
Original Paper

Physiologic Response to the Pfizer-BioNTech COVID-19 Vaccine
Measured Using Wearable Devices: Prospective Observational
Study

Alexander G Hajduczok1*, MD; Kara M DiJoseph1*, DO; Brinnae Bent2, PhD; Audrey K Thorp1, DO; Jon B

Mullholand1, MD; Stuart A MacKay1, DO; Sabrina Barik1, MD; Jamie J Coleman3, MD; Catharine I Paules4, MD;

Andrew Tinsley5, MD
1Division of Internal Medicine, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
2Department of Biomedical Engineering, Duke University, Durham, NC, United States
3Department of Surgery, Denver Health Medical Center, Denver, CO, United States
4Division of Infectious Diseases, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
5Division of Gastroenterology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
*these authors contributed equally

Corresponding Author:
Alexander G Hajduczok, MD
Division of Internal Medicine
Department of Medicine
Penn State Health Milton S. Hershey Medical Center
500 University Drive
Hershey, PA, 17033
United States
Phone: 1 7168634928
Email: alexander.hajduczok@jefferson.edu

Abstract

Background: The Pfizer-BioNTech COVID-19 vaccine uses a novel messenger RNA technology to elicit a protective immune
response. Short-term physiologic responses to the vaccine have not been studied using wearable devices.

Objective: We aim to characterize physiologic changes in response to COVID-19 vaccination in a small cohort of participants
using a wearable device (WHOOP Strap 3.0). This is a proof of concept for using consumer-grade wearable devices to monitor
response to COVID-19 vaccines.

Methods: In this prospective observational study, physiologic data from 19 internal medicine residents at a single institution
that received both doses of the Pfizer-BioNTech COVID-19 vaccine was collected using the WHOOP Strap 3.0. The primary
outcomes were percent change from baseline in heart rate variability (HRV), resting heart rate (RHR), and respiratory rate (RR).
Secondary outcomes were percent change from baseline in total, rapid eye movement, and deep sleep. Exploratory outcomes
included local and systemic reactogenicity following each dose and prophylactic analgesic use.

Results: In 19 individuals (mean age 28.8, SD 2.2 years; n=10, 53% female), HRV was decreased on day 1 following
administration of the first vaccine dose (mean –13.44%, SD 13.62%) and second vaccine dose (mean –9.25%, SD 22.6%). RHR
and RR showed no change from baseline after either vaccine dose. Sleep duration was increased up to 4 days post vaccination,
after an initial decrease on day 1. Increased sleep duration prior to vaccination was associated with a greater change in HRV.
Local and systemic reactogenicity was more severe after dose two.

Conclusions: This is the first observational study of the physiologic response to any of the novel COVID-19 vaccines as
measured using wearable devices. Using this relatively small healthy cohort, we provide evidence that HRV decreases in response
to both vaccine doses, with no significant changes in RHR or RR. Sleep duration initially decreased following each dose with a
subsequent increase thereafter. Future studies with a larger sample size and comparison to other inflammatory and immune
biomarkers such as antibody response will be needed to determine the true utility of this type of continuous wearable monitoring
in regards to vaccine responses. Our data raises the possibility that increased sleep prior to vaccination may impact physiologic
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responses and may be a modifiable way to increase vaccine response. These results may inform future studies using wearables
for monitoring vaccine responses.

Trial Registration: ClinicalTrials.gov NCT04304703; https://www.clinicaltrials.gov/ct2/show/NCT04304703

(JMIR Form Res 2021;5(8):e28568) doi: 10.2196/28568
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Introduction

The COVID-19 pandemic has had a substantial global impact
resulting in over 165 million infections and nearly 3.5 million
deaths worldwide [1,2]. Vaccines are required to end the
pandemic. The first vaccine to receive emergency use
authorization for prevention of COVID-19 infection by the
United States Food and Drug Administration was the BNT162b2
messenger RNA (mRNA) COVID-19 vaccine (Pfizer-BioNTech
COVID vaccine) that encodes the spike protein of the
SARS-CoV-2 virus [3,4]. Following preliminary studies with
this mRNA vaccine showing neutralizing antibody response, a
phase 3 randomized clinical trial demonstrated that the
Pfizer-BioNTech vaccine was safe and had an efficacy of 95%
in reducing risk of contracting COVID-19 compared to placebo
[4-6].

