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Abstract

The catabolism of ATP and other nucleotides participates partly in the important function of nucleotide salvage by

activated cells and also in removal or de novo generation of compounds including ATP, ADP, and adenosine that

stimulate purinergic signaling. Seven nucleotide pyrophosphatase/phosphodiesterase NPP family members have been

identified to date. These isoenzymes, related by up conservation of catalytic domains and certain other modular domains,

exert generally non-redundant functions via distinctions in substrates and/or cellular localization. But they share the

capacity to hydrolyze phosphodiester or pyrophosphate bonds, though generally acting on distinct substrates that include

nucleoside triphosphates, lysophospholipids and choline phosphate esters. PPi generation from nucleoside triphosphates,

catalyzed by NPP1 in tissues including cartilage, bone, and artery media smooth muscle cells, supports normal tissue

extracellular PPi levels. Balance in PPi generation relative to PPi degradation by pyrophosphatases holds extracellular PPi
levels in check. Moreover, physiologic levels of extracellular PPi suppress hydroxyapatite crystal growth, but

concurrently providing a reservoir for generation of pro-mineralizing Pi. Extracellular PPi levels must be supported by

cells in mineralization-competent tissues to prevent pathologic calcification. This support mechanism becomes

dysregulated in aging cartilage, where extracellular PPi excess, mediated in part by upregulated NPP1 expression

stimulates calcification. PPi generated by NPP1modulates not only hydroxyapatite crystal growth but also chondrogenesis

and expression of the mineralization regulator osteopontin. This review pays particular attention to the role of NPP1-

catalyzed PPi generation in the pathogenesis of certain disorders associated with pathologic calcification.

Abbreviations: ANK – protein product of the murine ankylosis disease susceptibility gene; CPPD – calcium pyrophosphate

dihydrate; CILP – cartilage intermediate layer protein; HA – hydroxyapatite; IIAC – Idiopathic Infantile Artery Calcification;

MV –matrix vesicles; NPP – nucleotide pyrophosphatase/phosphodiesterase; OPLL – ossification of the posterior longitu-

dinal ligament; SMC – smooth muscle cells; SNP – single nucleotide polymorphism; TNAP – tissue nonspecific alkaline

phosphatase

Introduction

The extracellular catabolism of ATP and other nucleotides

by coordinated ecto-enzymes mediates nucleotide salvage

by activated cells and also drives removal or de novo gene-

ration of compounds including ATP, ADP, and adenosine

that stimulate purinergic signaling [1Y3]. This subject is

reviewed in depth by Stefan et al. in this special issue of the

journal. Among the many enzymes participating in nucleo-

tide catabolism are certain nucleotide pyrophosphatase/phos-

phodiesterase (NPP) family members, including NPP1, the

principal subject of this review. Seven NPPs have been

identified to date (Figure 1) [4]. These isoenzymes, related

by 24%Y60% conservation in catalytic domains [4] and by

conservation of certain other modular domains, exert

generally non-redundant functions via distinctions in

substrates and/or subcellular localization. For example,

the type II transmembrane ecto-enzymes NPP1 (PC-1,

npps) and NPP3 (B10, CD203c, PD-1�, gp130RB13-6),

which exist as disulfide-bonded homodimers in mem-

branes, and whose extracellular domains can be proteolyt-

ically liberated into secreted forms, exert nucleoside

triphosphate pyrophosphohydrolase (NTPPPH) activity

that generates PPi from ATP and other nucleoside

triphosphates, as discussed below, NPP1 and NPP3 both

subserve other functions by alkaline pH optimum nucleo-

tide phosphodiesterase activities [5Y8]. However, the

dileucine motif in the cytosolic tail of NPP1 (but not

NPP3) mediates differential subcellular localization to the

basolateral and apical plasma membrane, respectively, in

polarized cell types [5].
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NPP2 (autotaxin, PD-1a), though very similar to NPP1

