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Physiological correlates of perceptual learning in monkey V1 and V2.
J Neurophysiol 87: 1867–1888, 2002; 10.1152/jn.00690.2001. Perfor-
mance in visual discrimination tasks improves with practice. Although
the psychophysical parameters of these improvements have suggested
the involvement of early areas in visual cortex, there has been little
direct study of the physiological correlates of such perceptual learning
at the level of individual neurons. To examine how neuronal response
properties in the early visual system may change with practice, we
trained monkeys for more than 6 mo in an orientation discrimination
task in which behaviorally relevant stimuli were restricted to a par-
ticular retinal location and oriented around a specific orientation.
During training the monkeys’ discrimination thresholds gradually
improved to much better than those of naive monkeys or humans.
Although this improvement was specific to the trained orientation, it
showed little retinotopic specificity. The receptive field properties of
single neurons from regions representing the trained location and a
location in the opposite visual hemifield were measured in V1 and V2.
In most respects the receptive field properties in the representations of
the trained and untrained regions were indistinguishable. However, in
the regions of V1 and V2 representing the trained location, there were
slightly fewer neurons whose optimal orientation was near the trained
orientation. This resulted in a small but significant decrease in the V1
population response to the trained orientation at the trained location.
Consequently, the observed neuronal populations did not exhibit any
orientation-specific biases sufficient to explain the orientation speci-
ficity of the behavioral improvement. Pooling models suggest that the
behavioral improvement was accomplished with a task-dependent and
orientation-selective pooling of unaltered signals from early visual
neurons. These data suggest that, even for training with stimuli suited
to the selectivities found in early areas of visual cortex, behavioral
improvements can occur in the absence of pronounced changes in the
physiology of those areas.

I N T R O D U C T I O N

The improvement of sensory abilities with practice has been
demonstrated for somatosensory, auditory, and visual stimuli
in both animals and humans (Goldstone 1998). Studies of
neurons in primary auditory and somatosensory cortex have
revealed training-related changes in both the mapping of re-
sponse properties across the cortical surface and the sensitivi-
ties of individual neurons. These changes suggest that adult
cortex is remarkably plastic; training can increase the number
of neurons whose selectivities correspond to the demands of
the training task (Jenkins et al. 1990a; Recanzone et al. 1993)
and can increase neuronal selectivity (Recanzone et al. 1992b).

In primary visual cortex (V1) plasticity of neuronal response

properties has also been observed during the course of normal
development (Chapman and Stryker 1993; Crair et al. 1998;
DeAngelis et al. 1993; Fregnac and Imbert 1978; Ghose et al.
1994b; LeVay et al. 1980; Sclar et al. 1985), in response to
environmental modifications including monocular deprivation
(Blakemore et al. 1978, 1981; Cynader et al. 1980; Hubel and
Wiesel 1965; Hubel et al. 1977; Olson and Freeman 1978,
1980; Shatz and Stryker 1978; Swindale et al. 1981; Wiesel
and Hubel 1965a,b) and ocular misalignment during develop-
ment (Chino et al. 1991, 1994; Kumagami et al. 2000; Sasaki
et al. 1998). Plasticity in adult visual cortex has been shown in
response to localized deafferentation by retinal lesioning
(Chino et al. 1992, 1995; Gilbert and Wiesel 1992; Heinen and
Skavenski 1991; Kaas et al. 1990). Yet few studies have
addressed how neuronal properties in adult V1 change as a
consequence of training. This is clearly important in order to
understand whether the changes that have been reported in
other modalities reflect a general property of sensory cortices.
Moreover, visual cortex is an ideal arena for examining these
changes for a number of reasons. First, our understanding of
the synaptic (Adrien et al. 1985; Bear and Daniels 1983; Bear
and Singer 1986; Bear et al. 1983; Carmignoto et al. 1993;
Ghose et al. 1994a; Gu and Singer 1993; Hendry and Jones
1986; Kleinschmidt et al. 1987; Maffei et al. 1992; Ramoa et
al. 1988; Speed et al. 1991) and anatomical (Antonini and
Stryker 1993, 1996; Elliott et al. 1996; Kossel et al. 1995)
aspects of such plasticity is more advanced for visual cortex
than it is for any other sensory cortical area. Second, the
anatomy, functional architecture, and receptive field selectivi-
ties of adult visual cortex are well characterized. Third, many
studies have demonstrated improvements in visual discrimina-
tion with practice. The relatively sophisticated understanding
of vision both physiologically and psychophysically enables a
more detailed examination of correlations between behavior
and physiology than is possible for other modalities. For ex-
ample, the observed changes in other sensory cortices have
been associated with parameters that are mapped among the
inputs to the cortex: frequency in the case of auditory cortex
and somatotopy in the case of somatosensory cortex. Neurons
in visual cortex are robustly selective for many parameters that
do not correspond with receptor surface (retinotopy), including
orientation, spatial frequency, color, and disparity. Moreover,
the early stages of visual cortex offer the opportunity to ex-
amine how training affects cortical processing specifically be-
cause several of these visual selectivities, including orientation
and binocularity, first appear at the level of cortex.

To study the physiological correlates of perceptual learning
in the early visual system, we trained two macaques to dis-
criminate fine changes in orientation at a specific location in
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the visual field and around a fixed orientation. We then mea-
sured the response properties of cells in V1 and V2 that
represented trained or untrained locations. Both animals
showed considerable behavioral improvement with training. In
contrast to studies in auditory and somatosensory cortex, we
found only small location- and orientation-specific effects on
neuronal responses. These results suggest that changes in early
visual cortex may not underlie the behavioral improvements
that arise from such training.

M E T H O D S

Behavioral training

Two adult monkeys (Macaca mulatta) were first trained to discrim-
inate orthogonally oriented stimuli in a match to sample task. During
this initial training the animals sat unrestrained in a primate chair for
daily training sessions that lasted from 2 to 4 h. At other times the
animals were unrestrained in primate cages and food was provided ad
libidum, but liquid consumption was restricted to the training session
in which juice or water rewards were given for correctly performed
trials. Visual stimulation and behavior control were computer con-
trolled. Stimuli were presented on a video display on a gray back-
ground (15.6 cd/m2, CIE x � 0.33, y � 0.33). Each gun of the display
was gamma-corrected for 256 (8 bit) levels. Stimuli were achromatic
sinusoidally counter-phasing Gabors (temporal frequency � 3 or 4
Hz; spatial frequency � 2 cycles/deg, � � 0.5°) that were oriented
either horizontally and vertically during this phase of the training.
Trials consisted of a presentation of a sample stimulus followed by a
500-ms delay and then a test stimulus. Trials began when the monkey
depressed a lever mounted in front of the chair in response to the
appearance of a Gabor. The monkeys’ task was to indicate whether the
subsequently presented Gabor differed in orientation by releasing or
not releasing the lever. Matching and nonmatching trials occurred
equally often in a random sequence. One animal was required to
release the lever for matches; the other animal had to release for
nonmatches.

Once the monkeys learned to discriminate nonmatching stimuli that
differed by 90°, the spatial frequencies of the stimuli were gradually
changed over the course of several weeks such that the sample and test
stimuli were of different spatial frequencies on each trial. This be-
haviorally irrelevant change in spatial frequency was introduced for
several reasons. First, it made the task more demanding. Second, it
reduced the chance that positional clues such as spatial phase could be
used to solve the task. Third, because only two spatial frequencies
were used, it provided a control for the effects of repeated exposure:
any differences seen in response properties with respect to orientation
that are not present with respect to spatial frequency cannot be
explained simply by repeated exposure to the stimuli. Fourth, because
most single neurons in the visual cortex are selective for both orien-
tation and spatial frequency, it ensured that the task would either
involve groups of neurons or would create neurons with fundamen-
tally different response selectivities (i.e., bimodal or unusually broad
spatial frequency tuning). In either case, the chances of detecting such
a change would be larger than if the task could potentially be solved
by the signals produced by a small number of normal neurons in
visual cortex. Finally, it allowed us to examine potential correlates of
attribute-selective training since the monkeys had to learn to ignore
spatial frequency differences that were readily discriminable while
attending to barely discernible changes in orientation.

After the monkeys performed this orientation task at a 90% correct
for stimuli of 1 and 4 cycles/deg, a head post and scleral search coil
were surgically implanted. After a 2-wk recovery period, the monkeys
were trained to fixate. Once the animals could maintain fixation for
1.5 s within a square 1.2° across, location-specific training was begun
using Gabors presented in the lower right quadrant at 3° eccentricity

and 30° from the vertical meridian. These trials began when the
monkey fixated on a small dot (0.1°) on the screen and depressed the
lever. Sample stimuli were presented for 500 ms following an initial
500-ms prestimulus period. In monkey 2, 17 behaviorally irrelevant
Gabors (distractors) were also presented in other locations during the
sample and test periods. The distractor Gabors had random orienta-
tions, spatial frequencies, and temporal phases. The 18 Gabors (17
distractors � 1 training Gabor) were arranged in a regular grid at
eccentricities 1.5, 3.0, and 6.0° with an angular interval of 60°. The
Gabors were scaled for eccentricity: � was 0.25, 0.5, and 1.0° for the
different eccentricities. For the monkey in which distractors were
used, the gradual reduction of orientation difference at the training
location was only begun after the monkey performance with full
contrast distractors was around 95%. For the next 5–6 mo, orientation
differences were gradually reduced so that the average correct per-
formance in a daily session was no less than 75%.

Electrophysiological recording

When the training was complete, a second surgery was performed
to implant a recording chamber over the portions of V1 and V2
representing the trained location. Maintenance of the trained threshold
was verified by presenting 100–200 training trials to the monkeys at
the beginning of each recording session before any electrophysiolog-
ical recording. While neurophysiological data were being recorded,
the monkey performed a different match-to-sample task using pairs of
diagonally oriented fine lines (length 0.2°) surrounding the fixation
point (eccentricity �0.1°). Eye movements were minimal since the
behavioral task was at the fixation point, and the peripherally pre-
sented stimuli were behaviorally irrelevant. In one of the animals, eye
position data were acquired for both the fixation and the trained task.
In this animal the average eye position difference between the two
tasks was 0.14°.

The monkey’s task was to use the lever to indicate whether the lines
presented in the test period matched those of the sample period.
Nonmatching lines differed by 90° in orientation. The timing of the
sample and test stimulus presentations was the same as was used for
the peripheral orientation discrimination training. Performance on this
task was above 95%. Response properties of neurons were recorded
using behaviorally irrelevant stimuli presented at the receptive field
location during both the sample and test periods.

Single neurons in V1 were recorded extracellularly using transdural
Pt-Ir electrodes (�1 M�). To reduce selection bias while searching
for cells, gratings of all orientations were presented in random inter-
leaved sequences (Ringach et al. 1997). The timing of action poten-
tials from isolated neurons and presentation of visual stimuli were
recorded with 1-ms resolution. Eye position and lever movements
were recorded with 5-ms resolution.

Once a single unit was isolated, its receptive field position, optimal
orientation, and optimal spatial frequency were initially estimated by
presenting Gabors with manually chosen parameters. After this initial
estimate, Gabors were presented in computer-controlled randomly
interleaved sequences to quantitatively measure response properties.
Orientation selectivity was assessed using a fixed set of eight different
orientations (22.5° increments). The optimal orientation was then used
to measure selectivity for spatial frequency and size (� of the Gauss-
ian envelope describing the Gabor). If any of these subsequent runs
revealed an optimal parameter appreciably different from the initial
estimate, orientation tuning was reexamined with the new optimal
parameter (approximately 20% of neurons). Stimulus centering with
respect to receptive field position was verified by ensuring that neu-
rons responded to optimal stimuli whose � was 0.1°. To facilitate
comparisons between different cells, all parameters were varied over
consistent ranges: spatial frequency from 0.5 to 8 cycles/deg (octave
increments); size from 0.1 to 0.5°. All tests included 12 repetitions of
500-ms presentations.

