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Physiological Evidence for Isopotential
Tunneling in the Electron Transport
Chain of Methane-Producing Archaea

Nikolas Duszenko, Nicole R. Buan
Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA

ABSTRACT Many, but not all, organisms use quinones to conserve energy in their
electron transport chains. Fermentative bacteria and methane-producing archaea
(methanogens) do not produce quinones but have devised other ways to generate
ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in
Methanosarcina species that plays the same role as quinones in the electron trans-
port chain. To extend the analogy between quinones and MPh, we compared the
MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina
acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the
bacterium Escherichia coli. We found the quantity of MPh per cell increases as cul-
tures transition from exponential growth to stationary phase, and absolute quanti-
ties of MPh were 3-fold higher in M. acetivorans than in M. barkeri. The concentra-
tion of MPh suggests the cell membrane of M. acetivorans, but not of M. barkeri, is
electrically quantized as if it were a single conductive metal sheet and near optimal
for rate of electron transport. Similarly, stationary (but not exponentially growing)
E. coli cells also have electrically quantized membranes on the basis of quinone con-
tent. Consistent with our hypothesis, we demonstrated that the exogenous addition
of phenazine increases the growth rate of M. barkeri three times that of M. acetiv-
orans. Our work suggests electron flux through MPh is naturally higher in M. acetiv-
orans than in M. barkeri and that hydrogen cycling is less efficient at conserving en-
ergy than scalar proton translocation using MPh.

IMPORTANCE Can we grow more from less? The ability to optimize and manipulate
metabolic efficiency in cells is the difference between commercially viable and non-
viable renewable technologies. Much can be learned from methane-producing ar-
chaea (methanogens) which evolved a successful metabolic lifestyle under extreme
thermodynamic constraints. Methanogens use highly efficient electron transport sys-
tems and supramolecular complexes to optimize electron and carbon flow to
control biomass synthesis and the production of methane. Worldwide, methano-
gens are used to generate renewable methane for heat, electricity, and transpor-
tation. Our observations suggest Methanosarcina acetivorans, but not Methano-
sarcina barkeri, has electrically quantized membranes. Escherichia coli, a model
facultative anaerobe, has optimal electron transport at the stationary phase but
not during exponential growth. This study also suggests the metabolic efficiency
of bacteria and archaea can be improved using exogenously supplied lipophilic
electron carriers. The enhancement of methanogen electron transport through
methanophenazine has the potential to increase renewable methane production
at an industrial scale.
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transport, membrane biophysics, methanogens, methanophenazines, phenazines,
quinones
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The question of how cells obtain energy to grow is fundamental to biology. There are
several ways cells metabolize substrates to produce energy in the form of ATP, such

as by coupling thermodynamically favorable reactions to the production of a chemi-
osmotic gradient, substrate-level phosphorylation, and transmembrane cycles, etc.
(1–10). Among the interesting organisms that can grow with very little ATP yield are
methane-producing archaea (methanogens). Methanogens grow by reducing carbon
substrates to methane gas in a process known as methanogenesis (11). Methanogens
are strict anaerobes found in a wide range of natural habitats, from freshwater lake
sediment to deep sea hydrothermal vents. In these environments, end products of
anaerobic fermentation or respiration such as acetate and/or C1 compounds (CO2 and
hydrogen, formate, CO, methanol, methylamines, and methylsulfides, etc.) are used as
the substrates by methanogens. It is estimated that 4% of all net fixed carbon on Earth
is remineralized to methane gas in the global carbon cycle (12). In comparison to
heterotrophic bacteria such as Escherichia coli, methanogens obtain very little ATP for
their metabolic lifestyle. E. coli aerobically growing on glucose obtains 32 to 38 mol ATP
per mole substrate, whereas methanogens obtain between 0.5 to 2 mol ATP per mole
substrate, depending on whether they have the ability to synthesize a membrane
electron carrier, methanophenazine (MPh) (12, 13).

