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and degrading enzymes, Aβ transport receptors, and AD-

type pathologies including hyperphosphorylated tau, neu-

roinflammation, as well as neuronal degeneration and loss 

in the brains of parabiotic AD mice. Our study revealed 

that the peripheral system is potent in clearing brain Aβ and 

preventing AD pathogenesis. The present work suggests 

that peripheral Aβ clearance is a valid therapeutic approach 

for AD, and implies that deficits in the Aβ clearance in the 

periphery might also contribute to AD pathogenesis.

Keywords Alzheimer’s disease · Parabiosis · Amyloid-

beta · Clearance · Liver · Kidney · Periphery

Introduction

Alzheimer’s disease (AD) is the most common form of 

dementia among the elderly. Senile plaques containing 

amyloid-beta protein (Aβ) in the brain are a pathological 

hallmark of AD and they play a pivotal role in AD patho-

genesis. The steady-state level of Aβ in the brain is deter-

mined by the balance between Aβ production and its clear-

ance [47]. In the brain, Aβ can be cleared via microglial 
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phagocytosis and proteolytic degradation by enzymes such 

as neprilysin (NEP) and insulin-degrading enzyme (IDE) 

[47]. Transport of Aβ from the brain into the peripheral 

blood has been demonstrated in both animal models and 

humans [28, 36]. There are several potential pathways for 

the efflux of brain Aβ into the periphery. These include 

transport across the blood–brain barrier (BBB) mediated by 

low-density lipoprotein receptor-related peptide 1 (LRP1) 

[39], drainage from interstitial fluid (ISF) into cerebrospi-

nal fluid (CSF) via perivascular [35] or glymphatic path-

ways [15], reabsorption from CSF into the venous blood 

via arachnoid villi [40] and blood–CSF barrier [32], or into 

the lymphatic system from the perivascular and perineu-

ral spaces [15, 34], and possibly via meningeal lymphatic 

vessels [15, 27] (see review in [41]). However, whether 

brain-derived Aβ is physiologically catabolized in the 

peripheral tissues and organs, and the therapeutic potential 

of this peripheral Aβ catabolism for AD, remains largely 

unknown. In the present study, we investigated the physio-

logical catabolism of brain-derived Aβ in the periphery, and 

examined its therapeutic potential for AD using a model of 

parabiosis between transgenic AD mice and their wild-type 

littermates.

Materials and methods

Participants and blood sampling

The human study was approved by the Institutional Review 

Board of Daping hospital affiliated to Third Military Medi-

cal University. Informed consent was obtained from all indi-

vidual participants included in the study. This study recruited 

30 patients with atrioventricular reentrant tachycardia (AVRT) 

(left accessory pathways) who underwent radiofrequency 

catheter ablation (RFCA). Participants had an average age 

of 49.5 years (19–74 years) and included 17 males and 13 

females, without cognitive impairment or dementia based on 

the clinical assessment. To measure the catabolism of Aβ in the 

periphery, we used time-matched arterial and venous peripheral 

blood samples as described previously [36]. Once the patients 

were deemed to undergo RFCA, catheters were placed in the 

left subclavian vein (SV), right femoral vein (FV), and right 

femoral artery (FA) simultaneously. Blood was collected from 

superior vena cava (SVC), inferior vena cava (IVC) proximal to 

hepatic vein (HV), the right FV and FA within 5 min (Fig. 1b). 

Five milliliters of blood were collected in vacuum blood tubes 

with anticoagulants at each site from the catheters. Blood was 

placed on ice immediately after sampling, and plasma was sep-

arated within 2 h and stored in polypropylene eppendorf tubes 

at −80 °C for further use. To avoid the influence of diurnal 

changes of Aβ levels, all the blood sampling were performed 

between 8:30 and 9:30 in the morning.

In a parallel animal study, the APPswe/PS1dE9 mouse 

model of AD (AD mice, Jackson Laboratories, Bar Har-

bor, MA) was used. This mouse model harbors the human 

amyloid precursor protein (APP) gent containing Swed-

ish mutant and human presenilin 1 (PS1) gene encod-

ing the deleted exon 9 mutation under control of mouse 

PrP promoter which directs the transgene expression pre-

dominantly in brain neurons [18], and develops amyloid 

plaques at 6 months of age [17]. Blood was sampled from 

the jugular vein (JV), abdominal aorta (AA), and posterior 

vena cava (PVC) of female APPswe/PS1dE9 mice aged 

6 months (n = 10) following approval by the Third Mili-

tary Medical University Animal Welfare Committee. Blood 

was sampled within 5 min at each site. The sampling was 

performed during 8:30–9:30 in the morning. Blood samples 

were examined for Aβ40 and Aβ42 levels following our 

protocols as described previously [3].