Identical methods were used for recording from the trained and
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untrained representations in V1 and V2. For studying the untrained
representations in V1 and V2, a second recording chamber was
mounted over the opposite hemisphere. For each recording region,
approximately 100 cells from each animal were recorded with 23 to
45 electrode penetrations. About one-half of the V2 penetrations were
done with transdural electrodes; in the remaining penetrations, guide
tubes were used to penetrate the dura.

For monkey 2, after chronic and behavior testing was completed,
multiunit activity in the trained hemisphere was recorded in an acute
experiment in which recordings were made in an anesthetized (sufen-
tanil) and paralyzed (vercuronium) preparation. No acute mapping
was done in monkey 1 because the trained representation of V1 was
unexpectedly damaged during V2 recording. Procedures for animal
preparation and maintenance have been detailed elsewhere (Maunsell
et al. 1999). Vertical penetrations were made at regular 1-mm inter-
vals along a grid spanning the representation of the trained region in
V1 and V2. Monocular multiunit receptive fields were plotted on a
tangent screen using a hand-held projector. For each penetration,
receptive field boundaries were confirmed by plotting receptive fields
at two or more sites separated by at least 200 �m.

Behavioral testing

After neurophysiological data had been collected from trained and
untrained regions in V1 and V2, extended psychophysical testing of
orientation discrimination performance was done. Orientation dis-
crimination thresholds were measured at an untrained location 3° from
the vertical meridian in the lower left quadrant. For monkey 1, dis-
crimination thresholds were determined by measuring performance to
various orientation changes and taking the orientation difference as-
sociated with 79% performance on a fitted exponential sigmoid. For
monkey 2, thresholds were measured by a staircase procedure that
converged at a performance level of 79%. The staircase procedure was
repeated to give an estimate of the variability of performance. Because
of the aforementioned V1 damage in monkey 1, we were unable to
obtain behavioral thresholds for nontrained stimuli at the trained
location in that animal. However, for monkey 2, we evaluated the
orientation specificity of the behavioral improvement. Probe trials
were randomly inserted within a standard discrimination training run.
For such trials, the monkey’s task was the same peripheral orientation
discrimination task that was trained, except that the base orientation
around which stimuli were oriented and the orientation difference
between nonmatching stimuli were varied.

Electrophysiological analysis

DESCRIPTIVE FUNCTIONS. Response functions for orientation, spa-
tial frequency, and size (Table 2) were fit using a maximum likelihood
method (Geisler and Albrecht 1997). Orientation responses were
modeled by a wrapped Gaussian (Swindale 1998), and spatial fre-
quency and size were modeled by symmetric Gaussians. Maximum-
likelihood fits were obtained using measured spike count means and
by assuming variance to be proportional to the mean (Geisler and
Albrecht 1997).

The proportionality of variance to mean (K) was determined using
orientation measurements because these had the greatest number of
stimuli tested (8 orientations). Thus for orientation, five parameters
were obtained by descriptive function fit: baseline firing rate, peak
firing rate, tuning bandwidth, peak orientation, and the proportionality
of variance constant (K). For the spatial frequency and size tuning
runs, four parameters were obtained: baseline firing rate, peak firing
rate, tuning bandwidth, and peak position. To test for the effects of
orientation and location-specific effects, we looked for correlations
between descriptive function parameters and preferred orientation as
well as correlations between these parameters and receptive field
location. For tuning amplitude and peak response, all statistical anal-
yses were done on log-transformed data. To examine dependence on

preferred orientation, vectors were constructed in which the amplitude
was the parameter of interest (orientation bandwidth, for example),
and the angle was the cell’s preferred orientation. The distribution of
these vectors was analyzed for angular biases by computing the
centroid confidence region for the vectors and determining the like-
lihood that the origin lay within this region (Hotelling test) (Batschelet
1981). For response measures such as tuning magnitude, a nonpara-
metric rank-weighted test was also used to find angular bias (Moore
test) (Batschelet 1981). For all parameters, circular regression analysis
was used to examine the dependence on preferred orientation (C-
association test) (Fisher 1996). To look for parameter dependence on
position, the correlation coefficient between each parameter and the
receptive field distance from the center of the training stimuli was
computed.

To simultaneously test for changes related to training orientation
and location, parameters were grouped according to location (trained
location vs. untrained location) and orientation (trained orientation vs.
untrained orientation) and tested by ANOVA. For these groups, cells
were classified as belonging to the trained location group if their
receptive field center was located within 1.5� (0.75°) of the center of
the training stimuli and as belonging to the trained orientation group
if their preferred orientation was within 11.25° of the training orien-
tation (45°). For all statistical tests, a criterion value of P � 0.01 was
used.
DETECTION THEORY. To relate the physiological observations to
performance in the task, we evaluated the performance of an ideal
observer of the neuronal responses to the training stimuli. Because we
typically did not record from neurons while the animal performed the
discrimination task, we inferred the responses to our training stimuli
using fitted descriptive functions of orientation and spatial frequency
and assuming that the selectivities for these two parameters are
separable. Specifically, we constructed two orientation tuning curves
for 1 and 4 cycles/deg based on ratios derived from the spatial
frequency tuning curve and the orientation tuning curve acquired at
the preferred spatial frequency.

Two types of ideal observer models were tested: a discrimination
model and a classification model. In the first, discriminability de-
scribes how well two sets of neuronal responses can be distinguished
using an optimal threshold (Fig. 11, A and C). The discriminability
(d�) between two signal distributions of unequal variances is described
by the means (�) and the variances (�2) of the two distributions
(Green and Swets 1988)

d� �
�1 � �2

� �1
2 � �2

2

2

In our case, the distributions to be compared are the responses when
an orientation change occurs (nonmatch) and when no change occurs
(match). So the match signal for the high orientation, low spatial
frequency sample is

�1 � �match � r�� � �0 � �, f � 1� � r�� � �0 � �, f � 4� and � 1
2 � K � �1

and the nonmatch signal for the same sample is

�2 � �nonmatch � r�� � �0 � �, f � 1� � r�� � �0 � �, f � 4� and � 2
2 � K � �2

where �0 is the orientation around which training occurred (45°), � is
one-half of the orientation difference, and K is proportionality of
means and variances. All responses and variances were computed
using the aforementioned descriptive functions.

Because the monkeys could perform well in sessions where the
orientation difference was continually adjusted (� is not constant), the
remembered stimuli of any comparison would have to correspond to
the responses elicited at the trained orientation �0 so that

�match � �r�� � �0 � �, f � 1� � r�� � �0, f � 1�	

� �r�� � �0 � �, f � 4� � r�� � �0, f � 4�	
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and

�nonmatch � �r�� � �0 � �, f � 1� � r�� � �0, f � 1�	

� �r�� � �0 � �, f � 4� � r�� � �0, f � 4�	

Note that in all of these cases the difference in the means reduces to
the difference seen in a matched spatial frequency comparison

�match � �nonmatch � r�� � �0 � �, f � 1� � r�� � �0 � �, f � 1�

Thus discrimination is based not on a direct comparison between
sample and test, but rather a comparison of sample and test stimuli to
a criterion response corresponding to a stimulus (� � �0), which is not
actually presented but lies in the middle of the range of presented
stimuli (Lages and Treisman 1998) (Fig. 11A). For these purposes we
assume a perfect memory of the responses to all the stimuli that were
presented as well as the reference stimuli (�0 � 45°).

In the second ideal observer model, each stimulus response is
classified as being above or below the training orientation (Fig. 11, B
and D). Such a classification depends on the range of responses
produced by the presented stimulus and the total range of responses
for all stimuli. In this respect it differs from discrimination, which
involves the comparison of the responses to two specific orientations.
So for the same high orientation, low spatial frequency sample the
probability that it will be classified as above �T is

p�� � �T, f � 1��sample � �T � �, f � 1�

��
��
�T

�
R�

p����R�� � p�R��� � �T � �, f � 1�dR�d��

Assuming that responses are normally distributed the probability of an
orientation � given a response R is

p���R� �
p�R���

� p�R����d��

and the probability of a response r given an orientation � is

p�R��� �
1

�2	Kr���
exp��

�R � r���	2

2Kr���
�

For example, a cell whose peak orientation is �T with zero response
variance (K � 0) will have a 50% chance of correct identification since
the response to �T � � is equally likely to have come from �T � � as from
�T � � (Fig. 11B). A decision is then based on the classifications of both
the sample and test stimulus. So the probability of detecting an orientation
match depends on both the sample and match being classified correctly or
both the sample and match being classified incorrectly

p�match� � p�sample, correct� � p�test, correct�

� p�sample, wrong� � p�test, wrong�

For the orientation matching trial with the high orientation, low spatial
frequency sample used above

p�match��sample, �test� � p�� � �T��sample, f � 1� � p�� � �T��test, f � 4�

� p�� 
 �T��sample, f � 1� � p�� 
 �T, �test, f � 4�

where

�sample � �test � �T � �

R E S U L T S

Perceptual learning

Throughout training the orientation difference was reduced
whenever the animals were performing at 80% correct for
200–400 trials. Within several days, the orientation difference

was reduced from 90° to about 15–20° around an orientation of
45°, which is roughly the range in which naive humans per-
form this task (Fig. 1). Further reductions in the orientation
discrimination threshold occurred more slowly, such that a
threshold of 4–5° was reached only after about 6 mo of
training (�100,000 correct trials). Behavioral improvements
were well modeled by single exponentials. This pattern of
slowing improvement is similar to that seen in monkeys during
tactile discrimination training (Recanzone et al. 1992a).

Behavioral performance for untrained locations and orienta-
tions was measured after all recordings had been completed.
For both animals, performance was measured for stimuli pre-
sented at an untrained location directly across the vertical
meridian from the trained location. Orientation was varied
around both the trained orientation (45°) and an untrained
orientation (135°). For monkey 2 performance was also mea-
sured for an untrained orientation (135°) at the trained location.
All performance was measured in the absence of any distrac-
tors.

In both animals learning was orientation specific (Table 1):
orientation discrimination thresholds at both locations were
poorer for stimuli varying around an untrained orientation and

FIG. 1. Orientation discrimination thresholds as a function of training in 2
macaques. The training of monkey 1 is shown in A, and the training of monkey
2 is shown in B. Each point indicates the average orientation difference of
nonmatching trials in a daily recording session, which typically included
1,000–2,000 correct trials during the initial training. Thresholds were adjusted
to maintain a performance of 75–80% correct trials. In both animals, initial
training produced rapid changes in threshold. Reduction of threshold after 40,000
correct trials was considerably slower. The thresholds were fit by a single expo-
nential, indicating asymptotic thresholds at 4.3 and 6.1° for the 2 monkeys.
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were similar to thresholds observed at the beginning of training
(Fig. 1). In contrast, there was a much smaller effect of reti-
notopic position: orientation thresholds in the untrained loca-
tion were similar to those seen in the trained location. The
trained-orientation/untrained-location threshold was much
lower than the trained-location/untrained-orientation threshold.
The psychophysical data therefore indicate that despite orien-
tation- and location-specific training, perceptual improvements
were orientation specific but only marginally location specific.
This is particularly notable for monkey 2, because the untrained
location corresponded to the location of a distractor that had to
be ignored during the course of training.

