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Abstract

Yellow horn (Xanthoceras sorbifolia) is an oil-rich woody plant cultivated for bio-energy pro-

duction in China. Soil saline-alkalization is a prominent agricultural-related environmental

problem limiting plant growth and productivity. In this study, we performed comparative

physiological and transcriptomic analyses to examine the mechanisms of X. sorbifolia seed-

ling responding to salt and alkaline-salt stress. With the exception of chlorophyll content,

physiological experiments revealed significant increases in all assessed indices in response

to salt and saline-alkali treatments. Notably, compared with salt stress, we observed more

pronounced changes in electrolyte leakage (EL) and malondialdehyde (MDA) levels in

response to saline-alkali stress, which may contribute to the greater toxicity of saline-alkali

soils. In total, 3,087 and 2,715 genes were differentially expressed in response to salt and

saline-alkali treatments, respectively, among which carbon metabolism, biosynthesis of

amino acids, starch and sucrose metabolism, and reactive oxygen species signaling net-

works were extensively enriched, and transcription factor families of bHLH, C2H2, bZIP,

NAC, and ERF were transcriptionally activated. Moreover, relative to salt stress, saline-

alkali stress activated more significant upregulation of genes related to H+ transport, indicat-

ing that regulation of intracellular pH may play an important role in coping with saline-alkali

stress. These findings provide new insights for investigating the physiological changes and

molecular mechanisms underlying the responses of X. sorbifolia to salt and saline-alkali

stress.

Introduction

Soil salinization and alkalization are important abiotic stress conditions that adversely affected

growth and development processes in plants, such as seedling growth, tillering, metabolism

and transcription [1–3]. Global human population expansion and inappropriate anthropo-

genic activities, such as overgrazing, deforestation, and improper soil and water management,
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are contributing to the salinization and alkalization of an ever-increasing expanse of land area

[4]. Moreover, the formation and proportion of saline-alkali-affected land can be exacerbated

by certain extreme weather/climatic events (i.e. droughts, floods, and heavy rainstorms) [5, 6].

Currently, approximately 950 million hectares of land are affected by salinization worldwide,

and it is highly probable that the area adversely affected will undergo further expansion in the

future [7–9]. To date, however, the majority of studies on saline-affected land have tended to

focus on the neutral salt tolerance of plants, whereas comparatively less attention has been

paid to plant tolerance to saline-alkali stress.

Salt stress can have a range of adverse effects on plants. Firstly, high salinity reduces the

osmotic potential of the soil solution, and thereby inhibits water uptake by plants [10, 11]. Sec-

ondly, an excess accumulation of Cl- and Na+ ions can induce specific ionic toxicities and

nutrient imbalances [12–14]. Thirdly, salt stress may also promote an increase in the genera-

tion of reactive oxygen species (ROS), the excessive amounts of which can cause damage to

intracellular components [15, 16]. Compared with salt stress per se, saline-alkali (NaHCO3 or

Na2CO3) stress is associated with more severe damage to plants, owing to the combined

adverse effects of salt stress, attributable high salt ion concentrations, and alkaline stress, which

is related to high pH levels [17]. Furthermore, elevated pH levels may also lead to a deficiency

in external protons and inhibit Na+/H+ antiport systems, thereby contributing to an accumula-

tion of Na+ in plants [18, 19]. As counter-measures, plants have, however, evolved an array of

salt/saline-alkali tolerance mechanisms, at both molecular and physiological levels, to facilitate

continued growth and development, including antioxidant defence systems and osmotic

adjustment [20]. In this regard, transcriptome analysis has emerged as a powerful approach for

elucidating gene regulatory networks, and this has made a significant contribution to identify-

ing numerous genes that are differentially expressed in response salt or saline-alkali stress in

many cultivated plant species, including sugarcane [21], rice [22], alfalfa [23], grapevine [24],

peach [25], wheat [26], and flax [27].

Xanthoceras sorbifolia, commonly known as yellow horn, is the only validated species in the

genus Xanthoceras within the family Sapindaceae [28]. It is a woody deciduous shrub or small

tree that is widely distributed in North China [29]. Yellow horn is considered an important

bio-energy feedstock plant on account of its abundant content of seed kernel oil (55%–65%),

which is rich in unsaturated fatty acids (85%–93%) [30, 31]. The plant is characterized by a

strong adaptability to nutrient-poor, drought, cold, and saline-alkali conditions, and is typi-

cally found growing on marginal land [32]. Recently, X. sorbifolia has been receiving increas-

ing attention, owing to its potential economic and biological importance, and several studies

have presented transcriptomic data for this species, including those relating to oil accumula-

tion [33, 34], fertilized ovule development [35], and abiotic stresses (i.e. salt, abscisic acid, and

low temperature) [36, 37]. To date, however, no evidence has emerged to enable a comparative

analysis of the mechanisms underlying the tolerance of X. sorbifolia to salt and saline-alkali

stress.

