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Summary 

 The leaf economics spectrum (LES) represents a suite of intercorrelated leaf traits 

concerning construction costs per unit leaf area, nutrient concentrations, and rates of 

carbon fixation and tissue turnover. Although broad trade-offs among leaf structural 

and physiological traits have been demonstrated, we still do not have a comprehensive 

view on the fundamental constraints underlying the LES trade-offs.  

 Here, we investigated physiological and structural mechanisms underpinning the LES 

by analysing a novel data compilation incorporating rarely-considered traits like 

dry-mass fraction in cell walls, nitrogen allocation, mesophyll CO2 diffusion and 

associated anatomical traits for hundreds of species covering major growth forms.  

 The analysis demonstrates that cell wall constituents are major components of leaf dry 

mass (18–70%), especially in leaves with high leaf mass per area (LMA) and long 

lifespan. A greater fraction of leaf mass in cell walls is typically associated with a lower 

fraction of leaf nitrogen (N) invested in photosynthetic proteins; and lower within-leaf 

CO2 diffusion rates, due to thicker mesophyll cell walls.  

 The costs associated with greater investments in cell walls underpin the LES: long leaf 

lifespans are achieved via higher LMA and in turn by higher cell wall mass fraction, but 

this inevitably reduces efficiency of photosynthesis. 
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Introduction 

Leaf dry mass per area (LMA) varies globally several hundred-fold among the world’s 

species (Poorter et al., 2009; Diaz et al., 2016), and up to c. 10-fold among co-occurring 

species (Wright et al., 2004). Low LMA, associated with leaves being thin or constructed of 

low density tissue (Witkowski & Lamont 1991; Niinemets, 2001), equates to a larger 

light-intercepting leaf area deployed for a given investment in leaf mass, which enables 

plants to grow faster as juveniles under ample supply of light and nutrients (Poorter, 1989). 

LMA is correlated with physiological traits such that on average species with lower LMA 

tend to have higher leaf nitrogen (N) concentration per unit mass (Nmass) and higher 

photosynthetic rate per unit N (photosynthetic N use efficiency, PNUE) (Poorter & Evans, 

1998; Reich et al., 1998; Hikosaka, 2004; Wright et al., 2005), which also contribute to 

faster plant growth rates for a given condition (Poorter et al., 1990). At the same time, lower 

LMA leaves tend to have lower physical strength and shorter leaf lifespans (Wright & 

Westoby, 2002; Wright et al., 2004; Onoda et al., 2011). These leaf trait relationships largely 

underpin the worldwide ‘leaf economic spectrum’ (LES) (Reich et al., 1997; Wright et al., 

2004). The LES captures about three-quarters of the interspecific variation in key traits 

concerning carbon fixation and nutrient use (Wright et al., 2004); at one end of the spectrum, 

species are characterized by low investment per unit area of light capturing surface (i.e. low 

LMA), high N and phosphorus (P) concentrations (Nmass and Pmass, respectively), high 

respiration rates and light-saturated photosynthetic rates per unit mass (Amass), and short leaf 

lifespan – meaning that their faster photosynthetic returns are not sustained for long periods. 

Species at the other end of the spectrum have the opposite set of traits, implying that they are 

likely to have a longer income stream from investments in leaf tissue, compensating for their 
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higher construction costs per unit leaf area (Chabot & Hicks, 1982; Mooney & Gulmon, 

1982; Merino et al., 1984; Reich et al., 1991; 1997; Wright et al., 2004; Kikuzawa et al., 

2013; Reich, 2014). 

 Despite broad recognition of the LES from local to global scales, we still do not 

have a comprehensive understanding on the fundamental constraints underlying the LES 

(Shipley et al., 2006; Blonder et al., 2011, 2013, 2015; Sack et al., 2013; Villar et al., 2013; 

Grubb, 2016; Mason et al., 2016). In this study we focus on how LMA is associated with 

physiological processes underpinning the LES by exploring variation in its underlying 

anatomical-physiological traits (e.g. mesophyll anatomy, mass allocation to cell walls, and N 

partitioning between metabolic and structural components), and their relationship to 

photosynthetic rates. As our focus is on physiological processes, here we start to compare 

traits on the same basis of expression, that is, area-based traits such as LMA, light-saturated 

photosynthetic rates per unit leaf area (hereafter Aarea) and leaf N content per unit leaf area 

(hereafter Narea) (Table 1 shows the list of abbreviations). As a starting point we note that 

LMA and Aarea are almost unrelated at the global scale while LMA and Narea are positively 

correlated (Wright et al., 2004). We argue that these tendencies can be understood as the 

outcome of two opposite effects that largely cancel out. First, all else being equal, leaves 

with higher-LMA might be expected to have higher Aarea, if the greater thickness is due to 

thicker mesophyll layers (Niinemets, 1999). Second, leaves with higher LMA might be 

expected to have lower Aarea, if the higher LMA connotes underlying anatomical variation 

such as greater cell wall mass per unit volume that reduces photosynthetic rates due to lower 

CO2 diffusion and/or lower fraction of N in photosynthetic proteins (detailed in later 

section).  

 Shipley et al., (2006) explored trait relationships and trade-offs likely to underpin 

the LES using graphical methods and structural equation models (SEMs), suggesting that 

‘verbal’ causal models (e.g. Wright et al., 2004) were not supported by the available data. 
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Rather, their analysis indicated that key trait relationships were likely to operate via one or 

more unmeasured (‘latent’) variables, which they suggested might be the ratio of cell wall to 

cytosolic volume (a higher ratio leading to longer leaf lifespan and also a lower Amass). While 

the importance of cell walls in the variation of photosynthetic rates has been suggested 

elsewhere (Rackham, 1966; Lambers & Poorter, 1992; Hikosaka et al., 1998; Onoda et al., 

2004; Terashima et al., 2006), the hypothesis has not been tested widely due to a general lack 

of data. Scattered evidence suggests that cell walls (consisting of primary and secondary cell 

walls) constitute a considerable proportion of leaf dry mass (e.g. 30–50%, Merino et al., 

1984; 20–60%, Read et al., 2003; 37–69%, Kitajima et al., 2012). The cell wall fraction (cell 

wall mass per unit leaf mass, CWmass) tends to be higher in leaves with higher LMA (Read et 

al., 2003; Poorter et al., 2009). More cell walls increase physical strength (e.g. 

force-to-fracture) and therefore confer greater resistance to biotic and abiotic stresses such as 

herbivory, wind, drought and freezing (Onoda et al., 2011). At the same time, increasing the 

fraction of leaf mass invested in cell walls could decrease the efficiency of photosynthesis in 

two chief ways: (1) via a N allocation trade-off (Onoda et al., 2004), and/or (2) via CO2 

diffusion limitation (Evans et al., 2009; Terashima et al., 2011; Flexas et al., 2012). Later we 

describe these hypotheses in detail, with reference to the conceptual framework shown in Fig. 