Single-cell receptive field properties

Orientation tuning curves were acquired from 867 cells in two
animals. Spatial frequency and optimal size tuning was evaluated
for 775 and 651 of these cells, respectively (Table 3). Only cells
whose receptive fields overlapped the training stimuli (RF centers
within 1.5� of the center of the training stimuli) were included in
the trained population. Cells from the trained hemisphere outside
of this border were excluded from analysis. Figure 2 shows
cumulative distributions of cells in the trained hemisphere (dashed
lines) and cells within the trained location (solid lines) for V1 and
V2. Of the 169 V1 cells in the trained hemisphere, 139 were
accepted for analysis; of the 153 V2 cells, 129 were accepted.

Figure 3 shows the responses and fitted descriptive functions
for one cell from the trained V1 population and another cell
from the untrained V1 population. Solid lines indicate the fitted
functions for mean firing rates. Tuning curves were considered
well fit when the correlation coefficient between the observa-
tions of response means and the fitted model was at least 0.80.
For each neuronal population, approximately 75% of the func-
tions met this criterion (Table 3). Among well-fit tuning
curves, the average correlation coefficient for orientation was
0.93, and for spatial frequency and size was 0.96 in both V1

and V2 populations. The mean parameters in all neuronal
populations were consistent with those reported by Geisler and
Albrecht (1997) using similar methods.

Receptive field properties were similar between trained and
untrained populations and between trained and untrained ori-
entations. Most receptive field properties did not depend on
either receptive field location or preferred orientation. In the
few cases in which significant differences were present, there
were small and not obviously consistent with the pattern of
improved performance (Table 1). The remainder of this section
details the analyses used to examine the dependence of recep-
tive field properties on location and orientation.

Preferred orientation distributions were compiled for each of
the four neuronal populations (Fig. 4). In both animals there
was a small but significant bias in the distribution of preferred
orientations (Raleigh test, P  0.005) in the V1 population
representing the trained location (Fig. 4A). Unexpectedly, there
were significantly fewer cells whose preferred orientations
were near the trained orientation (45°) than would be expected
with an unbiased distribution (V-test, P  0.005). A similar
trend was seen in the V2 trained population (B), but it was not
statistically significant. No significant biases with respect to
orientation were seen in the untrained populations (C and D).

Preferred orientation distributions were also computed using
all cells within the trained and untrained regions irrespective of
the quality of their orientation fit (not shown). In one analysis,
the preferred orientation of cells with well-fit orientation func-
tions was taken from the function maximum, and the preferred
orientation of the remaining cells was taken as the orientation
that evoked the greatest response. In another analysis, the
orientation that evoked largest response was used for all cells.
For all the statistical analyses, these two methods yielded
identical results as the distributions shown in Fig. 4.

Changes in preferred orientation is only one of the possible
changes that might result from training. Orientation discrimi-

TABLE 2. Descriptive response functions

Response mean r � rmax � r(x) � r0

Response variance V � K � r

Orientation r���� � �
n

exp��
�� � �c � 180n�2

b�
2 �

Spatial frequency rf �f � � exp��
�f � fc�

2

bf
2 �

Size r� ��� � exp��
�� � �c�

2

b�
2 �

TABLE 3. Number of tuning curves (number of well-fit curves)

Area Location Orientation Spatial Frequency Size

V1 Trained 214 (169) 183 (143) 137 (99)
Untrained 235 (180) 216 (163) 183 (131)

V2 Trained 194 (153) 174 (130) 157 (114)
Untrained 224 (170) 202 (143) 174 (130)

FIG. 2. The distribution of receptive field centers of cells in the trained
hemisphere. Gray lines indicate the contrast function of the Gaussian envelope
describing the Gabors used for training (� � 0.5°). Solid black lines indicate
the cumulative distribution of receptive field locations after the application of
a 0.75° criterion. The cells described by this distribution were considered to be
within the training region for subsequent analyses. Dashed lines indicate the
cumulative distribution of distances for all cells recorded from the trained
hemisphere.

TABLE 1. Discrimination thresholds as a function of
orientation and location

Location

Monkey 1 Monkey 2

Trained
orientation

(45°)

Untrained
orientation

(135°)

Trained
orientation

(45°)

Untrained
orientation

(135°)

Trained 3.3 7.3 � 0.59 27.4 � 2.1
Untrained 6.3 16.8 11.0 � 1.0 38.4 � 2.7

Values for monkey 2 are means � SE.
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nation training might also affect the response rates of appro-
priately tuned cells or change the variability of the responses of
such cells. Moreover, training effects might be location specific
but not orientation specific, or vice versa. To examine these
possibilities, all of the parameters of orientation tuning from
the fitted cells of the animal-combined populations were ex-
amined as a function of preferred orientation and location.
Orientation bandwidth, orientation tuning amplitude (peak re-
sponse minus baseline response), peak response (Fig. 5), and
the variance ratio were examined by two types of analyses.

First, correlations between the response parameters and pre-
ferred orientation and distance from the center of the training
stimuli were examined. For the distance correlations, no dis-
tance criterion was used to restrict the populations from either
the trained or untrained hemispheres (dashed line, Fig. 2).
None of these parameters was correlated with distance from the
center of the training stimuli. With one exception, none of
these parameters were significantly correlated with preferred
orientation either (Hotelling, C-association tests). The excep-
tion was a significant correlation between tuning amplitude and
preferred orientation in the untrained V1 population (C-asso-
ciation, P  0.01) with cells near the trained orientation having
lower tuning amplitudes.

The aforementioned correlation and regression analyses test
for relationships between a variety of response properties and
the two specific response properties of the training stimuli:
orientation and retinotopic location. However, even in the
absence of a general relationship between response properties,
it is possible that there are differences between neurons that
had properties matched to the training stimuli (trained cells)
and those that did not (untrained cells). To test for such
differences, ANOVA was performed on cells grouped accord-
ing to their preferred orientation and receptive field location
(Fig. 6). Neurons whose preferred orientation was within 22.5°
of 45° were classified as belonging to the trained orientation
group; while neurons whose receptive field centers were within
0.75° of the training stimuli were classified as belonging to the
trained location group. There were no significant effects of
location or preferred orientation on orientation bandwidth or
peak response in any neuronal population. Tuning amplitude
and variance did depend on location, but not orientation, in V1.
Tuning amplitude was slightly smaller in the trained population
(14.6 spikes/s vs. 19.5 spikes/s), while the difference in vari-
ance was more substantial (1.85 vs. 2.36). By contrast, in V2,
no orientation-related parameter showed significant depen-
dence on either location or orientation.

Training might have also produced changes in response
properties unrelated to orientation. For example, because our
training stimuli were of two specific spatial frequencies, the
distribution of preferred spatial frequency might be altered for
those cells whose preferred orientation was near that of the
training stimuli. To examine this possibility, preferred spatial

FIG. 3. Two example cells from trained and untrained V1 and their de-
scriptive function fits (solid lines). Circles indicate observed firing rates.
Vertical lines indicate �1 SE error bars, which are too small to be visible in
most cases. A and B: orientation responses and their fitting by a wrapped
Gaussian. C and D: mean firing rates as a function of spatial frequency and
their fitting by a Gaussian. E and F: mean firing rates as a function of stimulus
size (� is the space constant of the Gaussian envelope describing the Gabor
patches used as stimuli). Bold values on the abscissas of A–F indicate param-
eter values used during training.

FIG. 4. Preferred orientation distributions for the 4 studied
neuronal populations: trained (black) and untrained (gray)
representations in V1 (A and C) and V2 (B and D). For cells
whose orientation responses were well-described by wrapped
Gaussian descriptive functions, preferred orientation was de-
fined by the center position of the Gaussian. Data from the 2
animals have been combined. Preferred orientations were then
grouped into 8 nonoverlapping bins. The horizontal lines
indicate an unbiased distribution in which each bin contains 1⁄8
of the population. The V1-trained representation has signifi-
cantly fewer cells at the trained orientation of 45° (filled) than
would be expected from an unbiased distribution.
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frequency (Fig. 7, A and B) and spatial frequency bandwidth
(Fig. 7, C and D), preferred size (Fig. 7, E and F), and distance
from the training stimuli center (Fig. 7, G and H) were exam-
ined as a function of preferred orientation. For preferred size,
analyses were done on optimal � (not shown), as well as
optimal � normalized by eccentricity. No significant correla-
tions between the spatial frequency and size parameters and
either preferred orientation or distance from the training stim-
ulus were seen. Furthermore, there were no correlations be-
tween preferred orientation and distance from the training
stimuli (G and H).

Few differences were found when cells were grouped ac-
cording to location and orientation (Fig. 8). By definition,
distance varied with location group (G and H). ANOVAs
revealed that peak spatial frequency also varied with location.
For preferred spatial frequency, there was an interaction be-
tween orientation and location: preferred spatial frequency was
relatively low among trained orientation cells in the trained
location group (mean � 2.0 cycles/deg), and relatively high
among trained orientation cells in the untrained location group
(mean � 3.6 cycles/deg).

To summarize, there were few significant changes in recep-
tive field properties associated with the training orientation or
location in either V1 or V2. Correlation analysis was done on
eight independent receptive field parameters in the four neu-
ronal populations with respect to distance from the training
stimuli and preferred orientation. Of these 64 correlation anal-
yses, only 1 was significant: the correlation between tuning
amplitude and preferred orientation in the untrained V1 popu-

lation. ANOVA for the effects of orientation and location was
also done on the eight parameters. In V1, there were location
effects on preferred spatial frequency, tuning amplitude, and
variance but no effects of orientation alone on any parameter.

The analyses of Figs. 5 and 7 ignore the nonuniform distri-
bution of preferred orientation (Fig. 4) and therefore do not
fully characterize the population response to different stimuli.
To characterize the combined effects of potential changes in
response rates (Fig. 5) and preferred orientation distributions
(Fig. 4), we constructed a population response curve for each
neuronal population in which the orientation tuning curves
from each cell were averaged together (Fig. 9). Such an aver-
age takes into account orientation tuning parameters (band-
width and peak firing rates) as well as the observed distribution
of preferred orientation. The population metric therefore indi-
cates the total amount of activity that would be produced by
stimuli of different orientations. As expected, none of these
population responses show dramatic orientation biases. How-
ever, at the trained orientation, the population response was
lower in the trained V1 representation than in the untrained V1
representation (Fig. 9A). No significant orientation specific
differences were seen in V2 (Fig. 9B) despite biases in the
preferred orientation distribution that are similar to those seen
in V1 (Fig. 4). Thus the difference in V1 arises from fewer
cells with preferred orientations near that of the training stimuli
as well the lower tuning response amplitudes of such cells
(Fig. 5C).

Because these population response curves are based on
individual orientation tuning curves obtained at a variety of

FIG. 5. Receptive field parameters related to orientation tuning
obtained by descriptive function fits as a function of preferred
orientation for the 4 neuronal populations. Parameters from indi-
vidual neurons are binned according to location and preferred
orientation. Black indicates cells from untrained locations; gray
indicates cells from trained locations. Filled bars represent cells
whose preferred orientation was within 22.5° of the trained ori-
entation; unfilled bars represent cells with other preferred orien-
tations. For firing rates (C–F) means and variances were com-
puted on log-transformed data. Vertical lines indicate �1 SE for
22.5° width bins. Neither orientation bandwidth (A and B), nor
peak response (E and F), nor the variance ratio (G and H) showed
any significant variations with either preferred orientation or lo-
cation in either V1 or V2. However, there was a significant
correlation between tuning amplitude and preferred orientation in
the untrained V1 population (C-association, P  0.01) with cells
near the trained orientation having lower tuning amplitudes.