Analysis for biodistribution of 125I-Aβ1-40

The radiolabelling of Aβ1-40 was performed following 

previous protocols [8]. Synthetic Aβ1-40 was iodinated 

with Na125I (specific activity 37 MBq/mg, China Institute 

of Atomic Energy) using the Iodogen technique (Pierce). 

Radioiodinated Aβ1-40 was separated from free iodine 

using a size exclusion column (Sephadex G-25, Pharma-

cia). The specific activity of radioiodinated Aβ1-40 was 

1.065 MBq/µg. The radiochemical purity was >95 % 

trichloroacetic acid-precipitable.

Three-month-old male C57BL/6J mice received a bolus 

injection with 6.9 MBq 125I-Aβ in 0.3 ml of lactate Ring-

er’s solution (6 g/L NaCl, 0.2 g/L CaCl2, 3.1 g/L sodium 

lactate, 0.3 g/L KCl, pH 7.1) via the tail vein (n = 8). 

Mice were sacrificed by overdose of ketamine at 120 min 

after injection. The brain, skin, gastrointestinal tract, lung, 

heart, liver, spleen, kidney, and carcass were collected and 

weighted. The radioactivity (CPM values) of samples was 

measured with a wipe test counter (CAPRAC), and the 

resulting counts/min was normalized per gram of tissue. 

The radioactivity values are shown as % of total radioactiv-

ity or counts/min/gram of tissue.

Parabiosis

APPswe/PS1dE9 transgenic (Tg) mice were bred in the 

animal facility of Daping hospital. All mouse husbandry 

procedures were approved by the Third Military Medi-

cal University Animal Welfare Committee. To exclude the 

influence of gender on brain Aβ deposition, female Tg 

mice were used in the present study. Each pair of mice was 

placed together in a cage for 1 month to allow the mice 

to adapt to each other [10, 11]. Female Tg mice and their 

age- and weight-matched female wild-type (Wt) littermates 
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were selected for parabiosis including the parabiosis from 

3-months of age to 9-months of age (as the group before Aβ 

deposition in the brain) and the parabiosis from 9-months 

of age to 12-months of age (as the group after Aβ depo-

sition in the brain) (n = 8 per group). The age-matched 

female Wt (n = 8) and Tg mice (n = 8) without parabiosis 

were used in parallel as controls. The parabiosis was per-

formed following procedures as previously described [31]. 

Briefly, animals were anesthetized with ketamine (100 mg/

kg), xylazine (20 mg/kg), and acepromazine (3 mg/kg), 

and placed in a parallel orientation. A left lateral incision 

was made on one mouse while a right one was made on the 

partner mouse, extending from the base of the ear toward 

the hip. The incision included skin and muscle along thorax 

and abdomen. The opposing muscle layers of the two mice 

were joined with 5-0 silk sutures. The scapulae of the mice 

were fixed together with 4-0 silk sutures. The correspond-

ing dorsal and ventral skin was sutured with 4-0 silk. After 

the surgery, the parabiotic mice were allowed to recover in 

a warm and clean environment before being transferred into 

the husbandry area. Prophylactic antibiotic treatment (enro-

floxacin, 5 mg/kg) was started 1 day prior to the surgery 

and continued for 1 week. All animals received analgesic/

anti-inflammatory treatment (acetylsalicylic acid 5 mg/kg) 

for 2 weeks.

Brain sampling

Animals were euthanized by overdosing with pentobarbi-

tal (0.08 g/kg). Blood was sampled from the right atrium 

of the heart, followed by intracardial perfusion with 100 ml 

of 0.1 % NaNO2 in phosphate buffer. Brains were sam-

pled and weighed. Left hemispheres were fixed in 4 % 

paraformaldehyde for histological analysis, and right hemi-

spheres were snap frozen in liquid nitrogen and stored at 

−80 °C for biochemical analysis.

Fig. 1  Aβ concentrations at different locations of the systemic circu-

lation. a The venous/arterial (V/A) ratio of Aβ concentrations among 

blood samples from different venous locations in humans (n = 30). 

The blue dotted line represents Aβ concentration in the femoral artery 

(FA) as a reference. b A diagram of the circulation system and sam-

pling locations for Aβ measurement. The superior vena cava (SVC) 

collects blood from the head containing brain-derived Aβ. The infe-

rior vena cava (IVC) proximal to the hepatic vein (HV) collects blood 

from the lower part of the body including liver, kidney, and gastro-

intestinal tract. The femoral vein (FV) contains metabolites after the 

circulation through the lower limbs. The femoral artery (FA) contains 

blood virtually identical to that in the aorta and is used as a reference. 

c The venous/arterial (V/A) ratio of Aβ concentrations among blood 

samples from different locations in APPswe/PS1 mice (n = 10). The 

blue dotted line represents the Aβ concentration in abdominal aorta 

(AA) as a reference. CA carotid artery, PV portal vein, JV jugular 

vein, SVC superior vena cava, IVC inferior vena cava, HV hepatic 

vein, FV femoral vein, FA femoral artery, PVC posterior vena cava. 

