
 

 

 

 

 

 

 

 
The brainstem is directly involved in controlling blood pressure, respiration, sleep/wake

 
cycles, pain modulation, motor, and cardiac output. As such it is of significant basic science

 

and clinical interest. However, the brainstem’s location close to major arteries and adjacent
 

pulsatile cerebrospinal fluid filled spaces, means that it is difficult to reliably record func-
 

tional magnetic resonance imaging (fMRI) data from.These physiological sources of noise  

generate time varying signals in fMRI data, which if left uncorrected can obscure signals of  

interest. In this Methods Article we will provide a practical introduction to the techniques  

used to correct for the presence of physiological noise in time series fMRI data.Techniques  

based on independent measurement of the cardiac and respiratory cycles, such as retro-  

spective image correction (RETROICOR, Glover et al., 2000), will be described and their  

application and limitations discussed. The impact of a physiological noise model, imple-  

mented in the framework of the general linear model, on resting fMRI data acquired at  

3 and 7T is presented. Data driven approaches based such as independent component  

analysis (ICA) are described. MR acquisition strategies that attempt to either minimize the  

influence of physiological fluctuations on recorded fMRI data, or provide additional infor-  

mation to correct for their presence, will be mentioned. General advice on modeling noise  

sources, and its effect on statistical inference via loss of degrees of freedom, and non-  

orthogonality of regressors, is given. Lastly, different strategies for assessing the benefit  

of different approaches to physiological noise modeling are presented.  
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INTRODUCTION

The human brainstem occupies a key position in the central ner-

vous system (CNS), and is an integral part of the parasympathetic

and sympathetic nervous system. The brainstem receives conver-

gent input from spinal and supra-spinal fibers and the cranial

nerves, and effectively integrates these signals and coordinates

behavioral and physiological responses. As such, this area is of

key interest to clinicians and neuroscientists. However, the brain-

stem is located in an area that suffers from inherently poor signal

to noise, due to the close proximity of bone and air-filled cavities,

and potent sources of physiological noise. Consequently, func-

tional neuroimaging of this area is problematic. One approach

to improving our ability to detect the small blood flow changes

associated with neuronal activity, is to account (and correct) for

signal changes associated with physiological process that drive sig-

nal variation, but may not be related to the neuronal signals of

interest.

PHYSIOLOGICAL NOISE

Physiological noise is generally defined as signal changes in an

image that are caused by the subject’s physiology but excludes

brain activity of interest (Jezzard, 1999). This excludes scanner-

related artifacts, such as ghosting or drift, but can include changes

related to rigid-body head motion, although we will not consider

these motion changes in the present article. The bulk of the phys-

iological noise signals that we will consider arise from cardiac and

respiratory processes.

SOURCES OF PHYSIOLOGICAL NOISE

Both the cardiac cycle and the respiratory cycle induce changes in

the brain that are detected by MRI. The mechanisms include those

due to the cardiac cycle, which induce changes in cerebral blood

flow (CBF), cerebral blood volume (CBV), arterial pulsatility, and

CSF flow (Greitz et al., 1993; Purdon and Weisskoff, 1998; Dagli

et al., 1999; Krüger and Glover, 2001). Mechanisms related to the

respiratory cycle include induced changes in the main magnetic

field (B0) (Raj et al., 2001), and changes in arterial CO2 partial

pressure (Wise et al., 2004). In addition, there are interactions

between the cardiac and respiratory systems, such as increased car-

diac output during inspiration (the “respiratory pump”; Lin, 1999;

Hayen et al., 2012) and changes in CSF flow (Klose et al., 2000).

The way in which these mechanisms affect the MRI signal also

varies. Some changes are due to real movements, such as pulsatil-

ity, while some others lead to apparent movement due to varying

geometric distortion, associated with changing B0 fields that are

induced by the variable air cavity in the chest. In either case the

displacements of voxels in the image cause changes that are partic-

ularly strong and noticeable near boundaries between areas with

substantially different intensities in the image, such as at the edge

of the brainstem (see Figure 1). Other mechanisms create changes

in local blood susceptibility, either through oxygenation changes

or blood volume changes. These changes will induce signal vari-

ations via the BOLD effect, in the same way as those induced by

brain activations of interest. There are also mechanisms that affect

the signal via changes in tissue composition or via inflow effects.
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Brooks et al. Physiological noise in brainstem fMRI

FIGURE 1 |Temporal signal to noise (tSNR) map created from

motion-corrected resting BOLD time series image data. tSNR is

dramatically reduced in the brainstem when compared to other brain areas.

Data were acquired from a single subject at 3T using a 32-channel head

coil, with 3 mm isotropic resolution, 100 time points, TE/TR = 30/3000 ms,

flip angle = 90°, and acceleration factor 2.

Many of these noise sources are stronger in the brainstem than

in any other part of the brain, due to the increased capacity for

movement, due to CSF flow and blood pulsatility, and the closer

proximity to the lungs, and hence the stronger induced changes

in the B0 field. Therefore the magnitude and composition of

physiological noise in the brainstem is quite different from that

encountered in other areas of the brain. The scope of this problem

can be easily visualized when looking at a map of the temporal

signal to noise ratio (tSNR), which is the ratio of the mean of the

time course signal intensity divided by its temporal standard devi-

ation (Parrish et al., 2000). It is clear from Figure 1 that there is

an appreciable reduction of tSNR in the brainstem compared to

the cerebrum and cerebellum, caused by lower mean signal and/or

increased signal variance in the brainstem.

CHARACTERISTICS OF PHYSIOLOGICAL NOISE

Field strength dependence

Physiological noise increases with the square of the main field

strength, whilst signal to noise only increases linearly (Parrish et al.,

2000; Krüger and Glover, 2001; Triantafyllou et al., 2005; Hutton

et al., 2011). This means that for higher field scanners (e.g., at

7 T) physiological noise can become the dominant source of noise,

since it scales in the same way as BOLD contrast. Hence the tempo-

ral SNR for functional magnetic resonance imaging (fMRI), and

consequently statistical power, does not necessarily improve on

higher field scanners, especially in areas where physiological noise

is already strong, such as in the brainstem. However, higher field

scanners do offer other advantages when scanning the brainstem,

such as the ability to have increased spatial resolution, which can

be invaluable when investigating small structures.