1. 

 

Hypothesis 1: N allocation trade-off  

In leaves, a large fraction of N is allocated to chloroplasts; as much as 70–80% in some 

vegetable and crop species (Evans & Terashima, 1987; Makino & Osmond, 1991). Rubisco, 

a key enzyme of photosynthesis, accounts for 30–40% of chloroplast N. However, these 

numbers cannot be automatically applied to wild plants. N allocation to Rubisco varies 

substantially among species and tends to be lower in woody than in herbaceous plant types 

(Evans, 1989; Hikosaka & Shigeno, 2009). This suggests that N allocation to 
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nonphotosynthetic components may be important for understanding the leaf N economy 

(Field & Mooney, 1986; Lambers & Poorter, 1992). Cell walls account for a large fraction of 

leaf mass, and primary cell walls contain 2–10% proteins (c. 0.3–1.5%[N] in primary cell 

walls and little is known for secondary cell wall concentrations) (Lamport, 1965; Carpita & 

McCann, 2000; Held et al., 2015). Cell wall proteins function in defense, growth, 

development, signaling, intercellular communication and environmental sensing (Showalter, 

1993; Kieliszewski et al., 2010). If cell walls contain substantial N, one might expect a 

trade-off between N allocation to cell walls and to photosynthetic proteins. Onoda et al. 

(2004) examined this possibility, indeed finding a trade-off between N allocation to cell 

walls and Rubisco among individuals of the deciduous herb Polygonum cuspidatum that 

differed in germination timing and therefore leaf lifespan. Further support has come from 

both intraspecific (Feng et al., 2009; Guan & Wen, 2011) and interspecific studies 

(Takashima et al., 2004). However, the generality of this trade-off is not yet clear since some 

studies did not find any such trend (Harrison et al., 2009; Hikosaka & Shigeno, 2009; Funk 

et al., 2013).  

 

Hypothesis 2: CO2 diffusion limitation 

A higher mass of cell wall per leaf area (hereafter CWarea) could reflect thicker mesophyll 

cell walls, which would restrict CO2 diffusion to chloroplasts; a larger total surface area of 

mesophyll cells per unit leaf area, which in theory would increase CO2 diffusion to 

chloroplasts; or more structural tissues (e.g. vascular bundles, epidermis, and trichomes). 

The thickness of mesophyll cell walls ranges from 0.1 to 0.5 µm in angiosperms, generally 

with lower values reported for herbaceous plants and higher values for woody species, 

especially evergreen trees and shrubs (Evans et al., 2009; Terashima et al., 2011; Tosens et 

al., 2012). Some rather high values are also known for ferns and fern allies (up to 0.8 µm; 

Tosens et al., 2015). Thicker mesophyll cell walls increase resistance to CO2 diffusion, 
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thereby reducing mesophyll conductance and the CO2 concentration at carboxylation sites 

(Rackham, 1966; Nobel et al., 1975; Terashima et al., 2006; Evans et al., 2009; Niinemets et 

al., 2009; Tosens et al., 2012). On the other hand, thicker leaves with more cell layers can 

have a greater total mesophyll surface area per unit leaf area (Sm) and therefore 

accommodate a greater chloroplast surface area facing the intercellular airspaces (Sc), 

thereby enhancing mesophyll conductance (Nobel et al., 1975). Thus, the nature of the 

relationship between LMA and mesophyll conductance may be subject to the balance 

between these opposing effects. Recent studies suggest that an inherently high LMA is 

generally associated with lower mesophyll conductance and lower chloroplast CO2 

concentration (Niinemets et al., 2009; Tosens et al., 2012, 2015), yet it has not been 

investigated how mesophyll conductance more broadly relates to the LES. 

 

 These two hypotheses are largely independent and not mutually exclusive, and 

both could contribute towards shaping the LES. To our knowledge, there is no study that has 

examined both the leaf N allocation trade-off and the CO2 diffusion limitation in relation to 

the LES on the same set of species, therefore a strict test to quantify their relative importance 

on the LES is currently not feasible. That said, it is still possible to investigate these issues 

and to assess their relative importance via gathering data concerning each factor and 

analyzing them in relation to LMA (see the Materials and Methods section). Indeed, that is 

the approach taken in this study. Our overarching aim is to summarize current knowledge 

and data from the literature as well as unpublished works, in relation to these hypotheses. 

Both hypotheses are strongly related to cell walls, therefore first we summarize to what 

extent CWarea and CWmass vary across species and how they are related to LMA. Second, we 

test how cell wall fractions are associated with leaf N allocation, in particular to cell wall and 

Rubisco. Third, we investigate how LMA influences CO2 diffusion via changes in 

mesophyll anatomy including wall thickness. Fourth, we compare to what extent leaf N 
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allocation and mesophyll CO2 diffusion differ with respect to LMA. Based on these analyses, 

we then discuss the implications for understanding leaf trait variation among species along 

the leaf economics spectrum. 

 

Materials and Methods 

Analytical framework 

In this section we formulate equations that describe how traits required for long leaf lifespan 

(i.e. high LMA, and underlying anatomical and physiological traits) are associated with 

lower efficiency of photosynthesis via (1) a N allocation trade-off (Eqn 6 for Hypothesis 1) 

and (2) CO2 diffusion limitation (Eqn 8 for Hypothesis 2) (Fig. 1). First, we focus on cell 

walls, which are a critical component determining structural integrity and therefore leaf 

lifespan, but also play an important role in photosynthesis. Cell wall content per unit leaf 

area (CWarea) can be expressed as the product of LMA (mass/area) and cell wall mass per 

unit leaf mass (CWmass); 

 

CWarea =  CWmass LMA   

 Eqn 1 

 

CWarea varies in direct proportion to LMA when CWmass is constant. When CWmass is higher 

in high LMA leaves (e.g. Read et al., 2003), CWarea may disproportionally increase with 

LMA. 

 The light-saturated rate of photosynthesis per unit area (Aarea) can be expressed 

according to Fick's law: 

 

Aarea =  gm (Ci - Cc) =  gs (Ca - Ci) =  gtot (Ca - Cc)    

 Eqn 2 
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where Ci, Cc and Ca are CO2 concentrations in the intercellular airspace, chloroplasts and 

ambient air respectively, and gm, gs and gtot are mesophyll-, stomatal- and total (mesophyll + 

stomatal) conductances to CO2. In this study, we largely focus on gm because gm is more 

tightly associated with leaf anatomy (Tosens et al., 2012), and gm and gtot are tightly 

correlated (R2 = 0.69 in our dataset, see also Flexas et al., 2008; Warren, 2008). 