Mean ± SEM, one-way ANOVA and Tukey’s test for human plasma 

and 2-tailed t test for mouse plasma, *P < 0.05, **P < 0.01. N.S. no 

statistical significance
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Histology and quantification

Coronal sections of the brain were cut at a 35 µm thick-

ness with a cryosectioning microtome and stored at 4 °C in 

PBS containing 0.1 % sodium azide until use. For the his-

tology analysis, a series of five equally spaced tissue sec-

tions (~1.3 mm apart) spanning the entire brain were used 

for each type of staining.

Aβ plaques

The compact Aβ plaques were visualized with Congo red 

staining following our previous protocols [51]. In brief, 

sections were treated with working sodium chloride solu-

tion (containing sodium chloride saturated in 80 % alco-

hol and 0.01 % sodium hydroxide) at room temperature 

(RT) for 20 min, then placed directly into working Congo 

red solution (containing saturated Congo red in work-

ing sodium solution) for 1 h, and then dehydrated rapidly 

in absolute alcohol. The total Aβ plaques containing both 

compact and diffuse plaques were visualized with antibody 

6E10 immunohistochemistry.

Cerebral amyloid angiopathy (CAA)

Cerebral amyloid angiography (CAA) were visualized with 

Congo red staining and quantified following previously 

described protocols [48]. In brief, sections were stained 

with Congo red and images were collected at the selected 

regions from frontal cortex to hippocampus of each mouse 

brain under the same illumination conditions. Quantifi-

cation of Congo red staining was performed using the 

Image J software. A series of standard images representing 

extremes of high and low levels of Congo red staining were 

used to establish segmentation threshold using the RGB 

method to distinguish positively stained pixels. CAA was 

manually selected from each image, and the measurement 

of positively stained pixels was performed under the same 

RGB segmentation values. This yields the amyloid load 

due to Congo red staining of blood vessels. Meanwhile, the 

average number of CAA profiles per section was calculated 

by dividing the total count of CAA with the total number of 

sections as in our previous study [50].

Microhemorrhage

Sections were stained for hemosiderin with 2 % potassium 

ferrocyanide in 2 % hydrochloric acid for 15 min, followed 

by a counterstaining with 1 % Neutral Red solution for 

10 min at room temperature [51]. Microhemorrhage pro-

files were counted under microscopy, and the average num-

ber of hemosiderin deposits per section was calculated.

Neuronal degeneration

Apoptosis of neuronal cells was detected with NeuN and 

Caspase-3 double immunofluorescence staining. Neuronal 

loss and neurite degeneration were detected with NeuN and 

microtubule-associated protein (MAP)-2 double immuno-

fluorescence staining.

Astrocytosis and microgliosis

Immunohistochemistry was used to visualize astrocyto-

sis and microgliosis with anti-CD45 antibody to detect 

activated microglia and anti-glial fibrillary acidic protein 

(GFAP) antibody to detect astrocytes.

Quantification was conducted by an investigator who 

was blinded to the group information of the samples. The 

area fraction and/or density of positive staining was quanti-

fied with ImageJ software.

ELISA assays

Frozen brain was homogenized in liquid nitrogen and suc-

cessively extracted with TBS, 2 % SDS, and 70 % formic 

acid solutions following our previous protocols [51]. Lev-

els of Aβ40 and Aβ42 were measured using ELISA kits 

(Covance). Concentrations of inflammatory cytokines IL-6, 

IL-1β and TNF-α in brain extracts and blood were quanti-

tatively measured with ELISA according to the manufac-

turer’s instructions (eBioscience).

Western blotting

The levels of molecules or enzymes involving Aβ metabo-

lism, phosphorylated Tau, and synapse-related proteins 

were analyzed using Western blotting. Proteins in the ani-

mal brain homogenate were extracted with RIPA buffer. 

Samples were loaded on SDS-PAGE (4–10 % acrylamide) 

gels. Separated proteins were transferred to nitrocellulose 

membranes. The blots were probed with the following anti-

bodies: anti-APP C-Terminal (171610, Millipore) which 

recognizes full-length APP (APPfl) and C-terminal frag-

ment (CTF)-β, anti-BACE1 (Millipore), anti-NEP (Mil-

lipore), anti-receptor for advanced glycosylation prod-

ucts (RAGE, Millipore), anti-LRP-1 (5A6, Calbiochem), 

anti-IDE (Epitomics), anti-phosphorylated-Tau antibodies 

including anti-pS396 (Signalway) and anti-pS199 (epitom-

ics), anti-Synaptophysin (Millipore), anti-Synapsin-1 (Mil-

lipore), anti-PSD95 (Millipore), anti-PSD93 (Millipore) 

and anti-β-actin (Sigma-Aldrich). The membranes were 

incubated with IRDye 800CW secondary antibodies (Li-

COR) and scanned using the Odyssey fluorescent scanner. 

