UCLA-APH0055-4/92

- 2 . < . - < .
APPENDIX B1-A A 7.,/,7(/) ////,}5 ) 2

QONF-920480~-~2
PHYSICS STUDIES WITH ICARUS AND

A HYBRID IONIZATION AND
SCINTILLATION FIBER DETECTOR¢

DE93 003034

DAVID B. CLINE

| 1Departments of Physics €4 Astronomy, University of California Los Angeles
405 Hilgard Avenue, Los Angeles, California 90024

FC03-q1ER 40663

ABSTRACT

We discuss the physics possibilities for the ICARUS detector currently
being tested at CERN. The physics potential goes from a massive proton
decay detector to the study of solar neutrinos. In addition, the detection
of v, — v, and v, — v, will be possible with such a detector. One major
topic involves the possibility of a complete determination of the MSW solar
neutrino parameters with the ICARUS. The possibility of detecting WIMPS
with a scintillating fiber liquid Argon (Ar) detector or fiber Xenon (Xe) de-
tector doped with Ar is also described. Some comnments on the measurement
of the 42Ar level from an experiment at the Gran Sasso will be made.
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1. PHYSICS GOALS OF ICARUS

The development of a sensitive 3D readout, liquid Ar detector has a large variety of
physics goals. Table 1 lists some of these goals.
l.a. OQverview of ICARUS Type Detectors

The successful test of the 3 ton ICARUS prototype at CERN is a great accomplish-
ment. It also leads to a number of new possibilities for elementary particle research. In
this report we will concentrate on the physics goals of ICARUS from solar necutrinos to
proton decay to the possible detection of the v, (directly at the LHC or from v, — v,
oscillations). We will then discuss the possibility of constructing a novel WIMP detector
using a combination of ionization and scintillating light with a fiber readout system.
1.b. Search for 42Ar in a Gran Sasso Ezperiment

One of the most interesting problems of the use of liquid Ar is the level of radioactive
background from *2Ar. This has never been measured but R. Davis has set limits on this
impurity.
l.c. Solar Neutrino Ezpersment with ICARUS

The prospects for detection of neutrino oscillation and hence a finite neutrino mass
using solar neutrinos remains high.Current experiments suggest the existence of neutrino
oscillations but do not prove it. These experiments typically measure a single scattering
reaction such as v, + e~ — v, + ¢~ and thus must compare their results with calculations
of the Solar neutrino flux. In contrast, a new generation of Solar neutrino telescope is
being constructed and that can be used to measure two reactions simultaneously. This
avoids the necessity to use the Solar neutrino flux calculation. In the ICARUS detector

the reactions that are measured are

chl-‘rr + e_ - Veu“vr + e_ (1)

and

Vet Ar— e  + K" —e” + K +7v (2)

The ICARUS detector program has two phases:
(1) measurement of the response of a model detector at CERN
(2) measurement of background for the Solar Neutrino detection at the Gran Sasso
Laboratory.

In this note we show how a 1000 Ton ICARUS detector can be used to conclusively
prove the existence of neutrino oscillations (whether vacuum or MSW induced) and to

measure the critical parameters of the neutrino oscillations

sin? 20 and (m} — m})



We apply numerical methods to solve the equation of motion with two neutrino flavors.
Electron density in the Sun is approximated with an exponential function of distance from
the core of the Sun. We calculated the surviving probability of v, at the surface of the Sun
using fourth order Runge-Kuta method. This value is used to generate the v, spectrum.
A Monte Carlo program is written to simulate the recoil electron. At 5MeV cutoff energy
all the elastic scatterii.g events are confined to less than 20°. This is very important in
the event selection since solar neutrino should point toward the Sun.