1873EFFECTS OF PERCEPTUAL LEARNING IN V1 AND V2

J Neurophysiol • VOL 87 • APRIL 2002 • www.jn.org



different spatial frequencies, significant orientation biases
might exist among the subset of cells preferentially tuned to the
spatial frequencies used in training (1 and 4 cycles/deg). To
estimate the orientation population response at these spatial
frequencies, we made use of the separability between orienta-
tion and spatial frequency (Webster and De Valois 1985), and
for each cell constructed a orientation-spatial frequency re-
sponse surface by multiplying the appropriately normalized
tuning curves together for cells whose orientation and spatial
frequency responses were well fit by descriptive functions (Fig.
9, C and D). Again, there are no large variances in population
response as a function of orientation. Indeed, at a spatial
frequency of 1 cycles/deg, there is no significant difference in
orientation bias between the trained and untrained V1 popula-
tions. However, the orientation bias seen in the mixed spatial
frequency average (A) is visible at a spatial frequency of 4
cycles/deg: responses at the trained orientation are lower in the
trained population than in the untrained population (C). This
indicates that the observed effects on the neuronal response
properties would primarily effect the responses to the training
stimuli with higher spatial frequencies.

Retinotopy

For both animals, visuotopic mapping was measured in the
trained and untrained hemispheres by relating the position of
each V1 penetration to the average of observed receptive field
locations within that penetration. This method has limited
accuracy because electrodes were secured several centimeters
above the cortical surface, were not perfectly normal to the
cortical surface, and were typically remounted and replaced on

a daily basis. In monkey 2, visuotopy in and around the training
region was also measured in an acute recording session for
both V1 and V2.

Linear magnification factors were computed by dividing the
penetration distance by the visuotopic distance for all possible
pairs of penetrations. To evaluate the dependence of magnifi-
cation on eccentricity, regression analysis was applied to the
magnification factors as a function of the average eccentricity
of the penetration pair (Fig. 10, A and B). For all cases except
the V2 data from the second animal (Fig. 10B), there was a
significant negative correlation between magnification and ec-
centricity. Each magnification factor was then normalized ac-
cording to the magnification factor predicted by the regression
equation (Fig. 10, C and D), and these normalized factors were
plotted as a function of distance from the center of trained
region. Correlation analysis revealed that in none of the acute
or chronic recording (not shown) data sets was there a signif-
icant non-zero correlation between eccentricity corrected mag-
nification and distance from the training region. Thus our
training produced no measurable effect on the visuotopic map-
ping in either V1 or V2.

Neurometric performance

Although the slight reduction in the trained V1 population
response at the trained orientation appears inconsistent with
orientation-specific improvement in performance, it might be
the signature of response property changes that support im-
proved performance. An orientation-selective cell is maximally
sensitive to changes in orientation not at its preferred orienta-
tion (Fig. 11, A and B), but rather at orientations displaced from
the peak of the curve (Fig. 11, C and D), where the slope of the
orientation response function is the greatest. If a relative excess
of neurons preferred orientations offset from the trained orien-
tation, the population response to the trained orientation (Fig.
9) would be reduced. However, the population response shown
in Fig. 9 is only a partial description of how neurons contribute
to discrimination because it ignores the variance of neuronal
responses and their spatial frequency tuning. For example,
responses in the trained V1 population were less variable than
those of the untrained V1 population (Fig. 5G). This should
improve the discriminability of signals from the trained loca-
tion. Additionally, because the average preferred spatial fre-
quency was lower among V1 cells in the trained orientation
and location groups (Fig. 8A), discriminability should be im-
proved by the relatively large responses to the 1 cycle/deg
stimuli.

A behaviorally relevant description of the neuronal popula-
tion must incorporate both the mean and variances of the
responses of individual neurons to the stimuli used in the
behavioral measurements (Table 1). Using such a description,
we wish to ask three questions. First, how does behavioral
performance compare with the performance of an ideal ob-
server of individual neuronal responses? Second, how does
behavioral performance compare with an observer of a popu-
lation of neurons? Third, can patterns in the behavioral data be
used to rule out or implicate specific decision and pooling
models? All of these questions depend on invoking specific
models of how physiological responses are used to make
behavioral decisions. These models must specify the signals
that are used for the decision (responses to particular orienta-

FIG. 6. Receptive field parameters related to orientation tuning grouped
according to location and preferred orientation. Color code is the same as Fig.
5. For V1, 139 cells were classified as belonging to the trained location and 180
to the untrained location; for V2, 129 were in the trained location and 170 in
the untrained location. For V1, 36 cells had preferred orientations matching the
trained orientation, and 283 had unmatched preferred orientations; for V2, 34
were matched, and 265 were unmatched. Consistent with the correlation
analyses, most parameters did not depend on orientation or location.
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tions in our case), the method by which signals are compared
(decision model), and how signals from multiple neurons are
combined (pooling).

The decision model that has been traditionally applied to
neuronal response data is a discrimination model. In this model
an observed response is assigned to one of two response
distributions. The reliability of such an assignment depends on
the separation between the two response distributions: for
largely overlapping distributions, there is little chance of a
correct assignment (Fig. 11A); whereas for widely separated
distributions, such assignments should be very accurate (Fig.
11C). In our case, the response distributions to orientations 3°
away from 45° are compared to the response distribution of 45°
stimuli (Fig. 11A). An alternative to the discrimination model
is the classification model, in which an observed response is
assigned to an orientation range (Fig. 11, B and D) on the basis
of responses over the entire range. For both of these decision
models, response means and variances were computed using
the fitted descriptive functions for orientation and spatial fre-
quency. To infer responses for arbitrary stimuli, we used the
complete orientation-spatial frequency response surface for
each cell obtained by multiplying appropriately normalized
orientation and spatial frequency descriptive functions under
the assumption of separability (Webster and De Valois 1985).

In any of these models, performance improves as the pool
size is increased, and degrades with the introduction of noise or
correlation between the neurons. To compare different decision
and pooling models (see APPENDIX), we computed performance

for a variety of pool sizes and estimated by linear interpolation
the number of neurons necessary to achieve behavioral levels
of performance at the trained orientation in the absence of
noise or interneuronal correlations. We used this number as a
summary statistic of the suitability of the four neuronal popu-
lations and five decision/pooling models to the discrimination
task. A neuronal population that achieves a given behavioral
performance with a smaller pool size than other populations is
better suited to the behavior task. For every model and popu-
lation, we computed performance on 6° orientation changes
around 45°, and around 135°.

Figure 12 shows d� performance as a function of pool size in
all four neuronal populations when discrimination-based re-
sponse pooling is invoked. Solid horizontal lines indicate be-
havioral performance: 80% correct (d� � 1.2) at the trained
orientation (A and C), and 50% correct (chance, d� � 0) at the
untrained orientation (B and D). Individual cells (pool size �
1) of both trained (black) and untrained (gray) populations
were much worse at discrimination at the trained orientation
than the animal subjects. Thus, in contrast to most previous
studies, even the best cells that we observed would be unable
to provide a basis for the monkeys’ behavior. Consistent with
the behavioral observations, there is little difference between
V1 and V2 at the two locations: signals from the individual
neurons of both populations are similarly incapable of support-
ing discrimination decisions. However, the suitability of the
neuronal populations is inconsistent with the behavior: in both
V1 and V2 the untrained populations (gray) are capable of

FIG. 7. Receptive field parameters not related to orientation tun-
ing as a function of preferred orientation for the 4 neuronal popu-
lations. Format is the same as Fig. 5. Neither spatial frequency
bandwidth (C and D) nor preferred size (E and F) depend on
preferred orientation or location. By definition, the distance from
the training center was different between the trained and untrained
representations irrespective of preferred orientation (G and H).
However, preferred orientation and distance from the training center
were independent for each population.
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providing better performance than the trained populations
(black). Finally, for both the trained and untrained populations,
V2 surpasses V1 in performance. Thus, of the four neuronal
populations, untrained V2 was the best suited for the trained
task, while trained V1 was the most ill-suited. Thus the weaker
population response of trained V1 is not consistent with an
increased ability to discriminate changes in orientation.

To test this specific pooling and decision model, we also
computed performance as a function of pool size for 6° dis-
criminations around an untrained orientation (Fig. 12B). The
pool sizes obtained from Fig. 12A were used to predict perfor-
mance on this task. Since the animals could not perform such
a task, the behavioral d� is zero. The predicted d� is computed
by using the pool size necessary to explain performance at the
trained orientation. These predicted d�s are all much larger than
the behaviorally observed value of zero. Despite the behavioral
difference between trained and untrained orientations, the per-

formance of these models for all neuronal populations and pool
sizes is similar to that seen with the trained orientation. Indeed,
in some cases, the pooled ideal observer performances are
actually better in the untrained orientation (B) than in the
trained orientation (A).

The physiological properties of the observed populations
therefore do not reflect the orientation selectivity of the psy-
chophysical observations. However, most cells are ill-suited
for discrimination around the trained orientation: the majority
of neurons have a d� near zero. Consistent with previous
neuronal pooling models (Britten et al. 1992; Prince et al.
2000; Shadlen et al. 1996), we have included both neurons that
are well suited for the discrimination by virtue of their tuning
properties as well as those that are not. Ideal detector perfor-
mance can be significantly improved at a particular orientation
by introducing a pooling bias, so that only those cells that are
most capable are considered. This is equivalent to stating that,
although our sampling was unbiased with respect to all cells,
the sampling the animal used to arrive at decisions was biased.
Such a bias will also have the effect of worsening performance
at other orientations. In our case, an “optimized” pool will be
one in which only cells whose peak orientation is near the
trained orientation are considered: this will increase perfor-
mance at the trained orientation and decrease performance at
the untrained orientation.

We implemented this optimized pool for each neuronal
population by shifting each neuron’s orientation tuning
function while keeping all other parameters (response rate,
spatial frequency tuning, and variance) fixed. For each neu-
ron, the peak orientation was displaced from the trained
orientation such that the maximum slope of the orientation
tuning function was aligned with the trained orientation
(Fig. 11, C and D). Figure 12, E–H, indicates the perfor-
mance of these optimized populations at both the trained and
untrained orientations for discrimination-based decisions.
Even with this optimized population, individual neurons
(pool size � 1) are incapable of providing a discriminable
signal sufficient to explain behavior (E and F). However, the
average discriminability performance of single neurons is
sufficiently changed so that the pooled performances are
now highly dependent on orientation: for the same pool size
the performances of the orientation-biased discrimination
pools (E and F) are much better at the trained orientation
than at the untrained orientation (G and H). Although only
the results of a response pooling model are shown in Fig. 12,
the conclusions from a decision pooling model (see APPEN-
DIX) are identical: trained V1 is the least suited to the
perceptual task, and an orientation-biased pooling is neces-
sary to replicate the orientation dependence of the behavior.