Comprehensive and systematic studies that focus on the responses of plants to multiple abi-

otic stresses will contribute to distinguish the different processes associated with the adaptions

of plants to each stress. In the present study, we accordingly adopted such an approach to

examine changes in a selection of physiological indices and the activities of antioxidant

enzymes in X. sorbifolia in response to treatment with NaCl or Na2CO3. Illumina sequencing

technology was used to analyze the comparative transcriptome of X. sorbifolia seedlings sub-

jected to salt and saline-alkali treatments to identify differentially expressed genes (DEGs)

associated with stress tolerance. The aims of this study were to characterize the physiological

changes in X. sorbifolia under salt and saline-alkali stress conditions, and to elucidate the

molecular features related to salt and saline-alkali stress tolerance in this plant. These findings
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could contribute to determining the distinct physiological effects and gene reprogramming in

response to these two stresses, and provide novel insights for further enhancing the adaptivity

of X. sorbifolia to saline- and saline-alkali-contaminated environments.

Materials andmethods

Plant materials and stress treatments

The X. sorbifolia superior tree (accession number: A099) from the breeding base of Shanxi

Agricultural University (37˚25N, 112˚34E), with high oil content and a certain resistance to

saline-alkali soil, was used in this study. Seeds were germinated at 25˚C using the sand-hiding

method. Following germination, seedlings were cultivated in a greenhouse at 23˚C ± 2˚C

under a 14 h light/10 h dark photoperiod at a relative humidity of 60%-70%. The seedlings

were irrigated regularly under natural conditions for a month. Healthy and uniform seedlings

(height, ~30 cm) were transferred to tanks filled with Hoagland’s liquid medium for 1 week.

All solutions were renewed at 2-day intervals. The seedlings were divided into three groups,

with the plants in one group being maintained in Hoagland’s solution as controls. Seedlings in

the remaining two groups were exposed to 150 mmol/L NaCl or 150 mmol/L Na2CO3 (pH

9.5) as salt and saline-alkali stress treatments, respectively. Previous studies have shown that

solutions with a pH value higher than 10.0 may cause severe and rapid damage, whereas solu-

tions with an insufficient alkalinity may make it difficult to study the responses to alkaline

stress. Accordingly, a pH of 9.5 was deemed to be an appropriate pH value for examining the

effects of alkaline stress [38]. At 0 (control), 4, 12, 24, and 48 h after commencing treatment,

the leaves of seedlings were harvested for physiological analyses, and whole seedlings collected

at 0 (control), 4, and 24 h were used as samples for transcriptome sequencing. Three biological

replicates of each sample were taken for physiological analyses and transcriptome sequencing.

We selected 24 h as the final time point for the purposes of transcriptome sequencing based on

observations of the phenotypic changes occurring in X. sorbifolia seedlings in response to

stress treatment compared with the control. All samples were immediately frozen in liquid

nitrogen and stored at -80˚C until further use.

Physiological measurements

The electrolyte leakage (EL) value of leaves was measured using a digital conductivity meter as

described in our previous study [37]. The contents of malondialdehyde (MDA) were measured

using the thiobarbituric acid (TBA) colourimetric method with malondialdehyde assay kit

(Solarbio, Beijing, China), and the contents of soluble sugars were detected using the thiobarbitu-

ric acid (TBA) colourimetric method with plant soluble sugar content assay kit (Solarbio, Beijing,

China). Similarly, chlorophyll content was determined according to the protocol of a chlorophyll

assay kit (Solarbio, Beijing, China). Chlorophyll was extracted using an anhydrous ethanol:ace-

tone (1:2) solution, and the content was determined spectrophotometrically at 645 nm (for chlo-

rophyll a) and 663 nm (for chlorophyll b). The soluble protein content of leaves was determined

using Coomassie Brilliant Blue G-250 dye according to the Bradford method, with bovine serum

albumin being used as the protein standard [39]. The content of MDA was expressed as micro-

moles of MDA per gramme fresh weight, whereas the contents of soluble sugars, soluble pro-

teins, and chlorophyll were expressed in terms of milligrammes per gramme fresh weight.

