula for @, can be obtained from a complete set of elastic constants so that the shear modes
are included, but these data are not available in every case (especially high-temperature allotropes.)
We have also ignored some small correction terms for extrapolating B and Q from their values at
measurement temperatures to those at the the rﬁelting point. When the replacement of ®p is made we

find

/7 2
61’y T
BN 7L AN (67') 23 3 ay—9 kel agos (5)
2 BQ 2 2 2 BG

where the constant 3In(1.3) comes from equation (4). Collecting all the constants, we find

-31n(f£]—9y2£—ﬁ-2.452:-Sm =a+by (6)
2 '\ BQ BO
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It turns out that the term (AS — S...) has a strong correlation with y. Since AS is known for some (but
not all) of the elements and also shows a linear correlétion with y we are able to find S.... All of these
quantities are shown in figure 3, and the coefficient of the linear fit of -S.o versus y are shown in Table

1.

Table 1. Fit parameters for -Scon
BCC  FCC HCP  |Open-l |
a 2.17+0.312.15£0.22 2.53£0.17 |-0.88+0.44 | -2.63+0.65

b [0.22£0.18 0.33+0.11 |0.0420.11 | 1.65£0.22 |4.35+0.66

Open-2

We find that S, is in the the range found by Wallace, between -2 and -3 for FCC, BCC and
HCP, but spans a much wider range for the open structures. For FCC, BCC and HCP, the scatter in the
Siqo-Ssat data is enough that the correlation of S, with ¥ may not have much significance. For the open
structures, the correlation is much stronger and cannot be ignored. When a and b from the entropy fits
are used, equation 6 becomes a formula for the melting point. The calculated curves for kg T\/BQ
versus v are plotted together with the data in figure 4, and the calculated melting points are plotted
against the the observed melting points in figure 5.

The thermal atomic vibrational amplitude is related to ks Tw/BQ via [24]

<uz> _ 3K2T

2 N
mk B®e /

we have equation (4) for ©, and the interatomic distance is dyom = 2(3Q/41)'?, so we get

o
iU u_ .
relative amplitude = < > =2 - (}'513‘?{37;4 (8)
d d, BQ

arom e

The relative amplitude (RA) is plotted versus v in figure 6. The RA is in the expected range for BCC,

FCC and HCP over a wide range of v, and the RA for Open-1 falls into that range for y =~ 2. For



Open-2, the RA is consistently lower.
3. Discussion and Conclusions

The principal conclusion of this paper is that the Lindemann melting rule, that a solid melts
when the vibrational amplitude reaches about 8% of the interatomic distance, follows from
straightforward thermodynamic considerations for simple structures. There is no direct causal
relationship between vibration and melting. The rule does not work as well for the “open-1” structures

4%

and does not work at all for the “open-2” structures. (Wallace's “anomalous" elements are all in the
“Open-2” group.) Our discussion of the melting rule is based on the Debye model, which is expected
to fail for complex structures [25]; we continue to use it for lack of an more accurate — yet still
practical — procedure. Some of the data used in this paper pertain to crystalline phases stable at
temperatures below the phase that actually melts. Despite these limitations, the melting points are
predicated more or less successfully, albeit with significant errors; for example, the two allotropes of
carbon, graphite and diamond, fall reasonably close to the ideal curves in figures 5 and 6. This shows
that melting is essentially an atomic property.

For most of the elements, the anharmonic entropy of the solid is much less than the correlation
entropy, as shown in figure 8. For these elements, we can say that the melting point is determined by a
balance between the Debye entropy of the solid and the correlation entropy of the liquid. In
exceptional cases, with high values of vy, the anharmonic entropy of the solid is involved in the balance.
Thus the correlation entropy, a liquid state property, is found to depend on the Griineisen constant y, a
solid state property. This connection between liquid and solid properties should be expected on the
grounds that y is a measure of the asymmetry of the interatomic potential about its minimum, and this
asymmetry will also be important in the liquid state.

