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Abstract 

Tauopathies encompass a broad range of neurodegenerative diseases 

featuring extensive neuronal death and cognitive decline. However, research 

over the past thirty years has failed to significantly advance our understanding 

of how tau causes dementia, limiting the design of rational therapeutics. It has 

become evident that we need to expand our understanding of tau in physiology, 

in order to delineate how tau may contribute to pathology. This review will 

discuss recent evidence that has uncovered a novel aspect of tau function, 

based on its previously uncharacterised localisation to the synapse. Here, 

multiple streams of evidence support a critical role for synaptic tau in the 

regulation of synapse physiology. In particular, long-term depression, a form of 

synaptic weakening, is dependent on the presence of tau in hippocampal 

neurons. The regulation of tau by specific phosphorylation events downstream 

of GSK-3β activation appears to be integral to this signalling role. We will also 

describe how the regulation of synapse physiology by tau and its 

phosphorylation may inform our understanding of tauopathies and co-morbid 

diseases. This work should provide a platform for future tau biology research in 

addition to therapeutic design. 



Introduction 

Following the identification of the microtubule-associated protein (MAP) tau as a 

major component of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD) 

brains (Kosik and others 1986; Grundke-Iqbal and others 1986), numerous 

neurodegenerative disorders were soon classified as ‘tauopathies’, with tau as 

a seemingly integral component of neuronal pathology. Such diseases include 

frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-

17), progressive supranuclear palsy (PSP), Pick’s disease (PiD), corticobasal 

degeneration (CBD), among many others (Williams, 2006). The extent of 

tauopathy in AD appears to correlate strongly with the degree of cognitive and 

neuronal decline (Nelson and others, 2012), implicating tau as a causative 

factor for disease progression. Furthermore, mutations and polymorphisms to 

the tau gene (MAPT) are associated with approximately 5% of frontotemporal 

dementia cases and are established risk factors for PSP and CBD (Hutton and 

others, 1998; Goedert and others, 2012), suggesting that dysregulation of tau 

itself can indeed cause neurodegeneration. This notion is supported by 

experimental models of AD, in which the presence of tau is required, and can 

even be sufficient, for the manifestation of neurotoxicity and neurodegeneration 

(Fath and others, 2002; Rapoport and others, 2002; Roberson and others, 

2007; Ittner and others, 2010; Shipton and others, 2011; Zempel and others, 



2013; Kim and others, 2015). Reducing tau or limiting tau phosphorylation or 

aggregation in these models of disease has thus proved to be a highly effective 

method for reducing the pathological phenotype (Noble and others, 2005; 

Mocanu and others, 2008; Serenó and others, 2009; Sydow and others, 2011; 

Van der Jeugd and others, 2012; Zempel and others, 2013; Kim and others, 

2015). Consequently, an interest in developing tau-based therapeutics for AD 

patients has been awakened, with a particular focus on tau aggregation 

inhibitors, tau kinase inhibitors, and microtubule-stabilizing drugs. However, with 

these current approaches having shown poor or modest efficacy in clinical and 

preclinical trials, and alternative immunotherapy approaches still in their 

developmental infancy, a truly effective tau-based therapy seems like a distant 

reality (Anand and Sabbagh, 2015; Mably and others, 2015; Pedersen and 

Sigurdsson, 2015). 

It seems that despite the conspicuous link between tau and neurodegeneration, 

our understanding of the pathogenic effects of tau has failed to significantly 

evolve over recent years and this could ultimately limit the design of rational 

therapeutics. Overcoming this issue clearly requires an advanced 

understanding beyond existing hypotheses of how tau affects neuronal biology. 

It has been suggested that disturbances to the physiological functions of tau 

could be integral to the triggering of disease processes (Morris and others, 



2011). Therefore, our current lack of understanding of the relevance of tau to 

these disease phenotypes likely stems from the shadow of an existing dogma 

regarding the precise function of tau at a physiological level. Until recently, our 

knowledge in this regard has remained mostly limited to the role of tau in the 

establishment of neuronal polarity and axonal elongation, via its microtubule 

stabilizing capacity (Cáceres and Kosik, 1990; Esmaeli-Azad and others, 1994). 

In contrast, very little has been elucidated with regards to the role of tau in 

mature neurons, aside from its influence over the axonal transport of protein 

cargoes through effects upon microtubule-based motor proteins (Dixit and 

others, 2008). However, failures to observe overt neuronal and behavioural 

phenotypes in tau knockout mice cast doubt over the absolute physiological 

significance of these tau roles to neuronal and brain function (Morris and others, 

2011; Ke and others, 2012). With all of this in mind, it is now important to 

consider recent findings that have begun to uncover a novel role for tau in 

neuronal physiology, revealing a previously uncharacterised synaptic 

localization for tau where it acts to regulate synaptic function and plasticity. This 

review will highlight the evidence collected so far in this regard, and will discuss 

its implications for brain function and how this could contribute to further 

understanding of pathological processes and therapeutic advances in 

tauopathies. 