 Since we are interested in how an increase in LMA reduces the efficiency of 

photosynthesis (i.e. PNUE = Aarea/ Narea), PNUE can be expressed with Eqn 2 as follows; 

 PNUE = gmNarea 岫Ci-Cc岻      Eqn 3 

 

Eqn 3 can be further decomposed by considering N allocation to photosynthetic proteins and 

the CO2 exchange surface, that is, the mesophyll cell surface where the chloroplasts are 

attached expressed per unit leaf area, Sc (Terashima et al., 2002); 

 PNUE = gm託c 託cNp NpNarea 岫Ci-Cc岻      Eqn 4 

 

where Np is the amount of N associated with photosynthesis per unit area. This equation 

shows that PNUE can be expressed as the product of mesophyll conductance per chloroplast 

surface area (gm/Sc), the ratio of chloroplast surface area to photosynthetic proteins (Sc : Np), 

the fraction of N allocated to photosynthetic proteins (Np/Narea), and CO2 drawdown from 

intercellular spaces to chloroplasts (Ci - Cc). In this study, we pay particular attention to gm 

/Sc and Np,/Narea because we hypothesized these two terms are responsible for low PNUE in 

high-LMA leaves, as explained later. 

 

N allocation trade-off (Hypothesis 1) 
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Cell walls have a certain concentration of N (nCW), thus cell wall N content per unit leaf area 

(NCW) can be expressed as follows; 

 NCW = nCWCWarea       Eqn 5 

 

High CWarea leaves (with high LMA) are expected to have higher NCW. Furthermore, when 

the cell wall fraction (CWmass) is high, the fraction of total leaf N in cell walls (NCW/N) is also 

expected to be high unless the concentration of N in cell walls (nCW) itself decreases with 

CWmass and overrides this effect. Since a substantial portion of leaf N up to 20% is thought to 

reside in cell walls (Lamport, 1965; Onoda et al., 2004; Takashima et al., 2004), cell walls 

can be considered as one of the major N fractions. Leaf N content can be considered as the 

sum of cell wall-N (NCW), photosynthetic-N (Np), and other cytosolic N (No). Therefore, if 

there is only limited variation in N allocation to other cytosolic N (No/N), the fraction of N 

allocated to cell walls (NCW/N) must trade-off (be inversely proportional to) with the fraction 

of N allocated to photosynthetic proteins (Np/N): 

 �妊�  = 1 −  ���� − �任�       Eqn 6 

   

In this study we assume that Rubisco-N represents about a half of all photosynthetic-N 

(Evans & Seemann, 1989). Rubisco-N content per unit leaf area (NRub) is calculated from the 

amount of Rubisco, assuming 16% of Rubisco mass consists of N (i.e. NRub = 0.16 Rubisco).  

 

CO2 diffusion limitation (Hypothesis 2) 

CWarea can be considered as the sum of mesophyll, vascular and epidermal cell walls, 

considered per unit leaf area (putting aside the fact that some species may also have a small 

proportion of cell wall mass in other tissues such as trichomes or idioblasts). Little is known 
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about the relative allocation of cell wall mass between these tissue-types (Poorter et al., 

2009), although it does seem that the thickness of epidermal cell walls varies far more than 

that of mesophyll cell walls (Onoda et al., 2015). In this study, we assume a certain fraction 

of CWarea is associated with mesophyll cell walls (CWm,area). 

 CWm, area can be expressed as the product of total mesophyll surface area per unit 

leaf area (S'm), average thickness of mesophyll cell wall (TCW), and the specific gravity of 

cell walls (CW). 

 

CWm, area = S'm TCW CW      Eqn 7 

 

A larger total mesophyll cell surface can accommodate more chloroplasts and increase 

mesophyll diffusion conductance if enough N is available to produce the chloroplasts. (Note 

that we use Sm for total mesophyll surface area exposed to the intercellular space per unit leaf 

area, which may be more closely associated with gas-exchange rates than S’m while S'm may 

be more closely associated with cell wall mass than Sm. Sm is smaller than S'm by c. 30% 

(Milla-Moreno et al., 2016).) On the other hand, thicker mesophyll cell walls and greater 

CW may decrease mesophyll conductance per unit chloroplast surface area, gm/Sc (Evans et 

al., 2009; Terashima et al., 2011; Tosens et al., 2012), which is one of the components 

determining PNUE as shown in Eqn 4. In this study we focus on Sm and TCW but not CW 

because very few data are available for CW. We hypothesize that greater TCW in leaves with 

greater LMA contributes to lower PNUE by reducing gm/Sc, as another possible 

physiological mechanism underpinning the LES. This second hypothesis may be expressed 

as follows: 

 gm託c = a鐸CW        Eqn 8 
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where a represents a combination of other terms including diffusivity, porosity and 

membrane permeability (Tosens et al., 2012). Note that the total mesophyll diffusion 

conductance consists of the gas-phase conductance and the liquid phase conductance, 

including wall conductance (Niinemets & Reichstein, 2003; Evans et al., 2009; Tosens et al., 

2012). In most plants the gas phase resistance (inverse of conductance) is negligible and 

most anatomical limitations (including cell wall) to CO2 diffusion are in the liquid phase 

(Warren et al., 2008; Terashima et al., 2011), therefore we do not explicitly consider the 

gas-phase conductance in our analysis. 

 

Data 

This study used three existing datasets as well as newly compiled data. The Glopnet dataset 

(Wright et al., 2004) and its related dataset a ‘Global Amax’ database (Maire et al., 2015) 

were used to examine relationships among LMA, Aarea, Narea, stomatal conductance and leaf 

longevity; and a 'Leaf Biomechanics' database (Onoda et al., 2011) was used to investigate 

relationships between LMA and leaf physical strength. Since the trend of the LES makes 

best sense for well-lit leaves, we only used data for well-lit leaves from the Leaf 

Biomechanics database.  

 The newly compiled data consists of three subdatasets: cell wall dataset, including 

CWarea, CWmass and LMA (Supporting Information Table S2); leaf N allocation dataset, 

including Aarea, CWarea, NCW,area, LMA, Narea, and Rubisco (Table S3); and (mesophyll 

conductance dataset, including Aarea, gm, gs, LMA and leaf anatomical traits (Table S4). A 

single unified dataset was not produced because each dataset was more or less independent, 

due to a lack of studies that covered these multiple datasets. These newly compiled datasets 

are available in Tables S2–S4. Data were extracted from literature as well as published and 

unpublished data provided by the authors.  

 LMA is defined as the oven dried mass of a leaf divided by its predried projected 
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area. In some studies the petiole is included when measuring LMA, in others it is excluded, 

and in others still the authors do not make clear what protocol was followed (see Supporting 

Information). In general, LMA including petiole can be higher by c. 10%, but there is 

considerable variation across species. In this study, we used the published/measured values 

without conversion, and we note that this difference can be a source of error in traits–LMA 

relationships. Total leaf N content was typically measured with a CN analyzer.  