Most methanogens that have been isolated and characterized are specialists that
use CO2 and hydrogen or formate as the substrates for growth. However, the Metha-
nosarcinales order can use a wide array of substrates in addition to CO2 and formate
(12). Methanosarcina species, such as Methanosarcina barkeri Fusaro, use CO2 and
hydrogen as well as C1 compounds and acetate to grow. Methanosarcina acetivorans
C2A is a close relative of M. barkeri, but it does not synthesize hydrogenases and is
incapable of hydrogenotrophic methanogenesis. Regardless of the substrate, electrons
from the reduced electron carriers ferredoxin, deazaflavin F420, or hydrogen gas are
used to reduce MPh, a unique membrane-bound electron carrier found so far only
in Methanosarcinales methanogens (14, 15). MPh has a tricyclic ring phenazine head
group and a prenyl tail connected by an ether linkage (Fig. 1a). Reduced MPh is
oxidized by the cytochrome-containing terminal oxidoreductase, coenzyme M (CoM)-
S-S-coenzyme B (CoB) heterodisulfide reductase, HdrED (Fig. 1b) (14, 16–18). CoM-S-S-
CoB is the terminal electron acceptor synthesized in the last step of the methanogen-
esis pathway (19). The reduction of CoM-S-S-CoB back to the coenzyme M
(mercaptoethanesulfonate) and coenzyme B (2-mercaptoheptanoylthreonine phos-
phate) thiols results in scalar translocation of protons across the cell membrane, similar
to a Q-loop mechanism found in organisms that use oxidative respiration (20). How-
ever, MPh has a lower redox potential (��150 mV for MPh versus �100 or �100 mV
for quinones), which tailors the methanogen electron transport system to donate
electrons to the CoM-S-S-CoB disulfide terminal acceptor (21).

MPh is interesting from an evolutionary perspective, because it is structurally unique
yet suggests the selective pressure for the thermodynamic superiority of utilizing a
chemiosmotic membrane gradient to conserve energy is ancient (22). We wanted to
compare the physiological similarities between MPh synthesized by Methanosarcina
species and quinones synthesized by bacteria to explore the functional analogy be-
tween MPh and quinones (23–25).

RESULTS
Improved methods for methanophenazine extraction and chromatography. If

MPh plays the same role in methanogens as quinones do in bacteria, we would expect
that MPh should be as abundant in methanogen cell membranes as quinones are in
bacteria. To quantify MPh and quinones in genetically tractable Methanosarcina strains,
we devised a procedure to efficiently extract both species from cell membranes. Careful
quantification of MPh in cell membranes requires the use of an internal standard that
possesses similar chemical characteristics yet can be distinguished from the molecule
under study. It is important that both molecules have similar solvent behaviors to
ensure that both molecules are extracted from the crude sample with similar yields.
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Taking these considerations into account, we opted to use menaquinone (MK4) as an
internal standard, because it is also a prenylated membrane electron carrier that is not
synthesized by methanogen cells and can be commercially purchased (14, 24). To
efficiently extract MPh and MK4, we devised a protocol that uses smaller cell numbers
(between 107 and 108) during small-scale batch growth than previous methods that
require extraction from 10 g (dry weight) stationary-phase cells grown in a fermenter,
adds hexane extraction, and eliminates an isooctane extraction step as previously
described (see Table S1 in the supplemental material) (14). Extracted membrane carriers
were then separated by reverse-phase C18 column chromatography. The peak eluted
after chromatography was collected and confirmed to have a 1H nuclear magnetic
resonance imaging (NMR) spectra consistent with the published spectra of MPh ex-
tracted from M. mazei (see Fig. S1) (14). Our procedure had a mean recovery of the MK4

internal standard of 89% from technical replicates of exponentially growing and
stationary-phase cultures, with a mean variance of 10.8%. The mean variance for MPh
from technical replicates was 17% from exponentially growing and 8.9% from
stationary-phase cultures, with a mean variance of 14.7% (Table S1).