Axonal vs. dendritic tau: all about location? 

The canonical understanding of tau is that of an axonally segregated protein, 

whereby it acts to control neurite outgrowth and maintain neuronal polarity, 

primarily through its effects upon microtubule dynamics (Binder and others, 

1985; Hirokawa and others, 1988; Cáceres and Kosik, 1990). It had generally 

been considered to be absent from dendrites apart from in developing neurons 

(Kosik and Finch, 1987) or under pathological conditions (Kowall and Kosik, 

1987). However, a number of new observations are beginning to dispel this 

ideology and have led to the premise that tau is also located in dendrites as well 

as in pre- and post-synaptic structures of healthy neurons. As can be seen in 

Table 1, overwhelming evidence via numerous methodological approaches now 

supports this premise.  

It is not entirely clear why the dendritic localization of tau has only recently 

come to be appreciated. Epitope masking by different phosphorylation 

tendencies or protein-protein interactions of tau seems to have limited previous 

analysis of tau distribution (Binder and others, 1985). Indeed, the same 

antibody that failed to detect dendritic tau under normal conditions, readily 

detects tau in the somatodendritic domain following the removal of tau 

phosphorylation (Papasozomenos and Binder, 1987). This finding, and others 

(Tashiro and others, 1997), suggests that tau proteins exhibit subcellular 



compartmentalization based upon phosphorylation profile, possibly a result of a 

presence of a cellular gradient of tau kinase activity (Mandell and Banker, 

1996). It has now also been noted that different tau isoforms (see Box 1) 

display distinct subcellular localisation patterns, with 1N and 2N, but not 0N 

isoforms present in the dendrites, and an absence of 1N tau in axons (Liu and 

Götz, 2013). This evidence further supports the case for a differential 

distribution of tau-isoform populations between the axonal and dendritic 

compartments, in terms of both structure and phosphorylation, which may 

ultimately pertain to distinct functional roles. 

Observations from control human brains revealed that 70% of post-synaptic 

structures, which decorate dendritic branches, immunostained positive for tau 

(Tai and others, 2012). This makes it all the more remarkable that tau can only 

recently be said to have become generally accepted as a post-synaptic 

molecule (see Table 1). A possible explanation for this apparent delayed 

characterisation of tau as a post-synaptic protein may be its potentially short-

lived presence within these dendritic microdomains. Indeed, some evidence 

suggests that tau enters dendritic spines only transiently and in a regulated 

manner (Frandemiche and others, 2014). Such a transient and regulated 

presence may reflect fleeting microtubule invasion events carrying tau into and 



out of spines (Hu and others, 2008; Jaworski and others, 2009), although this 

possibility has yet to be proven or disproven. 

Regardless, the presence of tau in dendritic and synaptic compartments opens 

up a new and compelling chapter in tau biology, one that is laden with questions 

that must now be answered. For instance, Mandelkow and colleagues have 

previously provided evidence for the existence of a diffusion barrier that 

prevents tau from entering the somatodendritic compartment of mature neurons 

(Li and others, 2011). If true, this begs the question as to how tau can come to 

be located in these distinct cellular domains. This diffusion barrier is reported to 

be ineffective at sorting phosphorylated tau, or tau detached from microtubules 

(Li and others, 2011), lending weight once again to the notion that tau in the 

somatodendritic domain may have a distinct phosphorylation and functional 

profile to that of axonal tau. The observation that tau mRNA is also found in 

dendrites and dendritic spines (Malmqvist and others, 2014) opens up the 

possibility that local translation could provide the source of dendritic tau, 

mitigating the effects of any axonal barrier to protein diffusion. Alternatively, 

local trans-synaptic uptake of tau protein from the extracellular space, following 

its activity dependent release from pre-synaptic terminals remains a viable 

possibility (Pooler and others, 2013; Yamada and others, 2014; Sokolow and 

others, 2015). Such trans-synaptic spreading of tau could thus be hijacked in 



disease states, facilitating the propagation of tau pathology between 

interconnected brain regions (Clavaguera and others, 2009; de Calignon and 

others, 2012; Liu and others, 2012; Krüger and Mandelkow, 2015).   

Despite these unresolved issues, the true questions posed by this expanding 

pool of evidence for dendritic and post-synaptic tau relate to the physiological 

and functional significance of these findings. 