 Cell walls are made up of complex macromolecules consisting of pectin, 

hemicellulose, cellulose, lignin and structural proteins. Cell walls can be extracted by 

various methods such as alcohol extraction, detergent extraction and organic solvent 

extraction from ground samples at cold or heated temperatures (Fry, 1988). Neutral 

detergent fiber (NDF) is the most popular indicator of cell wall content in plant ecological 

studies. NDF is typically extracted from ground dried material with neutral detergent at a 

boiling temperature for 1 h (Van Soest, 1994). NDF represents most of the cell wall 

components but pectin is inevitably removed by this method. Pectin accounts for 20–35% of 

primary cell walls in forb species and 2–10% in graminoid species but very little of 

secondary cell walls (Vogel, 2008), therefore the hot extraction method may underestimate 

the cell walls fraction by up to 10% of leaf mass if primary cell walls occupy 30% of leaf 

mass. On the other hand, some starch, cuticle compounds (e.g. cutin) and some minerals (e.g. 

silica) may also be contained in NDF. The fraction of leaf mass in cutin is usually small 

(0.5–4%, Goñi & Hedge, 1990) and some species such as some graminoids accumulate silica 

up to 9% (Cooke & Leishman, 2011). In short, NDF represents a conservative estimate of 

cell wall mass except for some graminoid species. Since it is not straightforward to convert 

cell wall mass data among different protocols due to variation in chemical composition 

among species, we used raw values without conversion in our analysis. 

 Cell wall N is normally measured from extracted cell walls with a CN analyzer 

(Onoda et al., 2004) or with amino acid analysis after digestion (Takashima et al., 2004). To 
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measure cell wall N mass, it is important to extract cell walls without contamination of 

cytosolic proteins. In particular, cytosolic proteins can become insoluble with heat or drying 

or by binding with polyphenolics, and contaminate the cell wall N fraction. Therefore 

oven-dried samples should not be used for quantification of cell wall N for studies of leaf 

economy. Fresh frozen samples may be the best for the cell wall extraction but freeze-dried 

samples could be used (Harrison et al., 2009). Some cell wall proteins are strongly or 

covalently attached to the polysaccharides while others are weakly bound to cell walls, 

therefore cell wall N recovery rates depend on the strength of the solvents used (Lamport, 

1965; Fry, 1988). If a weak extraction solvent is used, weakly-bound cell wall proteins can 

be extracted, but contamination of cell wall N fraction by cytosolic proteins will remain a 

concern. On the other hand, when a strong solvent is used, the amount of cell wall N is 

underestimated due to loss of weakly-bound cell wall proteins. Most data in this study were 

measured with strong solvents, therefore the value reported in this study may be a 

conservative estimate of cell wall N.  

 The amount of Rubisco can be measured by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) [Author, please confirm inserted text 

‘sodium dodecyl sulfate polyacrylamide gel electrophoresis’ is correct], capillary 

electrophoresis or immunoblotting method (Makino, 1986; Warren, 2004). Some studies 

have also estimated the amount of Rubisco from the maximum carboxylation capacity of 

Rubisco by inverting the Farquhar et al. (1980) photosynthesis model (Niinemets & 

Tenhunen, 1997).  

 Mesophyll conductance was variously measured via a combined chlorophyll 

fluorescence/gas exchange method (Harley et al., 1992), carbon isotope discrimination 

(Evans et al., 1986), and/or curve fitting to Aarea–Ci relationship (Ethier & Livingston, 2004). 

Mesophyll surface area exposed to the intercellular space per unit leaf area (Sm) and 

chloroplast surface area exposed to the intercellular space per unit leaf area (Sc) were 
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generally measured on micrographs according to the methodology recommended by Evans 

et al. (1994) and Syvertsen et al. (1995). Mesophyll cell wall thickness (TCW) was measured 

from electron micrographs (e.g. Tosens et al., 2012).  

 Most of these trait data were measured on outer-canopy leaves of field-grown 

plants, but we also include data from several growth experiments conducted in glasshouses 

or controlled environments where strong light (>500 mol PPFD m-2 s-1) was used for plant 

growth. For each species at each site or experiment, the mean value for each trait was used. 

 

Analysis 

Most data were log-transformed to improve the normality before the analysis. Pearson's 

correlation coefficient was used to quantify the degree of association between traits. When 

correlations were significant (P < 0.01), the log–log ‘scaling’ relationships were quantified 

with standardized major axis (SMA) slopes (Warton et al., 2006), fitted with the ‘smatr’ 

package in the R statistical software (version 3.2.2, R Foundation for Statistical Computing, 

Vienna, Austria). Species were categorized into four functional groups: evergreen woody 

species, deciduous woody species, graminoid species (e.g. Poaceae and Cyperaceae), and 

non-graminoid angiosperm herbaceous species (hereafter ‘herbs’). Some but not all datasets 

included limited data for ferns; because of this poor representation these were excluded 

before analysis.  

To assess the relative importance of the (1) N allocation trade-off and (2) CO2 

diffusion limitation in relation to the cross-species variation in PNUE, Eqn 4 can be 

expressed as follows after log-transformation:  

 ���岫����岻 = ���岫���� 岻 + ���岫 ���妊岻 + ���岫 �妊�����岻 + ���岫�� − ��岻  Eqn 9 

 

This equation assumes that relative changes in Np/Narea and in gm/Sc have additive effects on 
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logPNUE. Since no study has measured all these components simultaneously on the same set 

of species, it is currently not possible to examine relative change in Np/Narea and in gm/Sc 

against logPNUE. Instead, the relative importance of these components can be explored by 

comparing the scaling slopes of gm/Sc and NRub/Narea (assuming Rubisco content and 

photosynthetic protein contents are linearly correlated) across LMA. This analysis is 

possible when these trait data are available across a wide range of LMA. All analyses were 

run using the R statistical package. 

 

Results  

The overall relationships among Aarea, Narea and LMA were largely similar between our 

newly compiled dataset and those fitted to the ‘Global Amax’ dataset (Maire et al., 2015; Fig. 

1a–c). In that data compilation Aarea was almost unrelated to LMA (R2 = 0.004; Fig. 2a) and 

our dataset showed a weak negative correlation (R2 = 0.12). Narea and LMA were positively 

correlated in both datasets (R2 = 0.43 and 0.14; details given in caption to Fig. 2b). As a 

logical consequence, photosynthetic nitrogen use efficiency PNUE (Aarea/Narea) was on 

average lower in high-LMA species in both datasets (R2 = 0.26 and 0.49 for Maire et al., 

2015 and our dataset respectively; Fig. 2c). On the other hand, high-LMA leaves had longer 

leaf lifespan (Wright et al., 2004; R2 = 0.42; Fig. 2d). Note that our dataset included not only 

wild plants but also experimentally-grown plants that often had high Aarea and Narea for a 

given LMA (presumably due to abundant nutrient supply), yet the negative correlation 

between PNUE and LMA was similar irrespective of plant growth conditions. 