The band density was normalized to β-actin for analysis.
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Statistical analysis

All data represent the mean ± SEM. Statistical analy-

sis included 2-tailed Student’s t test for the comparison 

of two groups, one-way ANOVA and Tukey’s test for the 

comparison of multiple groups when required. Normality 

and equal-variance testing was performed for all assays. 

P < 0.05 was considered significant. All analyses were 

completed with SPSS software, version 10.0.

Results

Aβ levels in different locations of the circulation

A recent study in humans demonstrates the efflux of 

Aβ from the brain to the plasma [36]. However, the fate 

of brain-derived Aβ in the periphery remains unclear. 

To examine the catabolism of brain-derived Aβ in the 

periphery, we measured Aβ levels in the different parts 

of the circulation including: (a) the superior vena cava 

which collects blood from the head containing brain-

derived Aβ, (b) the inferior vena cava proximal to the 

hepatic vein which collects blood from the lower part 

of the body including liver, kidney and gastrointesti-

nal tract, (c) the femoral vein which contains metabo-

lites after the circulation through the lower limbs, and 

(d) the femoral artery which contains blood virtually 

identical to that in the aorta and used as a reference 

(Fig. 1b, Supplemental Table 1). In addition, Aβ levels 

in blood from the jugular vein, the abdominal aorta and 

the posterior vena cava were examined in AD mice aged 

6 months (Supplemental Table 2). The Aβ concentrations 

in different locations of the circulation were divided by 

time-matched arterial Aβ concentrations to generate the 

venous/arterial (V/A) ratio. We found that V/A ratios of 

Aβ40 and total Aβ from the superior vena cava were sig-

nificantly higher than that from the inferior vena cava 

in humans (Fig. 1a), and V/A ratios of Aβ40 and total 

Aβ from the jugular vein of AD mice were also higher 

than that from the posterior vena cava (Fig. 1c). Interest-

ingly, V/A ratios of Aβ40 and total Aβ from the inferior 

vena cava were significantly lower than that from the 

femoral vein in humans (Fig. 1a). These findings suggest 

that brain-derived Aβ in the arterial blood is physiologi-

cally cleared when it goes through the capillary beds of 

the peripheral organs and tissues, and that the internal 

organs remove significant amounts of arterial Aβ. There 

were no differences in Aβ42 concentrations among dif-

ferent locations of the circulation in both humans and 

AD mice (Fig. 1a, c), suggesting that Aβ42 is not a sen-

sitive marker to reflect peripheral Aβ catabolism possi-

bly due to its low level in blood [36].

Distribution of 125I-Aβ1-40 in peripheral tissues 

and organs

We next investigated where Aβ is metabolized in the 

periphery in wild-type mice. Two hours after intravenous 

(i.v.) bolus injection of 125I labeled Aβ through the tail vein 

different organs and tissues were collected and weighed. 

In addition, radioactivities were detected respectively fol-

lowing a previous protocol [8]. We found that the injected 

radioactivity was located mostly in the liver, kidney, gas-

trointestinal tract, and skin while the rest was located in the 

carcass (Supplemental Fig. 1a). Moreover, by normalizing 

the data according to the mouse weights, we also observed 

significant amounts of radioactivity uptake in the liver, kid-

ney, gastrointestinal tract, and skin but little in the carcass 

(Supplemental Fig. 1b). The radioactivity uptake in the 

brain accounted for only 1.67 % of total injected radioac-

tivity, suggesting that peripheral organs and tissues are the 

main places of Aβ clearance in the periphery. This is par-

ticularly true for the liver and kidney, which are suggested 

to be the major organs for uptake of exogenous Aβ in the 

blood [8].

Parabiosis reduces brain amyloid deposition

The above findings raise a critical question of whether the 

clearance of Aβ by the peripheral system has any impact on 

the pathogenesis of AD. We utilized isochronic parabiosis to 

test the efficacy of peripheral clearance of Aβ in alleviating 

the amyloid burden in the brains of APPswe/PS1dE9 trans-

genic mice. After parabiosis between transgenic and wild-

type mice, the circulation of the parabionts was connected so 

that Aβ species in the blood of the parabiotic transgenic mice 

could be transported into the wild-type mice. Thus, the trans-

genic mice acquired an additional peripheral system from 

wild-type mice. This model provided a reliable approach to 

test the Aβ clearing capacity of the peripheral system.

Parabiosis was performed before Aβ deposition at 

3 months of age and samples were collected for analy-

sis after Aβ deposition at 9 months of age (Supplemental 

Fig. 2a). After parabiosis, the blood levels of both Aβ40 

and Aβ42 of the parabiotic transgenic mice [pa(3-9mon)

Tg] were significantly lower than that of the control trans-

genic mice (Supplemental Fig. 2b). Additionally, blood 

Aβ levels of the parabiotic wild-type mice [pa(3-9mon)

Wt mice] were comparable to that of pa(3-9mon)Tg mice. 