Tradeoffs versus thermal noise and resolution

In MRI, thermal noise is an ever-present source of noise gener-

ated by thermal fluctuations within the subject, and to a lesser

extent within the receiver electronics, that gives rise to primarily

Gaussian-distributed, additive fluctuations in the received sig-

nal. When reconstructing images, the distribution of this noise

is usually altered, becoming Rician or non-central Chi distributed

(Aja-Fernández et al., 2011), although the noise is still reasonably

well approximated by a Gaussian noise process in areas of sizeable

mean signal magnitude and good tSNR, which are the areas of

interest in most fMRI studies. However, whilst the use of array

coils and parallel imaging may alter these noise processes, e.g., to

a non-central Chi distribution (Breuer et al., 2009), in many cases

the Gaussian approximation remains sufficiently good for statisti-

cal modeling of the fMRI time series. Further discussion of these

issues is beyond the scope of this article.

Although the field strength dependence of thermal-noise-

driven SNR is weaker than that of physiological-noise-driven SNR,

it is common to scan with higher spatial resolution on high field

scanners, which then increases the relative contribution of thermal

noise, since thermal SNR scales linearly with the voxel volume. For

example, consider 3 mm isotropic fMRI scans acquired at 3 and

7 T. In the 7 T scan the ratio of physiological noise to thermal noise

will be 5.4 times higher than in the 3 T scan. However, reducing

the voxel volume by a factor of 5.4 times, making it ∼1.7 mm will

keep the ratio of physiological noise to thermal noise the same

as it was in the 3 mm scan at 3 T. Increasing the resolution fur-

ther, say to a 1 mm voxel size at 7 T, would then make the ratio

(physiological noise to thermal noise) five times smaller in the 7 T

scan. Therefore, combined changes in resolution and field strength

could mean that the relative ratio of thermal noise and physiolog-

ical noise was quite different, in either direction, depending on

the actual resolutions. As a rough rule of thumb, the contribu-

tions of thermal and physiological noise are similar for cortical

voxels with a 1 mm × 1 mm × 3 mm resolution at 7 T (Triantafyl-

lou et al., 2005). However, in the brainstem, which typically suffers

from reduced coil sensitivity due to the distance from (and size of)

individual coil elements, there may be an increased contribution

of thermal noise at high resolution (as can be seen on Figure 3).

This makes it important to check on pilot scans (e.g., by measuring

temporal SNR) with different resolutions, even at the same field

strength.

Effect of imaging sequence

The above comparisons of physiological and thermal noise are

all based on using BOLD sensitive fMRI sequences. However, for

ASL-based sequences the contributions are likely to be substan-

tially different, since ASL seeks to separate out contributions of

blood oxygenation from CBF and CBV. The different sources of

physiological noise would therefore contribute quite differently in

ASL (see Restom et al., 2006), with oxygenation-related changes

being suppressed, blood flow/volume changes being similar or

enhanced, and movement-related changes, either real movement

due to pulsatility or field-induced image-motion from B0 changes,

having a similar strength. Currently BOLD fMRI has been exclu-

sively employed in studies focused on the brainstem, due to the

inherently stronger basic SNR, but the use and characterization of

ASL for brainstem imaging deserves further investigation.

CORRECTION METHODS FOR PHYSIOLOGICAL NOISE

ACQUISITION STRATEGIES

Several different approaches have been proposed to minimize

the influence of physiological noise (including movement) on
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Brooks et al. Physiological noise in brainstem fMRI

acquired MR images using acquisition-based strategies. The differ-

ent techniques broadly fall into three classes: (i) those that attempt

to capture images at a fixed point in the physiological process gen-

erating noise, e.g., cardiac gating, cardiac-gated multi-echo (ME)

acquisitions; (ii) those that attempt to correct images for inten-

sity variation induced by physiological fluctuation, e.g., un-gated

ME acquisitions; and (iii) those that acquire additional scans to

help identify physiological noise sources from an independent

acquisition, i.e., calibration scans. These are discussed below.

Cardiac (or respiratory) gating

Cardiac signals appear to be the dominant source of physiologi-

cal noise in fMRI data obtained from the brain, brainstem, and

spinal cord (Dagli et al., 1999; Piché et al., 2009). Previously

researchers have attempted to minimize the influence of such sig-

nals by recording fMRI data at a fixed point relative to the cardiac

cycle, i.e., “gating” (Guimaraes et al., 1998; Malinen et al., 2006).

An unavoidable consequence of gating is that the time between

consecutive fMRI volume acquisitions is no longer governed by

a fixed repetition time (TR) and instead has, e.g., a cardiac cycle

dependence, implying that there will be different amounts of lon-

gitudinal (T1) relaxation between samples. One approach to this

problem is to attempt to correct for the amount of partial satura-

tion of MR signal, via an adjustment based on the time between

recorded volumes – the effective TR (Guimaraes et al., 1998; Mali-

nen et al., 2006). These methods relying on taking a measurement

of the apparent T1 relaxation time for each voxel, and the time

between adjacent samples (effective TR) to increase or decrease

the measured MR signal appropriately. Whilst this is a potentially

attractive technique to use when dealing with structures that suf-

fer from significant cardiac pulsatility, the model relies on perfect

registration of adjacent images when determining the apparent

T1, and assumes a single relaxation time per voxel, which may be

erroneous in the case of partial voluming and imperfect realign-

ment. Another potential confound with these approaches is that

as the amount of T1 relaxation between volumes (and therefore

measured MR signal) is now dependent on the heart rate (HR),

so any stimulus that changes this directly or indirectly (e.g., pain,

arousal, fear, hypercapnia, blood pressure) may produce a sys-

tematic change in signal intensity that may be independent of

the neuronal mechanisms associated with BOLD. The potential

for introducing bias in the measurement due to imperfect T1

correction, stimulation-coupled HR changes, and the additional

processing required prior to analysis, have led to limited use of this

approach.

An alternative approach to correcting for T1 changes induced

by cardiac gating is to acquire gated imaging data with multiple

echoes per TR (Zhang et al., 2006). By acquiring a minimum of two

echoes per TR it is possible to derive an image whose intensity is

independent of variable T1 saturation effects, and instead reflects

T2∗. The image is created by either computing the quotient of

the two images (per TR) or by calculating the apparent T2∗ using

a simple mathematical operation (Beissner et al., 2010). When

using this technique, best results have been obtained with careful

pre-processing of individual images (e.g., pre-smoothing input

data) and optimal normalization to standard templates (Beiss-

ner et al., 2011). One potential drawback of this approach is that

when modeling evoked BOLD activity obtained using this acquisi-

tion method, the time between samples (which is normally fixed)

is variable and dependent on the HR, thus an effective (mean)

TR is typically used (Beissner et al., 2011). Note that this is pri-

marily a limitation of the statistical modeling packages used for

fMRI analysis, which expect data to be sampled at regular intervals.

The use of an effective TR and its effect on modeling the BOLD

response, and the impact on temporal autocorrelation correction,

has yet to be determined. However, it is worth noting that the

errors introduced by using an effective TR are expected to be small

when used in conjunction with a block design fMRI experiment,

but are likely to be more problematic with event related designs.