Enzyme activity assays

The activities of SOD, POD, CAT, and APX were determined according to the instructions

provided with commercially available kits (Solarbio, Beijing, China). Fresh leaves (0.5 g) were
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ground to a fine powder in liquid nitrogen, and enzymes were extracted using the provided

extraction buffers. The extracts thus obtained were centrifuged at 8,000 × g for 10 min at 4˚C,

and the resultant supernatants were used for further experiments. The activities of SOD, POD,

CAT, and APX in the corresponding reaction mixtures were determined spectrophotometri-

cally at 560, 470, 240, and 290 nm, respectively, and expressed in terms of units of enzyme

activity per gramme fresh weight. All measurements were performed according to the instruc-

tions of the antioxidant enzyme assay kit.

Statistical analysis was conducted with an analysis of variance (ANOVA) and Student’s t-

test using Statistical Package for the Social Sciences (SPSS) software (version 21.0; IBM SPSS

Statistics, Armonk, USA).

RNA extraction, library preparation, and RNA sequencing

Total RNA was extracted from plant samples using a TaKaRa MiniBEST Plant RNA Extraction

Kit (TaKaRa, Dalian, China) according to the manufacturer’s protocol, and the integrity of the

extracted RNA was monitored using 1% agarose gel electrophoresis. The purity and quality of

RNA were assessed using a NanoDrop 2000C spectrophotometer (Thermo Fisher Scientific,

Wilmington, USA) and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,

USA), respectively. Sequencing libraries were constructed using an NEB Next1Ultra™ RNA

Library Prep Kit for Illumina1 (NEB, USA) following the manufacturer’s instructions. The

prepared libraries were sequenced using an Illumina Hiseq 2500 platform (Illumina Inc., San

Diego, CA, USA) of BIOMARKER (Beijing, China) and paired-end reads were generated. The

raw sequence reads have been submitted to the Short Read Archive (SRA) of NCBI with Bio-

Project accession number PRJNA608707 (Biosample: SAMN15763440–SAMN15763454).

Transcriptome assembly and functional annotation

The X. sorbifolia transcriptome was assembled from 15 samples (three and 12 samples from

control and stressed seedlings, respectively). Clean reads were obtained following the removal

of reads containing adaptors and ploy-N sequences and low-quality reads from the raw data

using the FastQC tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The

high-quality reads were assembled de novo into transcripts using Trinity [40]. Trinity com-

bines reads with a certain length of overlap into longer contig sequences without gaps [41]. All

assembled unigenes were annotated based on BLAST searches (E-value� 1.0 × 10−5) of the

Kyoto Encyclopaedia of Genes and Genomes (KEGG), Gene Ontology (GO), Clusters of

Orthologous Groups (COG), eggnog, Swiss-prot, NR, and euKaryotic Orthologous Groups

(KOG) databases. The software KOBAS2.0 [42] was used to obtain the KEGG orthology of

unigene. The predicted amino acid sequences for each Unigene were aligned against the Pfam

database [43] using HMMER [44] (E-value< 1.0 × 10−10) to acquire the annotation informa-

tion of unigene. The sequenced reads were compared with the unigene library by Bowtie [45],

and then the expression level was estimated with RSEM [46]. Gene expression levels were eval-

uated based on the fragments per kilobase of exon per million fragments mapped (FPKM).

Differential expression analysis was performed using the DESeq R package, with a false dis-

covery rate-adjusted P value (FDR)< 0.05 and an absolute value of log2 FC� 1 being used as

the empirical parameters for identifying differentially expressed genes (DEGs). All DEGs were

annotated using the aforementioned databases and the gene number for each GO term was

calculated. The enrichment analysis of GO terms was conducted using the R package TopGO.

KEGG enrichment of DEGs was performed using KOBAS software 2.0 [42]. Transcription fac-

tors (TFs) were predicted using the PlantTFDB database (http://planttfdb.gao-lab.org/index.

php).

PLOS ONE Physiological and transcriptomic analyses of Xanthoceras sorbifolia under salt and saline-alkali stress

PLOSONE | https://doi.org/10.1371/journal.pone.0244365 December 22, 2020 4 / 21

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://planttfdb.gao-lab.org/index.php
http://planttfdb.gao-lab.org/index.php
https://doi.org/10.1371/journal.pone.0244365


Analysis of quantitative real-time PCR (qRT-PCR)

qRT-PCR experiments were performed using 20-μL reaction mixtures containing TB Green1

Premix Ex Taq™ II (TaKaRa, Dalian, China) in an ABI 7500 (Applied Biosystems, Carlsbad,

USA), with X. sorbifolia Actin (c225347.graph_c0) being used as a reference gene and three

independent biological replicates being analysed for each sample. Specific primers were

designed based on sequencing results using Primer 5.0 software, the sequences of which are

listed in S1 Table. The relative expression levels of amplified genes were determined using ABI

7500 sequence detection system software V2.3, and quantified by measuring cycle threshold

(Ct) values, normalized relative to the expression of the Actin gene, using the 2−ΔΔCtmethod.