 

Leaf cell walls 

As expected (Eqn 1; Fig. 1), there was a strong correlation between cell wall mass per unit 

leaf area (CWarea) and LMA across 416 species (R2 = 0.79; Fig. 3a). The log–log scaling 

slope (SMA) of this relationship was 1.37 with 95% CI from 1.30 to 1.42 (ordinary least 
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square regression slope 1.21 with 95% CI from 1.15 to 1.27), indicating that CWarea 

disproportionally increased with LMA: on average, a 10-fold increase in LMA was 

accompanied by a c. 23-fold increase in CWarea. In general, herbs, graminoids and deciduous 

woody species had low LMA and low CWarea; woody evergreen species had both high LMA 

and CWarea. High-LMA leaves had higher physical strength, that is, higher ‘force to punch’ 

as measured with a penetrometer (R2 = 0.30; Fig. 3b; Onoda et al., 2011). CWmass ranged 

from 19 to 66% (90% quantile range, hereafter 90%QR) with an average of 40%. 

Herbaceous and deciduous woody species typically had lower CWmass than evergreen woody 

species (mean ± SD; 29 ± 10%, 28 ± 8% and 42 ± 12%, respectively). Graminoids had 

notably high CWmass (60 ± 9%), reflecting the fact that many graminoid leaf blades are 

self-supporting (they lack stems) (Grubb et al., 2008). CWmass and LMA were modestly 

correlated (R2 = 0.10; Fig. 3c) and when graminoids were excluded the correlation was 

stronger (R2 = 0.17).  

 

Leaf N allocation 

N concentration in cell walls (nCW) ranged from 0.20 to 1.75% of cell wall mass (90%QR) 

and was unrelated to LMA (Fig. 4a). Cell wall N content per unit leaf area (NCW) increased 

tightly with LMA (R2 = 0.55; Fig. 4b), due to the higher CWarea in high LMA leaves. Leaf N 

allocation to cell walls (NCW/N) ranged from 2.8 to 25% (90%QR) with an average of 11.2% 

(Fig. 4c). There was a positive correlation between LMA and the fraction of N allocated to 

cell walls (R2 = 0.37; Fig. 4c), but also apparent in that scatterplot is the rather wide variation 

in N allocation at high LMA, whereas low-LMA species only showed low fractional N 

allocation to cell walls. 

Rubisco content per unit leaf area was not significantly correlated with LMA (Fig. 

4d). N allocation to Rubisco (NRub/N) varied from 9.2 to 26.6% (90%QR) with an average of 

17.2%, and was significantly lower in high LMA leaves (R2 = 0.27; Fig. 4e). On average, 
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herbaceous plants allocated a slightly larger fraction of leaf N to Rubisco (23.2 ± 5.5%) than 

did woody deciduous or woody evergreen species (21.1 ± 4.0% and 14.6 ± 4.5%, 

respectively). There was a significant negative correlation between N allocation to cell walls 

and Rubisco with the slope of -0.69 (R2 = 0.10; Fig. 4f), in support of the first hypothesis: N 

allocation to cell walls trades-off with N allocation to Rubisco. Three evergreen conifers 

(these are all the conifers in this dataset) were notable outliers in this relationship; they had 

both relatively high N allocation to cell walls as well as Rubisco. When these conifers were 

excluded from the analysis, the negative correlation was stronger (R2 = 0.29) and the slope 

was steeper (slope = -0.83, 95%CI = 0.61-1.02), closer to our hypothesized value of -1 (Eqn 

6). 

 

Mesophyll conductance 

Traits associated with CO2 diffusion are shown in relation to LMA (Fig. 5a–f). Stomatal and 

mesophyll conductance for CO2 diffusion (gs and gm) had similar ranges across species. Both 

were significantly negatively associated with LMA but the correlations were weak (R2 = 0.07 

and 0.11; Fig. 5a,b). 

As expected from Eqn 7 LMA, which was positively associated with CWarea, was 

significantly positively correlated with both mesophyll cell wall thickness, TCW (R2 = 0.41; 

Fig. 5c) and mesophyll surface area per unit area, Sm (R2 = 0.28; Fig. 5d). Across 15-fold 

variation in LMA, TCW varied five-fold and Sm varied four-fold. Yet, the greater Sm in high 

LMA leaves did not directly translate into greater chloroplast surface area per unit leaf area 

(Sc); Sc was not correlated with LMA (Fig. 5e). The proportion of Sm covered by chloroplasts 

(= Sc/Sm) varied widely but was significantly lower in high LMA species (R2 = 0.11; Fig. 5f). 

The overall correlation between Sc and Narea was not significant (Fig. 5g). Mesophyll cell 

wall thickness was tightly and negatively correlated with mesophyll conductance per unit Sc 

(gm/Sc, R2 = 0.50; Fig. 5h), supporting the second hypothesis, that mesophyll cell wall 
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thickness trades-off with CO2 diffusion conductance. 

 

Relative contributions to LES 

To assess the relative importance of (1) the N allocation trade-off and (2) CO2 diffusion 

limitation in relation to LES, fractional N allocation to Rubisco, gm/Sc and Ci–Cc were each 

plotted against LMA and their scaling slopes were summarised (Fig. 6). The scaling slope of 

N allocation to Rubisco–LMA relationship was -0.59 and that of gm/Sc–LMA relationship 

was -1.20 (Fig. 6d), indicating that CO2 diffusion conductance per unit Sc declined more 

rapidly than N allocation to Rubisco with increases in LMA. Ci–Cc on the other hand was 

higher in high-LMA leaves, with a scaling slope of +0.57. Note that these relationships were 

all statistically significant, but there was scatter along each slope (R2 = 0.28 and 0.20 for 

NRub/N–LMA relationship and gm/Sc–LMA relationship, respectively). 

 

Discussion 

While the importance of cell walls in limiting the rate of leaf photosynthesis has been 

suggested by several studies, here we show across many species that a substantial portion of 

leaf mass is allocated to cell walls (19–67%, 90%QR) and relate this information to 

photosynthetic variables. The two proposed hypotheses for the fundamental trade-off in 

relation to the LES – first a N allocation trade-off between cell walls and photosynthetic 

proteins, and second a trade-off between mesophyll cell wall thickness and CO2 permeability 

– were both supported by the available data. Later we first discuss these hypotheses in detail, 

and then we discuss ecological implications for leaf functional trait variation among species. 