Figure 13 shows the results for models in which decisions
are reached by pooling the stimulus classification decisions
from individual neurons. As with the discrimination models,
each neuronal population was considered separately for trained
and untrained orientations, and performances were evaluated
as a function of neuronal pool size. Just as with discrimination,
individual neurons are poor at classification with most neurons
performing at near chance level. As with discrimination, under
the classification models the trained and untrained neuronal
populations are similar to one another, and the V2 populations
are better than the V1 populations. Similarly, there is a lack of
orientation bias in the observed populations (Fig. 13, A and B

FIG. 8. Receptive field parameters not related to orientation tuning grouped
according to location and preferred orientation. Format is the same as Fig. 6.
Only cells whose spatial frequency responses were well fit by descriptive
functions are included in A–D. For these panels, 116 V1 and 111 V2 cells were
in the trained location, and 163 V1 and 143 V2 cells were in the untrained
location. With respect to the trained orientation, 29 V1 cells and 29 V2 cells
had matched preferred orientation, and 250 V1 and 225 V2 cells had un-
matched preferred orientations. There was a significant effect of location on
peak spatial frequency, as well as an interaction between orientation and
location in V1 (A). Only cells whose sigma responses were well fit were
included in E and F. For these panels, 84 V1 and 95 V2 cells were in the
trained location, and 131 V1 and 130 V2 cells were in the untrained location.
With respect to the trained orientation, 26 V1 cells and 29 V2 cells had
matched preferred orientation, and 189 V1 and 195 V2 cells had unmatched
preferred orientations. In G and H, all cells recorded in the trained hemisphere
were included irrespective of receptive field position relative to the training
stimuli. For these panels, 169 V1 and 153 V2 cells were in the trained location,
and 180 V1 and 170 V2 cells were in the untrained location. With respect to
the trained orientation, 38 V1 cells and 38 V2 cells had matched preferred
orientation, and 311 V1 and 285 V2 cells had unmatched preferred orienta-
tions. As dictated by the grouping, there is a significant effect of location.
However, receptive field position does not depend on preferred orientation.
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vs. C and D), so that the predicted performance with unbiased
pooling (dashed lines, B) at the untrained orientation exceeds
behavioral observations (solid line, B). By shifting orientation
tuning functions (Fig. 11D), we constructed populations (Fig.
13, E and F) that solely contained cells whose orientation
tuning was optimized for classification. As with discrimination,
this produced the expected orientation bias: an increase in
performance at the trained orientation (E and F vs. A and B)
and a decrease in performance at untrained orientations (G and
H vs. C and D) among individual neurons and the populations
as a whole. The results for task-based detector pooling (see
APPENDIX) also exhibited these patterns.

Thus, although both discrimination and classification models
applied to individual neurons are unable to explain behavioral
performance, models in which signals from the most appropri-
ate neurons are combined can explain orientation-dependent
discrimination performance. In the absence of large orientation
biases in either V1 or V2 representations of trained and un-
trained locations, orientation-selective (and location invariant)
pooling must be invoked to explain the behavior. However, the
predicted performance of orientation-biased models for the
untrained orientation still exceeds behavioral observations
(Figs. 12 and 13D).

This suggests that, even with orientation-biased pooling, our
models might not be able to account for the full pattern of
behavioral performances observed around different orientations
and with different changes in orientation. This pattern was mea-
sured in monkey 2 using probe trials randomly inserted into the
standard protocol in which stimuli are oriented near the trained
orientation of 45° and is shown in Fig. 14A. The most notable
feature of the behavioral performance surface is that high perfor-
mance is limited to orientations near the trained orientation even
when the difference between nonmatching stimuli is between 20
and 30°, which is the naive discrimination threshold (Fig. 1).

Because such large changes should be easily discriminable inde-
pendent of orientation, this suggests that the animal is not using a
discrimination algorithm to arrive at match/nonmatch decisions.

To compare these behavioral data with our decision and
pooling models, we used the optimized discrimination and
classification pools and tested performance over a matching
range of orientations and orientation changes (Fig. 14). For
each model we constructed a pool of 100 neurons whose
orientation tuning was optimized for the trained orientation.
Model performances were then normalized (i.e., noise was
incorporated) so that 79% correct performance was obtained at
45° with an orientation change of 6°. As indicated by C and D
in Figs. 12 and 13, with the addition of orientation-selective
pooling, all of the models considered so far are able to produce
much better performance at the trained orientation than at an
orthogonal orientation with orientation changes of 6°. How-
ever, the models shown in Figs. 12 and 13 predict little orien-
tation selectivity once the nonmatch difference exceeds 20° (B
and C). Thus a different pooling model is required to replicate
the behavioral data. One such model is a classification model in
which responses are pooled (D) prior to stimulus classification.
This essentially reduces the neuronal pool size to a few “super-
neurons” which receive inputs from a large number of optimized
V1 and V2 neurons. The large difference between the models of
Figs. 12 and 13, and this classification model can be easily
illustrated by considering a particular point on the behavioral
surface of Fig. 14: for example a 30° change around 90°. For a
discrimination model, this is hardly a challenge since even with
orientation biases in the pool there are sufficient neurons with
response differences over this 30° range to ensure good perfor-
mance. For the response pooled classification model, in which
decisions are solely based on high-low orientation classifications
of a small number of “super-neurons,” performance is poor be-

FIG. 9. Average responses in the 4 neuronal popu-
lations as a function of orientation. Solid line indicate
means; dashed lines, SEs. The combined effect of the
paucity of cells whose preferred orientation was near
the trained orientation (bold; Fig. 4), and the lower
tuning amplitude of such cells (Fig. 5) creates a dip in
the population response in the trained V1 representation
at the trained location (A). No such dip is visible in V2
(B). A and B: orientation tuning averages based on the
peak spatial frequency for each cell. C and D: the
expected mean population response to stimuli at the 2
spatial frequencies used in training. The dip at the
trained orientation in the V1 trained population is only
visible for high spatial frequency stimuli (thick dashed
line).
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cause both of the orientations presented in a nonmatch trial would
be labeled as “high,” i.e., above 45°.

D I S C U S S I O N

We have studied perceptual learning by recording individual
neurons in early cortical visual areas of monkeys trained in an
orientation discrimination task at a specific retinal location and
centered around a specific orientation. After extensive training,
the animals’ improved performance was orientation specific,
but not highly dependent on location. Thus the dependencies of
the perceptual learning observed were not completely consis-
tent with the training stimuli. None of the receptive field
parameters examined (orientation bandwidth, peak response,
tuning amplitude, variance, preferred spatial frequency, spatial
frequency bandwidth, and preferred size) was substantially
affected by the training, and almost none of the small changes
was statistically significant. In the only case in which there
were effects of orientation (tuning amplitude), there was also

an interaction between location and orientation. A similar
pattern is seen in the population response curves that indicate
a small orientation- and location-specific reduction in response
(Fig. 9). These small changes might be explained by the effects
of repeated presentation and are not well correlated with the
largely location invariant behavioral effects of our training.

Consistent with this suggestion, the responses of the indi-
vidual recorded neurons are incapable of producing the behav-
ioral observed levels of performance. Instead, individual neu-
rons must be pooled before decision making. Moreover, the
pooling itself must be orientation selective in order for such an
orientation unbiased population to account for orientation-
specific improvements in discrimination. Finally, the perfor-
mance of various pooling models across a range of orientation
discrimination tasks suggests that decisions in the trained an-
imals relied on stimulus classification rather than stimulus
discrimination.

Training-related improvement in visual tasks

Improvement in visual performance with practice has been
reported in a wide variety of visual tasks including stereoacuity
(Fendick and Westheimer 1983; O’Toole and Kersten 1992;
Ramachandran 1976; Ramachandran and Braddick 1973), ver-
nier acuity (Beard et al. 1995; Crist et al. 1997; Fahle and
Edelman 1993; Fahle et al. 1995; McKee and Westheimer
1978; Saarinen and Levi 1995), search (Ahissar and Hochstein

FIG. 10. Magnification factors in the trained and untrained V1 (A and C)
and V2 (B and D) representations. A and B indicate magnification factors as a
function of eccentricity; C and D indicate magnification factors normalized
according to the regression prediction of the left panel. With the exception of
the V2 population (B), all populations showed a significant negative correlation
between magnification and eccentricity. However, when the eccentricity ef-
fects are compensated for by the normalization procedure, there is no corre-
lation between magnification and distance from the center of the training
region (C and D). Thus, other than the expected change in magnification with
eccentricity, there were no significant changes in visuotopy as a function of
position in visual space in either the trained or untrained representations.

FIG. 11. Discrimination and classification decision models applied to indi-
vidual neuronal responses. In the discrimination model, orientations are eval-
uated by comparing an observed response (filled circle) to a template response
(open circle) at the trained orientation (45°). In the classification model,
orientations are evaluated by comparing the likelihood that the observed
response is a response to an orientation less than 45° (gray region) to the
likelihood that the response is a response to an orientation greater than 45°
(black region). For both models, neurons whose peak orientation is at 45°
provide poor signals for making an orientation decision. For the discrimination
case (A) a small shift in orientation around the peak is associated with a small
change in response. For the classification case (B), the observed response is
equally likely to have originated from an orientation less than 45° as from an
orientation greater than 45°. In both models neurons whose optimal orientation
is not 45° can provide better performance. In the discrimination model (C), the
small shift between observed and template responses is now associated with a
larger change in response. In the classification model (D), the observed
response will be associated with an orientation less than 45° (gray region) since
no orientation in the black region produces such a response.
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1997, 2000; Ellison and Walsh 1998; Fiorentini 1989; Karni
and Sagi 1991, 1993; Schoups and Orban 1996; Sigman and
Gilbert 2000; Sireteanu and Rettenbach 1995, 2000), object
identification (Furmanski and Engel 2000), and discrimination
of differences in direction (Ball and Sekuler 1987; Zohary et al.
1994), orientation (Matthews et al. 1999, 2001; Mayer 1983;
Schoups et al. 1995b; Vogels and Orban 1985, 1994a), spatial
frequency (Fine and Jacobs 2000), and spatial phase (Berardi
and Fiorentini 1987; Fiorentini and Berardi 1980, 1981). The
range of techniques, time courses, and measures of these learn-
ing effects makes comparison difficult (I. Fine and R. Jacobs,
personal communication). However, one common theme in
many of these experiments is that the learning shows specific-
ities that are suggestive of the involvement of early levels of
visual processing. For example, training-related improvements
in stereoacuity with random-dot stereograms are specific for
both location and orientation (Ramachandran 1976; Ram-
achandran and Braddick 1973). Thus it is tempting to conclude
that the site of neuronal plasticity associated with such specific
improvements is in the early visual areas where orientation-
selective cells with small receptive fields are common. The
location and orientation specificity of many psychophysical
studies has led to the suggestion that physiological changes in
early visual areas are associated with some perceptual learning

tasks. However, there are several alternative explanations for
such specificity: cells in higher visual areas that are particularly
sensitive to position and orientation might be involved, or the
pooling of signals from V1, due to selective attention, for
example, might change without any change at the level of V1
itself.