An estimated 21% of US adults report using wearable devices
that objectively measure physiologic parameters [7]. Although
marketed for personal use, the widespread nature and
convenience of these devices allows health care professionals
to monitor physiologic changes in real time [8]. The WHOOP
Strap 3.0 has been externally validated for tracking of heart rate
variability (HRV), resting heart rate (RHR), respiratory rate
(RR), and sleep stage duration [9]. HRV is determined by the
subtle variation in the time between successive heart beats, thus

HRV is a measure of the balance between the sympathetic and
parasympathetic nervous system and their composite effects on
heart rate [10].

A recent study using the WHOOP device was able to track
physiologic changes, specifically an increase in nocturnal RR
and decrease in HRV, in individuals who reported COVID-19
infection. These changes were noted 2 days before symptom
onset in 20% of individuals and in 80% of the cohort after
symptom onset [11]. Other studies have used HRV and RR
measured by wearable devices to prospectively and
retrospectively predict and identify COVID-19 infection
(confirmed by positive testing) [12-14]. Therefore, we postulated
that it would be possible to track an array of physiologic
responses following COVID-19 vaccination. This wearable
remote monitoring strategy could serve as a proof of concept
and guide design of future studies of the physiologic and
immune responses to vaccines.

Methods

Study Population
Internal medicine residents at Penn State Hershey Medical
Center previously enrolled in a clinical trial (NCT04304703)
using the WHOOP Strap 3.0 to measure physiologic parameters
were used for this analysis (Multimedia Appendix 1, Figure 1)
[15].

Figure 1. A total of 19 participants, 53% female, who were vaccinated with two doses of the Pfizer-BioNtech COVID-19 vaccine (mean time between
doses 19.6, SD 2.8 days), transmitted continuous physiologic data via the WHOOP device. Changes from baseline were observed in HRV and were
most pronounced on day 1 and 2 for dose 1 and only day 1 for dose 2. RR and RHR were unaffected following vaccination. Sleep duration initially
decreased on day 1 post vaccine dose 1 and dose 2, with a compensatory increase from days 2 to 4, prior to return to baseline. Sleep deprivation was
associated with a blunted HRV response, and premedication was associated with less change in RR and increases in REM and deep sleep percentages.
HRV: heart rate variability; REM: rapid eye movement; RHR: resting heart rate; RR: respiratory rate.
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Study Design
The primary objective of this prospective observational study
was to determine the physiologic changes following the first
and second doses of the Pfizer-BioNTech COVID-19 vaccine.
Primary outcomes were percent change from baseline in HRV,
RR, and RHR for days 1 to 6 following each vaccine dose.
Secondary outcomes were percent change from baseline duration
of total, rapid eye movement (REM), and deep sleep.
Exploratory outcomes included analysis of local and systemic
reactogenicity (type and duration) associated with vaccination
and prophylactic analgesic use.

Study Procedures
Internal medicine residents were given a WHOOP Strap 3.0 to
wear to measure physiologic parameters and sleep [15] (for full
details, see Multimedia Appendix 2 [9,16-19]). Eligible
participants were surveyed to disclose their vaccination dates
for the novel Pfizer-BioNTech COVID-19 vaccine along with
local and systemic reactogenicity and analgesic use following
each vaccine dose.

Inclusion criteria for this analysis were patients concurrently
enrolled in a clinical trial (NCT04304703) using the WHOOP
device and who transmitted at least 80% of physiologic data
during the study period including at least 24 of 45 days prior to
dose one (to establish baseline metrics) and all data for the 6
days following vaccine dose one, dose two, or both. These data
cutoffs were chosen based on published data using the WHOOP
device for establishing a change from baseline in RR [11]. Local
and systemic reactogenicity was graded as mild, moderate, or
severe based on guidelines from the Centers for Disease Control
and Prevention [1,20]. Patients were excluded if they did not
or were unable to disclose the dates of vaccination (Multimedia
Appendix 3). Data were blinded to study investigators for
analysis. Recorded demographics included age, gender,
comorbidities, and year of residency training.