Methanophenazine from closely related Methanosarcina species differs in pre-
nyl saturation. A wide variety of membrane electron carriers are synthesized in nature
(26–29). To determine if similar but nonidentical MPh derivatives are synthesized by
methanogens, we extracted lipophilic compounds from membranes of genetically
tractable M. acetivorans and M. barkeri (Table 1). Reverse-phase chromatography
showed that the elution profile of MPh from M. acetivorans is identical to the elution
profile of the membrane electron carrier from M. mazei (14). However, the membrane
electron carrier from M. barkeri eluted later, suggesting the membrane electron carrier
in M. barkeri is slightly more hydrophobic (see Fig. S2) (30). The M. barkeri membrane
electron carrier had an optical absorbance spectrum identical to that of MPh extracted
from M. acetivorans (see Fig. S3b and d). As a change in the phenazine head group
would be expected to change the optical absorbance spectrum, the difference between
MPh in M. acetivorans and that in M. barkeri is therefore most likely due to a change in
the prenyl tail saturation or length (30). To confirm this, MPh extracted from M.
acetivorans and M. barkeri was subjected to liquid chromatography-tandem mass
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FIG 1 Methanophenazine is a membrane electron carrier in Methanosarcina. (a) Structure of methano-
phenazine (MPh). (b) MPh shuttles electrons between the MPh:CoM-S-S-CoB oxidoreductase HdrED and
proton-pumping F420:methanophenazine oxidoreductase (Fpo) or viologen-reducing MPh hydrogenase
(Vho) in M. barkeri, or between HdrED and Fpo or sodium-pumping ferredoxin:MPh oxidoreductase (Rnf
[Rhodobacter nitrogen fixation protein]) in M. acetivorans.

TABLE 1 Organisms used

NB no.a Organism Genotype Reference or source

3 Escherichia coli DH5� F= lacIq F= proAB lacIq �(lacZ)M15 zzf::Tn10 (Tetr) fhuA2�(argF-lacZ)U169 phoA
glnV44 �80Δ(lacZ)M15 gyrA96 recA1 endA1 thi-1 hsdR17

New England BioLabs

34 Methanosarcina acetivorans C2A Δhpt::�C31 int attP 59
32 Methanosarcina barkeri Fusaro Δhpt::�C31 int attP 59
aNB no., Buan laboratory strain collection number.
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spectrometry (LC-MS/MS) to compare the molecular masses with the published mass
for MPh from M. mazei (14). As anticipated, MPh from M. acetivorans is identical to that
from M. mazei with a molecular mass of 541 Da (see Fig. S4a). The MPh extracted from
M. barkeri has an observed molecular mass 2 Da smaller, which exactly matches the
mass predicted for an MPh molecule that has only one saturation in the prenyl tail (Fig.
S4b). We interpreted these results as an indication that MPh species synthesized by M.
mazei and M. acetivorans have two saturated prenyl moieties on the pentaprenyl tail,
whereas that from M. barkeri has only one saturated prenyl moiety, confirming the MPh
prenyl tail saturation reported by others (31).

Archaea and bacteria adjust the quantity of membrane soluble electron carri-
ers during batch growth. We wanted to determine if methanogens regulate MPh
content under conditions of changing substrate availability and population density. To
do so, we compared MPh content per cell for M. acetivorans and M. barkeri incremen-
tally during batch growth. Electron flux through MPh allows M. acetivorans to produce
a scalar transmembrane ion gradient for ATP synthesis, which results in a higher
metabolic efficiency than if electrons were simply donated to a cytoplasmic electron
acceptor. Electrons can also flow through the faster albeit non-energy-conserving
(nonbifurcating) heterodisulfide reductase (HdrABC) path (32). Therefore, the direction
of electron flow through MPh or HdrABC has an effect on the growth rates of the
organism and the population as a whole (32, 33).

If MPh synthesis was balanced with cell growth and was independent of population
density, the number of MPh molecules per cell would not change regardless of the
population density of the cell culture. If membrane carrier synthesis was upregulated,
the result would be an increase in the average number of molecules per cell as the
number of cells per ml in the culture increases. Conversely, if the cell adjusts energy
metabolism in a cell density-dependent manner, then the number of electron carrier
molecules per cell would be expected to decrease.