In this regard it is notable that the perceptual improvements
in this study do not show many of the specificities reported in
other demonstrations of perceptual learning. Moreover, the
perceptual improvements do not reflect the specificities of the
training. For example, the performance of monkey 2 varied
little across different spatial frequencies, although only two
spatial frequencies were used during training. This is in con-
trast to spatial frequency specificity reported in training hu-
mans for spatial phase discrimination (Fiorentini and Berardi
1980, 1981). Even more striking is the comparison of our data
to the location specificity found in psychophysical studies of
improvements in orientation discrimination with training. Hu-
man studies have shown improvements that not only fail to
transfer across hemifields (Shiu and Pashler 1992), but also fail
to transfer even to adjacent regions of visual space (Schoups et
al. 1995b). A recent study reported quadrant-specific training
effects in monkeys trained in an orientation- and location-
specific manner (Schoups et al. 2001). In contrast, in both of

FIG. 12. Ideal observer performance as a function of
neuronal pool size for the 4 neuronal populations with
discrimination-based decisions. Circles represent median
performance for a pool size; error bars, the top and bottom
quartiles of the performance distribution for a given pool
size. Orientation differences of 6°, for which performance is
around 79% at the trained orientation were used. Solid
horizontal lines correspond with the d� associated with 79%
(trained orientation, A, B, E, and F) and 50% (untrained
orientation C, D, G, and H) performance in a 2-alternative
forced choice. In all cases individual neurons are consider-
ably worse than the animals’ performance at the trained
orientation. Consistent with psychophysical observations,
performances are approximately consistent between trained
(black) and untrained (gray) representations for both V1 (A)
and V2 (B). However, inconsistent with behavioral obser-
vations, performance is not orientation dependent: it is sim-
ilar at an untrained orientation orthogonal to the trained
orientation (C vs. A, D vs. B). Thus the predicted perfor-
mance at the untrained orientation using the pool sizes
necessary for performance at the trained orientation far
exceeds behavioral observations. Orientation dependency
can be introduced by assuming a biased sampling so that
decision pools only include the most capable neurons (E–H).
With such biased pooling, the performance curves for the
trained orientation shift leftward (E vs. A, F vs. B), and
performance curves for the untrained orientation shift right-
ward (G vs. C, H vs. D). A smaller number of neurons is
required to explain the behavior at the trained orientation (E
vs. A, F vs. B), and predicted performance at the untrained
orientation is much closer to the chance levels seen in
behavior (G and H).
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our monkeys, performance was similar in the hemifield oppo-
site to the training (Table 1). Although there are many plausi-
ble explanations for the difference between our results and
those of human studies, the methodological differences be-
tween our study and the recent monkey study are more subtle:
both of these studies involved training monkeys in an orienta-
tion discrimination task using stimuli that did not contain
consistent positional clues over a period of several months.
While the exact cause of the positional insensitivity that we
observe remains to be established, the difference between our

results and those of other studies suggests that position selec-
tivity of perceptual improvements is sensitive to small changes
in task design. For example, transfer of learning improvements
in human spatial phase discrimination across visual hemifields
is dependent on spatial frequency and distance from, and
symmetry with respect to, the vertical meridian (Berardi and
Fiorentini 1987). It is also possible that the introduction of a
distracting feature (spatial frequency) in our training, in addi-
tion to increasing task difficulty, may encourage generalization
for attributes other than orientation such as location. In any

FIG. 13. Ideal observer performance as a function of
neuronal pool size for the 4 neuronal populations with
classification-based decisions. Format is the same as
Fig. 12. As with the discrimination models, individual
cells are much worse than the animals’ behavior, and
there are not large differences in either V1 or V2 with
location (black vs. gray) or orientation (A vs. C, B vs.
D). As with Fig. 12, selective pooling draws from a
group of neurons with optimal orientation tuning for
classifying orientations around 45° and creates a orien-
tation dependency (E vs. G, F vs. H) in performance
across all pool sizes.

FIG. 14. Performance as a function of base orientation
and orientation change in nonmatching trials. Black indicates
chance performance, and white indicates 100% correct. Ob-
servations of monkey 2’s performance in probe trials indicate
that discrimination performance is poor for base orientations
different from the trained orientation, even when the orien-
tation change is large (A). The discrimination-based model of
Fig. 12B and the classification based model of Fig. 13C, on
the other hand, indicate that even for a pool of neurons
specifically chosen for discrimination at 45°, performance
should be excellent for orientation changes larger than 25°,
irrespective of the base orientation. Only a classification
model in which responses are pooled to arrive at stimulus
classification decisions (D) is able to produce such poor
performance for base orientations other than the trained ori-
entation.
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case, the relative insensitivity of our results with respect to
location suggests the involvement of either a network of long-
range connections or neurons with very large receptive fields.
Since the only neurons in early visual areas that have ipsilateral
excitatory regions are within a degree of the vertical meridian,
such large receptive fields could only be found in higher visual
areas.

In some respects our results are consistent with previous
studies of discrimination training. For example, behavioral
improvements in humans trained in a line bisection task at a
specific orientation and location were much more orientation
specific than location specific: improved performance was seen
8° away in a different quandrant from the trained location
(Crist et al. 1997). Consistent with human studies of orientation
discrimination training, we found that improvements in dis-
crimination were limited to orientations near the trained orien-
tation. Moreover, our physiological observation of a slight
orientation specific reduction in response after discrimination
training has also been found in both monkeys (Schoups et al.
1997) and humans (Schiltz et al. 1999). These observations are
consistent with the effects of adaptation, in which responses
are reduced with repeated presentations. Indeed, orientation-
specific adaptation has been observed behaviorally in humans
(Matthews et al. 2001; Regan and Beverley 1985). However,
there are number of reasons to rule out the orientation-specific
response suppression as being simple adaptation. First, al-
though training stimuli were presented at the beginning of each
training session in order to verify behavioral thresholds, when
we searched for cells we did so by presenting stimuli at all
orientations. Because adaptation is typically described with a
time constant on the order of seconds, the initial training would
be unlikely to affect our measurements of orientation selectiv-
ity. Second, if repeated presentations necessarily reduce re-
sponses, then dips would also appear in the population spatial
frequency response curves at the two spatial frequencies used
in the training. No such differences were seen in the population
spatial frequency responses of trained and untrained locations.
There is also behavioral evidence distinguishing training and
adaptation: orientation discrimination training increases con-
trast sensitivity, while orientation adaptation decreases contrast
sensitivity (Matthews et al. 2001).

It is also possible that because we studied neurons during a
foveal discrimination task we were inadequately characterizing
neuronal responses during the actual performance of the task.
We examined receptive field properties when monkeys were
not doing the trained task for several reasons. We wished to
avoid distorting responses with modulation related to nonspe-
cific arousal when the training stimuli, which had been pre-
sented for many months, appeared. Such distortions might
selectively increase responses to the trained orientation without
any fundamental change in receptive field properties. Because
previous demonstrations of receptive field changes associated
with long-term training were measured in anesthetized prepa-
rations where attentive and motivation considerations are un-
controlled, such distortions would also complicate compari-
sons to previous studies. To study every neuron encountered in
an unbiased manner, we would have to present task stimuli that
were not orientation and spatial frequency specific and there-
fore might interfere with the training. This problem could be
avoided by only presenting stimuli that were presented during
training but then, given the majority of neurons do not respond

to such stimuli, we would not have fairly characterized the
neuronal population. Finally, large task effects have not been
reported in V1, and even if they existed, would probably not
alter fundamental receptive field properties such as orientation
bandwidth and response variability (McAdams and Maunsell
1999a,b).

Our results are largely consistent with two reports in which
V1 neurons were studied after prolonged visual training. Using
a design much like the one described here, Schoups and col-
leagues trained monkeys to discriminate the orientation of
gratings that were presented at a consistent location and around
a specific orientation (Schoups et al. 1997, 2001). As with our
results, they reported a slight decrease in the population re-
sponse to the trained orientation in the trained population
(Schoups et al. 1997). However, they found no shift in the
distribution of preferred orientations (Schoups et al. 2001).
They described an orientation-specific increase in the average
absolute value of the slope of normalized orientation tuning
functions at the trained orientation for neurons whose optimal
orientation was near the trained orientation. This effect was
limited to neurons whose optimal orientations were between 12
and 20° from the trained orientation. Although they did not
explicitly compute bandwidth, this suggests that bandwidths
near the trained orientation changed, which was not seen in our
data (Fig. 5A). To compare our data directly, we computed
average slopes using normalized orientation tuning functions
for neurons whose optimal orientation was within 12 and 20°
of the trained orientation, and for neurons whose optimal
orientation was within 12 and 20° of the orientation orthogonal
to the training stimuli. Analysis of the four groups of cells
(trained and orthogonal orientations at trained and untrained
locations; ANOVA) revealed no significant effects. To exam-
ine peak slope as a function of orientation, we also plotted peak
slope versus the orientation at which this peak occurred for all
cells. Although the results from Schoups and colleagues sug-
gest that this average peak slope would be larger near the
trained orientation, no such effect was present in our data:
average peak slope did not vary with orientation (Hotelling),
nor were there effects of orientation or location when cells
were grouped (ANOVA).

It is possible that the larger sample size (1,430 vs. 449 V1
cells) enabled them to see small differences that are not appar-
ent in our study. Given the difference in the psychophysical
results, we feel that the most likely explanation for any differ-
ences lies in the nature of the trained task. However, it is not
clear that there is a substantial discrepancy between our study
and Schoups et al. (2001). For example, it is unclear how the
slope changes reported by Schoups et al. (2001) relate to the
classically described receptive field properties, such as tuning
bandwidth, responsiveness, and size, that have been well-
established for V1 cells and studied in other sensory cortices.
Our data indicate that these classical measures are largely
unchanged with training. Additionally, because normalized
response functions exaggerate the influence of weakly respond-
ing cells on the population response, the described slope
changes might have little effect on the population response.
Finally, because these slope changes do not incorporate re-
sponsiveness or response variability, it is not clear how to
relate them to classic models of signal detection theory, such as
the d� discriminability measure.

In the second report, V1 neurons were studied in monkeys
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that were trained in a line bisection task for many months
(Crist et al. 2001). Although it is uncertain how specific the
behavioral improvements were after such training, the time
course of improvement is similar to what we have reported.
Additionally, although receptive field properties were not
extensively examined, those properties that were examined
(retinotopy and orientation bandwidth) showed no signifi-
cant change. Crist et al. reported that surround interactions
were different for neurons within the training region. How-
ever, because interactions studied while the task was being
performed were compared with interactions when the mon-
key was simply fixating, it is unclear whether the difference
reported is due to stimulus and/or task differences or some
change in receptive field properties. Moreover, even if sur-
round interactions were altered, because these interactions
involve stimuli outside of the training region, they could not
directly subserve the perceptual improvements seen as a
consequence of training.

This is consistent with our data suggesting small changes at
the level of V1 that arise as a consequence of training but
which are not directly responsible for the behavioral improve-
ment. For example, we saw small orientation- and location-
specific effects consistent with orientation and location speci-
ficity of the training stimuli but not consistent with the final
trained behavior (Table 1). The possibility that different areas
can be involved in the task before and after training is sup-
ported by human experiments in which transcranial magnetic
stimulation selectively disrupted novel, but not learned, visual
searches (Walsh et al. 1998) and had diminished effects with
repetition of a letter identification task (Corthout et al. 2000).
However, since our behavioral measurements show orienta-
tion-specific but location-unspecific changes after learning,
and since orientation-selective cells can be found in many
visual areas including areas whose cells have large receptive
fields, our behavioral data are not strongly suggestive of a
central role for the early visual areas in the trained animal.
Moreover, the discrepancy between the large orientation-spe-
cific behavioral changes and relative mild orientation-specific
changes in the V1 population responses also suggests that the
neurons subserving the behavioral improvement are not located
in V1 or V2.

Plasticity in other sensory systems

In auditory and somatosensory cortex, training has been
shown to change both the topographic organization and the
distribution of response selectivities among individual neurons.
To compare data from different studies, we computed the ratio
of cortical area devoted to the training task before and after
training, as well as the ratio of receptive field size within this
cortical region before and after training. To see the degree of
subject variability, all ratios were computed separately for each
animal in each of the studies. Because our training involved
two specificities that are mapped on the cortical surface,
namely location and orientation, there are two potentially in-
dependent remappings that may occur. To examine changes in
visuotopy, we compared the ratio of the magnification factors
in the trained and untrained representation. To examine
changes on the receptive field level for visual space, we com-
pared average receptive field sizes, as characterized by the
optimal size, for cells in the two representations.

