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Physiological Notch Signaling Maintains Bone
Homeostasis via RBPjk and Hey Upstream of NFATc1
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Cornelia Wiese2, Kameswaran Surendran3, Raphael Kopan3, Manfred Gessler2, Fanxin Long1,3*

1Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America, 2Developmental Biochemistry, Biocentre, University of

Wuerzburg, Wuerzburg, Germany, 3Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America

Abstract

Notch signaling between neighboring cells controls many cell fate decisions in metazoans both during embryogenesis and
in postnatal life. Previously, we uncovered a critical role for physiological Notch signaling in suppressing osteoblast
differentiation in vivo. However, the contribution of individual Notch receptors and the downstream signaling mechanism
have not been elucidated. Here we report that removal of Notch2, but not Notch1, from the embryonic limb mesenchyme
markedly increased trabecular bone mass in adolescent mice. Deletion of the transcription factor RBPjk, a mediator of all
canonical Notch signaling, in the mesenchymal progenitors but not the more mature osteoblast-lineage cells, caused a
dramatic high-bone-mass phenotype characterized by increased osteoblast numbers, diminished bone marrow
mesenchymal progenitor pool, and rapid age-dependent bone loss. Moreover, mice deficient in Hey1 and HeyL, two
target genes of Notch-RBPjk signaling, exhibited high bone mass. Interestingly, Hey1 bound to and suppressed the NFATc1
promoter, and RBPjk deletion increased NFATc1 expression in bone. Finally, pharmacological inhibition of NFAT alleviated
the high-bone-mass phenotype caused by RBPjk deletion. Thus, Notch-RBPjk signaling functions in part through Hey1-
mediated inhibition of NFATc1 to suppress osteoblastogenesis, contributing to bone homeostasis in vivo.

Citation: Tu X, Chen J, Lim J, Karner CM, Lee S-Y, et al. (2012) Physiological Notch Signaling Maintains Bone Homeostasis via RBPjk and Hey Upstream of
NFATc1. PLoS Genet 8(3): e1002577. doi:10.1371/journal.pgen.1002577

Editor: Lisa Stubbs, University of Illinois, United States of America

Received January 18, 2011; Accepted January 18, 2012; Published March 22, 2012

Copyright: � 2012 Tu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH grant AR055923 (FL) and DFG grants Ge539/11 and SFB688/A16 (MG). The bone histomorphometry studies were
supported by the Washington University Center for Musculoskeletal Research (P30AR057235). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: flong@wustl.edu

¤ Current address: Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America

Introduction

Notch signaling mediates communication between neighboring

cells to control cell fate decisions in all metazoans [1,2]. The

mammalian genome encodes four Notch receptors (Notch1-4) and

at least five ligands (Jagged1, 2 and Delta-like 1, 3, 4) [3]. In the

canonical Notch pathway, binding of the ligands to the Notch

receptors present on the neighboring cell surface triggers two

successive intramembrane proteolytic cleavages of the receptors

mediated by the c-secretase complex and resulting in the release of

the Notch intracellular domain (NICD) [4,5,6]. Upon its release

from the plasma membrane, NICD translocates to the nucleus

where it interacts with a transcription factor of the CSL family

(RBPjk/CBF-1 in mammals) to activate transcription of target

genes [7]. Among the best known targets of Notch/RBPjk

signaling are the Hes/Hey family of basic helix-loop-helix (bHLH)

transcription repressors [8]. However, the regulation of individual

Hes/Hey proteins by Notch and their role in mediating Notch

function are highly dependent on cell context. In addition to the

canonical pathway, Notch has also been reported to signal through

noncanonical, RBPjk-independent mechanisms, but the molecular

nature of these mechanisms is not well understood [6,9,10,11].

Notch signaling has emerged as a critical regulator of the

mammalian skeleton. Initial mouse genetic studies identified a role

for Notch in axial skeletal patterning, as mice lacking either Delta-

like 3 (Dll3) [12], presenilin 1 (PS1) [13,14], a catalytic subunit of

the c-secretase complex, or lunatic fringe, a glycosyltransferase

that modifies Notch proteins [15], exhibited defects in the axial

skeleton due to deficiency in somite segmentation and mainte-

nance. In addition, mice lacking either Notch1 and 2 specifically in

the limb bud ectoderm or Jagged2 globally displayed syndactyly

[16,17]. Consistent with the mouse studies, human mutations in

Dll3 [18] were found to cause spondylocostal dysostosis, whereas

those in Notch2 [10] and Jagged1 [19,20] were responsible for

Alagille syndrome.

More recent mouse genetic studies have expanded our view of

Notch function in the osteoblast lineage. By genetically removing

both catalytic subunits of the c-secretase complex, PS1 and PS2,

or both Notch1 and 2 in the embryonic limb mesenchyme, we

have shown that Notch critically controls postnatal bone

homeostasis: the Notch-deficient long bones exhibited excessive

bone formation in adolescent mice with concomitant loss of bone

marrow mesenchymal progenitors [21]. Consistent with the

negative role of Notch in osteoblast differentiation, Zanotti et al

reported that forced-expression of NICD in osteoblastic precursors

reduced osteoblast numbers and caused osteopenia [22]. Con-

versely, forced-expression of NICD at a later stage of the osteoblast

lineage led to sclerosis owing to excessive proliferation of the
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immature osteoblasts, highlighting stage-specific functions of

constitutive Notch activation in the osteoblast lineage [23,24].

The negative role of physiological Notch signaling in osteoblast

differentiation uncovered in mice is congruent with the clinical

findings that Notch1 haploinsufficiency causes ectopic osteoblast

differentiation and calcification in the aortic valves [25,26],

whereas Notch2 stabilizing mutations are responsible for the

Hadju-Cheney syndrome, a disorder of severe and progressive

bone loss [27,28]. However, the signaling cascade through which

Notch inhibits osteoblastogenesis is not yet well understood.