Acquisition-based k- and image-space corrections

By altering sequence parameters, or using modified pulse

sequences it is possible to reduce or correct for the presence of

physiologically induced image artifacts. It is worth noting that at

the relatively long echo times (TE) required for BOLD imaging

[TE ≈ T2∗

deoxy(blood)], imaging data are sensitive to signal dropout

and BOLD-like signal changes induced by physiological processes.

It is difficult to mitigate the problems related to signal dropout

whilst maintaining sensitivity to BOLD. The echo planar (EPI)

acquisitions typically used for BOLD imaging are also sensitive to

accumulation of phase errors due to variation in static magnetic

field (B0), which is affected by physiological processes (e.g., move-

ment of the lungs). One approach to minimizing these influences

was proposed by Pfeuffer et al. (2002), who used a navigator echo

to correct for differences in zero-order phase caused by movement

of the thorax and abdomen. The changing volume of air in the

lungs and position of the tissues surrounding them will induce a

time varying (at the breathing rate) change in the main magnetic

field (B0), and the effect of this is to produce a shift in the phase-

encoding direction of EPI data (Frank et al., 2001; Raj et al., 2001;

Windischberger et al., 2002). By acquiring a navigator echo before

the image read-out, and comparing it to the central line of the

main k-space data, it is possible to adjust the phase of the acquired

data and remove geometric shifts in the phase-encoding direction.

It should be noted that this correction will apply uniformly to the

imaged slice, and the same effect could be achieved by retrospec-

tive motion correction. However, in the case of a segmented EPI

acquisition, such a correction will dramatically reduce ghosting in

the image.

By combining recent developments in parallel imaging and

multi-channel array coils, it is also possible to increase the con-

trast to noise of EPI data by acquiring ME EPI data (Poser

et al., 2006). This approach makes use of the reduced echo train

lengths offered with parallel imaging, to (1) reduced suscepti-

bility induced distortions, (2) acquire additional echoes for the

same TR, and (3) reduce the apparent through-plane dropout by

optimally combining (through weighting each TE image by the

contrast to noise ratio) the signal from, in this case, four echoes

acquired with an acceleration factor of 2. The advantage of this

technique is that non-BOLD contributions to physiological noise,

that do not demonstrate strong correlations between the signal

measured at each TE, will be reduced via signal averaging. Whilst

one might expect physiological processes with typical frequen-

cies of ∼1 Hz (cardiac) and ∼0.3 Hz (respiratory) to demonstrate
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Brooks et al. Physiological noise in brainstem fMRI

a strong temporal autocorrelation between the samples in a ME

sequence (typically ∼15 ms apart), their contribution appears to

not be strongly correlated, perhaps due to local dephasing and

blood flow velocity mechanisms, hence echo averaging will be of

benefit (Poser and Norris, 2009). Indeed, ME imaging techniques

have been used to good effect to minimize physiological signal

fluctuation in and around the brainstem (Kundu et al., 2012).

Calibration scans

Whilst it may be possible to minimize contributions from physio-

logical noise to acquired fMRI data, through alternate acquisition

strategies, it may also be beneficial to identify physiological signals

from “calibration scans” and remove them during post-processing

of task fMRI scans. Such an approach was proposed by de Zwart

et al. (2008), which aims to identify non-task related correlations

within a region of interest (e.g., the brainstem) from an addi-

tional scan where no task is performed. Correlation between the

seed region (e.g., brainstem) and the remainder of the brain is

performed, and an arbitrary threshold used to define a mask of

these areas (excluding the seed region). During the “real” analysis

the time course of signal from the previously determined mask

is extracted, orthogonalized (Jezzard et al., 2003) to the experi-

mental design, and included in the GLM to determine activity

within the region of interest. Whilst this approach was shown to

increase t -scores by around 10% in the target brain area, the main

disadvantages to such an approach are (1) the need to acquire

an additional calibration scan, and (2) the assumption that if the

task does produce correlated activity within the predefined mask,

then it is safe to consider these signals as noise and remove them

from the analysis. Different approaches to achieve the same goal

have been proposed, e.g., by using independent component analy-

sis (ICA, see Pre-Processing Strategies) to identify noise sources

within fMRI data prior to model estimation using the GLM (Xie

et al., 2012).

PRE-PROCESSING STRATEGIES

There are a number of strategies for reducing physiological noise

that occur after the acquisition but before statistical estimation

is performed. These are the strategies that we are classifying as

pre-processing strategies.

Retrospective correction of k-space data (“RETROKCOR”)

This strategy, originally introduced by Hu et al. (1995), works

directly with k-space data, as opposed to the related technique

RETROICOR, that works in image-space. RETROKCOR involves

correcting the k-space data after acquisition, but prior to recon-

struction, by regressing out signals related to the timing and ampli-

tude of the respiratory and cardiac cycles. Therefore it requires

the ability to save the k-space data, process this and then apply

post-acquisition reconstruction to the processed data.

The principle used here, and in the related method

RETROICOR, is to take independent physiological measurements

(typically from a pulse-oximeter and respiratory bellows) and cre-

ate regressors that are used to remove correlated signals from the

data. The regressors are based on the timing of the physiological

cycles and assuming a periodic but flexible shape. In addition,

the respiratory regressors include amplitude modulation, based

on the depth of respiration. More information on the creation of

regressors can be found in Section “RETROICOR.”

It has been found that RETROKCOR did not perform as well

as RETROICOR for standard acquisitions (Glover et al., 2000),

but this has not been tested over all types of acquisitions and

brain areas. Therefore it is possible that this may be more suitable

for methods such as volume-based acquisitions where different

k-space lines are associated with distinct times, as opposed to

multi-slice images where different slices are associated with differ-

ent acquisition times. Further investigation of the relative merits

of this technique in such circumstances is warranted.

Temporal filtering

The cardiac cycle and respiratory cycle have fairly well defined

frequencies, being around 1 Hz for cardiac and 0.2 to 0.3 Hz for

respiratory processes. Although these are quite variable between

subjects they are usually relatively stable within a given subject.

Interaction terms also have frequencies defined by the differences

of these frequencies, for example, at 0.7 and 1.3 Hz (based on

1.0 ± 0.3 Hz). Therefore it is theoretically possible to remove sig-

nals related to these processes by filtering out these frequencies, or

a band of candidate frequencies.