In addition, if the energy conservation mechanism required external diffusion of an
electron carrier (such as hydrogen, sulfur compounds, flavins, or phenazines, etc.), the
cell runs the risk of losing electrons to nearby competing cells. Because M. barkeri uses
an obligate hydrogen cycle to conserve energy, at low cell densities during growth on
methanol as the sole energy source, electrons are lost as H2 to the surrounding medium
before they can be efficiently captured by MPh-reducing hydrogenase (Vho) (34).
Therefore, at low cell densities, cells might be expected to increase MPh pool sizes to
maximize the rate of H2 recapture by hydrogenase at the membrane. At higher cell
densities, individual cells will lose electrons through H2, but a near neighbor in the
population could capture the H2. Likewise, an H2 molecule(s) from neighboring cells
could be captured, and overall, there would be a net zero loss of electrons by the
culture population. Accordingly, the M. barkeri MPh content per cell could be higher in
exponentially growing low-cell-density cultures than in higher-density stationary-phase
cultures to compensate for the loss of electrons by H2 diffusion at a low cell density. M.
acetivorans would not be expected to exhibit a population-specific MPh synthesis
effect, because it does not express functional MPh-dependent hydrogenases (F420H2:
MPh oxidoreductase [Fpo] or Vho). Therefore, despite the requirement for MPh by both
M. acetivorans and M. barkeri, the two organisms could regulate MPh synthesis through
different mechanisms based on their divergent energy conservation pathways.

We extracted MPh from M. acetivorans and M. barkeri grown on methanol as the sole
carbon and energy sources during batch growth. Under these conditions, M. acetiv-
orans and M. barkeri have similar growth rates, cell sizes, and shapes. Because Metha-
nosarcina can produce gas vacuoles, we related the extracted MPh quantity to cell
counts instead of biomass to account for changes in cell density that might occur. In M.
acetivorans cultures, we observed that the MPh concentration per cell increased 1.67 �

0.06-fold from the exponential to stationary phase (Fig. 2a). MPh content per cell
increased linearly during exponential phase up to 4.10 � 106 molecules per cell and
sharply increased as cell counts decreased when cultures reached stationary phase.
Therefore, two rates of MPh accumulation were observed, an exponential rate and a
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stationary rate (Fig. 3a). These data indicate that during exponential growth, the rate of
MPh synthesis outstrips the rate of cell doubling (Fig. 3b). In stationary phase, the
number of cells per ml decreases with time while the molecules of MPh per cell
extracted increases. Possible explanations for the increase in MPh concentration per cell
as the population stops dividing could be attributed to cell lysis and scavenging or to
changing extractability (Fig. 3c). However, we cannot formally exclude the possibility
that M. acetivorans cells may synthesize MPh at a higher rate in response to entering
stationary phase in light of the reasonably good correlation coefficient between cell
density and MPh molecules per cell (R2 � 0.5215) (Fig. 3c).

When extracting MPh from M. barkeri cultures of different ages, we observed that
the total MPh pool did not significantly change as culture turbidity increased, unlike
what we observed in M. acetivorans cultures (Fig. 2b). Second, we noticed that unlike
M. acetivorans, M. barkeri synthesizes two forms of MPh: a double-saturated form and
the historically known monounsaturated form (Fig. 4). In exponential phase, the M.
barkeri MPh pool is equally composed of double- and monosaturated forms of the
electron carrier. However, as cultures enter stationary phase, the representation of each
is drastically changed and is instead dominated (93%) by the more reduced double-
saturated form of MPh. (Fig. 2b). We did not observe a biphasic increase in MPh content
as cells entered stationary phase. Our data suggest M. barkeri cells initially produce
monosaturated MPh and that prenyl reduction to produce the double-saturated form
of MPh may be conditionally regulated.
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Altogether, these data indicate M. acetivorans increases MPh content as the sub-
strate availability decreases and population density increases, while M. barkeri keeps
the total MPh content steady (though prenyl tail oxidation may be regulated with
growth phase). The data support a model of balanced growth and constant MPh
synthesis for M. barkeri but not for M. acetivorans.

Next, we addressed whether our observation of membrane carrier regulation in
cultures of Methanosarcina species was specific to methane-producing archaea or part
of a more general prokaryotic phenomenon. To do so, we quantified membrane
electron carriers in E. coli bacteria grown aerobically on rich medium supplemented
with glucose as the carbon and energy sources and compared the amounts of
menaquinone to those of ubiquinone during exponential and stationary phases (35–
37). During aerobic exponential growth, E. coli synthesizes eight times as much
ubiquinone (orange bars) as menaquinone (blue bars), while the total membrane
carrier concentration increases 1.85 � 0.03-fold from exponential to stationary phase
(Fig. 2c). Not only does E. coli regulate metabolism by sensing redox states of ubiqui-
none and menaquinone but the overall electron carrier pool size increases as cultures
enter stationary phase, similar to what we observed with methanogen cultures (38). Our
data support the idea that some archaea and bacteria increase the amount of electron
carriers in their membranes as they transition from exponential to stationary phase
growth.