Tau regulation of synaptic function 

A number of circumstantial findings indicate that tau itself can regulate synaptic 

function. For example, tau can directly or indirectly modulate the signalling of 

synaptic receptors such as muscarinic acetylcholine receptors (mAChRs) and 

N-methyl-D-aspartate receptors (NMDARs) (Gómez-Ramos and others, 2009; 

Ittner and others, 2010). This is important given how pivotal these receptors are 

in normal physiological function of the synapse and their roles in cognition 

(Wess and others, 2007; Paoletti and others, 2013). Tau is also a substrate of 

glycogen synthase kinase-3β (GSK-3β) and p38 mitogen-activated protein 

kinase (p38MAPK) (Mandelkow and others, 1992; Goedert and others, 1997), 

enzymes found in the postsynaptic compartment that are involved in the 

regulation synaptic function, specifically long-term synaptic plasticity (Rush and 

others, 2002; Peineau and others, 2007). Interestingly, modulators of synaptic 



function, such as brain-derived neurotrophic factor (BDNF) and amyloid-β, fail 

to elicit their synaptic effects in neurons lacking tau (Shipton and others, 2011; 

Chen and others, 2012). Together, these findings strongly suggest that 

processes that modulate synaptic efficacy are dependent upon the presence of 

intracellular tau. However, until quite recently, no studies had directly tested the 

hypothesis that tau itself could be an important regulator of synaptic plasticity. 

In order to delineate a possible function of tau at the synapse, Kimura and 

colleagues studied neuronal function in the hippocampus of tau knockout mice. 

This brain region has been extensively used to study synaptic plasticity events, 

such as long-term potentiation (LTP) and long-term depression (LTD) at CA3-

CA1 synapses in particular (Andersen and others, 2007). In vivo and ex vivo 

electrophysiological recordings revealed a selective deficit in LTD, but not LTP, 

from the brains of mice with a homozygous or heterozygous tau deletion, but 

not from their wild-type counterparts (Kimura and others, 2014). Corroborating 

these findings, acute suppression of tau with tau-shRNA prevented the 

expression of LTD, and not LTP, in neurons from organotypic cultured 

hippocampal slices (Kimura and others, 2014; Regan and others, 2015). An 

important aspect of this in vitro study was the acute and sparse ablation of tau, 

largely restricted to CA1 neurons of the hippocampal slice. These factors 

eliminated any potential confounding developmental effects associated with tau 



knockout mice and ensured that LTD deficits could not be attributed to 

alterations of pre-synaptic afferents from the CA3 region, thus implicating post-

synaptic tau as the locus for LTD signalling. Replacing the silenced 

endogenous rat tau with human tau effectively restored the ability of these 

neurons to exhibit LTD, clearly demonstrating a specific requirement for tau 

protein in this form of synaptic plasticity (Kimura and others, 2014). The 

absence of any observable LTP deficit is consistent with one study that has 

shown normal LTP in tau knockout mice (Shipton and others, 2011) but 

contrasted with recent findings from another research group, who showed 

normal LTD and impaired LTP in the hippocampus of tau knockout mice 

(Ahmed and others, 2014). Furthermore, a recent study showed that LTD was 

readily inducible across mossy fiber (mf-LTD) synapses in tau knockout mice 

(Decker and others, 2015), raising the interesting question as to how to explain 

these opposing results. The answer likely stems from features of the different 

experimental models in terms of the age of the hippocampal slices and the 

induction protocols used for plasticity (Kemp and others, 2000; Ahmed and 

others, 2011), and/or reflects a specialisation of tau function at specific 

hippocampal synapse circuits depending on the locus or mechanisms of 

synaptic plasticity (e.g., tau-independent mf-LTD is expressed pre-synaptically 

(Kobayashi and others, 1996) whereas tau-dependent LTD at CA3-CA1 



synapses is generally regarded as post-synaptic (Collingridge and others, 

2010)). Therefore, it is undoubtedly important to probe further into a possible 

age-dependent and synapse-specific involvement of tau in mechanisms of 

synaptic plasticity induction, which could also provide further understanding into 

why certain forms of tau lead to neurotoxicity in the matured and/or aged brain. 

Together, these studies have unveiled a novel aspect to tau function, one that 

pertains to the regulation of synapses and their plasticity. Given the explicitly 

demonstrated role of synaptic plasticity processes in memory and recall (Nabavi 

and others, 2014) it is no surprise that behavioural studies in tau knockout mice 

show that this deficit in hippocampal LTD correlates with impaired memory 

performance, in particular hippocampus-dependent spatial reversal learning 

(Regan and others, 2015) (see Box 2). Thus, unlike previous functions 

attributed to tau, its role in synaptic regulation does not appear to be redundant 

or functionally compensated in tau knockout mice, underscoring the 

physiological significance of synaptic tau.   

A major remaining challenge is to resolve the capacity in which tau is involved 

in synaptic plasticity mechanisms within the post-synaptic domain. Our recent 

study showed that an interaction between protein interacting with C kinase 1 

(PICK1) and the GluA2 subunit of α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptors (AMPARs) is impaired during LTD induction 



in tau knockout mice (Regan and others, 2015). Given the importance of this 

protein interaction for activity-driven AMPAR endocytosis and hippocampal LTD 

(Hanley and Henley, 2005; Citri and others, 2010), this is likely to reflect a 

mechanistic readout of the impaired LTD in tau knockout mice. Recent work 

using a transfected cell line has now shown that the presence of tau 

significantly enhances the GluA2-PICK1 interaction, supporting an important 

role for tau in regulating the association between these two proteins (Yagishita 

and others, 2015). However, the way in which tau might regulate this AMPAR 

endocytosis mechanism is not known and requires further investigation. 