Data collection was approved by the Institutional Board Review
at Penn State Hershey Medical Center (STUDY14522).

Statistical Analysis
We defined a significant change from baseline to be greater
than 5% a priori. This cutoff was set based on recent findings
in two studies: (1) changes in RR and other physiologic
parameters in COVID-19–positive individuals, which were used

to develop a predictive algorithm for COVID-19 infection risk
stratification [11], and (2) precision measurements of heart rate,
RR, HRV, and REM sleep stage duration using the WHOOP
device were found to have less than 10% error [9].

The percent change of each metric for each participant in the
data set was averaged together for the overall percent change
of that metric for each day (d; equation 1). In equation 1, bn is
given as the average of the metric from the baseline period for
participant n, and xn is the value of the metric on the day (d)
being calculated post vaccine dose.

To determine the effect of sleep for the week leading up to the
vaccine on the physiological effects of the vaccine, we computed
Pearson correlations between hours of sleep in the 7 days prior
to vaccine dose 1 and the percent changes of the physiological
measurements post vaccine dose 1 [21].

Symptoms were aggregated and the density of the self-reported
duration of symptoms was calculated [22]. Postvaccination
reaction severity was compared to changes in physiologic
parameters by Pearson correlations.

Results

Baseline Characteristics
A total of 19 participants met inclusion and exclusion criteria
for this analysis; 18 individuals for dose 1 and 13 for dose 2
(Multimedia Appendix 3). Participants were 53% (n=10) female,
with an age range of 26 to 35 years and a mean and median age
of 28.8 (SD 2.2) and 29 years, respectively. No comorbidities
were reported in 74% (n=14) of participants (Multimedia
Appendix 1).

Baseline metrics were collected for all participants up to 45
days prior to vaccination dose 1 (Table 1). Mean baselines were
as follows: RHR 63.09 (SD 6.36) bpm, HRV 52.09 (SD 21.58)
ms, and RR 16.27 (SD 1.23) respirations per minute (rpm).
Although interindividual variability in metrics had a wider range,
intraindividual variability was much lower, most notably in
nocturnal RR, with an intraindividual SD of mean 0.37 (SD
0.12) rpm.

Table 1. Baseline physiological and sleep metrics intraindividual mean and SD.

Intraindividual SD, mean (SD)Intraindividual mean, mean (SD)Metric

13.16 (6.94)52.09 (21.58)Heart rate variability (ms)

4.95 (1.50)63.09 (6.36)Resting heart rate (bpm)

0.37 (0.12)16.27 (1.23)Respiratory rate (rpm)

1.48 (0.39)6.71 (0.58)Sleep (hours)

6.49 (1.23)21.99 (6.71)REMa sleep (%)

3.81 (0.66)19.10 (2.15)Deep sleep (%)

aREM: rapid eye movement.
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Physiologic Response to COVID-19 Vaccination by
Dose
For dose 1 (n=18), there was a reduction in HRV on day 1 (mean
percent change –13.44%, SD 13.62%). HRV returned to baseline
by day 3 and remained at baseline thereafter (Figure 2A, blue;
Table 2). There was no significant change in RHR and RR
compared to baseline in the 6 days following vaccination (Figure
2B, C, blue; Table 2).

For dose 2 (n=13), HRV decreased on day 1 (mean percent
change –9.25%, SD 22.69%) but quickly normalized to baseline
by day 2 (Figure 2A, magenta; Table 3). Similar to dose 1, there
was no significant change in RHR and RR in response to dose
2, with both metrics remaining at baseline from day 1 to day 6
(Table 3).

Figure 2. Percent change from baseline in (A) heart rate variability, (B) respiratory rate, and (C) resting heart rate, measured 6 days following COVID-19
vaccine dose 1 (blue) and 2 (magenta). Data is reported as mean (SD).
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Table 2. Percent changes from baseline in physiological and sleep metrics for 6 days postvaccine dose 1 (n=18).