Results

Physiological indices

Compared with the control seedlings, salt and saline-alkali stress were found to promote

increases in leaf EL and MDA, sugar, and protein contents, whereas leaf tissue chlorophyll

content was observed to be reduced (Fig 1). The EL value increased almost linearly within 48 h

of exposure to salt and saline-alkali stress, reaching levels 1.81- and 2.17-fold higher than the

control, respectively. The content of MDA increased significantly in response to salt stress

from 0 to 24 h, but subsequently underwent a gradual decline until the final measurement at

48 h. Under saline-alkali stress, MDA content increased rapidly within the initial 4 h, and

thereafter gradually increased, peaking at 48 h. Notably, the levels of both EL and MDA in the

saline-alkali treatment group were higher than those recorded for the control and salt stress

groups. Leaf sugar content showed a slow increasing tendency with a prolongation of the time

that seedlings had been exposed salt and saline-alkali stress. A similar tendency was observed

for protein contents under the two stress treatments, with contents showing a marked increase

at 12 h in treated leaves compared to with control leaves. Exposure to both salt and saline-alkali

stress induced a continuous reduction in the contents of chlorophyll a and b until at least 48 h.

Antioxidant enzyme activity

In response to salt stress, superoxide dismutase (SOD) activity showed an initial downward

trend, followed by a subsequent increase, and at 48 h was significantly higher than that

recorded in control seedlings. In contrast, under saline-alkali stress, SOD activity showed an

initial slow increase within 4 h, then sharply increased until 24 h, but thereafter declined rap-

idly until 48 h. The peak value was, however, significantly higher than that recorded for the

salt stress group (Fig 2). In response to both salt and saline-alkali stresses, the activities of per-

oxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) appeared to follow a ‘rise and

fall’ pattern as time progressed, and under both stresses, the activities were invariably higher

than those recorded in control seedlings (Fig 2). POD activity peaked at 24 h and 12 h in

response to salt and saline-alkali stress, respectively, whereas with respect to CAT, salt stress

induced a greater increase in activity than did saline-alkali stress, particularly at 24 h. APX

activity showed a similar tendency in response to each of the two stresses, although the change

was observed to be more pronounced in response to saline-alkali stress.

Transcriptome sequencing, assembly, and functional annotation

Following the removal of adaptors and low-quality sequences, the 15 cDNA libraries yielded

approximately 90 Gb of clean reads. Q30 values were used to evaluate sequencing quality, and

our findings that for each library, there were 93.07%–93.55% of bases scoring Q30 indicated

that the RNA-Seq datasets were of high quality (S2 Table). Following assembly and data
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analysis, a total of 45,380 unigenes were obtained with an average length of 1,500 bp and N50

of 2,204 bp, including 24,313 unigenes with lengths exceeding 1 kb (S3 Table). Among these

unigenes, 37,945 (83.62%) were annotated in at least one database. Notably, 36,388 (80.19%)

unigenes showed significant hits using the NR database, whereas 22,341 (49.23%) unigenes

showed significant matches to proteins in the Swiss-Prot database (Table 1).

Gene expression and identification of DEGs

In order to identify DEGs, each of the treatment groups was compared with the control group.

We accordingly identified 372 (301 up- and 71 downregulated) DEGs in the 4-h salt treatment

group (ST_4h), 2858 (1,618 up- and 1,240 downregulated) DEGs in the 24-h salt treatment

group (ST_24h), 856 (449 up- and 407 downregulated) DEGs in the 4-h saline-alkali treatment

group (SAT_4h), and 2,333 (1,402 up- and 931 downregulated) DEGs in the 24-h saline-alkali

treatment group (SAT_24h) (Fig 3A). These data indicate that the number of upregulated

Fig 1. Changes in electrolyte leakage (EL), malondialdehyde (MDA), sugar, protein, and chlorophyll a/b in leaf tissues of X. sorbifolia under
salt and saline-alkali stress. 4–48 h indicate different times of exposure to these two stresses. Error bars represent means ± SD (n = 3), and letters
indicate significant statistical difference at p<0.05.

https://doi.org/10.1371/journal.pone.0244365.g001
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genes was greater than that of downregulated genes. Furthermore, we identified 62 DEGs

showing response to both salt and saline-alkali stresses, 3,087 DEGs responding only to salt

treatment, and 2,715 DEGs responding only to saline-alkali treatment (Fig 3B–3D). These

stress-responsive genes detected at different sampling times under salt and saline-alkali stress

were response- and time-specific, which may be related to the tolerance to different stresses.