Here we have genetically assessed the role of RBPjk and Hey

proteins, known components of the Notch canonical pathway, in

the regulation of osteoblastogenesis. Moreover, we have evaluated

the role of NFAT in the high-bone-mass phenotype caused by

RBPjk deficiency. The NFAT (nuclear factor of activated T cells)

family of transcription factors (NFATc1-c4) [29] have been shown

to play important roles in several skeletal cell types, including

chondrocytes [30], osteoclasts [31] and osteoblasts [32,33]. Our

results support a model wherein canonical Notch signaling

suppresses osteoblastogenesis in part through inhibition of

NFATc1 transcription, therefore integrating extracellular signals

with transcription factors that control osteoblast differentiation.

Results

Notch2 plays a dominant role in suppressing bone
formation
Previously, simultaneous removal of both Notch1 and 2 (PNN

mice) from the embryonic limb mesenchyme with Prx1-Cre,

which targets all of the early limb bud mesenchyme and a subset of

the craniofacial mesenchyme [34], caused high bone mass due to

increased osteoblast differentiation [21]. To discern the individual

contributions of Notch1 versus 2 in the osteogenic progenitors, we

employed the same Cre-loxP strategy to delete the two receptors

separately. Western analyses confirmed that Notch1 or Notch2

was efficiently deleted in the limb mesenchyme of Prx1-Cre;

Notch1f/f (PN1) or Prx1-Cre; Notch2f/f (PN2) mice, respectively

(Figure 1A). As expected from our previous study of the PNN

mice, PN1 and PN2 mice were viable without gross morphological

anomalies. However, X-ray radiography of the limb bones at eight

weeks of age revealed a marked increase in mineral content within

the trabecular region of the PN2 but not the PN1 mice, when

compared with their respective littermate controls (data not

shown). Three-dimensional reconstruction using micro computed

tomography (mCT) of the proximal tibial trabecular region

confirmed this finding (Figure 1B). In particular, PN2 mice

exhibited a 130% increase in trabecular bone volume owing to

increased trabeculae numbers and decreased trabeculae spacing

(Table 1). The PN2 phenotype was less dramatic than that of the

PNN mice [21] (Figure 1B), indicating that Notch 1 performed a

discernible role in the absence of Notch 2, even though deletion of

Notch 1 alone did not cause an effect. Similar to the PNN mice,

the high bone mass in PN2 mice was not due to decreased total

osteoclast activity, as serum CTX levels, which reflect the amount

of cleaved type I collagen by osteoclasts in the whole animal, did

not differ significantly from the controls (Figure 1C). In addition,

osteoclast number or osteoclast surface per bone perimeter did not

change in either PN1 or PN2 mice (Figure 1D–1E). Therefore,

physiological signaling from Notch 2, rather than Notch 1, plays a

dominant role in suppressing bone formation.

RBPjk mediates Notch function in suppressing osteoblast
differentiation
To test the hypothesis that Notch suppresses bone formation

through the canonical pathway, we deleted RBPjk with Prx1-Cre

from the embryonic limb mesenchyme. Western analyses

confirmed that RBPjk was efficiently deleted in the tibia of the

Prx1-Cre; RBPjkf/f (PRBP) mouse (Figure 2A). Moreover, Hey1

and HeyL, two Notch target genes previously identified in the

PNN bones [21], were markedly reduced in the PRBP tibia

(Figure 2B). The PRBP mice were born at mendelian ratio with no

gross abnormalities. However, at eight weeks of age, X-ray

radiography revealed that the PRBP mice contained much greater

mineral content within the presumptive bone marrow cavity than

the wild-type littermates (Figure 2C). mCT analysis of the proximal

tibia confirmed a marked increase of bone mass in the PRBP mice

(Figure 2C), as reflected in a 730%, 220% or 140% increase in

BV/TV, trabeculae number or trabeculae thickness, respectively,

coupled with a 70% decrease in trabeculae spacing (Table 2).

Consistent with the mCT data, both H&E and picrosirius red

staining of the tibia detected excessive trabecular bone occluding

much of the marrow cavity of the PRBP bones (Figure 2D, 2E).

These analyses also revealed an abnormal elongation of the

growth plate hypertrophic cartilage in the PRBP bones

(Figure 2D–2E); this phenotype was similar to that previously

analyzed in the PNN mice and could not be contributed to

changes in osteoclast numbers at the chondro-osseous junction

(Figure 3A, 3B). The dramatic increase in bone mass in the PRBP

mice was very similar to that seen in the presenilin 1- and 2-

deficient (PPS) animals, but more severe than the PNN phenotype,

likely due to contributions from Notch3 and 4 in the PNN mice

[21]. Although the data do not exclude that RBPjk may control

bone formation through a yet unknown mechanism independent

of Notch, the striking similarity in the bone phenotype among the

PPS, the PNN and the PRBP mice indicates that RBPjk is likely

the principle mediator of physiological Notch signaling in bone.

We then analyzed the cellular basis for the high bone mass in

the eight-week-old PRBP mice. Tartrate-resistant acid phospha-

tase (TRAP) staining on tibial sections revealed a strikingly uneven

distribution of osteoclasts within the trabecular bone region of the

PRBP mice: whereas TRAP-positive cells were more abundant

than normal within the metaphyseal region, few were detected

towards the diaphysis (Figure 3A). The reason for this regional

disparity is not certain at present but may be due to uneven

compartmentalization of osteoclast precursors within the occluded

marrow cavity. Serum CTX assay did not detect any significant

difference between the PRBP and the WT littermates (Figure 3C).

Further investigation of the metaphyseal region revealed that

although osteoclast number per bone perimeter (No. OC./mm)

was higher in the PRBP mice, the spreading of individual

osteoclasts (mm/OC.) was decreased, resulting in no change in the

Author Summary

Osteoporosis is a disease caused by disruption of the
balance between bone formation and resorption resulting
in a net loss of bone mass. Although anti-resorptive agents
are the current mainstay of osteoporosis therapy, novel
strategies to promote bone formation are critically needed
for more effective prevention and treatment of the
disease. Notch signaling, an evolutionally conserved
mechanism among multi-cellular organisms, was recently
shown to control bone formation and therefore represents
a potential target pathway for novel bone-promoting
therapeutics. In this study we elucidate the intracellular
signaling mechanism through which Notch controls bone
formation, providing a molecular framework that may
guide future drug development.