In practice, such a temporal filtering approach suffers from

a number of problems: (i) the physiological signals also contain

harmonics of the base frequencies; (ii) activations of interest may

also contain similar frequencies, especially considering the har-

monics; and (iii) at typical TR values the sampling rate is too low

to uniquely distinguish these frequencies, and they are effectively

aliased to different frequencies. The latter problem is the biggest

one for typical sequences, as aliasing can only be avoided if the

sampling frequency (1/TR) is at least twice as high as that of the

highest frequency in the signal, which is the cardiac signal for phys-

iological noise. For example, it requires the TR to be less than 0.4 s

in order to avoid aliasing for cardiac signals up to 75 beats per

minute.

Aliasing is a fundamental limitation when taking discrete sam-

ples and cannot be avoided (see Aliasing or Nyquist Frequency in

any standard textbook on signal processing). This limitation effec-

tively means that at least two samples are required within every

period to avoid that signal’s frequency being aliased. Otherwise,

the signal is undersampled and will have the appearance of a dif-

ferent frequency in the sampled data, which could either be a high

frequency, or a low frequency, or something in between. Therefore

aliased frequencies are likely to overlap with frequencies from the

signals of interest and, consequently, separation by temporal fil-

tering cannot work. However, the emergence of accelerated fMRI

acquisitions, such as multi-band fMRI (Feinberg et al., 2010), are

making short TR acquisitions feasible without sacrificing brain

coverage. With these sequences the use of temporal filtering for

short TR acquisitions is becoming a practical option.

Another issue that arises when using temporal filtering, and

other pre-processing filtering techniques such as denoising, is

correctly accounting for the filtering in the subsequent statisti-

cal estimation. Failing to do anything can be problematic if the

subsequent statistics are utilizing a form of parametric distribu-

tion and making assumptions about the frequency content of the

noise. The filtering done here does modify the frequency content
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of the signal and, in cases where there is substantial filtering (e.g.,

low pass filtering), this can lead to large parts of the frequency

spectrum containing zero power – leading to underestimation of

the underlying variance in the data. This is sometimes modeled

correctly in parametric statistics, such as is done in certain flexi-

ble pre-whitening methods, but would not fit less flexible models

such as low-order auto-regressive (AR) models. The implications

of this, and also the incorrect statistical Degrees of Freedom (DOF)

associated with the estimation, are that the thermal noise influ-

ence tends to be underestimated (due to the removal of true signal

variance, e.g., with low pass filtering), leading to an increase in

false positives. However, it is very difficult to predict the magni-

tude of the effect on the final results, which may be negligible or

substantial, depending on many different aspects of the experi-

mental acquisition, SNR, length, design, etc. To avoid these prob-

lems it is often better to employ other, more flexible, statistical

methods, such as permutation-based statistics for the higher-level

analysis or to perform the equivalent filtering within the statisti-

cal estimation, as will be discussed for RETROICOR below (see

RETROICOR).

Denoising with ICA

Independent Component Analysis is a method of decomposing a

dataset into its constituent sources, taking into account the spa-

tial and temporal structure of the sources. In fMRI it is used

in a way that enforces spatial independence between component

maps but allows time courses in different components to be arbi-

trarily similar, or different. It has been shown (Beckmann and

Smith, 2004) that ICA decompositions are capable of separating

out sources of scanner artifact, physiological noise, and brain acti-

vation within fMRI. Furthermore, aliasing is not a problem as ICA

is still able to distinguish components based on different spatio-

temporal patterns in long TR data (Brooks et al., 2008), and thus

has an advantage over many of the other strategies, which rely on

temporal information alone.

Denoising with ICA is a strategy that relies on identifying

unwanted components, such as physiological noise or scanner

artifact, and removing them from the dataset prior to further

analysis. The difficulty in applying this in practice lies in iden-

tifying which components are unwanted or not. The classification

of the components can be done manually, or with automated

classification tools.

Manual classification of components is subjective and relies on

the experience of the person doing the classification. Typically the

person inspects the set of components for each subject, which can

range from a small number to hundreds, and decides which are

noise/artifact that will then be removed. Invariably there are some

difficult components where it is hard to tell, and it is known that

ICA can produce components that are a mixture of different true

sources when the SNR is limited. In such cases it is best to take

the conservative approach and leave such components in the data;

that is, do not classify them as noise. This ensures that most of the

signals related to brain activation remain in the data, minimizing

the risk of classifying the signals of interest as noise.

An alternative to this approach, which is particularly useful

when considering physiological noise sources, is to compare the

spatial location of putative noise components identified from a

short TR resting calibration scan (see Calibration Scans), to those

estimated from a long TR experimental acquisition (Brooks et al.,

2008; Xie et al., 2012). The study by Xie et al. builds on earlier work

(Piché et al., 2009) using spatial ICA to identify cardiac compo-

nents from resting EPI data acquired from the spinal cord, which

were classified as noise components on the basis of their loca-

tion and correlation with recorded physiological traces. Similarly,

Xie et al. recorded resting data at short TR (250 ms) to unam-

biguously identify cardiac and respiratory components, and then

compared the obtained spatial maps with ICA results from task

fMRI data (acquired with long TR). The components overlap-

ping the noise signals identified on short TR data, could then

be included as nuisance regressors in the GLM. This approach

was seen to increase both the sensitivity and specificity of spinal

fMRI responses to painful electrical stimulation. The main dis-

advantages to this approach are (1) the need to acquire resting

data, and (2) the additional processing steps required to analyze

short (resting) and long TR (task) data, and compare the obtained

component maps before inclusion in the GLM.

Automated classification methods (Thomas et al., 2002; Tohka

et al., 2008; Churchill et al., 2012; Smith et al., 2013a) tend to be

based on machine learning approaches that use a training set to

learn how to discriminate between different categories of compo-

nents, such as physiological noise, motion effects, scanner artifacts,

and brain activation. As with manual classification, these methods

will not be perfect and some errors in classification will occur; for

example, the recent method in (Smith et al., 2013a) had an accu-

racy of over 99% on data from the Human Connectome Project.

If the methods provide some control or measure of confidence, it

is better to err on the side of not removing certain components

when possible. Furthermore, the automated methods rely heav-

ily on the training data matching well with the acquisition being

analyzed, and differences in acquisitions (e.g., FOV, field strength,

resolution, etc.) can cause the number of mis-classifications to

dramatically increase. Therefore, it is important that the classifica-

tion be carefully monitored, especially when run for the first time

on new data. However, these methods do show strong promise in

substantially reducing physiological noise.

As mentioned above, care must be taken in the subsequent sta-

tistics to account for any denoising done in the pre-processing to

avoid falsely inflated statistics. For moderate amounts of denoising

this is unlikely to cause a problem for most higher-level analy-

sis methods, where the between-subject variance dominates, but

for more extensive denoising this may cause a bias when para-

metric statistics are used in the higher-level analysis. The precise

quantification of these effects is currently unknown and therefore,

non-parametric statistics, because they are robust to distributional

changes, are currently the preferred option for higher-level analysis

of denoised data.