Furthermore, tau can also bind to variety of other proteins that are known to be 

involved in the regulation of synaptic AMPARs (Reynolds and others, 2008; Liu 

and others, 2012), making it clear that tau has the potential to affect a number 

of different signal transduction cascades that pertain to the trafficking of 

AMPARs and thus the regulation of synaptic function. 

The phosphorylation signature of tau 

Alternative splicing and an array of post-translational modifications (PTMs) 

converge to make tau an incredibly heterogeneous species of protein (Larcher 

and others, 1992; Morris and others, 2015). Phosphorylation is undoubtedly the 

best-studied form of tau PTM, primarily a result of its indubitable links with tau 

aggregation and AD pathology (Goedert and others, 1992; Morishima-



Kawashima and others, 1995). However, tau is also highly phosphorylated in 

the absence of neurotoxicity, such as in the fetal brain, during hibernation, and 

to a lesser extent in the adult brain (Matsuo and others, 1994; Arendt and 

others, 2003; Yu and others, 2009). Tau phosphorylation is therefore not simply 

a pathological event, but clearly serves to regulate tau in a physiological sense. 

Little has been elucidated in this regard however; phosphorylation is known to 

affect the interaction of tau with microtubules and other binding partners 

(Biernat and others, 1993; Reynolds and others, 2008; Usardi and others, 

2011), but the actual physiological consequences of these effects are not 

evident.   

As alluded to above, tau species within distinct subcellular domains appear to 

be characterized by distinct ‘signatures’ of protein phosphorylation (Mandell and 

Banker, 1996; Tashiro and others, 1997). Indeed, a recent study has shown 

that tau within the post-synaptic density is most prominently doubly 

phosphorylated between resides 386 – 404 (Morris and others, 2015). But how 

can we relate these distinct phosphorylation signatures to the functional output 

of tau? Given the extremely labile nature of tau phosphorylation, this question 

remains fundamentally difficult to answer, but a number of recent insights are 

beginning to show clear phosphorylation-function relationships for tau, 

specifically at the synapse. 



Much of this knowledge has been ascertained through biochemical analysis of 

tau with phosphorylation residue-specific antibodies, followed by the analysis of 

mutant tau proteins with mutations preventing phosphorylation at those specific 

residues. For example, Frandemiche and colleagues found that chemically 

induced synaptic activity in cultured neurons resulted in increased tau 

phosphorylation at threonine 205, and this was associated with the 

translocation of tau from the dendrite to the synapse. Expressing a mutant form 

of tau, unable to be phosphorylated at threonine 205, appeared to compromise 

the stability of synaptically-translocated tau following the same synaptic 

activation paradigm (Frandemiche and others, 2014). Intriguingly, the same 

study found a similar synaptic translocation was induced by treatment of the 

neurons with amyloid-β, but this was associated with the phosphorylation of tau 

at serine 404. Thus, although both phosphorylation events appear to relate to 

synaptic translocation, the signature of tau phosphorylation seems to differ 

depending on the stimulus. 

Our group have shown that electrically driven synaptic activity elicits an 

increase in tau phosphorylation at serine residues 396 and 404, with no change 

in phosphorylation at serine 202 and threonine 205 residues (Kimura and 

others, 2014; Regan and others, 2015). This finding differs somewhat from the 

previously described study. While differences in the experimental substrate 



could be responsible, e.g. cultured neurons vs. hippocampal slices, an 

intriguing possibility is that differing forms of synaptic activity evoke differing 

signatures of tau phosphorylation. Specifically, threonine 205 phosphorylation 

was evoked by synaptic activity that induces LTP-like synaptic changes 

(Frandemiche and others, 2014), whereas serine 396 and 404 phosphorylation 

was evoked by an LTD-inducing stimulus (Kimura and others, 2014; Regan and 

others, 2015). Inhibitors of NMDARs and GSK-3β blocked this specific change 

in tau phosphorylation, and prevented the interaction of PICK1 with GluA2. 

Given the importance of NMDARs and GSK-3β to hippocampal LTD (Dudek 

and Bear 1992; Mulkey and Malenka 1992; Peineau and others, 2007; Peineau 

and others, 2009), these findings affirm the relevance of tau phosphorylation to 

LTD, and suggest that tau is probably a substrate for GSK-3β in an LTD 

signalling cascade downstream of NMDAR activation. The expression of mutant 

forms of tau demonstrated that tau phosphorylation, specifically at serine 396, is 

fundamentally required for LTD and has no effect on LTP (Regan and others, 

2015). This finding was unique in highlighting a distinct phosphorylation-to-

function relationship at just a single residue of tau. Therefore, it appears that 

phosphorylation of tau at serine 396 is an integral event in a GSK-3β signalling 

pathway that mediates synaptic weakening (Figure 1).  