Notch and NFAT in Bone Formation
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percentage of bone surface covered by osteoclasts (OC. S./B. S.)

(Figure 3D). Thus, the PRBP mice possessed abundant, but

apparently less functional osteoclasts within the metaphyseal

trabecular bone. Real-time PCR experiments showed that the

mRNA levels for both the osteoclastogenic signal Rankl and the

anti-osteoclastogenic factor Opg were reduced in the PRBP bone,

but the ratio of Rankl over Opg (Rankl/Opg) was 230% higher in

the PRBP bone than the control (Figure 3E). Moreover, the

mRNA level for M-CSF, a potent mitogen of osteoclast precursors,

was 690% higher in the PRBP mice (Figure 3F). The higher level

of M-CSF coupled with an increased ratio of Rankl/Opg could

explain the supernumerary but dysfunctional osteoclasts populat-

Figure 1. Bone phenotypes of PN1 and PN2 mice at 8 weeks of age. (A) Western blot analyses of Notch1 and 2 in PN1 and PN2 mice versus
wild-type (WT) littermates. Protein extracts prepared from limb buds of E12.5 PN1 embryos or tibiae and femora of 8-week-old PN2 mice. Numbers
indicate signal intensity relative to wild type (designated 1). N1-FL: full-length Notch 1; N1-TMIC, N2-TMIC: transmembrane-intracellular domain of
Notch 1 and 2. Full-length N2 was not detected in either WT or PN2. (B) mCT three-dimensional reconstruction of metaphyseal trabecular bone of the
tibia. (C) Serum CTX assays. (D) Number of osteoclasts normalized to trabecular bone perimeter (#OC./B.S. (1/mm)) on tibial sections. (E) Osteoclast
surface normalized to bone surface (OC.S./B.S.) on tibial sections. Bar graphs show mean 6 s.d., n = 3.
doi:10.1371/journal.pgen.1002577.g001

Table 1. mCT analyses of PN1 and PN2 at 8 weeks of age.

BV/TV Tb.N* Tb.Th* Tb.Sp*

Genotype % (±s.d.)

Ratio

over WT

p

value

1/mm

(±s.d.)

Ratio

over WT

p

value

mm

(±s.d.)

Ratio

over WT

p

value

mm

(±s.d.)

Ratio

over WT

p

value

PN1 13.08766.413 1.3 0.498 2.82760.295 1.2 0.137 0.06860.016 1.0 0.910 0.36860.043 0.8 0.168

WT 9.16364.320 2.33660.321 0.07060.006 0.44460.066

PN2 21.34362.788 2.3 0.004 3.47160.262 1.6 0.015 0.07260.017 1.2 0.568 0.29860.032 0.6 0.023

WT 9.10062.326 2.10660.510 0.08360.027 0.47460.078

BV: bone volume; TV; total volume; Tb.N*: trabeculae number; Tb.Th*: trabeculae thickness; Tb.Sp*: trabeculae spacing; data derived from 100 of 16-mm slices
immediately below growth plate, n = 3 for each group. All analyses were performed with sex-matched littermates (all males for PN1, 1 male and 2 females for PN2).
doi:10.1371/journal.pgen.1002577.t001

Notch and NFAT in Bone Formation
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ing the metaphyseal trabecular bone in the PRBP mice. Overall,

the high bone mass in the PRBP mice was not caused by an overall

decrease in bone resorption.

Having ruled out resorption deficiency as the main cause for the

high bone mass in PRBP mice, we next focused on bone formation

parameters. Static histomorphometry of tibial sections from the

eight-week-old PRBP mice revealed a marked increase in the

number of cuboidal (active) osteoblasts, when normalized to either

bone perimeter (60% increase) or trabecular bone area (400%

increase) (Figure 4A). The number of flat (inactive) osteoblasts,

when normalized to trabecular bone area, was also increased by

100% in the PRBP mice. Consistent with the increase in osteoblast

number, real-time PCR experiments showed that a number of

common osteoblast markers were upregulated in bone total RNA

(Figure 4B). Dynamic histomorphometry showed that the mineral

apposition rate (MAR), which measured osteoblast activity, did not

Figure 2. Bone mass of PRBP mice at 8 weeks of age. (A) Western analysis for RBPjk in protein extracts from tibiae and femora. (B) Real-time
PCR with RNA from tibiae. (C) X-ray radiographs of hindlimbs (left), and mCT images of metaphyseal trabecular bone of the tibia (right). (D) H&E
staining of medial longitudinal sections through the tibia. (E) Picrosirus red staining on medial longitudinal sections through the tibia. Collagen I
stains red. Bar graphs show mean 6 s.d., *p,0.05, **p,0.01, n = 3.
doi:10.1371/journal.pgen.1002577.g002

Table 2. Age-dependent bone loss in PRBP mice.

BV/TV Tb.N* Tb.Th* Tb.Sp*

Age Genotype % (±s.d.)

Ratio

over

WT

p

value

1/mm

(±s.d.)

Ratio

over

WT

p

value

mm

(±s.d.)

Ratio

over

WT

p

value

mm

(±s.d.)

Ratio

over

WT p value

8 weeks PRBP 47.217611.535 8.3 0.003 5.68360.980 3.2 0.002 0.137360.046 2.4 0.038 0.18060.027 0.3 0.000

WT 5.66060.986 1.78160.075 0.05760.001 0.57760.030

26 weeks PRBP 24.70064.740 1.5 0.181 4.55361.473 2.3 0.016 0.08060.011 1.0 0.930 0.24860.114 0.4 0.374

WT 16.27561.622 1.96560.333 0.07960.010 0.55260.095

BV: bone volume; TV; total volume; Tb.N*: trabeculae number; Tb.Th*: trabeculae thickness; Tb.Sp*: trabeculae spacing; data derived from 100 of 16-mm slices
immediately below growth plate. All analyses were performed with sex-matched littermates (1 male and 2 females for 8 weeks, 2 males and 2 females for 26 weeks).
doi:10.1371/journal.pgen.1002577.t002

Notch and NFAT in Bone Formation
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differ significantly between PRBP and the control littermates

(Figure 4C). However, the percentage of double-labeled trabcular

bone surface was increased by 230% in the PRBP mice, resulting

in a significant increase in the bone formation rate (BFR) within

the trabecular region (Figure 4C). Thus, the increase in bone mass

in the PRBP mice was primarily due to a marked increase in

osteoblast numbers.