These findings suggest that Aβ from the pa(3-9mon)Tg 

mice entered the circulation of the pa(3-9mon)Wt mice.

Compared with control transgenic mice, pa(3-9mon)Tg 

mice had dramatic reductions in area fraction and plaque 

density of both compact plaques stained with Congo red, 

total plaques stained with 6E10 in neocortex and hip-

pocampus (Fig. 2a–d), Aβ deposition in vessel walls (CAA) 
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(Fig. 2h–j), and microbleed profiles (Supplemental Fig. 3). 

The total area fraction of amyloid deposition in both hip-

pocampus and neocortex was reduced by 70 % for Congo 

red positive plaques, and 86 % for 6E10 positive plaques 

in pa(3-9mon)Tg mice relative to control transgenic mice 

(Fig. 2b, d). After parabiosis, the levels of Aβ40 and Aβ42 

were significantly reduced in the brain homogenates of 

pa(3-9mon)Tg mice in comparison with control transgenic 

mice, with a reduction of total Aβ by 68 % (Fig. 2e–g). 

These data suggest that providing an additional peripheral 

system by parabiosis can substantially prevent Aβ deposi-

tion in the brain of transgenic mice.

We further investigated whether enhancement of periph-

eral Aβ clearing capacity could reduce Aβ burden after 

extensive Aβ deposition in the brain using the parabiosis 

models between 9-month-old female transgenic and age-

matched female wild-type mice. Similarly, after 3 month 

parabiosis, the Congo red and 6E10-positive Aβ plaque bur-

dens in the neocortex in pa(9-12mon)Tg mice were signifi-

cantly lower than that of 12 months old transgenic control, 

and there was no significant increase in Aβ plaque burdens 

in pa(9-12mon)Tg mice when compared with 9-month-old 

transgenic mice (Supplemental Fig. 4). Taken together, our 

findings suggest that enhancing Aβ clearance in the periph-

ery has both preventive and treatment potential for AD.

As the amyloid burden is associated with both Aβ pro-

duction and clearance, we further investigated the metab-

olism of APP after parabiosis. There were no significant 

differences in the levels of full-length APP (APPfl), C-ter-

minal fragment (CTF)-α, CTF-β, beta-secretase (BACE)-

1, Aβ-degrading enzymes IDE and NEP, and Aβ transport 

receptors across BBB (LRP-1 and RAGE) in the brain 

between the pa(3-9mon)Tg mice and the control transgenic 

mice (Supplemental Fig. 5), suggesting that the reduction 

of brain Aβ burden after parabiosis was not due to changes 

in Aβ production or degradation. In addition, as the parabi-

otic mice were of the same age, the reduced brain Aβ bur-

den was not due to the rejuvenation mechanism as observed 

in a previous parabiosis study [42].

Parabiosis attenuates AD-type pathologies

We investigated whether other AD pathologies could also 

be attenuated in the brain after parabiosis. In comparison 

with control transgenic mice, inflammation was signifi-

cantly attenuated in the brain of pa(3-9mon)Tg mice, as 

reflected by decreased levels of astrocytosis and micro-

gliosis (Fig. 3a–f), and reduced levels of proinflamma-

tory cytokines including TNF-α, IL-1, and IL-6 (Supple-

mental Fig. 6). The levels of phosphorylated Tau (pS199 

and pS396), but not total Tau (Tau5), were significantly 

reduced in the brain of pa(3-9mon)Tg mice after parabiosis 

(Fig. 3g–j).

Compared with control transgenic mice, the pa(3-9mon)

Tg mice displayed less neuronal apoptosis and damage as 

reflected by caspase-3 staining in hippocampus (Fig. 4a–d), 

and higher levels of synapse-associated proteins including 

PSD93, PSD95, synapsin-1, and synaptophysin in the brain 

(Fig. 4e, f). These data suggest that neurodegeneration was 

attenuated in the brains of transgenic mice after parabiosis.

Discussion

In the present study, we provide evidence of physiological 

catabolism of brain-derived Aβ in the peripheral system 

in humans and mice. Using this model of parabiosis we, 

for the first time, revealed that the physiological ability of 

Aβ clearance in the periphery has a significant impact on 

preventing Aβ accumulation in the brain, as reflected by 

around 80 % reduction of brain Aβ deposition after para-

biosis. Liver, kidney, gastrointestinal tract and skin are the 

major places for Aβ catabolism in the periphery. The other 

AD-associated pathologies, including tau phosphoryla-

tion, neuroinflammation, and neuronal degeneration, were 

also significantly attenuated in the brains of AD mice after 

parabiosis.