and NPP3 in structural organization (Figure 1), is synthe-

sized as a pro-enzyme and further processed to be a

secretory molecule (4.9). NPP2 lysophospholipase D

specific activity is much higher than that of other NPP

family members and specific activity as a nucleotide

pyrophosphatase/phosphodiesterase much lower than that

of NPP1 and NPP3 [10, 11]. Correspondingly, we have

observed that direct expression of NPP2 did not increase

extracellular PPi in chondrocytes, under conditions in

which NPP2 did stimulate both alkaline phosphatase and

increased calcification [12]. NPP6 and the intestinal

enzyme NPP7 (Figure 1) exert lysophospholipase C or

choline phosphate esterase activities [4]. The secretion of

NPP2 by multiple tissues, and NPP2 accumulation in

extracellular fluids, allows NPP2, in large part via lysophos-

pholipase D activity, to exert a variety of biologically

significant effects on cell growth, differentiation, adhesion,

and migration, translated into functional effects in angio-

genesis, tumor metastasis, and embryonic development

[4, 13Y15].
Comparative molecular structure-function of NPPs and

their substrate specificities were recently reviewed in a

thorough and lucid manner [4]. This review focuses on the

functions of NPP1 in the regulation of physiologic and

pathologic calcification, principally via PPi generation

from nucleoside triphosphates in tissues (and cells)

including cartilage (and chondrocytes), bone (and osteo-

blasts), and large arteries (and smooth muscle cells

(SMCs)).

NPP1 and ANK in PPi metabolism and calcification

Subcellular trafficking mediated by the dileucine motif in

the NPP1 (but not NPP3) cytosolic tail accounts for the

observation that the majority of NPP activity in osteoblast

plasma membranes and plasma membrane-derived miner-

alizing secretory vesicles (termed matrix vesicles) is

accounted for by NPP1 [17]. Concordantly, cultured

osteoblasts of NPP1 null mice demonstrate marked

depletion (of up to 50%) in extracellular PPi [18].

PPi potently inhibits the nucleation and propagation of

hydroxyapatite (HA) and other basic calcium phosphate

crystals [19]. As such, maintenance of physiologic extra-

cellular PPi levels by mineralization-competent cells

suppresses spontaneous calcification. This has been strik-

ingly illustrated in certain mouse models of deficient

NPP1-catalyzed PPi generation [18, 20, 21], or alternately,

ANK-mediated PPi transport [18, 22]. In humans, 18 of 23

kindreds demonstrated homozygosity or compound hetero-

zygosity for mutations of NPP1 in association with

generalized arterial calcification of infancy (GACI, IIAC,

MIM# 208000) [23, 24]. This entity, described in approx-

imately 180 individuals to date, is characterized by large

artery media calcification and myointimal proliferation,

commonly associated with periarticular calcification

[23Y25]. The disease is frequently lethal but may respond

to treatment with bisphosphonates, which function in part

as non-hydrolyzeable PPi analogues [25]. GACI is linked

to systemic (blood, urine, tissue) extracellular PPi defi-

ciency [25, 26] discovered by us to be caused by mutations

Figure 1. General Structural Features of NPP family members. The schematic highlights related structural features of NPPs 1Y7, as discussed further in
the text.
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widely spread through NPP1 extracellular domains [23].

Many of these NPP1 mutations, which are mostly in the

nuclease-like and catalytic, domains, but also reported in

the somatomedin B-like domain, have been established to

impair NPP1 catalytic activity [23, 24].

Notably, PPi serves as reservoir for alkaline phospha-

tase-catalyzed Pi generation that is pro-mineralizing, as

illustrated by osteopenia in long bones of NPP1 deficient

mice [27, 28]. As such, PPi generation can both suppress

and promote HA crystal deposition, depending on relative

tissue levels of NPP1 and alkaline phosphatase (Figure 2)

[16Y21, 27, 28]. The capacity of chondrocytes to produce

copious extracellular PPi is particularly double edged, as it

is directly promotes calcium pyrophosphate dihydrate

(CPPD) crystal deposition (Figure 2). Depending on

cartilage ATP and PPi concentrations, and the level of

activity of Pi-generating ATPases and pyrophosphatases,

NPP1 excess promotes both HA and CPPD crystal

formation by articular chondrocytes [12, 29Y31], an event

that commonly occurs in the joint in human aging and

osteoarthritis (OA) [32].