We consider the application of the Lindemann rule to the high melting carbide ZrC [26]. The

ZrC structure is essentially the FCC structure filled up with interstitial carbon.. For ZrC, B is higher by
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a factor 2.7, Q is higher by a factor of 1.1 and y is higher by 0.55 compared to elemental Zr. This
suggests that the melting point of ZrC will be higher than that of Zr by a factor 2.3. Now ZrC melts at
2700K and Zr at 2100K, so the actual factor is 1.7. The level of precision is consistent with figures 5
and 6. Application of the Lindemann rule to ceramics with more complex structures is severely limited
by the difficulties already encountered for open structures.

Two of the actinide considered in this paper have anomalously high values of the Griineisen vy:
v-U and a-Pu. In view of the invar effect which operates in 8-phase Pu that that causes the uncorrected
y to be artificially low, we might expect that that and anti-invar effect, that would artificially enhance y
might be operative in these other actinide phases. Further experimental work on the thermal expansion
of alloy-stabilized y-U would be revealing. Further work is needed also on y-Ce, for which an invar
effect (not anti-invar) is predicted by the A-P model [27,28].

Questions about the melting points of the light actinides and rare earths were raised 40 years
ago by Matthias et al. [29], who considered the minima near Ce and Pu shown in figure 1 and lamented
the status of the contemporary theory of melting as “not even a satisfactory beginning,” Smith and
Kmetko published a composite phase diagram that emphasized the spectacular minimum in the
actinides series [30] and has drawn much attention since. Now we can say that the melting point
anomalies for the actinide series are determined by the elastic constants and volumes, which are
themselves anomalous through their origins in correlated electron physics. In particular, the melting
point of Pu is accounted for without any special assumptions about the liquid phase. Nothing further is

involved.
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Appendix: Data

Table Al: Atomic properties of selected elements

Structure[ Name Mass 1028 1V01ume ® 104 ¥ | Tu
(g/mole) | (erg/em’) (AY)  (K) | (K (K)

BCC Li| 694 0118 2159 344 45 089 453

| Na| 2299 0069 3933 158 70.6| 1.41| 371
K| 300 0032 7535 91 83 146 337

Vi 5094 1651 1385 380 83 1.49 2160

Cr 52| 194] 1201 630 8.4/1.75 2130

Fe| 5585 1716 1178, 470 11.7]1.93) 1808

B Rb| 8547 0032 9267 56 88.1/190| 312
Nb| 9291 1736 1801 275 7.07| 1.67) 2741

Mo| 9594, 2779 1559 450 4.98|1.75 2890

cs. 13291 00211 117.88 38| 97/ 174 302

Ba| 13733  0.105, 6347 110 188!091) 1002

Eu| 15197 0151 48.15| 127, 33.1]1.75 1095

Ta| 18095 204 18.05 240 6.55 1.80| 3269

W 18384, 3296, 1582 400| 4.59 1.893680

vU 238,03 114l 2205 270, 225]4.12 1406

ePu 239 02, 2411 80 247|086 914

FCC Al 2698 0736 1661 428 23.1 226 934
ca 4008 01s5s| 429s5| 230] 224|111 1112

VVVVVVV Nil  58.69 19 1095| 450| 12.72.14 1726
) Cu 6355 1335, 1178, 343| 16.7 2.03 1356
sl 87620 0118l 573 147| 20099 1042

Rh| 10291 2758 13.77) 480, 8.4 2.62]2239

Pd| 106.42| 1844 14.71] 274 115 236] 1825

“““ Ag| 107.88.  1.027| 1707 225 19.2 2511235
wCe| 14012 0267 2825, 137, 30 1.66] 1072

«Ce 140.12|  0244| 3474| 137| 85 053 1072

7 It 19222] 362 14.13| 420| 663 2.71] 2683
P 19508 2838 1511, 240, 8.95 2.87 2045

Aul 19697| 1766 16.94| 165 14.1 3.10, 1338

Pbl 2072 0438 3032 105 29 281 601

Th| 23204| 0553 3289] 163 112 1.50]2023

5Pul 239 0289 25! 125 95/050/ 914!