We also found that peripheral clearance of brain-derived 

Aβ exists physiologically. A recent study revealed the efflux 

of brain-derived Aβ to peripheral blood [36]. Consistently, 

we found that the blood Aβ levels in the superior vena cava 

were higher than that in the femoral artery, suggesting that 

Aβ effluxes from the brain into peripheral blood. However, 

the previous study did not address the question of whether 

brain-derived Aβ is catabolized in the peripheral system. 

This information is critical for understanding AD patho-

genesis and development of approaches for prevention and 

treatment of AD. In the present study, we found that blood 

Aβ levels in the inferior vena cava were significantly lower 

than that in the femoral artery in human. This pattern of 

changes was confirmed in APPswe/PS1 mice whose blood 

Aβ levels in jugular vein were higher than that in abdomi-

nal aorta, and blood Aβ levels in posterior vena cava were 

lower than that in abdominal aorta. These findings suggest 

that brain-derived Aβ in the arterial blood is physiologi-

cally cleared when it goes through the capillary bed of the 

peripheral organs and tissues, in particular, liver, kidney, 

gastrointestinal tract, and skin.

The parabiosis model was used to test the efficacy of 

natural peripheral Aβ clearance in removing brain Aβ in 

AD mice. After parabiosis, the circulations of the parabi-

otic mice were connected, and thus Aβ species in the blood 

of the parabiotic AD mice could be transported to the wild-

type mice for clearance. Parabiosis provides parabiotic 

AD mice an additional set of peripheral tissues and organs 

from wild-type mice. As such it is a reliable model to test 
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the efficacy of peripheral Aβ clearance. After parabiosis, 

brain Aβ plaques of AD mice were dramatically reduced 

by around 80 %. It is unlikely that changes in Aβ produc-

tion, degradation, or transport across BBB play dominant 

roles in the reduction of brain Aβ of the parabiotic AD 

mice, as there were no significant changes in the expres-

sion of APPfl, CTF-α, CTF-β, BACE1, IDE, NEP, LRP-1, 

and RAGE. A recent study shows that parabiosis between 

Fig. 2  Parabiosis reduces brain amyloid burden of AD mice. a, c 

Representative images of Congo red and 6E10 immunohistochemical 

staining in neocortex and hippocampus in 9mon Tg and pa(3-9mon) 

Tg mice. Insets show the representative morphology at higher mag-

nification. Scale bars 500 µm. b, d Comparison of the area fraction 

and density of Congo red or 6E10-positive Aβ plaques in the neocor-

tex (Neoco.) and hippocampus (Hippo.) between 9mon Tg and pa(3-

9mon) Tg mice. e, f, g Comparison of Aβ40, Aβ42 and total Aβ levels 

measured with ELISA in TBS, 2 % SDS and 70 % formic acid frac-

tions of brain extracts between 9mon Tg and pa(3-9mon) Tg mice. 

h Illustration of Cerebral amyloid angiopathy (CAA) by immunofluo-

rescence with the antibody to Aβ (6E10) and smooth muscle in the 

vessel wall (1A4). The arrow indicates the Aβ plaques in the brain 

parenchyma near the CAA. Scale bars 100 µm. i CAA visualized 

using Congo red staining. Insets show the representative morphol-

ogy of CAA stained by Congo red at higher magnification. Scale bars 

500 µm. j Comparison of numbers of CAA profiles and area fraction 

of CAA between 9mon Tg and pa(3-9mon) Tg mice. n = 8 per group, 

mean ± SEM, 2-tailed t test, *P < 0.05, **P < 0.01
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Fig. 3  Parabiosis attenuates neuroinflammation and Tau phosphoryl-

ation. a Representative images of astrocytosis stained with anti-GFAP 

antibody in the brain. Insets show the representative morphology at 

higher magnification. Scale bars 500 µm. b Immunofluorescence 

image of amyloid deposition and astrocytosis co-stained with 6E10 

(green) and anti-GFAP (red) antibodies. Aβ plaques were surrounded 

by activated astrocytes. Scale bars 100 µm. c Representative images 

of microgliosis stained with anti-CD45 antibody in the brain. Insets 

show the representative morphology at higher magnification. Scale 

bars 500 µm. d Immunofluorescence image of amyloid deposition 

and microgliosis co-stained with 6E10 and anti-CD45 antibodies. Aβ 

plaques were surrounded by activated microglia. Scale bars 50 µm. e, 

f Comparisons of area fraction and cell density of astrocytosis (e) and 

microgliosis (f) in the neocortex (Neoco.) and hippocampus (Hippo.) 