PPi appears to directly regulate expression of certain

genes (including inductive effects first described by us for

osteopontin and MMP-13 expression and suppressive

effects on Sox9 expression)[18, 33Y35]. PPi regulates

certain cellular differentiation and functions including

protein synthesis [19], chondrogenesis [35], and pro-

mineralizing chondrocyte maturation to terminal hyper-

tophic differentiation transduced partly by Pit-1 mediated

Pi uptake [36]. Such effects of PPi are analogous to effects

of not only Pi [37, 38] but also bisphosphonate PPi
analogues [39, 40]. It is not clear in which subcellular

compartments PPi could act to carry out these effects and

what contributions Pi derived from PPi makes in these

activities of PPi.

Mammalian extramitochondrial mechanisms for PPi
production, degradation, and transport were recently

reviewed in depth [19]. In cells such as osteoblasts and

chondrocytes that normally express NPP1 relatively ro-

bustly, NPP1 and NPP3 increase intracellular PPi, sus-

pected to be in large part in the lumen of the ER and Golgi

[12, 16, 31]. Critical to support of extracellular PPi is

apparent direct PPi transport by the multiple-pass trans-

membrane protein ANK [41], which makes a major

contribution to moving to the movement into the extracel-

lular space of intracellular PPi, including the fraction of

intracellular PPi generated by NPP1 [34].

NPP1 and PPi metabolism in cartilage and bone

Extracellular PPi rises markedly in articular cartilage in

direct association with aging and OA, and resultant matrix

supersaturation with PPi and cartilage matrix abnormalities

that alter the solubility product of PPi and Ca2+ promote

calcification [42]. Physiologic chondrocyte PPi metabolism

is regulated in part by growth factor and cytokine

regulatory effects on chondrocyte NPP1 expression. Inter-

ruption in regulatory checks and balances on articular

cartilage PPi metabolism appears to occur in aging and

diseases including OA. For example, the chondrocyte

growth factor TGF� induces both NPP1 expression and

elevation of extracellular PPi [12, 31, 43]. The capacity of

TGF� to increase cartilage NPP activity and extracellular

PPi levels directly correlates with donor age [12, 31, 44].

The TGF�-stimulated cellular program for chondrocyte

Figure 2. Proposed NPP1-mediated and PPi-dependent mechanisms

stimulating CPPD and HA crystal deposition in aging and osteoarthritis

(OA): Roles of ATP and PPi Metabolism and inorganic phosphate (Pi)

generation in pathologic cartilage calcification. This model presents

mechanisms underlying the common association of extracellular PPi
excess with both CPPD and HA crystal deposition in OA and

chondrocalcinosis cartilages, as well as the paradoxical association of

extracellular PPi deficiency (from defective ANK or PC-1/NPP1 expres-

sion) with pathologic calcification of articular cartilage with HA crystals

in vivo. Factors driving pathologic calcification are indicated in green and

physiologic factors suppressing calcification in red. Excess PPi generation

in aging cartilages in idiopathic CPPD deposition disease of aging, and in

OA cartilages, is mediated in part by marked increases in NTPPPH

activity, mediated in large part by the PC-1/NPP1 isoenzyme. In

idiopathic chondrocalcinosis of aging and in OA, there are substantial

increases in joint fluid PPi derived largely from cartilage. NPP1 not only

directly induces elevated PPi but also matrix calcification by chondrocytes

in vitro. Depending on extracellular availability of substrate PPi and the

activity of pyrophosphatases, the availability of substrate ATP and the

activity of ATPases, and other factors such as substantial local Mg++

concentrations, HA crystal deposition, as opposed to CPPD deposition,

may be stimulated. In this model, excess extracellular PPi also may result

from heightened release of intracellular PPi via increased ANK expression

in OA and abnormal ANK function in familial chondrocalcinosis, as well

as from deficient activity of pyrophosphatases (such as TNAP and

possibly inorganic pyrophosphatase) in certain primary metabolic disor-

ders. Also illustrated at the top of this schematic is the role in cartilage

calcification in OA and aging of altered TGF� expression and respon-

siveness, which drives PPi generation and release mediated via NPP1 and

ANK, and diminished responsiveness to IGF-I, which normally suppresses

elevation of chondrocyte extracellular PPi.
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extracellular PPi elevation includes substantial increases in

ATP generation [45] and stimulation of NPP1 movement to

the plasma membrane [12, 31].