 

Leaf N allocation 

Higher LMA leaves had higher cell wall N per unit area (NCW) and also higher cell wall N 

per unit total leaf N (NCW/N). It is known that cell walls have several kinds of structural 
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proteins that are tightly cross-linked in cell walls (Cassab, 1998; Carpita & McCann, 2000), 

therefore a greater fraction of leaf mass in cell walls may be directly translated into a greater 

allocation of N to cell walls. Yet, N concentration in cell walls was quite variable across 

species (0.2–1.75%, 90%QR), and its functional importance is still poorly known. A part of 

the variation in N concentration in cell walls might be due to the differences in extraction 

methods because the recovery of cell wall proteins depends on extraction methods (see the 

Materials and Methods section), yet large variations in N concentration in cell walls were 

observed within studies where a single extraction method was used (Harrison et al., 2009; 

Hikosaka & Shigeno, 2009). Structural proteins are more abundant in primary cell wall 

rather than secondary cell walls (Carpita & McCann, 2000), therefore one might expect 

high-LMA species, which often have secondary wall thickening in epidermal and vascular 

tissues, to have lower N concentration in cell walls than low-LMA leaves. The current 

dataset did not show any such pattern, although one previous study reported such a 

relationship (Harrison et al., 2009). There is some evidence that graminoid species have 

lower concentrations of structural proteins in their cell walls than forb species (Cassab, 

1998; Vogel, 2008), and this may be partly responsible for their relatively lower N allocation 

to cell walls. In addition, high silica accumulation in graminoids (0.1–10% of leaf dry mass, 

typically <2%; Epstein, 1999; Cooke & Leishman, 2011) could also reduce cell wall N 

concentrations in graminoids. 

 There was a significant negative correlation between N allocation to cell walls and 

to Rubisco (Fig. 4f). Assuming that Rubisco constitutes about a half of 

photosynthesis-related leaf N (Evans & Seemann, 1989), the summed N allocation to 

photosynthetic proteins and cell walls was on average 46% (90%QR 30–70%). This means 

that photosynthetic proteins and cell walls are major players in the leaf N economy, and it 

would not be surprising that there is a trade-off between N allocation between these two 

components. On the other hand, this also means that c. 50% of leaf N consists of materials 
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that are neither photosynthetic proteins nor cell walls, and there was rather large variation in 

the summed N allocation to the two components across species. These results suggest that 

there is broad flexibility in N allocation across species and may be a reason why some 

previous studies across fewer species did not find a negative relationship between N 

allocation to Rubisco and to cell walls. Our view is that this is a glaring and as yet 

unanswered, fundamental question in plant ecology-physiology. So then, what are the other 

key locations of N in leaves? 

N is allocated to several other pools besides proteins associated with 

photosynthesis and cell walls. Nucleic acids may account for c. 10–15% of leaf N (Chapin & 

Kedrowski, 1983; Evans & Seemann, 1989). There are amino acids and numerous proteins 

in the cytosol and mitochondria not directly related to photosynthesis which have not been 

adequately quantified. Some arid plants may have high concentrations of glycine betaine or 

proline (Ashraf & Foolad, 2007) which may account for up to 10% of leaf N (Erskine et al., 

1996). There are also some species that have N-rich defensive compounds such as alkaloids 

and cyanogenic glycoside which account for up to 15% of leaf N (Miller & Woodrow, 2008). 

Nitrate could be accumulated up to 30% of leaf N in some herbaceous species especially 

when soil N availability is high (Evans & Poorter, 2001). N2-fixing species may have more 

non-photosynthetic N than non-N2 fixing plant species as they often have higher Narea but 

lower PNUE (Adams et al., 2016).  

 

Anatomy and mesophyll conductance 

High-LMA leaves had both high mesophyll surface area (Sm) and thicker cell walls (TCW) 

(Fig. 5c,d; Eqn 7), which can have positive and negative effects respectively on gm and 

therefore on Aarea. However, the positive effect due to larger Sm may be marginal because 

chloroplast surface area (Sc) did not increase with LMA despite their higher Narea. The lack 

of overall correlation between Narea and Sc across species suggests that N allocation to 
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chloroplasts may be low in high-LMA leaves, which also supports the first hypothesis. On 

the other hand, thicker mesophyll cell walls were strongly and negatively correlated with 

gm/Sc, which supports the second hypothesis. The log–log scaling SMA slope between gm/Sc 

and TCW was -2.41, indicating that gm/Sc decreased disproportionately more with increase in 

cell wall thickness. This may suggest that thicker cell walls have lower cell wall porosity 

(Evans et al., 2009; Tosens et al., 2012). There was some variation in gm/Sc for a given cell 

wall thickness, suggesting that variation in other physiological processes could also be 

important (Terashima et al., 2006; Flexas et al., 2008; 2013); e.g. CO2 diffusion related to 

aquaporin (Hanba et al., 2004; Flexas et al., 2006), carbonic anhydrase activity (Coleman, 

2000), chloroplast movement (Tholen et al., 2008), and mitochondrial CO2 release (Tholen 

et al., 2012).  

 Regardless of the detailed causes of lower mesophyll conductance, an important 

ecological question is why thicker mesophyll cell wall is a feature of high-LMA leaves, at 

the expense of photosynthetic rate, when one may think that thicker epidermal cell walls and 

cuticles are enough to protect leaves, and thinner mesophyll cell walls should be always 

better for photosynthesis and water use efficiency (Flexas et al., 2013). We considered at 

least two advantages for thicker mesophyll cell walls. First, long-lived leaves are more likely 

to experience strong drought stress at some time during their life, therefore rigid mesophyll 

structures may be required to maintain the mesophyll anatomy and consequently the 

photosynthetic activity over a long period. This notion may be supported by the evidence 

that high-LMA leaves had higher bulk elastic modulus measured by pressure chamber 

techniques (Niinemets, 2001). Second, thicker mesophyll cell walls may be important in 

defense against herbivores especially leaf miners. Leaf miners preferentially feed on 

mesophyll tissues, which cannot be prevented by stronger epidermal tissues once leaf miners 

get into the inner leaf lamina tissue (Kimmerer & Potter, 1987; Sinclare & Hughes, 2010), 

therefore long-lived leaves may in some sense require thicker mesophyll cell walls. 
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Synthesis 

The scaling slope of N allocation to Rubisco–LMA relationship was less steep than that of 

the gm/Sc–LMA relationship (- 0.59 vs -1.20), suggesting that the gas diffusion limitation 

may contribute more to the lowering of PNUE in high-LMA leaves. However, it is still too 

early to conclude the relative importance because there is no single study that compared the 

relative importance of N allocation trade-off and CO2 diffusion limitation in relation to LES 

on the same set of species. Furthermore, there are inter-correlations among the components 

of PNUE in Eqn 9, which requires careful consideration in interpreting the relative 

importance of each component. One of the remaining components of PNUE, Ci–Cc, was 

correlated positively with LMA (slope = 0.57; see also Evans et al., 2009; Niinemets et al., 

2009), which partly counteracted the effects of N allocation to Rubisco and gm/Sc on PNUE. 