PHYSIOLOGICAL NOISE MODELING

As already suggested in the discussion of RETROKCOR (Hu et al.,

1995), one method for estimating and removing physiological

noise sources from time series fMRI data is to acquire indepen-

dent physiological measurements from the subject and base the

correction on these data. Glover et al. (2000) proposed that this

correction was optimally performed in image-space, based on 2D
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Brooks et al. Physiological noise in brainstem fMRI

single shot acquisitions using EPI, and was termed RETROspective

Image CORrection (RETROICOR).

RETROICOR

Typically cardiac and respiratory processes will be monitored using

a pulse-oximeter and respiratory bellows, respectively. These phys-

iological waveforms may be recorded on a separate computer,

along with scanner triggers to indicate the timing of each vol-

ume acquisition. The task is then to determine the phase (cardiac

and respiratory) associated with the timing of each acquired slice

in the imaged volume. This process is illustrated in Figure 2, see

legend for full description.

The phase assigned (varying from zero at the arbitrarily cho-

sen starting point in the cycle, to 2π at the end of the cycle) to

each slice, may then be entered into a low-order Fourier expan-

sion (see Glover et al., 2000; Brooks et al., 2008; Harvey et al.,

2008), to derive time course regressors that attempt to explain sig-

nal changes, which are driven primarily by cardiac or respiratory

processes (or their interaction). These signals can then be used

to “regress out” physiological signals from the raw time course

data as per Glover et al. (2000). Alternatively, the time course of

regressors can be included in the GLM – as first suggested by

Josephs et al. (1997), whereby the weighting (“beta” or “parame-

ter estimate”) of each component will be adjusted to produce the

optimal fit to the data. One advantage of the GLM approach is

that it explicitly accounts for the loss of DOF that will occur when

including large numbers of nuisance regressors. Equally, if the

FIGURE 2 | Calculation of cardiac and respiratory phase for

RETROICOR. (1) Calculation of cardiac phase begins by identifying

consistent features from the cardiac trace, e.g., peak in the pulse-oximeter

waveform, R-wave in the electrocardiogram (ECG). The timing of slice

acquisition relative to these features (vertical lines above) determines the

cardiac phase, varying from 0 to 2π. (2) Respiratory phase needs to be

calculated differently (see Glover et al., 2000), as both the timing and depth

of breathing need to be accounted for, and inspiratory phase distinguished

from expiratory phase using a sign change (i.e., phase range is −π to +π).

calculated physiological time courses are not orthogonal to the

experimental design (which is likely to be the case), the GLM will

apportion the variance between the different regressors, and thus

provide a conservative estimate of appropriate statistical quanti-

ties, guarding against false positives. This conservative approach

is recommended and will automatically happen provided that no

user-enforced orthogonalizations of regressors are performed. In

relation to the brainstem, Harvey et al. (2008) used hierarchical F-

tests to determine which regressors explained significant amounts

of variance in resting data acquired at 3 T. They concluded that

three orders of cardiac, four orders of respiratory, and a single set

of interaction terms were sufficient to explain variance in their

brainstem fMRI data.

Heart rate, respiratory rate, and carbon dioxide

Whilst the cardiac and respiratory phases can explain significant

sources of noise in fMRI data, it is also possible to model sec-

ond order changes associated with variation in the cardiac and

respiratory cycles.

Alterations in metabolic rate and ventilation (the product of

tidal volume and respiratory rate) have opposing effects upon the

partial pressure of carbon dioxide (CO2) present in the arter-

ial blood (PaCO2). CO2, due to its vasodilatory effect upon the

cerebral vasculature, has a measurable effect on the BOLD sig-

nal (Wise et al., 2004, 2007). One approach to correcting for this

signal change is to measure the partial pressure of CO2 in expired

breath (PETCO2), and include this measure as an explanatory vari-

able (EV) at the analysis stage (Pattinson et al., 2009a,b). PETCO2

varies tightly with PaCO2 in people with healthy lungs, and is thus

considered a valid approximation.

Although it is preferable to directly measure PETCO2, in the

absence of the necessary monitoring equipment Birn et al. (2006)

have proposed a method to approximate changes in PETCO2 via a

surrogate measure calculated from a respiratory bellows trace: the

“respiratory volume per unit time” (RVT, Birn et al., 2006). This

method assumes that chest expansion represents measured tidal

volume, although this is partly correct, respiratory bellows do not

account for lung expansion in the vertical plane (i.e., downwards

into the abdomen). Furthermore, changes in metabolism (e.g.,

induced by drugs) may affect PaCO2 in a way not fully explained

by changes in respiration.

Additionally, variation in HR has also been shown (Shmueli

et al., 2007; Chang et al., 2009) to explain “noise” in brain imaging

data, however, as with all regressors care should be taken when

removing associated signals from fMRI data that may be corre-

lated with the experimental design. For example, in experiments

using painful stimuli, HR and the stimulation timing have been

shown to be correlated (Tousignant-Laflamme et al., 2005) and in

this case including HR in the model has been shown to impact

activation statistics (Kong et al., 2009).

Alternative model-based approaches

Clearly the RETROICOR approach, and its derivatives, depends

on the model chosen to approximate the effect of physiological

noise on the measured fMRI signal (although it is still reasonably

flexible). To avoid constraining the physiological noise model to

a particular set of basis functions (e.g., Fourier basis functions in
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Brooks et al. Physiological noise in brainstem fMRI

the case of RETROICOR), it is also possible to use finite impulse

response (FIR) functions to model physiological time series data

(Deckers et al., 2006). The main assumption with this method is

that the physiological processes are quasi-periodic and constant

amplitude, and that their effects can be modeled by only using

the timing of slice acquisition relative to the peaks detected from

the pulse and respiratory waveforms. By finding the peaks in the

cardiac and respiratory waveforms, each slice is assigned to a par-

ticular “bin” (i.e., a fraction of the cardiac or respiratory cycle).

By including separate regressors for each time interval (or bin),

whose weight is one (1) for those images falling into the rele-

vant time window, one can build up a complete set of regressors

which aims to model the cardiac and respiratory signals. Perfor-

mance was found to be “at least equivalent to the RETROICOR

method” (Deckers et al., 2006). However, there are some issues

that arise when using this technique, such as determining the opti-

mal total number of bins (which is somewhat arbitrary and can

depend on the fMRI acquisition length, see Kong et al., 2012)

also, unlike RETROICOR, FIR-based approaches do not account

for the depth of breathing, which has been shown to have a

dramatic effect on the induced artifact in EPI data (Raj et al.,

2001).