Osteoblasts and chondrocytes have particularly high

levels of both NPP1 expression and NPP specific activity

[19, 46, 47]. Moreover, chondrocyte NPP activity increases

in direct condordance with cartilage PPi generation (to an

average of double normal levels) in a donor age-dependent

manner [47]. The age-dependent increases in NPP activity

are directly linked to CPPD crystal deposition disease [47].

Upregulation of NPP1 but not NPP3 is associated with

calcification by chondrocytic cells in situ and in vitro [12,

31]. Unlike NPP1, which regulates both intracellular and

extracellular PPi in chondrocytes, NPP3 appears to princi-

pally regulate only intracellular PPi [12, 31].

Chondrocyte mitochondrial dysfunction associated with

spontaneous OA in Hartley guinea pig knees promotes

ATP depletion [48]. Significantly increased NPP activity

and extracellular PPi develop concurrent with the ATP-

depleted state [48]. Hence, increased ATP-scavenging by

energy-depleted chondrocytes likely promotes extracellular

PPi excess in human OA and aging cartilages.

A series of studies from one research group errone-

ously reported that cartilage intermediate layer protein

(CILP), an interterritorial and pericellular matrix constit-

uent in cartilage with a molecular weight similar to that

of NPP1, was an NPP family member, even though

there was no structural similarity of CILP to NPP family

members [49Y51]. We refuted this work [52], and in so

doing, we demonstrated that increased expression of one

of 2 CILP isoforms (CILP-1) in aging cartilage interferes

with the regulatory effects of IGF-I on PPi metabolism,

thereby promoting increased extracellular PPi and cartilage

calcification.

NPP1 and PPi metabolism in pathologic soft tissue

calcification syndromes and pivotal role of

osteopontin depletion

Consistent with the apparent co-dependent function of

ANK and NPP1 to raise extracellular PPi [34] is the

remarkable similarity in the consequences of deficient

ANK and PC-1 function in vivo. Both NPP1 deficient mice

and mice homozygous for a natural C-terminal ANK

mutant that appears to incapacitate ANK PPi transport

function (ank/ank mice) spontaneously develop a progres-

sive phenotype of pathologic soft tissue calcification that

with increasing age comes to include perispinal ligament

hyperostosis, periarticular calcification leading to ossific

fusion of peripheral joints, extensive articular cartilage

degeneration associated with HA deposits, and large artery

calcification [22, 35]. The initial implication of NPP1

deficiency in spontaneous pathologic soft tissue calcifica-

tion was in Ftiptoe walking_ ttw/ttw mice, which are

homozygous for a spontaneous nonsense mutation that

encodes for a stop codon at tyrosine 568, a position 30 of
the NPP1 catalytic site [20]. It is not yet known if NPP1

expression is depressed or absent in ttw/ttw mice, or if the

ttw mutation, like many of the NPP1 mutations seen in

humans with GACI, critically impairs catalytic activity,

putatively by interfering with substrate binding.

Human ossification of the posterior longitudinal liga-

ment (OPLL), a form of spontaneous pathologic perispi-

nal ligament calcification common in Japanese subjects,

has been linked with certain SNPs in the NPP1 gene

[53Y55]. It will be of interest to see if the implicated NPP1

sequence variants affect NPP1 expression and function.

Interestingly, the inflammatory cytokine IL-1 depresses

NPP1 expression, NPP activity, and extracellular PPi in

chondrocytes [43]. In this context, a õ30% depression in

serum NPP activity is seen in males with the chronic

inflammatory disease ankylosing spondylitis [56], a condi-

tion that, like OPLL and spinal alterations in NPP1-

deficient mice, associated with ankylosing intervertebral

soft tissue calcification.