To explore the mechanism responsible for the increase in

osteoblast numbers, we assessed the status of apoptosis and

proliferation of osteoblasts in PRBP versus wild-type bones. To

this end, osteoblast protein extracts were prepared from the bone

surface of the long bones, and subjected to Western analyses for

activated caspase 3 and PCNA, markers for apoptosis and cell

proliferation, respectively. These assays did not detect a significant

difference in either protein between the genotypes (Figure 4D).

Therefore, the increase in osteoblast numbers is unlikely to be

caused by changes in apoptosis or proliferation, but rather due to

enhanced differentiation from the progenitors.

RBPjk deletion causes diminution of bone marrow
mesenchymal progenitor pool and rapid age-dependent
bone loss
Uncontrolled osteoblast differentiation may lead to loss of bone

marrow mesenchymal progenitors and rapid age-dependent boss

loss [21]. To test whether this is the case in the PRBP mice, we

analyzed bone mass by X-ray (data not shown) and mCT at 26

weeks of age. Indeed, bone mass was drastically reduced in the

PRBP mice at 26 weeks when compared with 8 weeks (Figure 5A).

When quantified, the trabecular bone mass of the PRBP tibia was

no longer significantly different from the wild type at 26 weeks,

representing a drastic decline from a level 730% above normal at 8

weeks (Table 2). Similarly, both trabeculae thickness and number

were reduced to levels either equivalent or close to the wild type.

Interestingly, bone resorption, as measured by serum CTX assays,

was significantly higher in the PRBP mice over the control at 26

weeks, likely contributing to the rapid bone loss (Figure 5B).

Figure 3. Osteoclasts in PRBPmice at 8 weeks of age. (A) TRAP staining on medial longitudinal sections through the tibia. Osteoclasts stain red.
Color-coded boxed areas shown at higher magnification. (B) Osteoclast number normalized to cartilage perimeter at chondro-osseous junction (#
OC. / B.S. (1/mm)). (C) Serum CTX assays. (D) Left to right: osteoclast number normalized to trabecular bone perimeter (# OC. /B.S. (1/mm)), osteoclast
surface normalized to bone surface (OC. S. / B. S.), and average osteoclast surface (mm/OC.). (E–F) Real-time PCR with total RNA from tibiae. Bar graphs
show mean 6 s.d., *p,0.05, **p,0.01, n = 3.
doi:10.1371/journal.pgen.1002577.g003

Notch and NFAT in Bone Formation
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Thus,similar to the PNN mice [21], the PRBP mice, despite their

high bone mass when young, rapidly lost bone with age.

We next assessed the status of the mesenchymal progenitors in

the bone marrow. To this end, bone marrow stromal cells (BMSC)

isolated from PRBP versus wild type littermates were subjected to

CFU-F (colony forming unit-fibroblast) assays. These assays were

not feasible with adolescent PRBP mice due to the occlusion of the

marrow cavity, and therefore performed only after six months of

age. Remarkably, no type I CFU-Fs could be detected from the

PRBP bone marrow at either 26 weeks (data not shown) or one

year (Figure 5C), indicating a severe diminution of the

mesenchymal progenitor pool. Moreover, BMSC isolated from

the PRBP bone were severely deficient in undergoing osteoblast

differentiation when cultured in osteogenic media and monitored

by the expression of alkaline phosphatase (AP) (Figure 5D).

Therefore, the PRBP animals exhibited a marked deficiency in the

bone marrow mesenchymal progenitor pool.

RBPjk is not critical for later stages of osteoblast lineage
To delineate potential stage-specific requirement of Notch-RBPjk

signaling during osteoblast differentiation, we deleted RBPjk with

either Osx-GFP::Cre [35] or 2.3ColI-Cre [36], which are believed to

target progressively more mature osteoblastic cells. Western analyses

confirmed that both Cre lines efficiently deleted RBPjk in the long

bones (Figure 6A). However, when assessed by either X-ray

radiography or mCT, neither deletion caused any significant changes

in bone mass at either 8 or 21 weeks of age (Figure 6B, 6C), a finding

confirmed by quantitative analyses (Table 3). Because previous studies

have suggested that Notch signaling in the more mature osteoblastic

cells regulated osteoclastogenesis through modulation of Rankl and

Opg [23,37], we examined osteoclasts in both the Osx-GFP::Cre;

RBPjkf/f (OsxRBP) and the 2.3ColI-Cre; RBPjkf/f (ColIRBP) mice.

However, serum CTX assays detected no significant changes in either

OsxRBP or ColIRBPmice over controls at either 8 or 21 weeks of age

(Figure 6D, 6E), indicating largely normal bone resorption in these

Figure 4. Osteoblasts in PRBP mice at 8 weeks of age. (A) Left to right: images of the trabecular bone region, osteoblast numbers normalized
to trabecular bone perimeter (#OB./mm) and area (#OB/mm2) on sections. (B) Real-time PCR of bone total RNA. Osx: osterix; Bsp: bone sialoprotein;
Ocn: osteocalcin; Opn: osteopontin. (C) Left to right: images of calcein-double-labeled trabecular bone region; mineal apposite rate (MAR), double-
labeled surface over total bone surface (Dls/Tbs) and bone formation rate (BFR) in trabecular bone region. (D) Left to right: images of representative
Western blots with protein extracts from tibiae and femora; quantifications of Western analyses for PCNA and active caspase 3. Bar graphs show
mean 6 s. d., *p,0.05, n = 3 (A–C) or 5 (D).
doi:10.1371/journal.pgen.1002577.g004

Notch and NFAT in Bone Formation
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animals. Similarly, osteoclast number and osteoclast surface per bone

surface were comparable between the mutant strains and their wild-

type littermates (Figure 6D, 6E). Thus, RBPjk does not appear to play

a major role in the more committed osteoblast-lineage cells.