For the purposes of GO analysis, we compared the GO terms for DEGs with those of the

entire transcriptome gene complement. GO functional classification revealed that the DEGs

Fig 2. Changes in antioxidant enzyme activity in response to salt and saline-alkali stress. SOD, superoxide dismutase; POD, peroxidase; CAT,
catalase; APX, ascorbate peroxidase. 4–48 h indicate different times of exposure to these two stresses. Error bars represent means ± SD (n = 3), and
letters indicate significant statistical difference at p<0.05.

https://doi.org/10.1371/journal.pone.0244365.g002

Table 1. Functional annotation of the X. sorbifolia transcriptome.

Annotated Databases Number of Unigenes Percentage (%)

Annotated in COG 15,779 34.77

Annotated in GO 17,505 38.57

Annotated in KEGG 15,866 34.96

Annotated in KOG 22,018 48.52

Annotated in Pfam 29,164 64.27

Annotated in Swiss-Prot 22,341 49.23

Annotated in eggNOG 33,941 74.80

Annotated in NR 36,388 80.19

Annotated in at least one database 37,945 83.62

Total Unigenes 45,380 100

https://doi.org/10.1371/journal.pone.0244365.t001
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could be divided into 51 functional groups, belonging to the three main GO domains: biologi-

cal processes, cellular components, and molecular functions. For salt treatment, a total of 1296

(of 3,087) DEGs were associated with certain important GO terms, including response to stim-

ulus, developmental process, detoxification, membrane, cell junction, symplast, structural

molecule activity, and antioxidant activity (Fig 4A). For saline-alkali treatment, 1206 (of 2,715)

DEGs were over-represented in the categories response to stimulus, developmental process,

biological adhesion, membrane, cell junction, symplast, structural molecule activity, trans-

porter activity, antioxidant activity, and signal transducer activity (Fig 4B).

Enrichment analysis of the DEGs based on KEGG annotation revealed that both salt-

responsive and saline-alkali-responsive DGEs were significantly enriched with respect to ribo-

somes, carbon metabolism, biosynthesis of amino acids, starch and sucrose metabolism, and

oxidative phosphorylation (Fig 5). Moreover, salt-responsive DGEs were significantly enriched

in RNA transport, and the citrate cycle (TCA cycle), whereas saline-alkali-responsive DGEs

were significantly enriched in glycolysis and gluconeogenesis and ABC transporters.

It should be noted that approximately 73 and 51 genes in plants subjected to salt and saline-

alkali stress, respectively, were grouped into carbon metabolism pathways, among which sev-

eral genes related to abiotic stress responses were identified (S4 Table). Two genes (c254724.

graph_c0 and c260317.graph_c0) encoding transketolase (TKT) were upregulated under salt

Fig 3. DEGs in the four pairwise comparisons of the control and stress treatments. (A) Bar chart showing the number of up- and downregulated
genes in different comparisons. Venn diagram exposed the overlap of DEGs in two pairwise comparisons of salt stress (B), two pairwise comparisons of
saline-alkali stress (C), and all four pairwise comparisons (D), respectively.

https://doi.org/10.1371/journal.pone.0244365.g003
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stress. The TKT gene (c257495.graph_c0) and phosphoglycerate kinase (PGK) gene (c260510.

graph_c0) were expressed at higher levels in response to saline-alkali stress. However, two

genes (c249246.graph_c1, c256367.graph_c0) encoding ribose-5-phosphateisomerase (RPI2)

were downregulated in response to these two stresses.

Fig 4. GO annotation of the DEGs, including the biological process, cell component and molecular function. (A)
Enriched GO terms from salt-responsive DEGs. (B) Enriched GO terms from saline-alkali-responsive DEGs. Bold
colours indicate the whole transcriptome gene complement, the light colours indicate DEGs.

https://doi.org/10.1371/journal.pone.0244365.g004
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Fig 5. KEGG pathways enrichment of the DEGs. (A) The functional categories of the KEGG pathway enriched by salt-responsive DEGs are showed.
(B) The functional categories of the KEGG pathway enriched by saline-alkali-responsive DEGs are showed.

https://doi.org/10.1371/journal.pone.0244365.g005
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The accumulation of osmolyte (i.e. sugar and amino acid) is an important feature for the

protection and survival of plants in coping with abiotic stress. Some pathways related to sugar

metabolism and amino acid metabolism were enriched with DEGs under salt and saline-alkali

stress, such as biosynthesis of amino acids and starch and sucrose metabolism. At least 25 salt

and 26 saline-alkali tolerance genes involved in the synthesis of osmolytes were detected in

these pathways. (S5 Table), and most of them were upregulated. Four genes (c258340.

graph_c0, c262255.graph_c1, c238817.graph_c0, and c238817.graph_c1) encoding trehalose

phosphate synthases (TPS) showed significant upregulation under two stress conditions,

whereas two TPS (c253905.graph_c0 and c236826.graph_c3) were upregulated only under salt

stress. Several DEGs related to the metabolism of sucrose, glucose, proline, arginine, alanine,

and betaine were also upregulated under salt stress. Moreover, DEGs for metabolism of

sucrose, glucose, fructose, threonine, alanine, arginine, and cysteine were upregulated by

saline-alkali treatment.