Interestingly, periarticular and bone abnormalities are far

more substantial and progressive in NPP1-deficient mice

than in NPP1-deficient humans with GACI. Conversely

NPP1 deficient mice [35] do not demonstrate the severe

myointimal proliferative changes seen in arteries in human

GACI [24, 25]. We speculate that the relatively high level

of normal serum Pi in mice compared to humans (e8 vs.

e4.5 mg/dL, respectively) [46] plays a major role in

determining these phenotypic distinctions. In this context,

high dietary Pi worsens pathologic calcification in NPP1

null mice [46]. Conversely, low serum Pi induced by

crossbreeding with PHEX null mice is associated with

correction of pathologic artery and soft tissue calcification

in both NPP1 null and ank/ank mice [46].

Unlike cultured cells of ank/ank mice, NPP1-deficient

cells demonstrate low intracellular as well as extracellular

PPi levels [18]. Thus, the common basis for the remarkably

similar hypermineralizing phenotypes seen in ank/ank mice

and in NPP1 null mice (and the pathologic calcification

seen in the human NPP1 deficiency state GACI) appears to

rest in depression of extracellular PPi. Furthermore, the

marked depletion of extracellular PPi and of osteopontin,

the rapid, extensive calcification by both NPP1j/j and

ank/ank osteoblasts in culture are corrected by soluble

NPP1, reinforcing a central role of NPP1 in skeletal PPi
and Pi metabolism and osteopontin expression [18], a

notion strongly supported by in vivo studies [21, 33].

Pi, mediated by uptake through plasma membrane

sodium-phosphate co-transport, stimulates expression of

osteopontin, an inhibitor of HA crystal growth and

promoter of mineral resorption [37, 38]. As cited above,

exogenous PPi also induces osteopontin expression [18,

33]. It is not yet clear whether uptake of Pi derived from

extracellular PPi is a major signaling intermediate in this

process. Nevertheless, it is remarkable that one HA crystal

growth inhibitor (PPi) promotes expression of a second in

the form of osteopontin. Because osteopontin knockout

mice have relatively mild changes in mineralization in

contrast to the marked phenotypic abnormalities in extra-

cellular PPi-deficient mice, PPi clearly higher than osteo-

pontin in the physiologic hierarachy of HA crystal growth

inhibitors.
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As previously reviewed [19, 29], NPP1 plays a major

role in regulating nucleation of mineral in chondrocyte-,

osteoblast-, and apparently artery smooth muscle cell-

derived secretory bodies released by budding from the

plasma membrane and termed matrix vesicles (MVs). The

MVs, are enriched in NPP1 and TNAP, whose catalytic

domains are predominantly exposed at the external face of

MVs. The MVs provide a sheltered environment for

initiation of mineral crystal formation in a manner

modulated by the concentration of PPi, though mineral

propagation is mediated by other factors, including

availability of fibrillar collagen in Fosteoid_ to serve as a

nidus for calcification with HA [46]. NPP1 is clearly the

principal NPP associated with chondrocyte-derived and

osteoblast-derived MVs [16, 17, 21, 30, 57]. NPP1 and

TNAP exert mutually antagonistic regulatory effects on

crystal deposition in MVs, and activity not shared by NPP3

[16]. Cell differentiation and a variety of calciotropic

hormones and cytokines (including 1,25 dihydroxyvitamin

D3, TGF�, and IL-1) can regulate the NPP1 content, NPP

and alkaline phosphatase activities, PPi content, and other

compositional features of MVs [29]. However, we have not

seen concentrated ANK localization in MVs [33], likely

contributing to the observation that correction of patholog-

ic calcification by TNAP deficiency is less marked in ank/

ank than NPP1j/j mice [33].