Possibility for isopotential electron tunneling in methanogen membranes.
What effect could changing the amount of MPh in the membrane have on cellular
energetics? To answer this question, we used the measured dimensions of methanogen
and E. coli cells to calculate the density of each electron carrier in the membrane. We
then arranged the data according to energetics from the most enthalpically driven to
the least enthalpically driven (Fig. 2d). In doing so, we noticed a pattern when
comparing the relative ratios of quinones and MPh in exponentially growing versus
stationary-phase cell populations. Intriguingly, the MPh content profile in M. acetivorans
was similar to that in E. coli cultures grown aerobically on glucose Lysis broth (LB) while
M. barkeri cells had the lowest average membrane carrier concentration (Fig. 2d).

We then calculated the theoretical rate of isopotential electron tunneling from one
reduced MPh (or quinone) to a nearby oxidized electron carrier (Fig. 5a) (39–42). Based
on the average number of membrane carrier molecules we measured, it is possible that
electrons from one reduced MPh can tunnel to an adjacent MPh in M. acetivorans (42).
In M. barkeri, tunneling may occur in stationary phase but is less probable when
cultures are growing exponentially. This can be interpreted to suggest a reduced
electron carrier must be physically close to the electron acceptor (such as the terminal
oxidase) for electrons to be quickly and efficiently shuttled (Fig. 4b and c). If not, the
reduced membrane carrier must diffuse randomly through the membrane until it

a b c

y = -2.7431x + 1E+06
R² = 0.785

0.0

5.0

1.0

1.5

2.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

D
ou

bl
e-

sa
tu

ra
te

d 
m

ol
ec

ul
es

 p
er

 c
el

l (
10

6 )

Mono-saturated molecules per cell  (105)

y = 0.7138x + 480377
R² = 0.9578

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

T
ot

al
 m

ol
ec

ul
es

 p
er

 c
el

l (
10

6 )
Double-saturated molecules per cell (106)

y = -1.7431x + 1E+06
R² = 0.5958

0.0

0.5

1.0

1.5

2.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

T
ot

al
 m

ol
ec

ul
es

 p
er

 c
el

l (
10

6 )

Mono-saturated molecules per cell (105)

M.barkeri MeOH

FIG 4 Monounsaturated MPh is reduced to the double-saturated form in M. barkeri cells during growth on methanol. (a) Inverse correlation between total and
unsaturated MPh quantities in cells. (b) Positive correlation between total and saturated MPh amounts. (c) Inverse correlation between saturated and
unsaturated MPh quantities in the cell.

Duszenko and Buan Applied and Environmental Microbiology

September 2017 Volume 83 Issue 18 e00950-17 aem.asm.org 6

 

http://aem.asm.org
http://aem.asm.org/


comes in close proximity to an acceptor. Any reduced electron carriers that diffuse in
the membrane risk either losing the electron to random off-target reactions or a decay
in the energy of the electron being transferred. By contrast, for E. coli grown aerobically
on LB or M. acetivorans, regardless of the distance between the electron-donating
oxidoreductase and the terminal oxidase, electrons may be able to rapidly tunnel from
one membrane carrier to another through the membrane with negligible energy loss
until it reaches the terminal oxidase (Fig. 5d and e). Such a situation suggests some
Methanosarcinales may have electrically “quantized” membranes, in which case the
entire membrane could act as one electrically conductive surface, such as a copper
metal sheet, rather than a surface studded with individual anode and cathode terminals
separated by a nonconductive rubber insulator. Our calculations suggest that in M.
acetivorans, electrons may be able to tunnel from any one membrane donor to any
membrane acceptor at any point on the cell surface through a conductive MPh layer.