Larger Ci–Cc should be associated with higher carboxylation capacity (i.e. Rubisco content 

and/or activity) (Wright et al., 2003) and/or lower gm (Niinemets et al., 2009), therefore the 

relative importance of N allocation to Rubisco and gm/Sc may depend on the strength of 

inter-correlations among these components. While we do not have enough data to examine 

the strength of these inter-correlations, the range of variation of Ci-Cc (approx. seven-fold) 

was smaller than the ranges of variations in N allocation to Rubisco (11-fold) and in gm/Sc 

(68-fold) across species. This suggests that N allocation to Rubisco and gm/Sc are both key 

components contributing to the negative PNUE–LMA relationship even if Ci–Cc is taken 

into account. Available knowledge for the fourth component of PNUE, Sc/Np, is limited, 

ranging from 5.4 to 12.5 m2 g-1 Rubisco for three herbaceous species (Evans et al., 1994; 

Miyazawa & Terashima, 2001; Oguchi et al., 2003). Since the sum of the earlier-mentioned 

three scaling slopes was -1.23 and similar to the slope of the PNUE–LMA relationship (-0.96, 

Fig. 6d), Sc/Photo-Narea may not correlate strongly with LMA. 

 Shipley et al. (2006) proposed that variation among species in a single unmeasured 
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trait ‘the ratio of cell volume to cell wall volume’ is responsible for generating the LES. 

Their hypothesis is partly similar to our hypothesis in that cell walls play a major role in LES. 

However, their hypothesis was different from ours in how cell walls were assumed to be 

linked with photosynthesis. They considered cell walls as the dry mass cost for long-lived 

leaves, but they did not explicitly consider how cell walls affect the key physiological 

process of photosynthesis through their effects on mesophyll diffusion conductance and 

nitrogen allocation. This may be the reason why they did not detect a link between 

photosynthesis and N despite N being an essential resource for photosynthesis.  

 

Concluding remarks 

In this study we studied physiological processes underpinning the leaf economics spectrum – 

how traits required for long leaf lifespan influenced photosynthetic processes. By 

summarizing the current available data, we showed that cell walls are a major constituent of 

leaves that is tightly linked with leaf lifespan and photosynthetic rate. Cell walls accounted 

for 18–70% of leaf mass, with the proportion increasing as LMA increased. We showed how 

the cell wall fraction influenced photosynthesis via two processes; first, higher cell wall 

fraction in high-LMA leaves was accompanied by higher fractional N allocation to cell walls 

which, in turn, reduced N fractional allocation to photosynthetic proteins. Second, thicker 

mesophyll cell walls in high LMA leaves reduced CO2 diffusion to the sites of carboxylation. 

The lower efficiency of photosynthesis in long-lived leaves is complemented by higher Narea, 

which largely equalizes Aarea across LMA (Fig. 2a). It could be argued that the potential Aarea 

in sunlit leaves is roughly invariant across LMA and thereby leaf lifespan because the 

maximum solar energy, which determines the potential for photosynthetic rate, is 

independent from disturbance regimes, whereas leaf lifespan varies extensively with 

disturbance regimes, such that short-lived species are favored in frequently disturbed 

environments while long-lived species are favored in stable environments. These tendencies 
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may result in larger interspecific variation in leaf lifespan (22-fold for the 90%QR of leaf 

lifespan, n = 749; Wright et al., 2004) than in Aarea (eight-fold for the 90%QR of Aarea, n = 

2400; Maire et al., 2015). High LMA and high cell wall mass are required for long leaf 

lifespan, which reduce the efficiency of photosynthesis due to the fundamental trade-offs. 

However, the lower efficiency of photosynthesis can be complemented by greater Narea, 

thereby largely equalizing Aarea across species with different LMA and leaf lifespan. 
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Table S1 The list of references that were used to make Figs 3–6 

Table S2 Cell wall dataset including species information, site locations, LMA, CWarea, 

CWmass and references 

Table S3 Leaf N allocation dataset including species information, growth conditions, LMA, 

Narea, Nmass, CWmass, CWarea, NCW, Rubisco, Aarea and references 

Table S4 Leaf anatomy and conductance dataset including species information, growth 

conditions, LMA, gs, gm, Ca, Ci, Cc, Sm, S'm, Sc, TCW, Narea, Aarea and references 

 

Please note: Wiley Blackwell are not responsible for the content or functionality of any 

supporting information supplied by the authors. Any queries (other than missing material) 

should be directed to the New Phytologist Central Office. 

 

Fig. 1 The conceptual framework underpinning this study, illustrating how major traits in the 

leaf economics spectrum (in red letters) are putatively linked via the underlying 

physiological/anatomical traits. The inset shows the overarching scheme, where Aarea is the 

product of leaf nitrogen (N) [Author, please confirm inserted text ‘nitrogen’ is 

appropriate] content per unit leaf area (Narea) and photosynthetic N use efficiency (PNUE), 

which themselves are positively and negatively associated with leaf mass per area (LMA), 

respectively. The main figure illustrates presumed linkages between the physiological and 

anatomical traits (pink background) that together determine PNUE. Traits in grey boxes are 

expressed per unit leaf area, and double-headed arrows indicate hypothetical trade-offs 

corresponding to the hypotheses 1 and 2 (H1 and H2, see text for detail). Black and blue 

arrows denote hypothetical positive and negative relationships respectively. Ca, ambient 

CO2 concentration; Cc, chloroplast CO2 concentration; Ci, intercellular CO2 concentration; 

gm, mesophyll conductance; gs, stomatal conductance; LL, leaf longevity; NCW, cell wall-N; 
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Np, photosynthetic-N; NRub, Rubisco-N; Sc, chloroplast surface area per unit leaf area; Sm, 

mesophyll surface area per unit leaf area; TCW, thickness of mesophyll cell wall. 

 

Fig. 2 Relationships between some major leaf traits and leaf mass per area (LMA). (a) Leaf 

photosynthetic rate per unit area (Aarea); (b) leaf nitrogen (N) [Author, please confirm 

inserted text ‘nitrogen’ is appropriate] content per unit area (Narea); (c) photosynthetic N 

use efficiency (PNUE) (= Aarea/Narea) and (d) leaf longevity. The data compiled in this study 

are shown in the closed symbols with black margin, and the data from previous studies are 

shown in half-transparent symbols (a–c, Maire et al., 2015; d, Wright et al., 2004). 