Day 6, mean per-
cent change (SD)

Day 5, mean per-
cent change (SD)

Day 4, mean per-
cent change (SD)

Day 3, mean per-
cent change (SD)

Day 2, mean per-
cent change (SD)

Day 1, mean per-
cent change (SD)

Metrics

–2.80 (27.46)–4.35 (26.79)–1.32 (30.39)4.21 (27.23)–3.74 (34.63)–13.44 (13.62)Heart rate variability

2.02 (11.48)0.26 (8.68)0.72 (8.80)–2.23 (7.31)–1.10 (6.93)2.73 (5.50)Resting heart rate

–1.04 (2.29)–1.73 (2.56)0.02 (3.81)–0.23 (2.70)1.34 (1.98)0.16 (1.95)Respiratory rate

–3.21 (27.54)3.21 (24.38)7.74 (17.81)9.41 (21.60)5.00 (18.27)–8.41 (22.96)Hours of sleep

–16.98 (29.41)–2.70 (31.10)–6.70 (19.62)–5.13 (33.34)–6.53 (30.06)–4.94 (37.65)Percent of REMa sleep

–2.38 (17.53)–6.05 (19.58)4.58 (15.28)4.11 (12.66)3.08 (23.00)9.64 (26.30)Percent of deep sleep

aREM: rapid eye movement.

Table 3. Percent changes from baseline in physiological and sleep metrics for 6 days postvaccine dose 2 (n=13).

Day 6, mean per-
cent change (SD)

Day 5, mean per-
cent change (SD)

Day 4, mean per-
cent change (SD)

Day 3, mean per-
cent change (SD)

Day 2, mean per-
cent change (SD)

Day 1, mean per-
cent change (SD)

Metrics

2.19 (30.22)–7.76 (13.12)–5.56 (13.70)–1.30 (19.44)7.48 (32.44)–9.25 (22.69)Heart rate variability

1.70 (12.83)4.63 (10.38)1.37 (6.17)–0.15 (5.15)0.82 (8.27)4.20 (9.42)Resting heart rate

0.13 (3.06)–0.54 (3.63)0.15 (3.22)–0.26 (4.00)1.07 (6.44)0.19 (4.10)Respiratory rate

0.49 (12.30)–4.58 (20.45)9.22 (28.37)6.06 (23.84)5.33 (17.71)–2.10 (26.18)Hours of sleep

–8.35 (43.06)6.12 (32.02)0.64 (37.99)12.67 (36.41)–8.73 (39.57)13.79 (45.88)Percent of REMa sleep

–11.37 (24.40)3.42 (21.31)–6.01 (22.09)3.56 (20.31)–1.70 (19.21)4.00 (25.02)Percent of deep sleep

aREM: rapid eye movement.

Postvaccination Changes in Sleep
Total sleep duration, REM, and deep sleep duration (in hours)
were measured for all participants for 6 days following vaccine
administration. Total sleep duration followed a similar overall
pattern for both vaccine doses: an initial decrease was observed
on day 1 (dose 1: mean –8.41%, SD 22.96%; dose 2: mean
–2.1%, SD 26.8%) followed by an increase above baseline on
days 2, 3, and 4, with subsequent return to baseline on days 5
to 6 (Figure 3A; Tables 2 and 3). The change in sleep duration

peaked on day 3 following dose 1 and day 4 following dose 2.
Total sleep duration was proportional to time in bed and thus
showed similar trends in response to vaccine dose 1 and dose
2.

Patterns of change in REM and deep sleep did not follow the
same pattern as total sleep duration but showed greater
variability overall (Figure 3B, C; Tables 2 and 3). Total sleep
cycles and sleep disturbances had no correlation with changes
in physiologic metrics following either vaccine dose.
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Figure 3. Percent change from baseline in (A) total sleep duration, (B) REM sleep duration, and (C) deep sleep duration, measured 6 days following
COVID-19 vaccine dose 1 (blue) and 2 (magenta). Data is reported as mean (SD). REM: rapid eye movement.