Genes related to the ROS signaling network

ROS have been identified as serving a signaling function in plants, wherein they activate

defence-related genes via redox-sensitive signaling pathways and transcription factors [47].

Schematic diagrams of the ROS-mediated signaling network are presented in Fig 6A [48]. In

those seedlings subjected to salt treatment, we detected a total of 28 salt tolerance genes that

are involved in the ROS signaling network, among which, 15 genes were upregulated at 4 h

and 24 h of salt treatment. These were mainly distributed in the CML, CBL, CDPK, MAPK,

andWRKY gene families. In contrast, six genes, which mainly encode ROS-scavenging

enzymes, were downregulated in the two salt treatment groups (Fig 6B; S6 Table). In response

to saline-alkali treatment, we detected 37 saline-alkali tolerance genes involved in the ROS sig-

naling network, belonging to the CML, CBL, CIPK, HSF, MAPK, MYB, WRKY, ZAT families,

or encoding ROS-scavenging enzymes. Compared with the control, with the exception of five

POD genes that were all downregulated, most of the other gene families were upregulated in

the two saline-alkali treatment groups (Fig 6C; S6 Table).

Genes involved in H+ transport

We identified a total of 17 genes involved in H+ transport that were differentially expressed in

response to the two stress treatments, among which there were two genes encoding plasma

membrane H+-ATPase, five genes encoding F-type H+-transporting ATPase, five genes encod-

ing V-type H+-transporting ATPase, and five genes encoding ABC transporters (Fig 7; S7

Table). The majority of these genes were upregulated in the four stress groups compared with

the control group, and all genes showed a higher level of expression at 24 h in response to

saline-alkali treatment, whereas lower expression levels were detected after 4 h salt treatment.

Moreover, exposure to saline-alkali stress resulted in a more significant upregulation of these

genes than exposure to salt stress.

Dynamic expression of transcription factors

Based on all 81 families of TFs predicted from the Arabidopsis TF database [49], we detected

34 families with at least one gene matched to the DEG dataset. 90 and 99 DEGs encoding TFs

were identified in X. sorbifolia in response to salt and saline-alkali stress, respectively (S8

Table). Among these TF families, bHLH, C2H2, bZIP, NAC, and ERF families showed more

active, and 10 TF families included more than six differentially expressed TFs (Fig 8A). A total

17 bHLHs were differentially expressed, nine of which were upregulated by saline-alkali treat-

ments, and eight of which were upregulated by both salt and saline-alkali stress treatments
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Fig 6. Heatmap of DEGs involved in ROS signaling network. (A) Overview of the ROS signal transduction pathway. (B) Expression patterns of
salt tolerance DEGs are showed. (C) Expression patterns of saline-alkali tolerance DEGs are showed. CML, Calcium-binding protein; CBL,
Calcineurin B-like protein; CIPK, CBL-interacting protein kinase; CDPK, Calcium-dependent protein kinase; HSF, Heat shock transcription factor;
MAPK, Mitogen-activated protein kinase; WRKY,Wrky transcription factor; MYB, Myb transcription factor; ZAT, Zinc finger protein; MDAR,
Monodehydroascorbate reductase; GLR, Glutaredoxin; GR, Glutathione reductase; AOX, Alternative oxidase; GST, Glutathione S-transferase.

https://doi.org/10.1371/journal.pone.0244365.g006
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(Fig 8B). The NAC family, with nine DEGs, with the exception of two genes (c265158.

graph_c2 and c250122.graph_c0), seven genes were upregulated following exposure to these

two stresses (Fig 8C). Furthermore, a total of nine DEGs belonging to the ERF family were

identified, and seven of which were upregulated, whereas two genes (c252036.graph_c1 and

c252170.graph_c0) were downregulated under salt and saline-alkali conditions (Fig 8D).

To further verify the accuracy of the RNA-Seq results, we selected 10 representative genes

for qRT-PCR analysis, seven of which are involved in the ROS signaling network, two are asso-

ciated with carbon metabolism, and one plays a role in H+ transport. Correlation analysis of

the qRT-PCR and RNA-Seq results, based on scatter plotting of log2 (fold change) data, indi-

cated that the qRT-PCR results were consistent with the sequencing data (Pearson coefficient

r2 = 0.82, n = 40; S1 Fig).