HCP Be, 901 102 8.1 1440 11.5) 1751551
Mg 243 0361 2323] 400, 256 1.70 922,




Sc| 4496, 0584 2499 360/ 10 1.14
Ti| 4787 1072 1752 4200 835|125 1933
Col 5893 1952 1| 445 124 2.15] 1768
Zn| 6539 061 1523 327 29.712.12| 693
Y 889 0373 3542 280 12120 1795
Ze| 9122 085 2329 291 5.78)0.87]2125
Te| 9891  3.03| 1429 351| 8.06| 2.71 2445
Rul 10107 3271 13.57| 600, 936 3.65 2553
Cd 11241 0477] 2159 209] 30.6|234| 594
La| 13891 0248 37.55 142] 104, 0.71 1194
Pr, 14091 0312, 3456] 85 679 053|1204
Nd| 14424 0333] 34.19] 138] 67056 1294
Pm. 11491| 036 2644 158 91063 144l
sm| 150.36 03 3321 116] 104 0.76 1350
Gd 15725 0391, 3306, 170| 8281079 1586
Tb 15892 0407 32.08| 150| 1031099 1629
Dy 1625 0392 31.57| 172] 10 0911685
Ho, 16493 0405  31.15| 114 10.7]0.99| 1747
Er| 16726 042 3065 134 123 1.16 1802
B Tm| 16893 0405  30.11| 127, 133|1.1911818
Yb 17304 0.035 4127 1202496 1.02 1097
Lul 17498 0419 2954 210 8.12/0.75 1936
HE| 17849 111 2228 252] 6.01)1.12 2503
Re| 18621 379 1472 430 6.63 2.96 3453
Os| 19023 426 1404 500 4.7 233 3327
TI| 20438 0366/ 2865 78.5| 204 224 577
wU| 23803 135 2087 207 126 263 1406
wPul 239 0546 2001 160| 55 442 914
Open-1 B| 1081 182 767 1315 83 187 2573
C(graphite)| 12.01] 0345  9.02| 402| 3.8 0.09 3830
C(diamond)| 1201  5.56| 8742230 1.19|2.53 3830
P(red)| 3097 0.9 2189 325 665 219 317
CP(white)) 3097|0048 23.19] 193 1245 103 317
S(rhomby| 3207  0.182) 27.18) 200  64.1 235 386
oMn 5494 0608 1227 410] 226|134 1517]
Se| 7896  0.093| 2738 90 369 0.68 490
In| 11482 0418 2609 108| 31.4]2.50| 429
wSnl 11871 0553 3429 236/ 212 3.00| 505
He| 20059 0288, 246|719 61315 234,




Open-2 Si| 2808 1.008 20.03| 645 3.07 0.56] 1683
Ga| 6972 058 1961 320 18.1 1.58| 303
Ge| 7261 0787, 2266 374 575 080 1211
As 7492 0402 2153 282 4.28]028| 1090
p-Sn| 11871  113| 2698 196 53/120 505
sb| 11276 039] 2799] 211| 109 088 904
Te. 1278 0235 3402 153]16.77 098/ 723
"""" N Bi| 20898 0321 3562 119 1341 112 545
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Figure Captions
Figure 1. Periodic table of melting points.

Figure 2. ksTnm/BQ versus Griineisen y. The line ks Tm/BQ = 0.3¢" is shown as a guide, and a few
outlying points are labeled.

Figure 3. Wallace's entropy ©, and the elastic ®, (from equation 4) plotted versus the Debye Op.

Figure 4. Entropy difference Ss.r-Spebye-Sannar, measured entropy of melting AS,...s, and -S¢or from
equation 6 plotted versus Griineisen y for different structural groups.