We reasoned that if some Methanosarcinales have electrically quantized membranes
while others do not, the addition of a membrane-soluble (hydrophobic) electron carrier
compound with structural and redox properties similar to those of MPh (such as
phenazines) to cultures should enhance the growth rate of organisms such as M.
barkeri, which may not produce an optimal amount of MPh, but will have a modest
effect on M. acetivorans, which already produces enough MPh to electrically quantize
the membrane. Phenazines can be used as extracellular electron shuttles or as toxins
that kill cells by generating reactive oxygen species (ROS) that damage proteins and
nucleic acids (43, 44). Toxicity in susceptible organisms requires enzymes in the electron
transport chain to reduce the phenazines, which then react with molecular oxygen to
produce ROS (45). In the experiments we describe, the cells were not exposed to
oxygen and remained under strict anaerobic conditions at all times, thus eliminating
the possibility of generating hydroxyl radicals from molecular oxygen. Consistent with
our prediction, phenazine improved the growth rates and yields for M. acetivorans and
M. barkeri, but the magnitude of the enhancement was more pronounced for M. barkeri
(Fig. 6). When 10 �M phenazine was added to cultures, the M. acetivorans growth rate
increased 37% versus a 94% increase in M. barkeri cultures (Fig. 6a). Recent reports also
show that the addition of phenol red and phenazines to anaerobic digesters and
microbial fuel cells does in fact increase the growth of Methanosarcina species, dem-
onstrating that this phenomenon is generally relevant to biotechnology (46).

To determine whether hydrophobicity was critical for growth rate enhancement, we
tested whether soluble 2-hydroxyphenazine affects the growth of M. acetivorans.
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2-Hydroxyphenazine closely mimics a hydroxyl moiety in place of the prenyl tail that
can be used in place of authentic MPh in MPh H2:CoM-S-S-CoB heterodisulfide reduc-
tase (HdrED) and F420H2:MPh oxidoreductase (Fpo) enzyme assays (15, 18, 47). We
expected the more hydrophilic 2-hydroxyphenazine to have a weaker influence on
growth than the more hydrophobic phenazine. Consistent with this hypothesis and
with other reports, we observed that the addition of 10 �M soluble 2-OH-phenazine did
not have an effect on growth rate (data not shown) (18). However, we were able to
detect that 2-hydroxyphenazine resulted in a 48.5% decrease in MPh extracted from
stationary-phase cultures (2.38 � 0.29 � 106 molecules per cell versus 4.90 � 0.54 �

106 molecules per cell). This observation, along with our aforementioned results,
supports the idea that M. acetivorans regulates MPh biosynthesis, though whether the
mechanism of regulation is through metabolic, transcriptional, or translational control
remains an open question.

We next asked whether the oxidation state of phenazine added to cultures can
affect growth. 5,10-Dioxyphenazine is a soluble, fully oxidized phenazine that we
expected to inhibit growth by becoming reduced by electrons from the electron
transport chain (45). 5,10-Dioxyphenazine has been shown to be a selective hypoxic
trigger cytotoxin in human cell lines that is nontoxic when oxidized but produces ROS
(hydroxyl radicals) that damage cells when reduced (48). As predicted, despite the lack
of molecular oxygen in the medium, 5,10-dioxyphenazine was toxic to both M. acetiv-
orans and M. barkeri with 50% inhibitory concentrations (IC50s) of 1.4 �M for M.
acetivorans and 0.2 �M for M. barkeri (Fig. 6b). Our results suggest that hydrophobic
phenazines, which may be synthetic or naturally produced by bacteria, have the
capacity to be reduced by the methanogen electron transport chain (49, 50).