Sleep Impact on HRV Changes
Sleep duration was evaluated 7 days preceding vaccine
administration to establish an individualized baseline. During
the baseline assessment period, participants slept, on average,
6 hours and 43 (SD 35) minutes per night, of which 21.99% (1
hour and 28 minutes) was REM sleep and 19.1% (1 hour and
17 minutes) was deep sleep. A greater amount of sleep in the 7
days prior to receiving the first dose of the vaccine was
moderately correlated with a higher percent change in HRV the
2 days following vaccine dose 1 (Pearson R=0.570 day 1;
R=0.494 day 2).

Postvaccination Symptoms
An array of local and systemic reactions to vaccination were
reported by participants, ranging from arm soreness to fatigue

and body aches. A greater frequency and duration of symptoms
were reported following dose 2 (Figure 4A, B). Arm soreness
was reported in more than 60% of participants for both doses.
The majority of symptoms subsided by hour 60 post vaccination
(Figure 4A). The mean symptom duration following dose 1 was
49.7 (SD 49.2) hours, which decreased to 34.1 (SD 13.3) hours
for dose 2. The most frequent symptom duration after dose 1
and dose 2 was 24 hours. Overall, postvaccination reactogenicity
would be classified as mild to moderate, as no severe adverse
reactions such as angioedema or other allergic reactions
requiring urgent treatment were reported [1,20]. Presence of
postvaccination reactogenicity did not show a strong correlation
with changes in sleep or other physiologic parameters.

JMIR Form Res 2021 | vol. 5 | iss. 8 | e28568 | p. 6https://formative.jmir.org/2021/8/e28568
(page number not for citation purposes)

Hajduczok et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. (A) Self-reported symptom duration following dose 1 and dose 2 of the COVID-19 vaccine. (B) Local and systemic reactogenicity experienced
by participants by vaccine dose.

Analgesic Effects on HRV, Sleep, and Postvaccination
Symptoms
None of the 19 participants premedicated with analgesic
medications (ibuprofen or acetaminophen) prior to dose 1;
however, 7 of the 13 (54%) participants premedicated prior to
dose 2 (Multimedia Appendices 4 and 5). Overall changes in
HRV were the same in both groups (premedication vs no
premedication; Multimedia Appendix 5). Those who did not
premedicate had a greater response (increase) in RR on day 1
and day 2, but overall RR was unaffected when both groups
were analyzed together (Multimedia Appendix 4). RHR had a
slightly greater increase on day 1 for those who did premedicate
(Multimedia Appendix 4). The group that premedicated had
both a greater initial decrease and compensatory increase in
total sleep duration (Multimedia Appendix 5). This group also
had higher percentage of REM and deep sleep in the days after

receiving dose 2, which were most prominent on day 1
(Multimedia Appendix 5).

The duration of all reported symptoms between the groups were
similar: participants without medication experienced symptoms
for a mean of 30.0 (SD 13.4) hours, and participants who
self-medicated prior to dose 2 experienced symptoms for 37.7
(SD 10.0) hours. There was no significant difference in symptom
severity among the two groups [1,20].

Discussion

Principal Findings
In this small observational study in a relatively young and
healthy cohort of participants, we provide evidence that
consumer-grade wearable devices can be used to measure
physiologic response to COVID-19 vaccination (Figure 1). HRV
change from baseline was the most prominent signal in our
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study population, while RHR and RR were unaffected (Figure
2).

Decreases in HRV, a surrogate of autonomic tone, have been
shown to predict negative clinical outcomes following severe
infections [23-25]. HRV decreases have also been correlated
with an increased C-reactive protein (CRP) within the first 2
days following administration of the influenza A vaccine [26].
Lower magnitude CRP elevations have been associated with
increased risk of infection, suggesting that greater HRV
decreases and CRP increases would equate to a protective
inflammatory or immunologic response [26,27]. Thus, we

propose that a higher percent change in HRV may equate to a
more robust immune response to COVID-19 vaccination
[14,26,28-30]. The directionality of HRV change (decrease) is
significant, as this is suggestive of increased parasympathetic
tone due to generation of an immune response to the vaccine
[14,28]. Further investigation of HRV response to vaccination
could provide a useful surrogate marker for immune system
activation (Figure 5) [31]. This could be accomplished in a
randomized controlled trial (RCT) of vaccination versus placebo
with wearable tracking of HRV in comparison to CRP levels,
antibody titers, and protection against infection.