Together, these findings demand further investigation into other 

phosphorylation signatures associated with and required for synaptic function. 

Similarly, the mechanisms by which tau phosphorylation can regulate synaptic 

function ought to be examined. One study suggests that phosphorylation of tau 

reduces the association of tau and Fyn with the post-synaptic density protein 

PSD-95 and the NMDAR subunit GluN2B (Mondragón-Rodríguez and others, 

2012). This supports a previous study informing that tau regulates the 

association of Fyn with NMDARs (Ittner and others, 2010), and suggests that 

tau phosphorylation may thus modulate NMDAR signalling via reduced GluN2B 

phosphorylation by Fyn. Data is presented to suggest that phosphorylation of 

tau at threonine 231 might be a critical regulator of this post-synaptic protein 

interaction (Mondragón-Rodríguez and others, 2012). Marrying this finding with 

the other observations of synaptically evoked tau phosphorylation signatures 

will be required to generate the complete picture of the physiological 

relationship between tau phosphorylation and function at the synapse. 

Finally, it will be important to consider the relevance of other tau PTMs when 

considering the synaptic function of tau. A recent paper described the array of 

other physiological PTMs - including methylation, acetylation, ubiquitination and 

O-GlcNAc modification - that are found at tau residues in brain tissue from wild-

type mice (Morris and others, 2015). These modifications have been relatively 



poorly studied thus far, but are known to affect microtubule binding, tau 

aggregation and degradation among other things, as well as cross-talk with 

other PTMs (Morris and others, 2015). Additionally, little is known about the 

physiological effects of C-terminal cleavage of tau by caspase, which occurs 

following the activation of GSK-3β and site-specific tau phosphorylation events 

(Cho and Johnson, 2004; Ding and others, 2006; Mondragón-Rodríguez and 

others, 2008) and is associated with synaptic dysfunction and memory 

impairment (Kim and others, 2015; Zhao and others, 2015). This facet of tau 

regulation is particularly intriguing given the roles of both caspase and GSK-3β 

in LTD signalling (Peineau and others, 2009; Li and others, 2010). Resolving 

the relationship between these PTMs and tau function remains a clear and 

fundamental challenge to enhancing our understanding of tau pathophysiology.  

A pathological perspective for synaptic tau  

Tau pathology, which is evident in tauopathies such as AD, is generally 

characterised by three main hallmarks: (i) tau becomes hyperphosphorylated, 

with the levels of tau-associated phosphate roughly tripling in AD brains 

compared to healthy adult brains (Köpke and others, 1993), (ii) tau is re-

distributed to the somatodendritic regions of neurons (Grundke-Iqbal and 

others, 1986; Kowall and Kosik, 1987), and (iii) hyperphosphorylated and 

cleaved tau proteins fold into structures that form paired-helical filaments, which 



then aggregate to form insoluble intra-neuronal NFTs (Grundke-Iqbal and 

others, 1986; Kosik and others, 1986; Goedert and others, 1988). It is generally 

considered that (i) leads to (ii) and (iii) to bring about tau pathology. Although 

amyloid pathology precedes this tau pathology in AD patients, correlative 

studies have shown that it is the extent of tau pathology that closely mirrors, 

and appears to dictate the extent of, neuronal loss and cognitive decline 

(Nelson and others, 2012; Murray and others, 2015). However, it has now 

become evident that NFTs themselves are actually dissociated from the decline 

in neuronal and cognitive function, and are neither necessary nor sufficient for 

neurotoxicity (Guerrero-Muñoz and others, 2015), arguing against their use as 

therapeutic targets. In light of this, it is now necessary to elucidate precisely 

how the hyperphosphorylation of tau can evoke neurotoxicity or synaptic 

dysfunction. 

A long-standing debate concerns whether neurotoxicity is triggered by the 

generation of a pathological species of tau protein, or whether physiological 

functions of tau are somehow disrupted; a gain of function or a loss of function. 

Two recent studies fall either side of this debate: Song and colleagues show 

that rTg4510 AD-model mice accumulate pathological species of tau carrying 

multiple PTMs at an early stage of disease progression (Song and others, 

2015). In contrast, Morris and colleagues provide evidence that tau from hAPP 



AD-model mice has similar PTMs to physiological tau found in wild-type mice 

(Morris and others, 2015). Clearly the difference in AD models must be playing 

a significant role in this discrepancy; whilst the rTg4510 model mice 

overexpress P301L mutant forms of human tau, the hAPP mice overexpress 

mutant forms of hAPP but with no genetic modifications to tau. Thus, the hAPP 

mice arguably provide a better model of sporadic tauopathies, i.e. the majority 

of cases of AD, where no mutations to the MAPT gene are present and tau is 

simply regulated or dysregulated by external stimuli (i.e., as a result of elevated 

amyloid-β). If we are to consider this hAPP model reliable, therefore, then a 

reasonable conclusion from the latter study is that a pathological species of tau 

is unlikely to be responsible for triggering neuropathology in AD, suggesting that 

dysregulation of the physiological functions of tau is more relevant to disease 

onset (Morris and others, 2015). Moreover, this study suggests that tau 

hyperphosphorylation in diseased states should be defined by an increase in 

the proportion of tau molecules that are phosphorylated at given residues, 

rather than an increase in the number of phosphorylated residues on each tau 

molecule. To put it another way, hyperphosphorylated tau, at least in the early 

stages of disease progression, likely reflects exaggerated physiological 

modifications to tau proteins, rather than the occurrence of new 

‘unphysiological’ modifications.  