Figure 5. Fitted ksTm/BQ versus Griineisen vy for different structural groups.
Figure 6. Calculated Ty versus measured Ty for different structural groups.

Figure 7. Calculated relative thermal atomic vibration amplitudes (RAs) from equation 8 plotted
versus Griineisen y for different structure groups.

Figure 8. Ratio of solid anharmonic entropy to liquid correlation entropy, Sama/(-Scor) plotted versus
Griineisen vy for different structure groups.



Figure 1: Periodic table of melting points.

H He
: . O
Li Be Be C N O F Ne
454 | 1551 2573 | 3820 | 63 55 52 25
. Y e | @O . .
Na | Mg Al Si P S Cl | Ar
371 | 922 934 | 1683 | 317 | 386 | 172 | 84
- o 0000 © 00 0 o - - o o - .
K | Ca| Sc | Ti \ Cr {Mn | Fe | Co| Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr
336 | 1112 | 1814 | 1933 | 2160 | 2130 | 1517 | 1808 | 1768 | 1726 | 1357 | 693 | 303 | 1211 | 1090 | 490 | 266 | 117
e 00000000 ¢ - - . . - .
Rb | Sr | Y Zr [Nb |Mo | Tc | Ru |Rh | Pd | Ag | Cd | In | Sn | Sb | Te I Xe
312 | 1042 | 1795 | 2125 | 2741 | 2890 | 2445 | 2583 | 2239 | 1825 | 1235 | 494 | 420 | 505 | 904 | 723 | 387 | te1
-+ 00000000 c - /- . - .
Cs |Ba|Lu | H | Ta | W | Re | Os | I Pt | Au | Hg| Tl | Pb | Bi | Po | At | Rn
302 | 1002 | 1936 | 2503 | 3269 | 3680 | 3453 | 3327 | 2683 | 2045 | 1338 | 234 | 577 | 601 | 545 | 527 | 575 | 202
. (]
Fr | Ra
300 | 973

NN RN NN BN BN N RN BN BN BN BN BN BN

la |{Ce | Pr [ Nd |Pm |Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb

1194 | 1072 | 1204 | 1294 | 1441 | 1350 | 1095 | 1586 | 1629 | 1685 | 1747 | 1802 | 1818 | 1097

o @ @ © o o 0 0 0 o o

Ac | Th | Pa U Np | Pu | Am |[Cm | Bk | Cf | Es | Fm | Md | No

1320 | 2023 | 2113 | 1405 | 913 | 914 | 1445 | 1610 | 1320 | 1170 | 1130




. T ] T | T | T | T
C (graphite)

0.1

— . —
'\\ ¢ g ° .o
C} - \“‘.\0.. °
m ¢ & ..Q.:“.‘\ ..
™~ o ® .\. L I
}—E . o.. .\;\"o .
& 001 R .® "'\:\: . o-Pu—|
n 8 d’%\ . .
N .B' PO Ru v-U
N i . Hg ~~
® \\
N *Ga * TS el
o .
- B-Sn

0-001 ] l ] | ] I ] | |
o 1 2 3 4

Figure 2: kg Tw/BQ versus Griineiseny. The line ke Tw/BQ = 0.3¢™ is shown as a guide, and a few
outlying points are labeled. ,
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Figure 3: Wallace's entropy &, and the elastic O, from equation 4 plotted versus the Debye ©),.
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Figure 4: Entropy difference Ss.;-Spevye=Saman measured entropy of melting ASyea, and -Scor from
equation 6 plotted versus Griineisen y for different structural groups.
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Figure 5: Fitted kyT,/B& versus Griineisen y for different structural groups.
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Figure 6: Calculated T, versus measured Ty, for different structural groups.
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Figure 7: Calculated relative thermal atomic vibration amplitudes (RAs) from equation 7 plotted

versus Griineisen y for different structure groups.
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Figure 8: Ratio of solid anharmonic entropy to liquid correlation entropy, Suma/(-Scor) plotted versus

Griineisen y for different structure groups.
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