DISCUSSION

For single cells to grow and divide at the maximum rate, the efficiency of electron
transfer must surpass the rate of off-target redox reactions and minimize entropic
decay through chemical bond vibration and heat dissipation. How have methanogens
evolved to minimize energy dissipation while maximizing growth and respiration/
fermentation rates? Phylogeny suggests the first methanogens and contemporary
obligately hydrogenotrophic methanogens used hydrogen gas to reduce CO2 or for-
mate and do not use a membrane electron carrier to shuttle electrons from the electron
donors (hydrogen and intracellular electron carriers such as deazaflavins F420, FAD, and
NAD) to the terminal electron acceptor, CoM-S-S-CoB heterodisulfide (12). Instead, they
physically couple the methyl-viologen reducing hydrogenase (Mvh) to the electron-
bifurcating terminal oxidase, CoM-S-S-CoB heterodisulfide reductase, HdrABC (51–53).
Ergo, the bulk of electron transfer reactions in obligately hydrogenotrophic methano-
gens occur intracellularly through a network of iron/sulfur clusters and enzyme-bound
redox cofactors. In vivo protein cross-linking experiments with the obligate hydrog-
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enotroph Methanococcus maripaludis suggest methanogenesis enzymes form multien-
zyme complexes that spatially constrain electron donors and enzyme active sites to
minimize the relative entropy between methanogenesis pathway steps (51, 53). Form-
ing multienzyme complexes is kinetically and energetically ideal for optimizing any
biochemical reactions, and methanogens use the same strategy to maximize growth
and metabolism from hydrogen and carbon dioxide.

Methanosarcinales methanogens are postulated to have acquired the ability to use
acetate and methylotrophic substrates through lateral gene transfer(s) with Clostridia
and/or other bacteria (54–56). The ability to use new substrates opened up new trophic
niches and allowed the cells to extract more chemical energy for growth but required
the cells to find a new way to oxidize the electron carriers. Simply reversing the
hydrogenase-catalyzed reactions, while thermodynamically allowable at low hydrogen
concentrations, results in the loss of reducing power and makes the cells dependent on
establishing a scalar proton transport mechanism to conserve energy.

One solution to the problem of overreduced electron carriers is to evolve and/or
acquire hydrogenases and a membrane electron carrier to accelerate scalar proton
transport and recapture electrons from hydrogen, resulting in a true hydrogen-cycling
mechanism of energy conservation (34, 57). In Methanosarcinales such as M. barkeri and
Methanosarcina mazei, MPh is used to couple electrons recaptured from hydrogen by
hydrogenases to the HdrED terminal oxidase. Therefore, growth is dependent on the
efficiency of recapture of electrons by hydrogenases and the rate that those electrons
can be donated to HdrED. In Methanosarcinales that do not express hydrogenases, the
electron carriers must be balanced by electron transfer through the membrane to
generate a proton motive force by scalar proton transport. The MPh step is therefore
rate limiting in the central metabolism of methylotrophic substrates or acetate regard-
less of whether the methanogen expresses hydrogenases (58).

M. acetivorans appears to have maximized the rate of electron transfer through the
membrane by synthesizing sufficient amounts of MPh to enable isopotential electron
tunneling. We also observed that when growth slows during stationary phase, M.
acetivorans cells respond by increasing the membrane MPh pool size, which would
have the effect of compensating for reduced electron flux by increasing the rate of
electron transfer. While the prenyl tail saturation of MPh in M. barkeri changes, the total
MPh membrane content is constant between cells in exponential and stationary
phases. Overall, M. barkeri membranes do not contain as much MPh as M. acetivorans
membranes. How can two closely related Methanosarcina species with similar growth
rates have such different MPh membrane profiles? Does regulating electron flux
through the cell membrane require the regulation of MPh biosynthetic genes to
increase MPh pool sizes? Perhaps it does not. There are multiple biophysical strategies
that can be employed by cells to modulate the rate of electron transport through the
membrane. To maintain efficient electron transfer rates with low contents of electron
carriers such as MPh molecules in M. barkeri and M. mazei and quinones in E. coli grown
in anaerobic conditions, the cells would need to do one or several things: (i) utilize
electron donor and acceptor proteins/enzymes so that each electron carrier molecule
has only a short distance to diffuse; (ii) constrain the diffusion of enzyme donors and
acceptors by localizing them near each other (such as by forming supramolecular
complexes); and/or (iii) express isopotential membrane redox proteins to serve as
electrical relays in place of MPh molecules. Depending on the evolutionary pressures
and genomic content of a cell lineage, any one (or several) of these strategies could be
employed to result in maximal energy conservation efficiency.