Hey1 and HeyL mediate Notch-RBPjk signaling in
osteoblast lineage
To assess the role of Hey1 and HeyL in bone formation, we

analyzed the bones of mice wherein the two genes have been

deleted. Because previous work by others revealed no major bone

phenotype in the Hey12/2 mice [38], we focused on the HeyL2/2

and the Hey1/HeyL double mutant animals, all in the C57BL6

background. As Hey12/2; HeyL2/2 mice died prematurely due to

heart defects [39], we analyzed the bones of the viable HeyL2/2;

Hey1+/2 animals. mCT analyses showed that the HeyL2/2 and the

HeyL2/2; Hey1+/2 mice possessed progressively more trabecular

bone than their wild-type littermates at 8 weeks of age (Figure 7A).

In particular, the femoral trabecular bone mass was increased by

80% and 150% over the control in the HeyL2/2 and the HeyL2/2;

Hey1+/2 animals, respectively (Table 4). Moreover, like the PRBP

bones, the HeyL2/2; Hey1+/2 samples exhibited a significant

increase in trabeculae number and thickness with a corresponding

decrease in trabeculae spacing. At the cellular level, the HeyL2/2;

Hey1+/2 bones exhibited more cuboidal osteoblasts than the wild

type whereas their number of osteoclasts appeared to be normal

(Figure 7B, 7C). Thus, Hey1 and HeyL, like Notch and RBPjk,

negatively regulate osteoblast numbers.

NFATc1 functions downstream of Notch-RBPjk-Hey
signaling
We next investigated the mechanism through which Notch-

RBPjk-Hey signaling regulates osteoblast differentiation. In a

separate effort to identify Hey1 and HeyL target genes, we

performed genome-wide ChIP-seq (Chromatin immunoprecipita-

tion followed by high-throughput sequencing) experiments by

expressing Flag-tagged Hey1 or HeyL in HEK293 cells. We

identified strong binding for both proteins around the P1 promoter

of NFATc1 (Figure 8A and data not shown). Importantly, Hey1

was also found to bind to the NFATc1 P1 promoter region in ST2

cells, a mouse bone marrow stromal cell line that can be induced

to differentiate into osteoblasts (Figure 8B); the binding is

consistent with the presence of a predicted Hey1 binding site

‘‘CGCGCG’’ within the region. In contrast, no binding was

detected for the alternative P2 promoter (Figure 8B). We next

focused on the functional relevance of Hey1 binding. Full-length

Hey1, but not a form missing the HLH domain, suppressed the

activity of the NFATc1 P1 promoter in transient transfection

assays in both HEK293T and ST2 cells (Figure 8C). Because

NFATc1 was previously shown to increase osteoblast numbers

[33], we explored the potential involvement of NFATc1 in Notch-

RBPjk signaling in bone. Real-time PCR revealed that NFATc1

mRNA was increased by 200% in the PRBP tibia over the control

(Figure 8D). Western analyses identified a 70 kD isoform of

NFATc1 greatly induced in the PRBP bones, whereas a 77 kD

form was less affected (Figure 8E). To gain insight on the induced

isoform, we employed semi-quantitative RT-PCR to identify the

specific NFATc1 mRNA variant(s) increased in the PRBP bones.

The NFATc1 mRNA variants are known to differ both at the 59

end containing either exon1 or 2, and at the 39 end that either

terminates with exon 9b, or contains exon 9a through exon 11. By

using primer pairs spanning exons 1 and 3, 2 and 3, 8 and 9b or 8

and 11, we observed a marked increase of exon 1 in the PRBP

samples, whereas exon 2 was unchanged (Figure 8F). Moreover,

exon 9b was enriched in PRBP over wild type, whereas exon 11

Figure 5. Bone loss in PRBP mice at 26 weeks of age. (A) mCT reconstruction of metaphyseal trabecular bone of tibia in wild type (WT) and
PRBP mice. (B) Serum CTX assays. (C) Bone marrow CFU-F assays. (D) Alkaline phosphatase (AP) assays of BMSC in osteogenic medium. Bar graphs
show mean 6 s. d., *p,0.05, n = 3.
doi:10.1371/journal.pgen.1002577.g005
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was not detectable in either genotype (Figure 8F, and data not

shown). Thus, an NFATc1 mRNA variant transcribed from the P1

promoter and containing exons 1 and 9b was specifically induced

in the PRBP bones.

The finding above raises the possibility that the increase in

NFATc1 might contribute to the high bone mass in the PRBP

mice, and further that inhibition of NFATc1 activity may be able

to alleviate the phenotype. To test this hypothesis, we injected

littermate PRBP animals daily with either FK506, a potent

inhibitor of NFAT signaling, or vehicle, for one month starting at

one month of age. As expected, the vehicle treatment did not alter

the high bone mass phenotype of the PRBP animals. However,

FK506 markedly reduced bone mass in the PRBP mice, especially

in the femur (Figure 8G and 8H, Table 5). This reversal of the

high bone mass occurred in the face of decreased bone resorption

in the FK506-treated animals, as indicated by a significantly lower

serum CTX level (Figure 8I), presumably due to the known role of

NFAT in osteoclastogenesis [31]. The suppression of bone

resorption may explain the observation that FK506 did not

consistently correct the high bone mass in the tibia (data not

shown). However, in one case where the serum CTX level was less

affected by FK506, both the tibia and the femur were corrected

(Figure S1). As controls, the wild-type littermates were subjected to

the same inhibitor or vehicle treatment. Similar to a previous

report [32], the trabecular bone mass was reduced in the wild-type

animals by FK506, but the extent of reduction was modest

compared to that seen in the PRBP mice (Figure S2). Overall, the

results showed that NFAT inhibition could override the effect of

RBPjk deletion on bone mass. Furthermore, because Hey1 directly

inhibits NFATc1 expression, Notch-RBPjk-Hey signaling appears

to inhibit bone formation in part by down-regulating NFATc1.