Figure 15 compares our results to the changes seen in
auditory and somatosensory cortex. In this figure, distance
from the origin corresponds to the amount of change associated
with training. While there is little intersubject variation within
any single study, there is little consistency between the differ-
ent studies. For example, neither of our animals showed
changes in either visual space topography or receptive field
size (black triangles), while one study of somatosensory area
3b (Recanzone et al. 1992b) found large increases in both
magnification and receptive field size associated with fre-
quency discrimination training among all their animals. The
angular position of points in Fig. 15 indicates the relative
change of topography and other receptive field selectivities.
The product of the magnification factor (mm/deg) and recep-
tive field size (deg) is the point image: the cortical area corre-
sponding to the representation of an average receptive field.
Because the point image (mm) in primary cortex does not vary
greatly with eccentricity (Hubel and Wiesel 1974) and is sim-
ilar between different sensory cortical areas (Sur et al. 1980),
it is likely to reflect fundamental anatomical features of cortical
circuitry. One might therefore expect that even with training-
related changes in cortical physiology the point image would
be largely conserved, i.e., that changes in topography would
have the opposite sign as changes in receptive field size. This

FIG. 15. Topographic and receptive field changes compared to
previous perceptual learning studies in auditory and somatosensory
cortex. Each point indicates the ratio of receptive field size and
cortical area either before and after training and between trained and
untrained representations. For the auditory training, receptive field
size was characterized by the bandwidth Q10 (Recanzone et al.
1993). For orientation, receptive field size was characterized by the
bandwidth b� of Table 2, and area was characterized by the pre-
ferred orientation distributions shown in Fig. 4. Animals are con-
sidered separately. The diagonal line indicates changes consistent
with a conservation of point image size. Because our training was
specific to both orientation and location, topography and receptive
field extent were computed for both parameters (black triangles).
Although there is some intersubject variability within studies, the
largest changes are between different studies. Interestingly, two
studies in the same cortical area indicate different effects on training:
in one receptive field sizes increased with training (diamonds),
while in the other they decreased (circles). In contrast, to the previ-
ous studies, our data (filled triangles) indicate minimal changes with
respect to the 2 specificities of training, location (black) and orien-
tation (gray).
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expectation is marked by the diagonal line in Fig. 15. There is
little quantitative consistency between the studies in this re-
gard. While our data, by virtue of the lack of any significant
training-related changes, and the data from Jenkins et al.
(1990b) are roughly consistent with a conservation of point
image, the two other studies are not. Tactual-motor training
also increases cortical area while decreasing receptive field size
in area 3b, consistent with the conservation of point image
(Xerri et al. 1999).

Figure 15 shows similar results when orientation is consid-
ered (gray triangles). In this case, receptive field size was
characterized by the average bandwidth, and cortical area was
characterized by the proportion of cells with similar optimal
orientations. To assess the effects of training with respect to
orientation, data from both the trained and untrained represen-
tations were combined and separated according to optimal
orientation. The “size” and “area” in orientation space of cells
within 22.5° of the trained orientation was then compared to all
other cells. Our data indicate no obvious change in either
metric for V1 or V2. Although our estimate of orientation
“area” is indirect, it is consistent with a deoxyglucose study
that reported little change in the size of orientation columns
with orientation discrimination training (Schoups et al. 1995a).
It seems likely that the particular design and characteristics of
the training are likely to be important in determining cortical
changes, since the two previous studies that were conducted in
the same cortical area (Jenkins et al. 1990b; Recanzone et al.
1992b) are inconsistent.

Although experiments done in different sensory modalities
necessarily involve different methods, we do not believe that
these considerations are sufficient to explain the difference in
results. In both the somatosensory experiments, receptive field
size was plotted by hand for each cell using just-visible skin
indentation. Because both experiments were done in the same
laboratory, the techniques used in the two studies are presum-
ably similar. Yet in one of these studies receptive field size
decreased (Jenkins et al. 1990b), while in the other it increased
(Recanzone et al. 1992b). Moreover, the magnitude of the
training effects in the study showing the most dramatic ef-
fects is very large (Recanzone et al. 1992b): area changes up to
a factor of 16, and receptive field size changes up to a factor
of 4.8.

Another difference is that owl monkeys were used in the
auditory and somatosensory studies. We do not believe that
species differences are likely to be the primary determinant of
training-related plasticity effects. Adult cortical plasticity has
been demonstrated in rhesus macaques in retinal scotoma stud-
ies. Moreover, the previous studies are quantitatively inconsis-
tent despite the fact that they all used owl monkeys.

One possible difference between the somatosensory studies
and the present study is the area of cortical area that repre-
sented the trained stimuli. It has been suggested that there is an
anatomical-based limit of 600–700 �m in the cortical extent
over which training-related changes can occur (Jenkins et al.
1990a). If this is true across all of cortex, then changes result-
ing from a task that involves a large amount of cortex would
have a smaller relative influence on the representation than
changes associated with a task involving a small region of
cortex. If we assume that somatosensory stimulation was con-
fined to �5 by 5 mm region (a finger pad), then, given the
linear magnification factor near the digit tip of 0.18, the linear

extent of area 3b activation should be around 0.9 mm (Sur et al.
1980). If we define the size of our stimulus according to the 2�
border of the Gabor, then an area within �3 mm line was
activated during training of our study. If a maximum of 600
�m for map relocation is assumed, then 1.5 mm could repre-
sent the stimulus after somatosensory training, while in V1 the
trained representation could be expanded to 3.6 mm. Thus the
somatotopy linear magnification factor would increase by 67%,
while the visual magnification factor would increase by only
20%. As can be seen in Fig. 10, our methods are probably not
sensitive enough to reveal such a change (log difference �
0.08) in visuotopy within only 1° of the training center. How-
ever, because of the fixed orientation of our stimuli and the
organization over the cortical surface for orientation, a contin-
uous 10 mm2 patch of cortex was not well activated by our
training stimuli. Instead the stimuli activated small regions of
similar orientation (�0.03 mm2). Thus, even with a 600-�m
limit in functional reorganization, changes in the distribution of
preferred orientation should be readily observable with our
methods. However, as shown in Fig. 4, any changes in the
distribution of preferred orientation were modest.

In addition to the physiological differences, there were also
differences in the behavior that arose from training. Our train-
ing was selective for both orientation and location. Similarly,
Recanzone et al. (1992a,b) trained monkeys on a tactile dis-
crimination task that was selective for both frequency and skin
location. The perceptual improvement that we observed was
orientation, but not location specific. On the other hand, the
perceptual improvement reported by Recanzone was location,
but not frequency, specific. In both cases, the specificities of
the training do not match those of the perceptual improve-
ments. However, the learning selectivity of our study is the
opposite of that reported by Recanzone: ours does not involve
changes in the mapping of the receptor sheet (retinotopy),
while the Recanzone study does report such changes.

Differences in either the spatial extent of attention or the
amount of attention devoted during the training process might
be responsible for these behavioral and physiological differ-
ences (Ahissar and Hochstein 2000). However, if we assume
that task difficulty largely determines the amount of attention
devoted to a task, then the amount of attention is unlikely to
explain the differences between our study and previous studies.
In the auditory training, performance was kept between 65 and
75% during training, which was similar to our target range of
75–80% correct. Moreover, both the auditory and somatosen-
sory training showed roughly the same rate of behavioral
improvements during training that we observed (Recanzone et
al. 1992a, 1993). It is also unlikely that visual attentional
mechanisms used in perceptual learning are fundamentally
different from those of other sensory systems: human imaging
studies have shown attentional modulation in both primary
auditory cortex (Jancke et al. 1999; Lewis et al. 2000) and
primary somatosensory cortex (Johansen-Berg et al. 2000;
Noppeney et al. 1999; Steinmetz et al. 2000). Moreover, the
spatial extent of attention does not seem to be a major factor in
this case, since the introduction of distractors during training
(monkey 2) produced little difference behaviorally or physio-
logically.

It is possible that the visual system may differ fundamentally
from other sensory systems. Selective deafferentation experi-
ments give some support to this argument. While local retinal
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lesioning produces little visuotopic remapping in the lateral
geniculate nucleus (Darian-Smith and Gilbert 1995; Gilbert
and Wiesel 1992), peripheral deafferentation has large effects
in the thalamic nuclei providing input to somatosensory cortex
(Faggin et al. 1997; Garraghty and Kaas 1991; Jones 2000;
Nicolelis et al. 1991; Pettit and Schwark 1993). This suggests
that plasticity effects may occur at a higher level in the visual
system than in other sensory systems. This possibility is also
suggested by a recent study in which neither the retinotopy nor
receptive field properties of primary visual cortex were
changed by line bisection training (Crist et al. 2001), despite
location- and orientation-specific behavioral improvement.

There is also the possibility, suggested by the two area 3b
studies, that changing the specifics of visual training might
alter the physiological correlates of perceptual improvements.
For example, our training in multiple visual dimensions might
have precluded tuning changes in early visual areas (Zhang and
Sejnowski 1999). This could be tested by training monkeys in
the same task across a wide range of orientations and looking
for location specificities in behavioral performance and phys-
iology. Alternatively, it might be that our training was not
specific enough. The stimuli used in our training were slightly
larger than V2 receptive fields and significantly larger than V1
receptive fields. Therefore, in order to see large changes in the
early visual areas, it might be necessary to train over a more
restricted portion of visual space that better matches the spatial
receptive field size of V1 and V2. The reduction in the size of
the representation of trained stimuli might also make reorga-
nizations limited to 600 �m more detectable. It will require
further study to determine whether the poor correlation be-
tween visual cortex physiology and behavioral improvement
we have observed is fundamental to the visual system or
merely specific to the particulars of our training paradigm.

Neuronal decision models

Although behavioral performance in our task ultimately
depends on the activity of neurons in early visual areas, it is not
known how such activity leads to decisions. Moreover the
changes that occur during training introduce an additional level
of complexity. Changes in performance as a consequence of
practice can arise from greater familiarity with the task, a
change in the sensitivity of neurons in these early areas, or a
change in the pooling of signals from these early areas. We do
not believe task familiarity is an issue since prior to orienta-
tion-specific training, the monkeys were familiar with the
match-to-sample task.

Although previous studies have suggested that improve-
ments in fine spatial discrimination would necessarily involve
early areas of visual cortex (Ahissar and Hochstein 1997), it
should be emphasized that in some cases changing low-level
representations could severely impair normal vision. For ex-
ample, if the behavioral pattern shown in Fig. 14 reflected a
task-invariant change in representation, then the monkey
would be unable to discriminate large differences in orienta-
tion. Given these problems, it would seem undesirable to
change early representations so as to improve performance in
a particular task unless there was no alternative. Our data
suggest that a change in the early visual areas was not respon-
sible for observed behavioral improvements for two reasons: 1)
although we observed some slight orientation and location-

specific effects in V1, the behavioral improvement was orien-
tation specific and only slightly location specific, 2) pooling
models indicate that any orientation biases in our neuronal
populations were insufficient to explain the orientation speci-
ficity of performance. Thus, even in the demanding and spe-
cific orientation task used in our training, physiological
changes in the earliest levels of visual processing were not
required to improve performance.

To examine whether the improved behavioral performance
is likely to result from physiological changes in V1 and V2 or
from changes in higher visual areas, we needed to compare the
physiology with our behavioral measurements across different
orientations and locations. In this case physiology means the
complete physiological state of the early visual areas when our
stimuli were presented.