Discussion

Soil salinization and alkalinization often coincide in nature, inhibiting plant growth and lead-

ing to wilting or death [50]. Some salt-alkali soils have high salinity but low pH, while some

have low salinity but high pH [51]. Therefore, neutral (NaCl or Na2SO4) and alkaline

(NaHCO3 or Na2CO3) salts are usually defined as two distinct stresses. In this study, the physi-

ological and RNA-Seq analyses were conducted on seedlings of X. sorbifolia exposed to salt

(NaCl) and saline-alkali (Na2CO3) stress at different time point.

Environmental stresses can induce a range of physiological processes in plants, and in gen-

eral, abiotic stresses have been found to activate oxidative responses and induce the production

of ROS in plant cells [52]. ROS accumulation in turn enhances membrane lipid peroxidation

due to a loss of cell membrane integrity, which negatively affects EL in response to abiotic

stress [53–55]. Furthermore, the production of MDA, derived via lipid peroxidation, can exac-

erbate membrane damage [56]. Consequently, the extent of EL and amounts of MDA can

reflect the degree of cell membrane damage incurred in response to different environmental

Fig 7. Expression patterns of DEGs involved in H+ transport in four pairwise comparisons of control and stress treatment groups.

https://doi.org/10.1371/journal.pone.0244365.g007
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stresses [57]. Indeed, MDA is commonly used as a marker of lipid peroxidation injury [58]. In

the present study, we found that both salt and saline-alkali treatment resulted in increases in

MDA concentrations and EL values in X. sorbifolia, indicating that the two stresses probably

cause lipid peroxidation and disruption of the plasma membrane. Moreover, compared with

the control seedlings, we found that the levels of MDA and EL were upregulated to a greater

extent in response to saline-alkali stress than to salt stress, which we assume to be indicative of

the greater harm caused by saline-alkali stress.

Soluble sugars, as effective osmoprotectants, can enhance the osmotic potential of plant

cells to maintain ion homoeostasis [59]. Our study demonstrated that salt stress markedly

increased the soluble sugar content of X. sorbifolia leaves, whereas the levels of these sugars

were not significantly increased under conditions of saline-alkali stress. Interestingly, most

genes involved in the metabolism of soluble sugars showed significant upregulation in our

data (S5 Table). Protein synthesis has been considered a possible primary target of salt toxicity

[60], and previous studies have shown that changes in soluble proteins in response to salinity

tend to differ according to plant species and variety, plant developmental stage, and the dura-

tion and severity of salt exposure [61]. For example, a reduction in soluble protein content has

been observed in tomato [62] and cabbage [59] under salt stress, whereas salt stress has been

demonstrated to increase protein contents in maize [63] and Zoysia macrostachya [64]. In the

current study, we found that the content of soluble proteins showed a ‘rise and fall’ tendency

Fig 8. Classification and expression of transcription factors (TFs). (A) Distribution of DEGs into 10 major TF families that include more than six
DEGs. (B) Heatmap of DEGs encoding the members of bHLH family. (C) Heatmap of DEGs encoding the members of NAC family. (D) Heatmap of
DEGs encoding the members of ERF family.

https://doi.org/10.1371/journal.pone.0244365.g008
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in response to the two imposed stresses. We suspect that this pattern could reflect an initial

increase attributable to the expression of new stress-related proteins in X. sorbifolia, and a sub-

sequent decrease in response to a marked decline in photosynthesis [65]. Notably, however,

we found that the effects of saline-alkali treatment on protein content were more pronounced

than those of salt treatment. Additionally, compared with the control, we detected gradual

reductions in the contents of chlorophyll a/b, thereby indicating a decline in the rate of photo-

synthetic may be a common response to salt and saline-alkali stress in many plants [66–69].

SOD, POD, CAT, and APX are key protective enzymes that play vital roles in eliminating

ROS and facilitating tolerance to abiotic stress. SOD functions by catalyzing the conversion of

peroxide anions to H2O2 and O2, whereas POD, CAT, and APX catalyze the conversion of

H2O2 to oxygen and water [70]. The physiological analyses conducted in the present study

revealed certain differences in the antioxidant enzyme activities of X. sorbifolia seedlings

exposed to salt and saline-alkali stress. The induction of the antioxidant system is dependent

on the severity of the stress experienced by plants [71], and in this regard, our observations

indicating that saline-alkali stress significantly induced SOD could imply that toxic superoxide

might inflict greater damage in response to saline-alkali stress than when plants are exposed to

salt stress. Our findings that the activities of POD, CAT, and APX appeared to show an initial

increase, but then subsequently decreased, might reflect the fact that the initial slight stress

stimulated the synthesis of oxidase enzyme, whereas later severe stress disrupted enzyme syn-

thesis and perturbed enzyme degradation.