IMPROVEMENTS IN fMRI TIME SERIES MODELING

One way to assess possible improvements of the different correc-

tion approaches for physiological noise, is to compare the tSNR

calculated from the raw data (motion-corrected only) to that after

removing physiological noise.

To illustrate the sort of improvement that might be obtained

in the brainstem, we acquired resting fMRI data from two healthy

subjects, scanned separately at 3 T (Siemens Verio, manufacturer’s

32-channel head coil) and at 7 T (Siemens Magnetom 7 T, Nova

Medical 32-channel Rx with single channel birdcage Tx). Data

were acquired using a rectilinear EPI sequence with the follow-

ing voxel sizes 3 T (3 mm isotropic), 7 T (2 and 1 mm isotropic),

and with 100 time points in each case. The 3 T data were acquired

with an axial interleaved slice order, number of slices = 56, field

of view = 192 mm, TE/TR = 30/3000 ms, flip angle = 90°, phase-

encoding R/L, iPat acceleration factor = 2 (GRAPPA reconstruc-

tion), and bandwidth = 2111 Hz/Px. The 7 T data (2 mm) were

acquired with coronal ascending slice order, number of slices = 27,

field of view = 192 mm, TE/TR = 24/2500 ms, flip angle = 90°,

phase-encoding S/I, iPat acceleration factor = 2 (GRAPPA), and

bandwidth = 1132 Hz/Px. The 7 T 1 mm data were acquired

with an increased number of slices (n = 54) to retain coverage

of the brainstem, iPat acceleration factor = 3 (GRAPPA), and

TR = 5000 ms, all other parameters remained the same. All resting

fMRI data were analyzed with and without physiological noise

modeling (PNM) within the framework of the general linear

model in FEAT (part of FSL software, Jenkinson et al., 2012).

Physiological recordings taken with a pulse-oximeter and res-

piratory bellows, were logged along with scanner volume triggers

at 50 Hz sampling using a BIOPAC MP150 (Goleta, CA, USA),

and stored on a computer running Acqknowledge 4.2. Cardiac,

respiratory, interaction, HR, and RVT regressors were computed

for each slice independently using PNM software (part of FSL),

giving a total of 34 regressors. Note that no slice timing correction

was applied to the data, as the PNM takes into account that each

slice is acquired at a specific time, and so slice timing correc-

tion, together with the additional interpolation that it performs, is

not needed. These PNM regressors were input to the GLM along

with a single dummy regressor (a requirement for FEAT), and the

model fitted. No smoothing, brain extraction, or temporal filter-

ing was applied, however data were pre-whitened (using FILM,

part of FSL) as this was expected to have an effect on physio-

logical sources producing temporal autocorrelation within fMRI

time series data (Woolrich et al., 2001). Finally the tSNR was cal-

culated for the raw (motion-corrected only) resting fMRI data

and for the residuals following GLM estimation (i.e., with phys-

iological components removed). One important consideration is

the loss of DOF incurred when modeling with the PNM, which

would be expected to change temporal smoothness and reduce

variance even if using a set of randomly generated regressors. To

address this the temporal standard deviation (tSTD) was calcu-

lated by normalizing with the true DOF, which is equal to the

number of time points minus the number of regressors minus one

(i.e., N−1−N reg; where N reg is equal to 35 in this case – 34 PNM

regressors plus 1 dummy regressor).

To visualize where in the brain tSNR (temporal mean divided

by temporal standard deviation) is increased using the PNM, the

absolute tSNR computed for each acquisition before (“raw”) and

after correction (“corrected”) is shown in Figure 3, along with

the average value within a hand drawn brainstem mask (white

outline shows the position of the brainstem). Improvement in

tSNR was found for all three acquisitions, but is more easily

visualized on the 1 mm isotropic 7 T data, where variance was

particularly reduced around the surface of the pons and near the

fourth ventricle.

To provide an indication of the spatial localization and magni-

tude of improvement in tSNR, the ratio of the corrected to the raw

tSNR was computed, and is shown using the voxel-wise maps on

the right hand side of Figure 3. Whilst there are clearly a signifi-

cant number of voxels which do not benefit from correction with

the PNM, the average improvement in tSNR within the brainstem

was ∼13% across all three acquisitions.

The improvement seen in 3 and 7 T may be compared to

that previously reported in the brainstem at 3 T (Harvey et al.,

2008), see Figure 4. Harvey et al. studied 12 healthy subjects

with a brainstem optimized coronal oblique EPI acquisition

(voxel size 2.5 mm × 2.5 mm × 3 mm), TE/TR = 30/1000 ms, flip

angle = 70°, to acquire 1130 volumes with simultaneous physio-

logical monitoring (cardiac and respiratory). A series of hierarchi-

cal F-tests were performed to indicate which physiological regres-

sors (cardiac, respiratory, and interaction) explained significant

amounts of noise in their resting data. The final model included

three cardiac, four respiratory, and one interaction term (Brooks

et al., 2008). The improvement obtained with this model was

demonstrated by comparing the temporal coefficient of variation

(temporal standard deviation divided by temporal mean, multi-

plied by 100) between the uncorrected and corrected data. Across

the group, temporal CV was reduced most in the medulla, but also

near the surface of the pons, near the floor of the fourth ventri-

cle and in mid-brain (particularly around the periaqueductal gray

matter, PAG).
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Brooks et al. Physiological noise in brainstem fMRI

FIGURE 3 | Representative improvements in temporal signal to noise

(tSNR) obtained through modeling physiological noise (single subject

data). On the left the absolute tSNR maps for each acquisition are provided

for both pre- (“raw”) and post-correction (“corrected”), and the corresponding

average tSNR within a brainstem mask is given in brackets. Voxels overlapping

with the CSF filled spaces around the brainstem benefit most from

physiological noise correction. Maps on the right demonstrate the ratio of the

corrected to raw tSNR, and are thresholded at 1.1 to indicate where one

might reasonably expect to see improvement of greater than 10% in the

measured tSNR. Clearly the cortex appears to benefit most from this

correction with increases in tSNR of 100% frequently observed at all

resolutions and field strengths. The improvement in the brainstem is more

modest, but nonetheless improved on average by at least 12.5% in this area

(for all acquisitions).

DISCUSSION

There are many available options for dealing with physiological

noise, as detailed in the previous section. Deciding which options

are best depends very much on the particular experiment being

undertaken, the subject cohort, the available equipment, the avail-

able expertise, the available software, etc. So one recommendation

will not suit all situations. Therefore, in this section we will contrast

the various advantages and disadvantages of the different options

and suggest a method of piloting and comparing various options

in practice.