among pa(3-9mon)Tg mice, control Tg mice and Wt mice. g Repre-

sentative images of intracellular Tau phosphorylation stained with 

anti-pSer396 antibody in the brain. Insets show the representative 

morphology at higher magnification. Scale bars 500 µm. h Western 

blot assays of phosphorylated Tau at multiple sites including pSer199, 

pSer396, and total Tau (Tau5) in the brain homogenates of parabiotic 

Tg mice (PaTg), control Tg mice and wild-type mice (Wt). i Com-

parisons of area fraction and cell density of cells containing phos-

phorylated Tau stained with anti-pSer396 antibody in the neocortex 

among parabiotic Tg mice (PaTg), control Tg mice and wild-type 

mice. j Comparison of band density for phosphorylated Tau (pS199 

and pS396) and total Tau (Tau5) shown in h among pa(3-9mon)Tg 

mice, control Tg mice and Wt mice. n = 8 per group, mean ± SEM., 

one-way ANOVA and Tukey’s test, *P < 0.05, **P < 0.01. N.S. no 

statistical significance
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APPswe/PS1 mouse with ApoE gene and APPswe/PS1 

mouse without ApoE gene did not reduce compact plaque 

burden in the brain of APPswe/PS1 mice with the ApoE 

gene [31]; suggesting that the systematic inflammation 

or immune responses induced by the parabiosis surgery 

would not be responsible for the large reduction of brain 

Aβ burden observed in the present study. In addition, both 

acute and chronic systematic inflammation are suggested to 

accelerate but not halt Aβ deposition and disease progress 

of AD [13, 14, 19]. Moreover, we found that human Aβ 

generated from the parabiotic AD mice can be detected in 

the blood of the parabiotic wild-type mice, indicating that 

Aβ from the AD mice entered the circulation of the parabi-

otic wild-type mice. These findings suggest that parabiosis 

reduces brain Aβ burden through the clearance by periph-

eral tissues and organs, rather than through modulation of 

brain Aβ production, degradation, receptor-mediated trans-

port across the BBB, or systematic inflammation induced 

by the surgery.

The present study reveals the importance of natural 

Aβ catabolic capacity of the peripheral system in clearing 

brain Aβ. Based on the above findings, we can calculate 

Fig. 4  Parabiosis alleviates 

neuronal degeneration and 

loss in the hippocampus of 

pa(3-9mon)Tg mice. a Rep-

resentative images of neurons 

and dendrites at CA1 region 

of hippocampus stained with 

anti-NeuN and anti-MAP-2 

immunofluorescence in pa(3-

9mon)Tg mice, control Tg 

mice, and wild-type (Wt) mice. 

Scale bars 100 µm. b Com-

parison of the area fractions 

of NeuN and MAP-2 staining 

among pa(3-9mon)Tg mice, 

control Tg mice, and Wt mice. c 

Comparison of area fractions of 

caspase-3 staining among pa(3-

9mon)Tg mice, control Tg mice, 

and Wt mice. d Representative 

images of neuronal apoptosis at 

CA3 region of hippocampus as 

stained with activated caspase-3 

immunofluorescence. Scale 

bars 100 µm. e Western blot 

assays of synapse-associated 

proteins including PSD93, 

PSD95, synapsin1 (SYN-1), 

and synaptophysin (Synap.) in 

brain homogenates of pa(3-

9mon)Tg mice, control Tg 

mice, and wild-type (Wt) mice. 

f Comparisons of band density 

of PSD93, PSD95, SYN-1, 

and Synap. among pa(3-9mon)

Tg mice, control Tg mice, 

and wild-type mice. n = 8 per 

group, mean ± SEM, one-way 

ANOVA and Tukey’s test, 

*P < 0.05, **P < 0.01
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the percentage of brain Aβ clearance by a singular periph-

eral system. We define the brain Aβ burden of an AD 

mouse as 100 % and the reduction of brain Aβ by adding 

an additional peripheral system as 68 % of the brain Aβ 

burden of the AD mice as indicated in our study. Accord-

ingly, the total Aβ in the brain of the AD mice should be 

100 % + 100 % × 68 %. Thus, a singular peripheral sys-

tem can remove 40.4 % of Aβ burden in the brain as derived 

from the equation: clearance rate of a singular peripheral 

system = % reduction of brain Aβ in parabiotic AD mice/

[100 % + % reduction of brain Aβ in parabiotic AD mice]. 

This calculation is close to the estimation that efflux of Aβ 

to peripheral blood accounts for 50 % of total brain Aβ 

clearance in humans [36], suggesting that the physiological 

Aβ clearance capacity of the peripheral system provides an 

important mechanism against Aβ accumulation in the brain.

Our findings also imply that dysfunction of periph-

eral Aβ clearance may contribute to the development of 

AD. Indeed, a previous study showed that moderate renal 

impairment is associated with the increased risk for devel-

oping dementia [38]. We also found that the levels of Aβ 

in blood are higher in patients with renal failure than nor-

mal controls [26]. Recent studies reveal that an allele 

(rs3865444C) of CD33, which attenuates the Aβ internaliza-

tion capacity of monocytes, is associated with the increased 

risk of AD [2, 30]. These findings support the notion that 

peripheral Aβ metabolism is involved in AD pathogenesis.