To explicitly test the performance of pooling models over a
range of orientations, we used the optimized (i.e., orientation-
biased) pools constructed from the trained V1 population.
Because adding neurons or introducing noise will affect per-
formance across the entire orientation space, these changes will
not significantly alter the pattern of performance over stimulus
space: for any given pool size performance is better at the
trained orientation (Figs. 12 and 13C) than the untrained ori-
entation (Figs. 12 and 13D). As expected given the orientation
bandwidths of single cells (Fig. 5, A and B), these models
predict excellent performance across all orientations for non-
match differences larger than 20°, even with a pool of neurons
specifically chosen for performance at the trained orientation
(45°). Indeed, the only circumstances under which perfor-
mance is poor in these models is for small changes in orien-
tation around 135°. It is important to note that if the population
is suboptimal, that is, not entirely composed of cells whose
preferred orientation is around the trained orientation, the
range of high performance will expand and performance
around 135° will improve. This would make the pooled per-
formance even more discrepant with the observed behavior
(A). The only way a discrimination model would produce poor
performance for a large range of orientations is if few neurons
were pooled (Figs. 12 and 13D). However, such a small pool
would be insufficient to produce the level of performance seen
at the trained orientation (Figs. 12 and 13C). Thus discrimina-
tion based on early visual area responses cannot easily explain
the animal’s behavior.

One distinction between our study and others is that in our
case the performance obtainable from individual neurons is far
worse than the animals’ performance. In previous models, the
converse is true: the performance of some individual neurons
exceeds that observed behaviorally (Britten et al. 1992; Prince
et al. 2000). The challenge in these previous models is to
explain how such neuronal signals can be degraded by the
introduction of noise or neuronal correlation, while in our case
the challenge is to explain how neuronal signals can be im-
proved in an orientation-selective manner. It is possible that
neuronal signals more appropriate for our observed behavioral
patterns could be found at higher levels in the visual system
that also contain orientation-selective neurons, such as V4 or
inferotemporal cortex (IT) (Vogels and Orban 1994b). In this
case our pooling models may be physiologically manifested in
the form of single-unit selectivities in higher visual areas:
neurons that can reliably and accurately discriminate orienta-
tions around 45°, but not other orientations. As mentioned
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above, we would expect such selectivity to be task dependent
in order to limit the negative consequences of such an algo-
rithm. Task-dependent firing in an orientation discrimination
task has been reported in IT neurons, but, in a study of the
effects of orientation-specific training on such neurons, no
strong orientation biases were observed (Vogels and Orban
1994a). We are currently investigating the possibility that
stronger physiological correlates might be present in areas V4
and later stages. However, because V1 ultimately provides the
predominant source of visual input to higher visual areas, any
higher-order pools would depend on V1 activation and would
therefore not alter the conclusions of our models.

Performance was poor for base orientations different from
the trained orientation, even when the orientation change was
large (
30°). These data do not necessarily suggest that train-
ing causes a worsening of inherent discriminative capabilities
of the animal subjects (Mato and Sompolinsky 1996). If such
a large decrement in discrimination performance was indepen-
dent of task, it would likely adversely affect normal behavior.
Instead we feel the behavioral pattern of Fig. 14A reflects task
strategy, and would therefore not be visible outside probe
trials. Poor performance after orientation transitions in humans
has similarly been attributed to task strategy (Fahle and Edel-
man 1993). The only model that matched the pattern of behav-
ioral performance observed over this range of orientations was
an orientation-selective pooling model in which decisions were
based on a orientation classification, rather than a discrimina-
tion per se. In both of these respects, our pooling model is
distinct from previous attempts to relate single unit selectivities
to visual behavior: prior models made use of unbiased pooling,
in which neurons were included irrespective of their appropri-
ateness for the perceptual task, and decisions were based on
discriminating two pools of neuronal responses (Britten et al.
1992; Prince et al. 2000; Shadlen et al. 1996). Fundamentally
these differences arise from the discrepancy between the ori-
entation selectivity in our neuronal populations and the ob-
served behavior. The lack of significant orientation bias in the
neuronal populations mandates a selective pooling, while the
poor performance of the animals at non-trained orientations
dictates that decisions are based on classification rather than
discrimination.

Because our study is the first to compare discrimination and
classification pooling models using the same data set, it is
unclear whether previous “discrimination” tasks might in fact
be well described by classification-based models. For example,
in the motion discrimination task of Britten et al. (1992),
monkeys had to make an up-down decision regarding the
direction of threshold strength motion. Although in their mod-
eling this decision was arrived at by discriminating the activity
produced by a “down” pool with that of an “up” pool, one
might also imagine the monkeys used a neuronal pool to
directly classify the stimulus as “up” or “down.” It is also
unclear whether classification-based decision making is more
prevalent or natural than discrimination-based decisions for
match-to-sample tasks. For example, our monkeys may be
“classifiers” because in their initial orientation discrimination
training they were presented with horizontal and vertical stim-
uli. This might have encouraged the establishment of two
stimulus categories (above 45 and below 45°), which were then
refined during the course of training. Alternatively, there might
be some intrinsic advantage toward classification as opposed to

discrimination such that the behavioral pattern of Fig. 14A
would emerge even if initial training was done in an unbiased
manner. For example, orientation identification is more resis-
tant to IT lesions than is orientation discrimination (Vogels et
al. 1997) and involves the activation of a larger number of
brain regions in humans (Orban et al. 1997). Training might
also be of fundamental importance. Although short-term psy-
chophysical improvements were seen in the motion discrimi-
nation tasks (Zohary et al. 1994), in these prior studies there
was no long-term effort over many months to improve thresh-
olds. Thus even if there is not a natural bias toward match-to-
sample decisions being based on classification in normal cir-
cumstances, such a bias might exist for perceptual learning
(Herzog and Fahle 1998) or when selective neuronal pooling is
invoked.

The diversity of specificities found in different visual learn-
ing tasks has prompted the suggestion that the physiological
locus of such learning is highly dependent on the nature of the
task. Training for “higher-level” tasks tends to be faster and
more generalized than training for “low-level” tasks (Ahissar
and Hochstein 1997; Fine and Jacobs, personal communica-
tion). The definition of low-level is necessarily of critical
importance to this conclusion: it is usually defined by training
whose specificities correspond with the sensitivities of single
neurons in early visual areas. Under this definition, our train-
ing, which involved orientation discrimination and was re-
stricted in spatial location and orientation, would meet the
definition of low-level. However, our data indicate that such a
low-level task cannot be easily explained by changes in early
visual areas, but can be by a selective higher-level pooling.
There is also psychophysical evidence that suggests changes in
the earliest visual areas cannot solely explain training-related
improvements in visual perception, and that improvements in
orientation discrimination in the presence of noise are likely to
arise from changes in the pooling of low-level detectors rather
than changes in the detectors themselves (Dosher and Lu 1998,
1999). Because activity in V1 is ultimately responsible for all
visual-guided behaviors, changes at the earliest levels would
imply considerable transfer between tasks. However, several
perceptual learning experiments have reported poor transfer of
perceptual improvements between different tasks at the same
location (Ahissar et al. 1998; Crist et al. 1997; Fahle and
Morgan 1996). Furthermore, changes at the earliest levels of
visual processing, because of their necessary impact on all
aspects of visual processing, might not be desirable. As men-
tioned previously, normal vision would be severely impaired if
the specificity of orientation discrimination observed within in
our task was always present as a result of changes at the earliest
level of visual representations. Because the stimuli in our
training were well-suited for the neuronal selectivities of these
early visual areas, our data suggest that the physiological locus
of perceptual learning is not strictly governed by a correlation
between the selectivities seen in single neurons and the spec-
ificities of the training.

A P P E N D I X : N E U R O N A L P O O L I N G M O D E L S

We constructed ideal detector models in which the signals from the
neurons that we recorded from are combined in the absence of noise.
We separately applied these models to each of our four neuronal
populations (trained and untrained location in V1 and V2) for 6°
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orientation discrimination tasks. We also applied these models to
modified optimized populations in which the peak orientation for each
cell was shifted to maximize discrimination and classification around
45°, but all other parameters (bandwidth, response rate, and spatial
frequency tuning) were maintained. For both discrimination and clas-
sification, optimized pools were constructed by shifting one-half of
the neurons so their peak orientations were aligned below 45° to be
optimal for the 43° stimuli, and the remaining half were shifted above
45° to be optimal for the 48° stimuli (Fig. 11). Models were evaluated
with pool sizes of 1, 5, 10, 20, 50, 100, 200, and 500 neurons. For each
pool size, 40 random samplings of neurons were tested.

For each neuronal population, we evaluated the performance of an
ideal observer of that population assuming that each neuron was an
independent detector. Two types of pooling were tested. In the first,
we assumed that the ideal observer simultaneously observed all of the
neurons to arrive at a decision. We term this detector pooling. If we
assume that each neuron i is independent, then the discriminability is
(Green and Swets 1988)

d � ��
i

di
2

For the probability model, the ideal observer makes a match deci-
sion if the distribution of decisions among all the detectors is more
likely to be associated with a match. For the case of probability
pooling, there are two alternatives: 1) the task probabilities are pooled
or 2) the probabilities for each stimulus classification are pooled, and
then a match/nonmatch decision is made on the basis of these stimulus
classifications. In all of the decision pooling models, the best detectors
contribute disproportionately to the decision.

An alternative is to pool stimulus responses before a decision by the
ideal observer, which we term response pooling. It is this model that
has been most often applied to neurophysiological data. The exact
same formulas as above can be used, substituting a pooled population
response for the individual neuronal responses

r��, f � � �
i

ri��, f � and V��, f � � �
i

Kiri��, f �

We tested five decision pooling models: two discrimination models
in which neuronal responses are compared to a single threshold to
arrive at high/low orientation decisions (Fig. 11, A and C), and three
classification models in which stimulus evoked signals are compared
against all possible signals to determine whether a high or low
orientation was presented (Fig. 11, B and D).

For discrimination-based decisions, two pooling models were con-
sidered: one in which a decision was based on a pooled response (Fig.
12), and one in which a decision was based on decision pooling
among the individual neurons (not shown). Figure 12 shows the
performance of individual neurons and pools of those neurons for a
orientation discrimination task in which the two orientations differ by
6°. In all observed and optimized populations, response pooling
provided better performance (higher d�) capability than detector pool-
ing. Both pooling models were able to provide performance compa-
rable to trained performance with a sufficient number of neurons.
However, the number of neurons necessary to reproduce the behavior
at the trained orientation produces performance that far exceeds
behavioral observations at the untrained orientation. Only by intro-
ducing an orientation bias, such that only cells with optimal preferred
orientations are considered, can the performances from neuronal pool-
ing exhibit a substantial orientation bias.

For classification, three pooling models were considered: 1) indi-
vidual neurons are considered as match/nonmatch classifiers, and their
performance is pooled (not shown); 2) individual neurons are consid-
ered as high/low orientation classifiers, and their performance is
pooled to arrive at a match/nonmatch decision (Fig. 13); and 3)
neuronal responses are pooled to arrive a orientation classification that
is then used for the match/nonmatch decision (not shown). Any one of
these models, with sufficient cell numbers, is capable of producing a

single behavioral performance level. For our purposes, it is the com-
parison of pool performances between different neuronal populations
that is relevant. A selective pooling of cells with optimal orientations
must be invoked, irrespective of any particular pooling model, to
replicate the behavioral orientation bias. Even after the implementa-
tion of such an orientation-selective pool, only one decision/pooling
model (Fig. 14D) was able to replicate behavioral observations (Fig.
14A). For this model, decisions were arrived at by classification, and
response pooling was used prior to classification. Because this latter
model essentially reduces the pool size over which decisions are
made, it has the greatest dependence on orientation with relatively
poor performance outside the range of orientation that was trained,
even when the orientation difference was large. Other classification
models exhibited superior performance (and therefore a poorer fit to
the behavioral data) because they allowed the signals from each
neuron to be fed into a decision maker before pooling (detector
pooling).
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