EXPERIMENTAL REQUIREMENTS

There are many possible impacts of physiological correction meth-

ods on an experiment. One is the extra time in the scanner session

required for setup or acquisition. This includes time taken to attach

a pulse-oximeter and respiratory bellows (or equivalent devices)

to the subject, and verify that signals are recorded correctly. In

particular, subjects’ hands should be kept warm to maintain cir-

culation in the fingers, and any nail varnish removed to increase

light transmittance; the bellows should be placed carefully near to

the diaphragm on the ribcage to maximize changes in recorded

lung volume. However, all this can normally be achieved in only a

few minutes and has minimal impact on scanning sessions unless

timing is very tight. Another impact on scanning time is the addi-

tion of new sequences to the session, such as would be required

for a resting-state calibration or increased time for certain acquisi-

tions, such as cardiac-gated sequences or certain ME choices. This

tradeoff of scan time versus benefit in data quality and scope is

a standard problem faced when planning MRI scanning sessions,

and will be familiar to experimenters. Evaluating specific benefits

of scanning time versus data quality is something that can usually

be done with pilot data, as discussed below.

Another requirement for some physiological noise correction

methods is extra equipment, such as physiological measuring

devices (e.g., pulse-oximeter, respiratory bellows, expired gas ana-

lyzer) and digitizing equipment (e.g., BIOPAC, National Instru-

ments, ADInstruments, Cambridge Electronic Devices). When

such equipment is not already available, the experimenter must

decide whether the additional cost of buying this equipment war-

rants the benefits to the fMRI analysis. However, given the typical

cost of scanning subjects, these pieces of equipment are nor-

mally a fairly minor purchase and the monetary cost is rarely

a major consideration. Indeed, many MR research centers will

typically have patient monitoring apparatus (e.g., In vivo Pre-

cess, MEDRAD Veris), which can normally output some, if not

all, of the required signals (e.g., cardiac triggers) for physiological

monitoring. Equally, respiratory monitoring can be achieved with

non-magnetic rubber bellows (e.g., from Lafayette Instrument)

and commercially available pressure sensors, and data logged with

an inexpensive analog to digital converter (e.g., from National

Instruments). One essential requirement is that the timing of scan

acquisition (i.e., slice or volume triggers) is recorded along with the

physiological waveforms using a single computer with a common

sampling rate.
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Brooks et al. Physiological noise in brainstem fMRI

FIGURE 4 | Spatial localization of brainstem signal variation measured in

12 subjects (adapted from Harvey et al., 2008). Top row (A) left depicts a

midline sagittal slice through the MNI standard brain with the approximate

subdivisions of the brainstem indicated (Med, medulla; Mes, mesencephalon;

PAG, periaqueductal gray matter). Middle: the mean CV over the group of

subjects studied is superimposed to show regions of high signal variability.

Highest signal variation was observed in the mesencephalon and near the

surface of the pons and medulla. The improvement following application of

the modified RETROICOR (3C4R1X) model is demonstrated in the right-most

image, which shows the percentage reduction in temporal standard deviation

when compared to baseline (no correction). Significant reduction in signal

variance was found in and around the PAG and the edges of the pons and

medulla. The lower portion of the figure (B) shows histograms of the temporal

coefficient of variation for both the uncorrected (red) and corrected (green)

resting data in the three brainstem regions examined. Voxel counts were

normalized to the total number of voxels in each region. Also shown for each

region is the histogram of percentage reduction in temporal standard

deviation (blue), and demonstrates that the largest benefit of physiological

noise modeling occurred in the medulla, where the proportion of voxels with

a reduction in SD greater than 10% is largest, although clearly modeling was

beneficial in pons and mesencephalon also. (Reproduced from Harvey et al.,

2008).

Some of the correction methods discussed above also require

access to different sequences, such as cardiac-gated sequences,

multi-band fMRI, or ME fMRI. These may be more difficult to

obtain, being dependent on the type of MR system, requiring

input from MR radiographers/operators/physicists and typically

a research agreement with the scanner manufacturer. Similarly,

other methods require access to raw k-space data and reconstruc-

tion algorithms (e.g., RETROKCOR), which can also be difficult

to acquire. Therefore, for certain cases some of these correction

methods may not be feasible, but given the wide array of options

that require nothing more than standard sequences, this is not a

major problem.

ANALYSIS CHOICES AND IMPLICATIONS

Given the availability of physiological data and analysis rou-

tines capable of generating suitable regressors, which should you

choose? In our experience the performance of techniques based

on “binning” time series data according to slice and physiologi-

cal waveform timing (e.g., Deckers et al., 2006), depend critically

on the choice of total number of bins (Kong et al., 2012), and

do not address issues relating to depth of breathing, which can

be critical. ICA approaches offer the possibility to automatically

identify sources on physiological noise, however, their usefulness

must be judged against the possibility of true signal being identi-

fied as a noise source and removed from the data. One approach

to mitigate this outcome is to acquire resting and task fMRI data,

and use the resting data to define physiological noise components,

for subsequent removal from the task data (e.g., Xie et al., 2012).

Concerning the model-based techniques, such as RETROICOR

(Hu et al., 1995; Josephs et al., 1997; Glover et al., 2000) and

PNM (Brooks et al., 2008; Harvey et al., 2008) these will always be

subject to the limitations of the basis functions used to describe

the physiological processes they are attempting to model. Further

developments that attempt to capture variance induced by changes

in HR (e.g., Shmueli et al., 2007; Chang et al., 2009) or respiratory

rate and depth (e.g., RVT, Birn et al., 2006) will be necessary to

account for effects not accounted for in RETROICOR or PNM.

These additional regressors are straightforward to compute, and

mostly likely account for low frequency signal fluctuations in time

series fMRI data. There are however, additional considerations

one must take into account when using these slice dependent

model-based approaches. For example, slice timing correction
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Brooks et al. Physiological noise in brainstem fMRI

when applied to time series fMRI data could potentially break

the association between the physiologically induced signal changes

and signal changes predicted by the model. Equally, with increased

use of multiplexed parallel imaging, e.g., multi-band (Feinberg

et al., 2010) or simultaneous multi-slice imaging (Setsompop et al.,

2012), researchers will need to be careful in assigning cardiac and

respiratory phases to subsets of their slices acquired at the same

time. For 3D or segmented acquisitions, it may be more appro-

priate to perform corrections on raw k-space data (Tijssen et al.,

in press). Finally, one must be aware of the penalty in terms of

loss of DOF incurred when using these model-based techniques.

However, the loss of 40 DOF within the context of a time series of

100 or more time points will constitute a relatively small change

in statistics, with potentially greater ability to detect signal against

the background noise in the experiment.