Figure 5. Hypothetical connection between physiologic response measured by wearables (HRV, RHR, RR), inflammatory response (serum CRP and
proinflammatory cytokine levels), and host immunity dictated by antibody response to vaccination. Wearable monitoring of physiologic metrics could
potentially be a simple and effective way to track the efficacy of vaccine-mediated protection against infection (dashed arrow). HRV highlighted as this
parameter showed the greatest changes in this study. CRP: C-reactive protein; HRV: heart rate variability; RHR: resting heart rate; RR: respiratory rate.

There was relatively no change in both RR and RHR in response
to vaccination (Figure 2B, C). This is of particular interest given
that spikes in RR are clinically relevant in prediction of
COVID-19 infection and progression of disease [1,11-13].
Although we did not directly collect data on oxygen saturation
or hypoxia, it is likely that changes in RR are specific to
COVID-19 infection, which has a predilection for pulmonary
pathology. Thus, this change would not be expected with
vaccination as, unlike natural disease, it does not impact
pulmonary function.

Interestingly, there was a moderate correlation between change
in HRV and amount of sleep prior to vaccination (greater sleep
was associated with a greater decrease in HRV). Sleep
deprivation is known to have a significant impact on viral
susceptibility and blunted adaptive immune response in the
presence of viral vaccines [32-38]. Decreased antibody titers
and overall immune response have been observed in vaccinated
participants that are sleep deprived, most notably in response
to the influenza and hepatitis A vaccine [34-39]. A recent study

of 2884 health care workers showed that 1-hour longer sleep
duration was associated with 12% lower odds of COVID-19
infection [40]. Our data demonstrate that sleep duration impacts
physiologic response to COVID-19 vaccination and, if correlated
with immune response in further studies, could be leveraged to
potentiate the effectiveness of vaccination in general.

Limitations and Future Studies
This is a small observational study in a specific cohort of
participants with no control arm. A larger powered study is
needed for formal statistical analysis of physiologic changes
and to control for baseline demographics. The lack of a control
group institutes bias; an RCT with a placebo arm (no vaccine)
would allow for comparison of physiologic metrics to a control
group. However, our use of percent change from baseline in
our outcomes would help overcome intraindividual variability
confounding of results (ie, individuals may have a greater
magnitude change in parameters simply because they have a
higher baseline, which is accounted for by using percent change
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from established baseline). Last, this population is known to
have a greater degree of sleep deprivation secondary to duty
hours and clinical demands, which may be a confounder and
reduce the generalizability of the results [41].

Incorporation of biomarkers such as CRP is needed to
corroborate association with physiologic changes (Figure 5) as
previously observed in other vaccine studies [26,29,42,43].
Despite only exploring the response to the Pfizer-BioNTech
COVID-19 vaccine, this study further confirms the feasibility
of using wearable remote physiologic data to monitor responses
to vaccines. This simple method to track vaccine responses
would be useful for future novel vaccines. The key will be to
determine how well remotely monitored physiologic metrics
can predict inflammatory response, vaccination antibody titers,
and ultimately protection from infection. This may provide a

noninvasive method for individualized prediction of vaccine
efficacy.

Conclusion
Wearable devices are now widely available to everyday
consumers, and as technology has advanced, they are being
more widely used to capture medical data [7,8,12,13,44]. This
study is a proof of concept for this remote monitoring strategy
to capture physiologic response to COVID-19 vaccines. If
correlated with immune response and vaccine efficacy in future
studies, this approach could be leveraged in the general
population to predict response to vaccines. Our data also raises
the possibility that increased sleep prior to vaccination may
impact physiologic responses. This warrants further study and
is a potentially modifiable factor to optimize vaccine response.
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Abbreviations
CRP: C-reactive protein
HRV: heart rate variability
mRNA: messenger RNA
RCT: randomized controlled trial
REM: rapid eye movement
RHR: resting heart rate
rpm: respirations per minute
RR: respiratory rate
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