Clearance of brain Aβ represents a promising anti-Aβ 

therapeutic strategy. Peripheral Aβ clearance is proposed to 

be a safer therapeutic approach for AD [25, 45] as adverse 

effects, such as neuroinflammation, vasogenic edema, 

and microhemorrhage occurred in trials of immunothera-

pies which target Aβ clearance likely due to the entry of 

anti-Aβ antibodies into the brain and cerebral vessel walls 

(see review in [24]). Recently, we found that an antibody 

against N-terminus of Aβ can facilitate the conversion of 

Aβ fibrils into more toxic Aβ oligomers, and then induce 

neuronal death in the brain [23]. This might be a reason for 

the acceleration of brain atrophy after clearance of Aβ by 

antibodies in the AN1792 trials [7]. In addition, the anti-

body against N-terminus of Aβ can cross bind to APP on 

the surface of neurons and promote the generation of Aβ [5, 

20], and binding of autoantibodies to neurons is associated 

with increased level of intracellular Aβ [29]; suggesting 

that antibodies against Aβ or neuronal surface APP mol-

ecule may also increase Aβ production once they enter the 

brain. Taken together, these findings suggest that removal 

of brain Aβ from a peripheral approach might be a safe 

therapeutic way for AD.

Some efforts were made by previous investigations to 

test the therapeutic efficacy of peripheral Aβ clearance for 

AD. Enhancement of Aβ degradation in liver by Withania 

somnifera extracts significantly reduced Aβ levels in the 

brain [37]. Peripheral administration of a single chain anti-

body (scFv) to Aβ is as effective as intracranial administra-

tion of the scFv in reducing brain Aβ burden, but does not 

increase brain levels of soluble Aβ, which has potential to 

form more toxic oligomeric species [46]. However, intra-

venous infusion of antibody solanezumab as a peripheral 

“sink” inducer failed to remove brain Aβ deposits [6]. Also, 

peripheral administration of NEP reduces blood Aβ levels 

but fails to clear Aβ accumulated in the brain [12, 44]. In 

contrast, other studies indicate that continuous peripheral 

expression of NEP gene in skeletal muscle is able to reduce 

brain Aβ burden [9, 21, 22]. A critical reason for these con-

flicting results is that these Aβ clearing agents may also 

enter the brain, directly interact with Aβ, and even prohibit 

brain Aβ clearance under certain circumstances. For exam-

ple, a monoclonal antibody 266, the parental antibody of 

solanezumab, can enter the brain and form the complex 

with soluble Aβ species; thus, retarding the efflux of Aβ 

from the brain into the blood [49]. In addition, NEP also 

catabolizes a variety of substrates other than Aβ; some of 

which (i.e. bradykinin, atrial natriuretic factor) are involved 

in brain Aβ accumulation or transport across BBB [16, 33]. 

Thus, these studies did not take a pure approach of clearing 

Aβ in the periphery. In this regard, reliable methodologies 

are needed to test the efficacy of peripheral Aβ clearance. 

Herein, by using a model of parabiosis to provide AD mice 

with an additional peripheral system, we provide a clear 

answer to the controversial issue that peripheral clearance 

of Aβ is a valid therapeutic approach for AD. Although 

the parabiosis cannot be applied to human for AD therapy, 

enhancement of Aβ catabolism in the periphery such as 

liver, kidney, or gastrointestinal tract would be a potential 

valid approach for developing AD therapy in the future.

The property of a therapeutic agent being able to pen-

etrate the BBB is generally regarded as a prerequisite for 

anti-AD agents. Based on our findings drugs which directly 

act on Aβ in the periphery would have a therapeutic signifi-

cance even though they do not pass through BBB. Indeed, 

a parabiosis study shows that circulating ApoE, which does 

not enter the brain, acts as a peripheral sink to induce net 

efflux of Aβ from the brain [31]. Thus, drug development 

against Aβ in the future can focus on the clearance of Aβ 

from the circulation and might be a promising therapeutic 

approach for AD.

Like other studies using the model of parabiosis [1, 

4, 43], we did not perform behavioral tests to examine 

whether cognition is improved after parabiosis, as separa-

tion of the parabionts causes substantial lesions and stress 

to the animals. But consistent with the reduction in brain 

Aβ burden parabiosis also alleviated the other AD patholo-

gies including tau phosphorylation, neuroinflammation, 

and neurodegeneration. This suggests that Aβ catabolism in 

the periphery is able to generate therapeutic efficacy.
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In conclusion, our study reveals the substantial contri-

bution of the peripheral system to the clearance of brain 

Aβ, providing proof-of-concept evidence that develop-

ment of drugs and therapies for AD could be focused 

on peripheral rather than central Aβ clearance [25]. 

This study also implies that deficits in the Aβ clearance 

of the peripheral system might also contribute to AD 

pathogenesis.
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