What could this mean for tau function? Given that AD is widely considered to be 

a synaptic disorder (Selkoe, 2002; Scheff and others, 2006) and that the 

synaptic deficits induced by amyloid-β critically depend upon the presence of 

tau (Rapoport and others, 2002; Roberson and others, 2007; Ittner and others, 

2010; Shipton and others, 2011; Zempel and others, 2013); a new perspective 

for the causality of neurodegeneration by tau can be gained from what is now 

known about the actual physiological function of tau at the synapse. For 

example, up-regulation of LTD signalling is considered to be central to aberrant 

synaptic elimination in AD (Li and others, 2010; Jo and others, 2011; Regan 

and others, 2014) and amyloid-β has been shown to facilitate LTD (Kim and 

others, 2001; Hsieh and others, 2006; Shankar and others, 2008; Cheng and 

others, 2009; Li and others, 2009). Now we know that tau is intrinsic to LTD, 

these findings raise the intriguing possibility that synaptic tau function is 

aberrantly regulated by amyloid-β to enhance LTD signalling. Indeed, amyloid-β 

induces changes to tau phosphorylation and synaptic translocation that are 

similar to that induced by synaptic activation paradigms (Mondragón-Rodríguez 

and others, 2012; Frandemiche and others, 2014), suggesting that physiological 

synaptic functions of tau are somehow ‘hijacked’ by amyloid-β. Furthermore, 

synaptic internalization of AMPARs, a classical LTD expression mechanism, is 

induced by amyloid-β in a manner that is dependent upon tau phosphorylation 



(Miller and others, 2014). Therefore, one can predict that the aberrant 

phosphorylation of tau following the amyloid-β driven activation of kinases such 

as GSK-3β (Lei and others, 2011), cyclin-dependent kinase 5 (Cdk5) (Zempel 

and others, 2010), MAPK (Ferreira and others, 1997) or AMP-activated protein 

kinase (AMPK) (Mairet-Coello and others, 2013) will lead to the aberrant 

upregulation of LTD signalling and synaptic weakening in AD. Of these, the 

principal tau kinase GSK-3β may prove to be especially pertinent, given that its 

involvement in a critical LTD signalling cascade is known to be facilitated by 

amyloid-β (Li and others, 2010; Jo and others, 2011). Here, caspase-3 

activation leads to the cleavage of Akt1 and removal of constitutive GSK-3β 

inhibition. A wealth of evidence supports that amyloid-β and associated 

neurotoxic insults, such as reactive oxygen species, can activate neuronal 

caspase-3 (Marín and others, 2000; Garwood and others, 2011; Narayan and 

others, 2014), indicating that this signalling pathway culminating in GSK-3β 

mediated phosphorylation of tau could be integral to the shift towards 

pathological synaptic weakening and synapse loss (Figure 2).  

In this context, it is particularly interesting to note that phosphorylation of tau at 

serine 396, which we now know to be critical for LTD (Regan and others, 2015), 

has been shown to be an early event in Alzheimer’s disease pathogenesis 

(Mondragón-Rodríguez and others, 2014) and that tau phosphorylated at serine 



396 has been shown to accumulate in the post-synaptic compartments of AD 

brains and other tauopathies at an early stage (Muntané and others, 2008; Tai 

et al., 2012). Once again, these findings suggest that early synaptic loss in 

neurodegenerative diseases such as AD could be mediated through the 

aberrant enhancement of a physiological tau phosphorylation signal at the 

synapse. 

Dementia co-morbidities: tau as the missing link? 

On a final note, it is worth considering evidence that tau hyperphosphorylation 

is a common response to many neuronal stressors, such as hypothermia, 

glucose deprivation (Yanagisawa and others, 1999; Planel and others, 2004), 

diabetes (Wang and others, 2014; Platt and others, 2015) and chronic stress 

(Sotiropoulos and others, 2011). These findings highlight an intriguing 

molecular crossover between neurodegenerative pathways and the effects of 

other changes to the biological environment that are considered to precipitate 

the onset of dementia. For example, chronic stress and diabetes are thought to 

contribute to a neurodegenerative phenotype, as evidence by their considerable 

co-morbidity in both patients and experimental models (Magariños and 

McEwen, 2000; Janson and others, 2004; Artola, 2008; Stranahan and others, 

2008; Srivareerat and others, 2009; Verdile and others, 2015). In particular, 

experimental models have shown that chronic exposure to stress hormone 



glucocorticoids facilitates LTD signalling (Kim and others, 1996; Xu and others, 

1997; Yang and others, 2004) and induces tau accumulation at the synapse, 

with a specific increase in serine-396-phosphorylated tau within the synaptic 

compartment (Pinheiro and others, 2015). Furthermore, a similar effect has 

been shown with the proBDNF valine 66 (Val66) isoform, which conveys an 

increased susceptibility to cognitive decline and AD in late life, as compared to 