OPTIMIZING YOUR EXPERIMENT

Given the many ways in which different experiments and experi-

mental setups can vary it is often necessary to decide on the best

strategy for acquisition and analysis for each experiment sepa-

rately. Collecting specific pilot data is usually the best way to make

this decision; however evaluating small pilot experiments is not

straightforward. Here we offer some advice on how to collect and

evaluate pilot data in order to evaluate different acquisition and

analysis choices. It cannot be guaranteed that this will lead to the

best possible experiment, but following a procedure like this is very

likely to improve the experimental results.

Certain types of experiment can be more demanding in

terms of finding effects of interest, such as pain experiments

where subjects often move more and there may be correlations

between the applied stimulus and physiological changes in respi-

ratory and cardiac cycles (e.g., Tousignant-Laflamme et al., 2005;

Kong et al., 2009). Furthermore, for brainstem investigations that

involve neural mechanisms that play a role in respiratory con-

trol (Smith et al., 2013b) or autonomic regulation (Macefield and

Henderson, 2010), it will be very difficult to disentangle BOLD-

related activations and physiological noise and therefore extra

care and attention to the analysis is called for (Pattinson et al.,

2009a,b).

Once the limitations and difficulties have been thought about

and the various pros and cons of the correction methods have

been weighed up, it is normally necessary to evaluate a limited

number of alternative options. For example, using a cardiac-gated

sequence or not, or applying a measurement-driven method like

RETROICOR versus ICA denoising. If multiple options are being

considered, it is usually beneficial to rank comparisons in order

Table 1 | Summary of available physiological noise correction/removal tools.

Tool Requirements URL

RETROICOR (RETROspective

Image CORrection)

Part of AFNI http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dretroicor.html

RETROICOR Freesurfer/Matlab https://github.com/neurodebian/freesurfer/blob/master/fsfast/toolbox/fast_retroicor.m

DRIFTER (Dynamic

RetrospectIve FilTERing)

SPM (Toolbox) http://becs.aalto.fi/en/research/bayes/drifter/

PNM (physiological noise model) Part of FSL http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PNM

STANDALONE PACKAGES

PART (Physiological Artifact

Removal Tool)

Windows executable http://www.cabiatl.com/CABI/resources/part/

PhLEM (Physiological Log

Extraction for Modeling)

Requires Matlab https://github.com/timothyv/Physiological-Log-Extraction-for-Modeling--PhLEM--Toolbox

RETROICOR tool Requires Matlab http://cbi.nyu.edu/software/

PhysioNoise Requires Python http://www.plosone.Org/article/info:doi/10.1371/journal.pone.0001751#pone.0001751.s001

PhyslO Toolbox Requires Matlab http://www.translationalneuromodeling.org/tnu-checkphysretroicor-toolbox/

ICA-BASED

FIX (FMRIB’s ICA-based

X-noisifier)

Part of FSL http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX

PESTICA (Physiologic EStimation

by Temporal ICA)

Requires Matlab http://www.nitrc.org/projects/pestica

ICA Artifact Remover

NIAK (NeuroImaging Analysis Kit)

Requires Matlab http://www.cs.tut.fi/~jupeto/software.html

Requires Matlab/octave https://code.google.com/p/niak/

Please note that this list should not be considered to be definitive. It is provided to give some indication of the available software, and does not constitute a

recommendation or endorsement.
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of importance and then conduct a number of separate pairwise

comparisons, rather than trying to evaluate the full factorial set

of options, since the latter usually ends up taking an enormous

amount of time.

When comparing different acquisition methods, it is sufficient

to compare the tSNR directly, provided that the basic contrast

mechanism is the same; for example, both using BOLD contrast.

However, the comparison should not be as simple as “larger is

better” when there are changes in pre-processing (e.g., different

amounts of spatial smoothing) or statistical estimation. This is

because it would lead to the conclusion that increasing the filtering,

or number of regressors, or number of components in denoising,

is always beneficial, even though this is not the case. Instead, the

relative benefit of including extra regressors, or changing the pre-

processing options, should be evaluated using techniques such as

F-tests or information-theory measures like the Bayesian Informa-

tion Criterion (BIC). These techniques are based on probability

theory and take into account the fact that random noise is always

soaked up by extra filtering, denoising, or regression, but that

removing too much of the thermal noise makes it more difficult to

estimate the statistics reliably, thus decreasing the statistical DOF,

which would lead to weaker, not stronger, statistics.

Calculation of the F-test is straightforward for methods that

are embedded within the same statistical estimation framework.

For example, testing whether a set of additional regressors in

RETROICOR is beneficial can be done using an F-test over the

extra regressors (e.g., as done in Brooks et al., 2008; Harvey et al.,

2008). This will give a statistical result at each voxel that tests

whether these extra regressors fit an amount of variance that is

beyond what would be expected from thermal noise alone. The

overall benefit can then be judged subjectively, based on whether a

sufficient number of voxels in the area of interest show a significant

statistical result or not.

When comparing differing pre-processing steps it is more dif-

ficult to use F-tests, and this is where the BIC becomes more

useful. For example, the BIC for k regressors and N time points

is BIC(k, N ) = N × log(RSS/N ) + k × log(N ), where RSS is the

residual sum of squares. Therefore, comparing models with k1

and k2 regressors, which can be from very different sets, yields

the condition that log[RSS(k1)/RSS(k2)] < (k2 − k1) × log(N )/N

when the model with k1 regressors is considered superior.

This test again needs to be performed separately on each

voxel and then the overall result can be judged subjectively,

based on the pattern of results. In cases where the correc-

tion method is not a straightforward regression, an approximate

number of regressors can be used, based on the number of

denoised components or the rank of the matrix used to perform

filtering.

CONCLUSION

In this Methods Article we have presented several different tech-

niques for estimating and removing physiological noise artifacts

from time series fMRI data. It is clear that the brainstem suf-

fers from both intrinsically low signal to noise, and increased

contributions from non-neuronal physiological sources, which

serve to reduce the temporal SNR. The recorded temporal SNR

in any given brain region is an important consideration as it will,

to a large extent, dictate the length of an fMRI experiment required

to measure signals of interest (Murphy et al., 2007). Physiological

noise models, and denoising techniques in general, aim to reduce

signal variation in the fMRI time series and increase sensitivity

to detect activation. From considerations of the effects of field

strength and voxel size on recorded tSNR, it is clear that to benefit

from the increased BOLD signal afforded by higher field strength

MRI systems (3 T and above),one should make a considered choice

about the resolution of acquired images. Minimizing voxel size

will reduce the influence of physiological noise, but the “intrinsic”

signal to noise will be low. This places a large emphasis on choos-

ing the correct voxel dimensions for your experiment, which will

inevitably be a compromise between visualizing the small brain-

stem structures, whilst retaining sensitivity to neuronally induced

BOLD changes.

Table 1 provides the URLs for several different packages used

for removing or correcting for the effects of physiological noise.
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