Three pair of parameters are used to exemplify the wide range of solutions to the
solar neutrino puzzle. In Figs. 1 through 3 we show the spectrum for 8Bv, as well as
the recoil electron. In each case we also show the event rate for absorption and elastic
scattering (Fig. 4a-c). In Case I, where high energy neutrinos are converted, we see a
drastic c}!xé.nge in absorption rate. This is because the absorption channel is sensitive only
to neutrinos above the 5.85MeV threshold. In Fig. 4d we show the ratio of absorption
event and elastic scattering event for each of these cases. In Table 2 we show the event
rate for SSM prediction and three cases we studied with a 1000 Ton ICARUS detector. In
Cases | and II we see that the ratios are drastically different from SSM prediction. It is
obvious that different solutions can be distinguished if both interaction modes are used.
1.d. Search for Proton Decay with a Massive ICARUS

The search for proton decay with dedicated detectors started in the early 80's. The
current generation of detectors has nearly exhausted the lifetime range up to ~ 1032 years.

The scaling rules for the proton decay search are

7p <N, [protons in detector] S/IN >>1 (1a)
Tp X/ Np S/N =1 (1b)

where S is the signal for proton decay and N is the background. In the latter case, (1b), a
background subtraction is required and this reduces the statistical power of the detector.

In order to explore the 1, ~ 1032 — 1034 years region, we choose between two options

(1) construct very large detectors (M ~ 10° Tons) that will have S/N S1lor

(2) construct detectors with M ~ 10* Tons with S/N >> 1.

In the first category are new water detectors such as Super Kamiokande (Iam II) and in
the second are massive electronic-bubble-chamber-like detectors such as ICARUS, which

uses electron drift imaging techniques.

Several complete searches have been carried out for proton decay. Some recent results

are given in Reference 1. Two key decay modes are



porlet (1) (20)

and

p—-Ktv (m (2b)
In some ways these two modes tone the scale for the entire search for proton decay.

Decay mode (I) is expected to go through normal GUT type processes. Decay mode
(11) is expected to go through processes where the GUT-Higgs boson is the key intermediate
state. Future searches for proton decay can be judged, in some sense, by how well they

are able to search for these two modes.

Table 3 gives the current limit on some decays of type II1®®. The lifetime limit for
p — 7%t is in the vicinity of 5 x 1032 years as determined from the IMB and KamII
detectors®®. The fact that 7, for p — K 7, goes like \/N, is stated by Table 3.

It is well known that the SU(5) model of Grand Unification disagrees with several
precise measurements and the current limits on the proton lifetime. However, for sometime
it has also been known that the extrapolation of the three running constants to the GUT
scale do not cross in one place (see Fig. 5). One simple remedy for this situation is to
invoke a supersymmetric version of SU(5), i.e. SUSY GUTS. Taking this approach has
two interesting ramifications

(1) the SUSY particle scale may be beyond the TeV mass range, i.e. squarks, etc., may
exist

(2) the decay mode p — K*7 is favored through Higgs mediated processes, as shown in
Fig. 6[11], however, the lifetime is likely to be between 10°2 — 10* years. (See Table
4 for a supergravity model.)

Thus, SUSY-GUTS presents the next challenge to the proton decay searches.

In order to continue the search for preton decay into new lifetime regions and exotic
decay modes, new detector techniques are needed. One such technique is being developed
by the ICARUS group. This technique uses liquid Argon and electron-drift imaging of
the tracks. If successful, this technique can produce spectacular events that may have
no important backgrounds. The UCLA ICARUS group has been simulating the decay
mode p — K*b. Fig. 7 shows a simulated event, indicating the quality of the images. In
addition, dE/dz information can be used to further define the events.



It would appear that there is no significant background that can fake p — K*7 in
ICARUS. The current status of this experiment is that a 3Ton prototype detector has
been constructed and is starting to operate at CERN. The next stage is to construct a
~ 1000 Ton detector for Hall C at the Gran Sasso. The ultimate ICARUS detectors could
be ~ 10* Tons at the Gran Sasso and could extend the lifetime for p — K to 103 years.