its methionine 66 (Met66) isoform (Ventriglia and others, 2002; Harris and 

others, 2006; Voineskos and others, 2011). Treatment of brain slices with 

proBDNF Val66 facilitates LTD and this is mediated via the activation of GSK-

3β and associated with an increase in tau phosphorylation at serine 396/404 

(Kailainathan and others, 2016). Together, these findings indicate a 

convergence of external synapse weakening/death factors upon synaptic tau 

function that could potentially ‘prime’ a diseased brain state and promote the 

onset of dementia. 

Conclusion 

Recent work revealing the function and regulation of tau at the synapse has 

strayed beyond the existing dogmatic approach to tau research. Tau function is 

clearly far more diverse than has largely been considered, with tau taking on 

multiple roles within the neuron. It will be essential to incorporate this new level 

of understanding into designing rationale for therapeutic approaches aimed at 



tau, if we are to facilitate the development of efficacious treatments for 

tauopathies. 
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Figure Legends 

Figure 1. Putative model for the role of tau and tau phosphorylation during 

synaptic weakening. During basal conditions (left) tau is present in dendrites 

and dendritic spines, where it is most likely bound to microtubules and has low 

levels of phosphorylation (pTau). A synaptic weakening stimulus (right) triggers 

Ca2+ influx through NMDARs that activates signalling cascades involving the 

serine/threonine kinase GSK-3β. GSK-3β mediates the transient 

phosphorylation of tau at serine 396, which is a critical event for subsequent 

AMPAR internalization. Downstream effects of tau phosphorylation depend 

upon its specific interacting partners at the synapse, but may involve changes 

to microtubule stability and/or the regulation of NMDARs via Fyn trafficking, 

ultimately regulating the association of an AMPAR-PICK1 complex. 

Figure 2. Conceptual schematic illustrating synapse pathology in tauopathies. 

Neurotoxic pathogens such as amyloid-β aberrantly activate a synapse 

weakening CAG signalling cascade and simultaneously inhibit synapse 

strengthening pathways, together converging on the hyperphosphorylation of 

tau (pTau). pTau at the synapse drives excessive LTD signalling, resulting in a 

shift from the basal state towards pathological synapse loss and 

neurodegeneration. 
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Tau refers to a group of closely related proteins found primarily in the central nervous system (CNS). These proteins 

were initially identified when they co-purified with the microtubule subunit-forming protein tubulin (Weingarten and 

others, 1975) and were hence classified as microtubule-associated proteins (MAPs) that regulate microtubule 

stability (Drechsel and others, 1992). Human tau proteins are encoded by the MAPT gene (chromosome 17) 

containing 16 exons that, with the exception of exons 4a, 6 and 8, are all transcribed to generate the primary tau 

mRNA transcript. Exons -1 and 14 are not part of the final mRNA product, while exons 2, 3 and 10 are subject to 

alternative splicing (Andreadis and others, 1992). The primary structure of human CNS tau protein isoforms, which 

range from 352 to 441 amino acids in length, is thus determined by the presence or absence of mRNA elements 

encoded by these exons. All tau proteins contain at least three amino acid repeat regions towards the C-terminus 

that are considered to be the primary sites of interactions with microtubules. Together with a central proline-rich 

region and a C-terminal flanking region, these repeat sequences form the ‘microtubule-binding domain’ of tau. In 

some isoforms, this domain is extended by the inclusion of exon 10, which dictates the presence of a fourth 

microtubule-binding repeat region. In contrast, a stretch of ~ 120 amino acids constitutes a ‘projection domain’ at the 

N-terminal region of tau. This domain is modifiable by the inclusion of an amino acid sequence encoded by exon 2 

or by exons 2 and 3. Thus, tau protein isoforms are generally denoted by their combination of N-terminal inserts and 

C-terminal repeats, of which there are six possibilities; 0N3R, 0N4R, 1N3R, 1N4R, 2N3R and 2N4R (full-length) tau. 