Discussion

The present study establishes canonical Notch signaling as a

critical mechanism for maintaining bone homeostasis under

normal physiological conditions. In this capacity, Notch appears

to function as a gatekeeper to ensure that a proper number of

Figure 6. Deletion of RBPjk at later stages of osteoblast lineage. (A) Western analyses of RBPjk in protein extracts from tibiae and femora
from OsxRBP and ColIRBP versus wild type (WT) littermates at 8 weeks of age. (B–C) X-ray radiographs of hindlimbs, and mCT reconstruction of tibia
metaphyseal trabecular region at 8 and 21 weeks of age. (D–E) Osteoclast parameters of OsxRBP and ColIRBP at 8 and 21 weeks of age. Bar graphs
show mean 6 s. d., n = 3.
doi:10.1371/journal.pgen.1002577.g006
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osteoblasts are produced during differentiation. Because removal

of Notch signaling from the Osx-positive stage onward did not

have an obvious effect, we propose that Notch mainly controls the

transition from Runx2- to Osx-positive cells. Mechanistically,

Notch signals through RBPjk to induce transcription of Hey1 and

HeyL, which in turn inhibit osteoblast differentiation by

suppressing both Runx2 activity [21] and NFATc1 expression

(this study) (Figure 8J).

The current study not only demonstrates the stage- and

receptor-specificity of Notch signaling during osteoblast differen-

tiation, but also sheds light on the intracellular mechanism

mediating Notch function. Although RBPjk was previously shown

to mediate the effect of NICD overexpression on both chondro-

genesis and preosteoblast proliferation [24,40], this study estab-

lishes for the first time the importance of RBPjk in physiological

Notch signaling within the osteoblast lineage. Moreover, the

present study uncovers a direct regulation of NFATc1 expression

by Notch signaling.

The relationship between Notch and NFAT signaling warrants

further investigation. The direct suppression of NFATc1 promoter

by Hey1, and the dominant effect of FK506 over RBPjk removal

support the model wherein NFAT functions downstream of and

opposite to Notch signaling in regulating bone formation.

However, we cannot rule out that FK506 may have NFAT-

Table 3. mCT analyses of OsxRBP and ColIRBP at 8 and 21 weeks of age.

BV/TV Tb.N* Tb.Th* Tb.Sp*

Age Genotype % (±s.d.)

Ratio

over

WT

p

value

1/mm

(±s.d.)

Ratio

over

WT

p

value

mm

(±s.d.)

Ratio

over

WT

p

value mm (±s.d.)

Ratio

over

WT p value

8 weeks OsxRBP 5.15062.401 0.7 0.492 2.71060.492 1.4 0.083 0.05260.004 1.0 0.936 0.37460.077 0.7 0.082

WT 7.04564.587 1.88760.377 0.05160.002 0.56160.116

21 weeks OsxRBP 7.51360.792 0.8 0.400 1.90460.804 1.2 0.464 0.06060.005 0.8 0.069 0.58260.211 0.8 0.262

WT 8.92362.480 1.53060.167 0.07360.007 0.70160.086

8 weeks ColIRBP 6.00361.908 1.2 0.724 2.23060.556 1.1 0.771 0.05660.008 1.1 0.406 0.45160.096 0.8 0.550

WT 5.18763.216 2.13560.865 0.05160.003 0.53260.194

21 weeks ColIRBP 8.02561.024 0.8 0.394 1.70060.063 1.0 0.693 0.06960.002 0.9 0.172 0.60960.024 1.0 0.706

WT 9.53360.794 1.63560.273 0.07660.006 0.63060.198

BV: bone volume; TV; total volume; Tb.N*: trabeculae number; Tb.Th*: trabeculae thickness; Tb.Sp*: trabeculae spacing; data derived from 100 of 16-mm slices
immediately below growth plate. All analyses performed with sex-matched littermates (3 females for ColIRBP at either 8 or 21 weeks, 2 males and 2 females for OsxRBP
at 8 weeks, 1 male and 2 females for OsxRBP at 21 weeks).
doi:10.1371/journal.pgen.1002577.t003

Figure 7. Bone phenotypes of Hey1 and HeyL mutant mice at 8 weeks of age. (A) mCT 3-D reconstruction of metaphyseal trabecular bone of
the femur from WT, HeyL2/2, and HeyL2/2; Hey1+/2. (B) Number of osteoblasts per trabecular bone area on sections (No. OB/mm2). (C) Number of
osteoclasts normalized to trabecular bone perimeter (No. OC/mm). Bar graphs show mean 6 s. d., ** p,0.01, n = 4.
doi:10.1371/journal.pgen.1002577.g007
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independent functions, or that the systemically-delivered FK506

acted on other cell types to affect bone mass indirectly. Our

finding that Hey1 binds to and suppresses the NFATc1 promoter

is consistent with a recent report that Notch inhibited NFATc1

transcription in ST2 and primary osteoblasts [41]. However,

NFATc1 is unlikely to be the sole effector, as simultaneous

removal of NFATc1 and RBPjk with Prx1-Cre did not rescue the

high bone mass phenotype caused by RBPjk deletion (data not

shown). NFATc2 may play a redundant role as it was previously

shown to stimulate osteoblast differentiation [32]. Indeed, Western

blotting showed that several isoforms of NFATc2 were markedly

increased in the PRBP bones over the control (Figure S3). The

mechanism for this upregulation however, is currently unknown.

Future experiments with simultaneous deletion of NFATc1 and

Table 4. mCT analyses of HeyL2/2; Hey1+/2 and HeyL2/2 at 8 weeks of age.

BV/TV Tb. N* Tb.Th* Tb.Sp*

Genotype % (±s.d.)

Ratio

over

WT

p

value

1/mm

(±s.d.)

Ratio

over

WT

p

value

mm

(±s.d.)

Ratio

over

WT

p

value

mm

(±s.d.)