Standardized major axis (SMA) slopes are fitted to the data of this study except for (d). SMA 

equations (the slopes being the exponents): (a) y = 549x-0.899, R2 = 0.13, P < 0.001, n = 293 

for this study and y = 0.126x0.936, R2 = 0.004, P = 0.006, n = 1964 for Maire et al., (2015); (b) 

y = 0.0889x0.655, R2 = 0.141, P < 0.001, n = 217 for this study and y = 0.0495x0.774, R2 = 0.43, 

P < 0.001, n = 1665 for Maire et al., (2015); (c) y = 439x-0.958, R2 = 0.49, P < 0.001, n = 213 

for this study and y = 369x-0.924, R2 = 0.26, P < 0.001, n = 1665 for Maire et al., (2015); (d) y 

= 0.0031x1.71, R2 = 0.42, P < 0.001, n = 678 (Wright et al., 2004). 

 

Fig. 3 Relationships between leaf structural traits and leaf mass per area (LMA). (a) Cell 

wall mass per unit leaf area (CWarea). (b) Force to punch (maximum force required for the 

punch rod to penetrate a leaf lamina, expressed per unit circumference of the punch rod). (c) 

The fraction of leaf mass in cell walls (CWmass). Standardized major axis (SMA) slopes were 

fitted when correlations were deemed significant (P < 0.01); (a) y = 0.0643x1.37, R2 = 0.79, n 

= 416; (b) y = 2.78e-05x2.07, R2 = 0.30, n = 561; (c) y = 1.69x0.648 R2 = 0.19, n = 392 for data 

without graminoid species (black line) and y = 1.67x0.661, R2 = 0.10, n = 416 for all data 

(dashed line). The references used to make these figures are summarized in Supporting 

Information Table S1. 
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Fig. 4 Leaf nitrogen (N) [Author, please confirm inserted text ‘nitrogen’ is appropriate] 

allocation traits and leaf mass per area (LMA). (a) N concentration in cell walls (nCW), (b) 

cell wall-N per unit leaf area (NCW), (c) cell wall N per unit leaf nitrogen (NCW/N), (d) 

Rubisco mass per unit leaf area (NRub), (e) Rubisco N per unit leaf nitrogen (NRub/N) and (f) 

relationship between the fractions of N allocated to cell walls and Rubisco. Standardized 

major axis (SMA) slopes were fitted when correlations were deemed significant (P < 0.01); 

(a) no correlation, n = 67; (b) y = 0.000355x1.39, R2 = 0.55, n = 94; (c) y = 28.7log(x)-41.5, R2 

= 0.37, n = 94; (d) no correlation, n = 138; (e) y = -22.1log(x)+58.3, R2 = 0.27, n = 103; (f) y = 

-0.685x + 25.4, R2 = 0.10, n = 75 for all data and y = -0.832x + 26.1, R2 = 0.29, n = 72 

excluding three conifer data. The references used to make these figures are summarized in 

Supporting Information Table S1. 

 

Fig. 5 Leaf traits associated with CO2 diffusion. (a) Stomatal conductance (gs), (b) 

mesophyll conductance (gm), (c) mesophyll cell wall thickness (TCW), (d) mesophyll surface 

area exposed to intercellular airspace per unit leaf area (Sm), (e) chloroplast surface exposed 

to intercellular airspace area per unit leaf area (Sc), (f) the ratio of Sc to Sm, are plotted against 

leaf mass per area (LMA). (g) Sc is plotted against leaf nitrogen (N) [Author, please 

confirm inserted text ‘nitrogen’ is appropriate] content per unit area (Narea), and 

mesophyll conductance (gm) is plotted against mesophyll cell wall thickness. Standardized 

major axis (SMA) slopes were fitted when correlations were deemed significant (P < 0.01); 

(a) y = 47046x-1.24, R2 = 0.07, n = 942; (b) y = 27005x-1.2, R2 = 0.11, n = 153; (c) y = 0.033x0.472, 

R2 = 0.41, n = 74; (d) y = 2.83x0.458, R2 = 0.28, n = 91; (e) no correlation, n = 91; (f) y = 

5.0x-0.468, R2 = 0.11, n = 89; (g) no correlation, n = 64; (h) y = 0.307x-2.41, R2 = 0.50, n = 92. 

The references used to make these figures are summarized in Supporting Information Table 

S1. 
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Fig. 6 The underlying components of photosynthetic nitrogen (N) [Author, please confirm 

inserted text ‘nitrogen’ is appropriate] use efficiency (PNUE) in relation to leaf mass per 

area (LMA). (a) Percentage of leaf N allocated to Rubisco (NRub/N), (b) mesophyll 

conductance per unit chloroplast area (gm/Sc), (c) difference in CO2 concentration between 

intercellular airspace and the sites of carboxylation (Ci–Cc) and (d) summary table of these 

scaling slopes and their 95% confidence intervals. (a) Fig. 4(e) replotted with the Y-axis 

log-scaled, so that the scaling slopes of different relationships can be compared (see main text 

for detail). Standardized major axis (SMA) slopes: (a) y = 204x-0.595, R2 = 0.28, P < 0.001, n = 

103; (b) y = 1709x-1.20, R2 = 0.20, P <0.001; n = 85; (c) y = 6.11x0.569, R2 = 0.12, P < 0.001, n = 

120.  
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Table 1 A list of abbreviations used in this study 

Abbreviation Definition Unit 

Aarea Net assimilation rate per unit leaf area  mol m-2 s-1 

Amass Net assimilation rate per unit leaf drymass nmol m-2 s-1 

Ca Ambient CO2 concentration mol mol-1 

Cc Chloroplast CO2 concentration mol mol-1 

Ci Intercellular CO2 concentration mol mol-1 

CWarea Cell wall mass per unit leaf area g m-2 

CWm,area Cell wall mass of mesophyll per unit leaf area g m-2 

CWmass Cell wall mass per unit leaf mass % 

gm Mesophyll conductance for CO2 mmol m-2 s-1 

gs Stomatal conductance for CO2 mmol m-2 s-1 

LES Leaf economics spectrum  

LL Leaf lifespan month 

LMA Leaf mass per area g m-2 

Narea Leaf nitrogen (N) content per unit leaf area g m-2 

NCW Cell wall N content per unit leaf area g m-2 

nCW N concentration in cell walls % 

Nmass Leaf N concentration % 

No 
Other cytosolic N (excluding photosynthetic N) 
content g m-2 

Np Photosynthetic N content  g m-2 

NRub Rubisco N content per unit leaf area  g m-2 

PNUE 
Photosynthetic N use efficiency measured at 
saturating light intensity (=Aarea/Narea) 

mol [CO2] g[N]-1 

s-1 

CW Specific gravity of mesophyll cell walls g m-3 

Sc 

Surface area of chloroplasts exposed to 
intercellular 
airspace per unit leaf area m2 m-2  

Sm 
Surface area of mesophyll exposed to intercellular 
airspace per unit leaf area  m2 m-2 

S'm Surface area of mesophyll cells per unit leaf area m2 m-2 

TCW Cell wall thickness of mesophyll m 
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