Box 1. Tau protein isoforms
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Table 1. Evidence for dendritic and synaptic tau in healthy neurons 

[1] Papasozomenos and Binder, 1987; [2] Tashiro and others, 1997; [3] Muntané and others, 

2008; [4] Ittner and others, 2010; [5] Hoover and others, 2010; [6] Tai and others, 2012; [7] 

Mondragón-Rodríguez and others; 2012 [8] Liu and Götz, 2013; [9] Perez-Nievas and others, 

2013; [10] Kimura and others, 2014; [11] Frandemiche and others, 2014; [12] Miller and others, 

2014; [13] Xia and others, 2015; [14] Pinheiro and others, 2015; [15] Morris and others, 2015; 

[16] Jadhav and others, 2015; [17] Zhao and others, 2015. Abbreviations: WT = wild-type; pTau 

= phosphorylated tau; hTau = human tau; cTau = cleaved tau; PSD = post-synaptic density; 

GFP = green fluorescent protein; FRAP = fluorescence recovery after photobleaching; GC = 

glucocorticoid; TG = transgenic 

Table 1:  Evidence for dendritic and synaptic tau in healthy neurons 
Ref. Method(s) Observation(s) 
[1] • Immunohistochemistry • Dendritic tau staining following removal of pTau 
[2] • Immunohistochemistry • pTau in soma/dendrites of rat cortical neurons 
[3] • Subcellular fractionation • Tau in human brain synaptic fractions 
[4] • Co-immunoprecipitation 

• PSD purification 
• Immunohistochemistry 

• Endogenous tau in dendrites and PSD fraction, and co-
precipitates with PSD-95 in WT mouse hippocampus 

[5] • Subcellular fractionation 
• Immunocytochemistry 

• WT hTau present in PSD fraction from TG mouse forebrain 
• GFP-hTau localises to spines in mouse primary neurons 

[6] • Synaptoneurosomes  
• PSD purification 
• Immunocytochemistry 

• Tau is present in 70% of postsynaptic sites and is present 
in a PSD-enriched fraction from control human brains 

[7] • Synaptosomes 
• Immunocytochemistry 
• Electron microscopy 
• Co-immunoprecipitation 

• Endogenous tau is present in dendrites and post-synaptic 
sites in rat hippocampal neurons, and co-precipitates with 
PSD-95 

[8] • Immunohistochemistry • 2N/1N tau staining in dendrites of mouse hippocampus 
[9] • Synaptoneurosomes • Tau present in the synaptic fractions of human brains  

[10] • Immunogold electron microscopy 
• Synaptosomes 

• Endogenous tau is present at pre- and post-synaptic sites 
of WT mouse hippocampal neurons  

[11] • Immunocytochemistry 
• FRAP 
• Subcellular fractionation 

• GFP-hTau colocalisation to dendritic spines of mouse 
cortical neurons; increased by synaptic activation 

• Endogenous mouse tau in PSD fraction of primary cortical 
neurons; increased by synaptic activation 

[12] • Immunocytochemistry • GFP-tagged hTau localised in a subset of dendritic spines 
of primary cultured hippocampal neurons from WT mice 

[13] • Immunocytochemistry 
• Synaptosomes 

• Endogenous tau localises to dendrites/spine heads of 
primary cultured hippocampal neurons from WT mice 

• pTau increased localisation to dendritic spines 
• Tau present in forebrain synaptosomal fractions 

[14] • Subcellular fractionation 
• Electron microscopy 

• Tau in dendrites and synaptic fraction of rat hippocampal 
neurons; altered by GC treatment 

[15] • Subcellular fractionation • Endogenous tau in the PSD fraction of WT mouse brain 
[16] • Synaptosomes • Endogenous tau in PSD fraction of rat neurons 
[17] • Immunocytochemistry 

• Synaptosomes 
• Endogenous cTau in dendrites of cultured neurons from 

WT rats and mice. 
• Endogenous tau and cTau in synaptosomal and PSD 

fractions from primary rat cortical neurons 



Studies have shown that tau KO mice have normal cognition in spatial learning tasks such as 

Y-maze, T-maze, and water maze tests (Morris and others, 2011). What then, is the underlying 

relevance of the finding that tau is required for LTD? Conceptually, LTD-like physiological synapse 

weakening is thought to contribute to information encoding and discrimination, and is considered to 

be a fundamental cellular mechanism in certain cognitive processes such as novelty discrimination 

and tasks requiring behavioural flexibility (Kemp and Manahan-Vaughan, 2007; Nicholls and others, 

2008). Accordingly, a behavioural task such as spatial reversal learning – the ability to forget one 

location and learn another within a specific context – is dependent on hippocampal LTD (Nicholls 

and others, 2008; Dong and others, 2013). Using the Barnes maze test to assay this form of learning, 

tau KO mice took significantly longer to adapt to the relocation of an escape hole, indicative of 

impaired reversal learning and behavioural flexibility (Regan and others, 2015). This finding is 

supportive of a notion that tau KO mice exhibit deficits in cognitive aspects that are specific to 

hippocampal LTD, and underscores the physiological importance for the role of tau at the synapse. 

It is likely that previous behavioural goal-oriented spatial learning tasks were not sensitive to subtle 

deficits in this particular form of hippocampal plasticity.

Box 2. Tau and cognition
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