MATERIALS AND METHODS
Microorganisms and culture conditions. Organisms were obtained from the sources listed in Table

1 (59). Methanogens were grown in high-salt mineral medium (HS) at 37°C as described previously (60).
Escherichia coli cells were grown aerobically in 0.5% glucose Lysis broth (LB) with shaking at 37°C (61).
2-OH-phenazine was synthesized de novo (62). All other chemicals were obtained from Fisher. Culture
growth was measured using a Spectronic D spectrophotometer fitted with a Balch tube (18 mm)
modification or using a Tecan Sunrise UV-Vis spectrophotometric plate reader. Cell numbers were
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measured microscopically with a Hausmann cell counting chamber using an EVOS FL Auto cell imaging
system microscope in the University of Nebraska-Lincoln (UNL) Morrison microscopy core facility. Cell
dimensions were measured using NIH ImageJ software (63).

Quinone and methanophenazine extraction. Cells from 100-ml cultures were harvested by cen-
trifugation at 4,000 � g for 30 min in a Sorvall Legend XTR tabletop centrifuge fitted with a TX-750
swinging bucket rotor (Thermo Fisher Scientific). Cells were washed with 100 ml of 0.4 M NaCl and
resuspended in 1 ml of 0.4 M NaCl. Menaquinone (MK4) was added as an internal standard (Sigma-
Aldrich). The following steps were carried out in the dark to avoid photodegradation. Resuspended cells
were lysed by freezing at �80°C 1 h to overnight and then thawing at 37°C in a water bath. Ethanol was
added to 70% and the lysates were vortexed and then heated to 70°C for 10 min. Lysates were
transferred to glass Hungate tubes and extracted three times with 1 ml hexane. After each addition of
hexane, samples were vortexed for 30 s and centrifuged at 2,000 � g for 10 min in a TX-750 swinging
bucket rotor. Upper hexane organic phases containing MPh and the MK4 internal standard were
combined and transferred to clean Hungate tubes and evaporated under N2 at 45°C in the dark.

High-performance liquid chromatography. MPh was separated and quantified by reverse-phase
high-performance liquid chromatography (HPLC) using an Agilent HPLC system equipped with a UV-Vis
detector. Samples were injected into a Supelcosil LC-18 5-�m column (15 cm by 4.6 cm) fitted with a
SupelGuard C18 guard column (Sigma-Aldrich). Samples were analyzed by isocratic chromatography using
either 95% methanol (MeOH) and 5% H2O or 90% MeOH and 10% hexane mobile phase at 1 ml · min�1. Table
S1 in the supplemental material shows the method evaluation of the new MPh extraction procedure with
a mobile phase of 90% MeOH and 10% hexane. For quantification of MPh and quinones, absorbances
were measured at 255 nm for MPh detection and at 260 nm for quinones (14).

Mass spectrometry. MPh samples were analyzed by LC-MS/MS on an AB SCIEX Q-Trap 4000
integrated mass spectrometer integrated with an Agilent 1200/Dionex U3000 nano LC system in the UNL
metabolomics core facility.

Nuclear magnetic resonance imaging. Isolated samples were dissolved in deuterated methanol.
Proton NMR data were acquired on a Bruker DRX-500 with a TXI Cryoprobe (500.13 MHz proton
frequency). The following data were gathered with a standard 30 degree pulse, 128 scans, and 65,536
data points: 1H NMR(CD3OD) 8.54 (1.5H, s), 8.21 (d, 1H, J � 8.7 Hz), 8.16 (d, 1H, J � 8.6 Hz), 8.11 (d, 1H,
J � 9.3 Hz), 7.91 (t, 1H, J � 8.3 Hz), 7.87 (t, 1H, J � 8.3 Hz), 7.60 (dd, 1H, J � 9.3 and 2.5 Hz), 7.40 (d, 1H,
J � 2.6 Hz), 5.14 (t, 1H, J � 7.0 Hz), 5.07 (t, 1H, J � 7.0 Hz), 4.31 (m, 2H), 3.59 (s, 2H), 2.15 to 1.90 (m, 20
H, side chains and impurity), 1.88 (CH3CN), 1.67 to 1.53 (methyl side chains), 1.28 (impurity, “grease”), and
0.88 (impurity, grease) (64).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
.00950-17.

SUPPLEMENTAL FILE 1, PDF file, 0.6 MB.
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