In plants, ROS are believed to play a key role in regulating signal transduction events during

abiotic stress responses [72]. Plant cells are known to sense ROS through at least three different

mechanisms, namely, unidentified receptor proteins, redox-sensitive transcription factors, and

direct inhibition of phosphatases [48]. Downstream signaling events include calcium and

phospholipid signaling pathways, and subsequent activation of serine/threonine protein kinase

(OX11), MAPK cascades, NADPH oxidase, and transcription factors [48]. Furthermore, the

generation of excess ROS can also trigger ROS-scavenging pathways and restricts the produc-

tion of ROS in specific cellular locations or the entire cell. In the present study, the findings of

our GO analysis revealed the significant enrichment of several ROS-related processes. A total

of 28 and 37 differentially expressed genes related to the ROS signaling network were identi-

fied under salt and saline-alkali treatments, respectively. Previous studies have shown that

numerous components of the ROS signaling network, including genes in the CML, CIPK,

MAPK, MYB, WRKY, and HSF families, positively regulate the stress tolerance of plants [73–

75]. Under salt and saline-alkali stresses, most genes in the CML, CBL, CDPK, MAPK, MYB,

WRKY, and HSF families were upregulated. Additionally, we found that all almost of the iden-

tified genes encoding ROS-scavenging enzymes were downregulated to a greater extent in

response to salt stress. In contrast, however, with the exception of POD genes, most genes

encoding ROS-scavenging enzymes were upregulated following exposure to saline-alkali

stress. We identified certain genes related to the ROS network that showed stress-specific

expression, thereby indicating that in X. sorbifolia, different mechanisms regulate ROS homo-

eostasis in response to neutral salt and saline-alkali stress.

Saline-alkali stress affects plant nutrient absorption, growth, and photosynthesis via the

combined effects of ion toxicity, osmotic stress, and high pH stress [13, 76, 77]. To counter the

adverse effects of alkaline pH, plants can regulate intracellular pH through ion transport [19],

and in this regard, several studies have shown that H+ transporter-related genes, such as

plasma membrane H+-ATPase, F-type H+-transporting ATPase, and V-type H+-transporting

ATPase, are positively regulated in response to salt or saline-alkali stress [78–80]. In the pres-

ent study, we identified 17 H+ transporter-related DEGs, almost all of which were upregulated

in response to salt and saline-alkali stress. Notably, a larger number of H+ transporter-related
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genes were upregulated under saline-alkali conditions, and the expression level of the upregu-

lated genes tended to be higher than that of those genes upregulated in response to salt stress.

These results are consistent with those reported by Zhang et al. [81], and we accordingly specu-

late that the higher expression of these genes may make an important contribution to main-

taining intracellular ion balance and counteracting the negative effects of high pH associated

with saline-alkali stress.

TFs are regulatory components in transcriptional networks and are involved in various pro-

cesses, including plant development, hormone signaling, and stress response [82, 83]. In the

present study, a number of TFs were differentially expressed under salt and saline-alkali stress,

most of which belonged to bHLH, MYB, C2H2, bZIP, NAC, ERF, GRAS, WRKY, and C3H

families, which is consistent with findings in certain plants [25, 67, 84]. It has been confirmed

that members of the transcription factor family such as bHLH, NAC, ERF, MYB, andWRKY

are involved in plant response to abiotic stress [85, 86]. A fraction of TFs, including 8 bHLHs,

7 NACs, and 5 ERFs, were upregulated under both salt and saline-alkali stress, implying their

important roles in the regulation of X. sorbifolia responses to salt and saline-alkali stress.

In summary, this study is the first to report a comprehensive physiological and transcrip-

tomic analysis of the responses of X. sorbifolia to salt and saline-alkali stress. We observed cer-

tain physiological changes in X. sorbifolia seedlings that had been subjected to salt and saline-

alkali stress treatments, including ROS accumulation, membrane lipid peroxidation, and the

reduction of chlorophyll content. Furthermore, on the basis of transcriptomic datasets, we

identified a large amount of genes and pathways related to stress responses. These data enabled

us to characterize the common and contrasting features of salt and saline-alkali stress tolerance

in X. sorbifolia, will contribute to distinguish the response mechanisms of this species to these

two stresses. Also, for the future, systemic investigation of candidate gene will be required to

extend our results.
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