At present the best limits for proton decay come from the large water detectors such
as IMB and KamII. A larger version of KamII is being proposed for Japan. This detector
would have a 22,000 Ton fiducial volume. This would be equivalent to approximately 10
times the size of the current KamII detector. The major question being asked is whether
the proton decay search will be extended by a factor of 10 or by V10 (Egs. 2a or 2b). If the
latter is correct, the Kam1I detector can extend the search for proton decay to 1033 years.
This is a very significant advance in the field. A possible comparison of the ICARUS and
Kam II detectors is given in Table 3.

It appears that SUSY- GUTS is a viable theory and that three major consequences
follow

(1) one Higgs boson may have a mass less than Mz

(2) the SUSY particles may have masses beyond the TeV range and thus might not ve
detectable even at the SSC

(3) proton decay, mainly p — K*¥ is a crucial test of the theory but the lifetime is
expected to be 10?3 — 1034 years

These points present an enormous challenge to the proton decay searcher.
l.e. Possible Detection of the 1 Neutrino (v:)
The spatial resolution obtained in the CERN test is ~ 60x and may make it possible

to detect T particles from v, — v, oscillations.
2. DARK MATTER DETECTION - MASSIVE WIMPS

While a search for Cold Dark Matter is underway in several places, there are many
uncertainties in the expected flux and types of WIMPs!. Recent accelerator constraints
imply that higher mass WIMPs are preferred. On the other hand, very low temperature
detectors, while progressing, are still far from detector mass of 10-100 kilograms that
is likely required. In this talk we first discuss the successful development of two new
detector technologies: imaging in ultra-pure liquid argon (ICARUS) and the development
of scintillating fiber technology.

There are several new developments in the issue of dark matter in the universe that

are relevant to the current search



1) recent fp collider and LEP results suggest Mwimp > 20 GeV

2) the cross section for WIMP scattering falls rap'idly with mass - 0.1 Ton or greater
detectors are now required

3) no one knows how much of the dark matter in our galaxy is non baryonic

4) Cold Dark Matter models are in some trouble with the observed large scale structure
of the universe For these reasons we believe that an effort should be mounted to search
for massive WIMPs with large detectors (> 0.1Ton). In this report we discuss the
possibility of a non ultra low temperature detector using liquid Xenon.

3. THE STATUS OF THE ICARUS DETECTOR DEVELOPMENT

The ICARUS detector was first proposed in 1983 and steady progress has been made
over the recent period. Table 1 lists the possible physics goals of detectors that use this
technique. The current technical effort is being directed by P. Picchi.

Table 1 lists some of the particle physics goals that can be carried out with detectors
that use electron drift in ultrapure liquid argon, Krypton or Xenon. The ICARUS team is
listed in reference 2. Recent progress in purification of liquid Argon and previous references
are given in Reference 3. Recently there has been a breakthrough in the ICARUS program
with the successful operation of the 3 Ton prototype at CERN. The detector has been
triggered at 500 KeV (this is why a WIMP search may be possible for the solar neutrino
physics simulation. Fig.7 shows a stopping u in the ICARUS detector at CERN. Pictures
of this sort lead to the name an electronic bubble chamber. The next step in the ICARUS
program is to study the 42Ar level in argon at the Gran Sasso this Fall. (Current attempts
to search for 42Ar at the Gran Sasso provide limits below that of the previous experiments
of R. Davis.) We believe the initial goals of the ICARUS R& D program have been met
and this technology is now available for physics studies as listed in Table 1. Some results

have also been reported in liquid Xenon®®.

4. THE VLPC FOR SCINTILLATING FIBER TRACKING SYSTEMS

In order to use scintillating fibers for tracking in high energy high luminosity colliders,
such as the SSC or LHC, a high quantum efficiency photon detector is required. Such a
detector was invented by M. Petroff of Rockwell, Inc. and is being developed by a group
that is being led by M. Atac. Much of the research is aimed for use in the SDC detector
for the SSC. We now review the recent progress in this field.