Ratio

over

WT

p

value

HeyL2/2 17.02762.818 1.8 0.006 2.41060.321 1.1 0.653 0.10160.003 1.2 0.129 0.45660.074 0.9 0.728

HeyL2/2;
Hey1+/2

23.25464.123 2.5 0.000 3.29560.480 1.5 0.014 0.10760.009 1.3 0.027 0.34460.048 0.7 0.036

WT 9.32061.675 2.24760.477 0.08160.018 0.48360.109

BV: bone volume; TV; total volume; Tb.N*: trabeculae number; Tb.Th*: trabeculae thickness; Tb.Sp*: trabeculae spacing. Data derived from 100 of 16-mm slices
immediately below growth plate, n = 4 for each group (all females in C57BL6 background).
doi:10.1371/journal.pgen.1002577.t004

Figure 8. Relationship between Notch-RBPjk and NFAT in bone. (A) ChIP-seq data showing Flag-Hey1 binding at NFATc1 P1 promoter region
in HEK293T cells. (B) ChIP showing Flag-Hey1 bound to P1 but not P2 promoter of NFATc1 in ST2 cells. 1: input; 2: Flag antibody; 3: IgG; 4: water
control; 5: molecular weight ladder. (C) NFATc1 P1 promoter luciferase reporter assays in ST2 and HEK293T cells. 1: co-transfection with pCS2; 2: co-
transfection with pCS2-Hey1; 3: co-transfection with pCS2-Hey1-DHLH. (D) NFATc1 real-time PCR with total RNA from tibiae of 8-week-old mice. (E)
Western blot analysis of NFATc1 in protein extracts from tibiae and femora at 8 weeks. (F) Exon-specific RT-PCR of NFATc1 mRNA variants in bone
RNA from 8-week-old mice. W: wild type mice; M: PRBP mice; GDH: glyceraldehyde 3-phosphate dehydrogenase. (G) X-ray radiographs of femora
from PRBP mice treated with vehicle (Veh.) or FK506 (FK). (H) mCT 3-D reconstruction of the femur metaphyseal trabecular region. (I) Serum CTX
assays. (J) A model for Notch signaling in regulating osteoblast differentiation.Q: stimulation;H: negative regulation. Bar graphs show mean6 s. d.,
* p,0.05, ** p,0.01, n = 3.
doi:10.1371/journal.pgen.1002577.g008
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NFATc2 will test the hypothesis that the two proteins redundantly

mediate Notch function in bone.

Notch-RBPjk removal from the early limb mesenchyme led to a

severe deficit in type I CFU-F in the postnatal bone marrow. This

phenotype could reflect either a direct requirement of Notch

signaling in the CFU-F cells, or a secondary effect due to changes

in osteoblast differentiation. To distinguish these possibilities, we

performed lineage-tracing experiments with the Rosa26 reporter

mouse, and observed that the type I CFU-F cells were not targeted

by Prx1-Cre although some stromal cells in the same culture were

(data not shown). In addition, experiments with a transgenic

mouse (TNR) that reports Notch-RBPjk signaling [42] revealed

that some stromal cells but not the type I CFU-F cells exhibited

canonical Notch signaling in vitro (data not shown). Thus,

diminution of bone marrow mesenchymal progenitors, as reflected

by CFU-F assays in vitro, was likely to be secondary to changes in

osteoblast differentiation. In this scenario, assuming mesenchymal

progenitors normally exist in equilibrium with Runx2-positive

osteogenic precursors, we envision that unchecked differentiation

of the latter due to Notch deficiency may lead to exodus of cells

from the mesenchymal progenitor pool. Alternatively, the altered

bone marrow environment due to the excessive bone mass in

Notch-deficient mice may be unfavorable for either establishing or

maintaining a normal mesenchymal progenitor pool.

A mechanistic understanding of the dominance of Notch2 over

Notch1 awaits further studies. A similar dominance of Notch2 over

1 was observed during nephron formation in the mouse embryo

[43,44], whereas a dominance of Notch1 over 2 was reported in the

skin [45,46] as well as in osteoclasts [37]. The mechanism

underlying the differential roles among Notch paralogs is currently

unclear, but it could reflect differences in either expression levels or

ligand-binding affinities among the different receptors within a

given cell type. This model predicts that Notch2 is normally

preferably activated in the osteogenic progenitors. Alternatively,

Notch1 and2 may be similarly activated but Notch2-NICD is more

potent than Notch1-NICD in suppressing osteoblast differentiation.

However, Notch 1 deficiency was sufficient to cause ectopic

ossification in human aortic valves [25]. Thus, the relative

contribution of Notch1 versus 2 in suppressing the osteogenic

program appears to be context dependent.

The effect of Notch signaling in osteoblast-lineage cells on

osteoclast differentiation is likely to be complex. Although TRAP-

positive osteoclasts were more abundant than normal within the

metaphyseal trabecular region of the PRBP bones, the total bone

resorption activity was relatively normal at 8 weeks of age. However,

by 26 weeks bone resorption was more robust in the PRBP mice

than the littermate control, and likely contributed to the rapid bone

loss seen at this age. The mechanism for the age-dependent bone

resorption phenotype is not understood at present, but likely

involves additional factors beyondNotch deficiency in the osteoblast

lineage. In addition, unlike the PRBP mice, the PN1, PN2, OsxRBP

and ColIRBP mice did not display an obvious bone resorption

phenotype at either 8 or 21 weeks, even though certain changes in

M-CSF, Rankl and Opg were observed in these animals (Figure S4).

The lack of bone resorption phenotype in the ColIRBP mice

appears to be at odds with the previous report that deletion of

presenilin 1 and 2 by 2.3Col1-Cre caused an increase in bone

resorption at six months, although not at three months of age [23].

Besides trivial explanations such as slight age differences or genetic

background variations between the two studies, the discrepancy

could indicate that the previously observed effect was independent

of RBPjk. In summary, the predominant function of physiologic

canonical Notch signaling in the osteoblast lineage is suppression of

osteoblastogenesis from the precursors. Thus, potential pharma-
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ceutical inhibition of this pathway in osteogenic progenitors may be

beneficial for bone formation.