NPP1 and PPi deficiency states are linked to accelerated

chondrogenesis

Taken together, it is clear that NPP1 and PPi physiologi-

cally function to prevent calcification of arteries and

certain other soft tissues at the level of cell differentiation,

and not simply at the level of mineral formation and

resorption in the extracellular matrix. Most strikingly, we

recently discovered that trans-differentiation of artery

SMCs and accelerated intra-arterial chondrogenic differen-

tiation mediated directly by PPi depletion promotes

spontaneous artery media calcification in NPP1j/j and

ank/ank mice [35]. Specifically, we observed that NPP1

deficiency promoted the spontaneous emergence of chon-

drogenesis from bone marrow stromal cells under non-

calcifying conditions. Cultured NPP1j/j aortic SMC

preparations and NPP1j/j aortic cells 023060 in situ

expressed cbfa1, osteocalcin, and chondrocyte-specific

collagens. Osteopontin expression was depressed and pro-

calcifying alkaline phosphatase specific activity and calci-

fication were markedly upregulated in cultured NPP1j/j

SMCs [35]. In contrast, there was no gross alteration in

expression of the physiologic artery calcification inhibitors

matrix gla protein and osteoprotegerin in NPP1j/j mouse

arterial cells [35]. The capacity of exogenous PPi to correct

spontaneous chondrogenesis in NPP1j/j bone marrow

stromal cells under non-calcifying conditions suggested

that extracellular PPi deficiency directly promoted chon-

drogenesis and trans-differentiation to chondrocytes of the

SMCs, a notion supported by aortic media calcification and

changes in cultured SMC differentiation and calcification

in ank/ank mice [35]. Therefore, acquired regional and

systemic decrements in NPP1 and ANK expression and

extracellular PPi could contribute to intra-arterial chondro-

osseous metaplasia and calcification in aging, diabetes

mellitus, and atherosclerosis. In addition, it is noteworthy

that systemic PPi deficiency is seen in hemodialysis-

dependent renal insufficiency, a condition associated with

hyperphosphatemia and often extensive artery media and

periarticular calcifications [58].

Conclusions and perspectives

Support of extracellular PPi levels by NPP1 and ANK

inhibits pathologic soft tissue calcification but supports

hard tissue mineralization in long bones and promotes

calcification of articular cartilages in aging and OA. PPi is

a central regulator of calcification in the extracellular

matrix, but extracellular PPi regulates gene expression and

cellular differentiation, including major physiologic effects

on chondrogenesis and expression of osteopontin. The

larger significance of mutants of NPP1 and ANK in disease

continues to be elucidated. For example, mutants of

ANKH, concentrated mainly at the N-terminal end of the

molecule, have been linked with both autosomal dominant

familial and Fsporadic_ CPPD crystal deposition disease of

articular cartilage [59, 60]. But other ANKH mutants

clustered in putative cytosolic loops well-removed the N-

and C-termini are linked with the distinct phenotype of

craniometaphyseal dysplasia, a disease mediated by abnor-

mal skeletal remodeling more than pathologic calcification

[61, 62]. Polymorphisms in the human homologue of ANK

(ANKH) also appear to contribute to differences in hand

bone size and geometry that may influence bone fragility in

a homogeneous Chuvasha population [63]. In the same

population, NPP1 gene polymorphisms appeared to con-

tribute to variance in severity of hand joint OA [64].

NPP1, in a catalytic activity-independent manner, in-

hibits ligand-induced insulin receptor signaling [65], an

effect that appears linked to NPP1 mutations associated

with type II diabetes mellitus in some but not all ethnic

groups studied [66, 67]. Interestingly, the K173Q SNP of

NPP1, which maps to the second somatomedin-B-like

domain of NPP1 and has been linked to insulin resistance,

does not modulate NPP1 dimerization or catalytic activity

or affect physical interaction of NPP1 with the insulin

receptor [68]. Inherited states of putative Fgain-of-function_
of NPP1 also have been linked to obesity [69], also likely

mediated primarily via effects on insulin receptor signal-

ing. However, it is not likely that the numerous NPP1

catalytic site-independent mutants implicated as interfering

with ligand-induced insulin receptor signaling directly

affect mineralization.

Last, NPP1 not only generates PPi but also modulates N-

glycosylation and secretion of glycoproteins, and proteo-

glycans sulfation [6Y8], and NPP1 also scavenges ATP and

thereby regulates purinergic receptor signaling. The poten-

tial roles in calcification of these alternative effects of

NPP1, and of other NPP1 interactions with nucleotide-
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hydrolyzing ecto-ezymes, remain to be determined. Nev-

ertheless, the remarkable phenotypic similarities between

NPP1-deficient and ANK-deficient mice strongly support

the central role of NPP1 catalyzed PPi generation in the

regulation of calcification.
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