The scintillating fiber tracking team in the SDC detector is listed in Reference 7. A
UCLA-Rockwell team is carrying out extensive studies at UCLA®. The idea of the VLPC



is shown in Fig.5°. In Fig. 10 we show the experimental arrangement for the UCLA-
Rockwell tests. Fig. 11 shows the results of individual photon counting. This is the most
efficient photon detector in the world. We believe this technology is now ready to be used

in novel particle detectors, as well.

5. A POSSIBLE DARK MATTER DETECTOR USING LIQUID XENON
WITH AN EMBEDDED SCINTILLATING FIBER SYSTEM

The basic concept we propose is to attempt to detect individual recoiling Xe

atom/nucleus created from the WIMP collision

W4 Xe = W+ Xe (1)

|

for the massive WIMPs. The concept is to use both ionization and scintillation light to
identify the Xe recoil. The average energy given to the Xe is

(E) = 2KeV (2)

Mx. Mw ]2
lGeV MW + MXe

For Mw > Mx. (E) — 270KeV.

Scintillation light from various particles has been recorded in Xe by T. Doke, et al®.
Fig. 12 shows some of these results. Note that relativistic and non relativistic particles
behave differently. We now propose a WIMP detector to record individual Xe recoil from
massive WIMP interaction (M > 250 GeV). The basic concept is to record ionization
(and position) ICARUS style and to detect the Xe scintillation light using a
large number of fibers in the liquid Xenon. Detectors of 0.1 -1 Ton could result from
this approach, allowing a definitive search for massive WIMPs. Fig. 13 shows a schematic
view of such a detector. Tests are underway to put scintillating fibers in liquid argon at
UCLA. These tests and further studies of ICARUS and the VLPC technology, as well as
Monte Carlo simulations, will indicate the feasibility of this idea.
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TABLE 2

i, Rates for Events in ICARUS (1000 Ton) for E, > 5MeV per year

SOLUTION PARAMETERS ABSORPTION |ELASTIC |SUM

No Oscillation 832 918 1740

CASE 1: sin® 20 = 10~3 136 564 700
Am? = 10"4eV?

CASE 2: sin? 26 = 1 x 10~ 276 442 718

Am? =5 x 10-5eV?

CASE 3: sin®20 =1 x 10~13 526 546 1072

Am? =1.1x 10-5eV?




Decay - 2 Year Run

. TABLE 3
Comparison of ICARUS (3K Ton) & Super Kam (30K Ton) Search for SUSY Type Proton

Mode: |Assumed /B |Signal (ICARUS) BG (ICARUS) Signal (S.Kam) | BG (S.Kam)
p— K*p 5 x 1032 4 ~0 40 56 + 307
n— K 6 x 1032 4 ~0 40 20
p—nti 5 x 1032 4 ~0 40 280

(if =t range measured)
p—uty 5 x 103! 40 ~0 400 <16

TABLE 4

Values of m, (GeV) of Eq.(4.4) for Kamiokande bound Eq.
Eq.(2.1b) for cases (1), (2), and (3) of Sect. 4. (m5 = 10GeV, mg = 40GeV, ay = 45°,
and My = 1 x 10'® GeV.) (Ref. 11)

(2.1a) and IMB bound

Limits on Photino & Squark Masses from Proton

KAMIOKA IMB
CASE: | m;y | mz |m3 | mi | m2 | mg
(1) 143 144 |[3000 {142.5 [144.5 | 2050
(2) 138.5 {149.5 | 895 ]133.5 | 158 560
(3) | 124 | 220 |250 | 111 | - -
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FIG.5 Early attempt to extrapolate the running coupling to the GUT scale.

FIG.6 SUSY GUTS proton decay process.
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FIG.12 Time structure of different type of ionization process in Liquid Xenon.
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