Materials and Methods

Mouse strains
The N1f/f [47], N2f/f [48], RBPjkf/f [49], 2.3ColI-Cre [36], Osx-

GFP::Cre [35], Prx1-Cre [34], Hey1+/2 [50], HeyL2/2 [39] and

NFATc1f/f [51] mouse strains are as previously described. The

Animal Studies Committee at Washington University approved all

mouse procedures.

Analyses of mice
Radiographs of mouse skeleton were generated using a Faxitron

X-ray system (Faxitron X-ray Corp) with 20-second exposure

under 25 kV. Micro computed tomography (mCT 40, Scanco

Medical AG) was used for three-dimensional reconstruction, and

quantification of bone parameters (threshold set at 200). Serum

CTX assays were conducted with mice without feeding for 6 hours

with the RatLaps ELISA kit (Immunodiagnostic Systems Ltd.).

H&E, TRAP and picro-sirius red staining were performed on

paraffin sections, following decalcification for postnatal samples.

For dynamic histomorphometry of postnatal mice, calcein (Sigma)

was injected intraparitoneally at 7.5 mg/kg on days 7 and 2 prior

to sacrifice, and bones were sectioned in methyl-methacrylate.

Bioquant II was used for quantification in both static and dynamic

bone histomophometry. FK506 (Sigma) was dissolved in DMSO

and was injected subcutaneously into one-month-old mice at

0.30 mg/kg/day for one month before harvest.

Cell cultures, transfections, and analyses of protein and
RNA
The CFU-F and osteoblast differentiation assays were pre-

formed as previously described [21]. Only type I CFU-Fs were

scored in the present study.

Transient transfections were performed as follows. ST2 were

plated at 36104/well in a 24-well plate overnight, and transfected

with pCS2-Hey1, pCS2-Hey1-DHLH or empty pCS2 vector (0.2 mg)

[21], pNFATc1-0.8P1 (0.1 mg) [52] and pRL-Renilla (0.01 mg,

Promega) for 8 h using Lipofectamine (1 ml/well). HEK293T cells

were plated at 46105/well in a 12-well plate overnight, transfected

with pCS2-Hey1, pCS2-Hey1-DHLH or empty pCS2 vector

(0.4 mg), pNFATc1-0.8P1 (0.2 mg) and pRL-Renilla (0.02 mg) using

Fugene (1.8 ml/well). The transfected ST2 or HEK293T cells were

harvested at 48 hours after the beginning of transfection and

subjected to dual luciferase activity assays (Promega).

Western analyses were performed with bone proteins extracted

with RIPA buffer from tibiae and femora that were cut into small

pieces after bone marrow cells were flushed out. The Notch 1

monoclonal antibody mN1A was as previously described [53], and

the Notch 2 antibody (C651.6DbHN) was from Developmental

Studies Hybridoma Bank at the University of Iowa. The antibody

against RBPjk was from Cosmobio (Japan).

Real time PCR was performed with SYBR-Green (Roche) in

ABI-7500 (Applied Biosystems) using cDNA reverse-transcribed

from bone total RNA, extracted with Trizol (Invitrogen) from

pulverized tibia and femur after removal of the bone marrow.

Sequence information for the real-time PCR primers is listed in

Table S1. The exon-specific primers for NFATc1 (Table S2) were

as previously described [54], but the exons were renumbered

according to the current NCBI nucleotide database. Semi-

quantitative RT-PCR for NFATc1 was performed at an annealing

temperature of 57uC for 40 cycles. GAPDH used as loading

control was amplified for 30 cycles.

ChIP experiment
ST2 cells were infected with lentivirus to express a doxycycline-

inducible Flag-Hey1 transgene. Flag-Hey1 expression was induced

with100 ng/mL Doxycycline (Sigma D9891) for 12 hours. Chro-

matin and protein complexes were crosslinked for 10 minutes in 1%

formaldehyde and flash frozen. The chromatin was sonicated to an

average size of 200–450 bp using a Sonics Vibracell sonicator

(model Vcx 500). Chromatin complexes were immunoprecipitated

using an anti-Flag antibody (Sigma F1804). Immunoprecipitated

DNA fragments were amplified by PCR using primers adjacent to a

predicted Hey1-binding site within the P1 promoter of the mouse

NFATc1 gene (59 - TCTCGGTCTCACTCTGACGCA - 39 and

59 - TTCCCTCTTGTACACCTTTGCCCA - 39), or primers

near the P2 promoter approximately 4 Kb downstream (59 -

TCCGGGTTTACATAAACAAGCGGC - 39 and 59 - ACTG-

CACACCACGCTGAACAGGAA - 39).

ChIP–seq experiment
HEK293 cells that express a doxycycline-regulated Flag-Hey1

or -HeyL transgene were used for ChIP-seq analysis. Cells were

induced with 50 ng/ml doxycycline for 48 hours to ensure a low-

level expression and Hey1- or HeyL-containing chromatin was

immunoprecipitated with a Flag antibody. Cells carrying the same

transgenes but grown without doxycycline were used as control.

Preparation of ChIP libraries, Illumina sequencing and data

analysis were performed as previously described [55].

Supporting Information

Figure S1 Correction of the high-bone-mass phenotype in the

tibia by FK506. (A) X-ray radiographs of the tibia. Note a notable

correction of the shape of the tibia. (B) Data from mCT analyses

and serum CTX assays of animals in (A).

(TIF)

Figure S2 Effect of FK506 on trabecular bone mass of wild type

mice. Shown are mCT 3-D reconstruction images of the

metaphyseal trabecular region of the tibia.

(TIF)

Figure S3 Western analyses of NFATc2 in protein extracts from

tibiae and femora of 8-week-old PRBP versus wild-type litter-

mates.

(TIF)

Figure S4 Real-time PCR of osteoclastogenic factors in bone

RNA from indicated mouse strains. Values are normalized to wild

type levels (designated 1). Bar graphs show mean6 s. d., *p,0.05,

**p,0.01, n= 3.

(TIF)

Table S1 Real-time PCR primers.

(DOCX)

Table S2 NFATc1 exon-specific PCR primers.

(DOCX)
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